
Capacity Assessment of Rectangular Concrete-Filled Steel Tube (RCFT) 
Members and Connections for Performance-Based Design of Composite Frames

Cenk Tort1 and Jerome F. Hajjar2

1 Graduate Research Assistant, Department of Civil Engineering, 500 Pillsbury Drive 
SE, University of Minnesota, Minneapolis, MN 55455.
2 Professor, Department of Civil Engineering, 500 Pillsbury Drive SE, University of 
Minnesota, Minneapolis, MN 55455, email:  hajjar@struc.ce.umn.edu

Abstract

This paper presents research documenting the local damage progression in 
rectangular concrete-filled steel tube beam-columns and connections in composite 
frames.  Local damage is quantified through the development of damage indices 
based upon results of worldwide experiments.  A fiber-based finite element 
formulation is also introduced for assessing global capacity and seismic demand.  

Introduction

The lessons learned from the past earthquakes have initiated a motivation in 
research and practice to augment conventional strength-based seismic design codes
for buildings with procedures that predict damage for a broader range of earthquakes. 
In Performance-Based Design (PBD), multiple performance objectives may be 
defined.  Each performance objective describes the damaged state of the structure for 
a prescribed level of seismic loading.  PBD thus provides guidelines for engineers to 
design for each of the performance objectives (Moehle and Deierlein, 2004).  The full 
advantage of PBD is utilized if it is implemented in a probabilistic framework.  This 
allows for the inherent uncertainty and randomness in seismic design so that the 
engineers have the capability of quantifying the reliability of their designs.  

Development of PBD guidelines may be realized through definition and 
quantification of four main components listed below (Moehle and Deierlein, 2004):

• Intensity Measure (IM)
• Engineering Demand Parameter (EDP)
• Damage Measures (DM)
• Decision Variables  (DV)

IM is the parameter representing the intensity level of ground motions (e.g., first 
mode spectral acceleration, peak ground acceleration).  EDP characterizes the 
structural response during an earthquake.  The most widely used EDPs include 
quantities such as maximum interstory drift, base-shear, and dissipated hysteretic 
energy. DMs describe the damaged state of the structure and its components such as 
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local buckling, concrete crushing, residual drift, etc.  DVs are the parameters defining 
the structural performance in a format that most interests the decision makers.  The 
DVs are often expressed in terms of casualty rate, down time, and repair cost.  

Capacity assessment of structures is considered as one of the main tools to identify
the four components of PBD described above.  First, the EDPs need to be selected 
from structural response parameters that adequately represent the capacity.  Second, 
the link between EDPs and DMs must be developed with a solid understanding of 
capacity of the structure and its components.  Third, the selection of repair techniques 
to be applied is governed by the available capacity of structures.  Therefore, capacity 
assessment is also critical in defining DVs.

The focus of this study is to develop PBD methodologies for composite structures, 
with a focus on rectangular concrete-filled steel tubes (RCFTs) in composite frame 
structures consisting of steel girders framing into RCFT beam-columns (Tort and 
Hajjar, 2003, 2004).  This paper reports the first stage of that research, including 
establishing the DMs for RCFTs based upon the experimental capacity of RCFT 
members, connections, and frames.  The paper then describes a new fiber-based 
beam-column finite element formulation, including new constitutive rules for steel 
and concrete in RCFTs, which will be used to assess global capacity and predict 
seismic demand in RCFT frames.  

Capacity Assessment at the Local Level

Experimental tests conducted on RCFT members and connections provide the 
required data to investigate their capacity and document the associated damage 
measures.  In this research, the experimental results were quantified in a unified 
format using deformation-based and energy-based damage functions. 

Development of Experimental Database

Six databases were constructed for RCFT members including columns, beam-
columns, panel zones, pinned connections, moment-resisting connections, and 
frames.  Both monotonically and cyclically loaded components were studied where 
tests were available.  The experimental tests existing in the literature were carefully 
examined and only well documented tests in which the progression of damage was 
quantifiable were included.  Specimens were limited to those manufactured from 
cold-formed steel tubes.  The information presented in the database was grouped into
four sections, description of the test, material properties, geometric properties, and 
experimental results.  The tests were described by reporting the boundary conditions 
and loading scheme applied to the specimens.  The material strengths (compressive 
strength of concrete, f’c, yield strength of steel tube, fy, modulus of elasticity of steel 
tube, Es) and specimen dimensions (depth, D, width, B, thickness, t, length, L) were 
provided in terms of both nominal and measured values.  The experimental results 
included peak strength and displacement values, failure patterns, and local damage 
levels recorded in terms of the force and deformation values at the occurrence of the 
local damage state.



Damage Assessment

In PBD, various damage states identifying the progression of structural 
damage are defined.  These damage states may then be related to the performance 
objectives of the structural components. For RCFT members, the limit states were 
identified as local damage levels occurring in the steel tube, concrete core, or 
connection components.  The common local damage levels observed in RCFT beam-
columns during the tests were concrete cracking, yielding of steel tube, concrete 
crushing, local buckling of the steel tube, and fracture of the steel tube. 
Corresponding damage states were identified for the connection components (Tort 
and Hajjar, 2003).  The occurrence of these local damage levels were quantified with 
the use of damage functions where force and deformation values were used as the 
operating variables.  Two types of damage functions were defined.  The deformation-
based damage function ( D̂ ) is defined as the ratio of the deformation at the 
occurrence of local damage (dcurr) to the deflection attained when the peak load is 
reached (do) (with the specific type of load and deflection being assessed varying 
with the type of test) as given in Equation 1:

ocurr /ddD =ˆ [1]

The energy-based damage function ( Ê ) is defined as the ratio of the energy 
absorption at the occurrence of local damage (Ecurr) to the total energy absorption at 
the end of the test (Etotal) as given in Equation 2:

totalcurr /EEE =ˆ [2]

The damage functions given in Equations 1 and 2 were used for monotonically 
loaded specimens to quantify the damage at each limit state.  In the case of cyclically 
loaded specimens, the amount of damage was calculated using the back-bone curves 
of the hysteretic response.  The damage function of cyclically loaded specimens ( cÊ ) 
given in Equation 3 was defined as the ratio of the area under the cyclic back-bone 
curve until the point at which damage is assessed ( cbE ) to the area under the 

complete cyclic back-bone curve ( mE ).  In Equation 3, it was assumed that the value 

of the damage function at both directions of loading is the same due to the symmetry 
typically seen in RCFT response.

m

cbc

E

E
E =ˆ [3]

For the specimens included in the experimental database, the damage functions were 
evaluated at each local damage level.  The damage function values were then 
correlated to the material and geometrical properties of the RCFT members (e.g., D/t, 
fy, f’c).  This resulted in equations to estimate the damage function values at the
occurrence of local damage levels defined for the RCFT members.  The 
displacement-based damage function values define the damage with respect to the 



attainment of peak load capacity.  Therefore, it does not give an indication about the 
reserve capacity of the specimens.  On the other hand, the energy-based damage 
function values identify the amount damage relative to the point of failure (Tort and 
Hajjar, 2004).  Thus, it is possible to assess the proximity of the specimens to failure.  
However, the energy-based damage function values alone are not adequate to 
evaluate the remaining strength of the specimens following the occurrence of local 
damage.  In this research, equations were also correlated to calculated ductilities from 
the experiments (with the specific ductility definition depending on the type of 
experiment) so as to quantify the available ductility of RCFT specimens to 
supplement the energy-based and displacement-based damage function equations.
For example, Equation 4 is the ductility function (κ) derived for RCFT beam-column 
specimens that are fixed at each end, subjected to constant axial compression, and 
subjected to shear to put the member in double curvature:

-0.32 ( / ) - 3.78 ( / ) - 0.28 ( / ) 23.24c o oL D P P P Pκ = × × × +  [4]

where P is the axial compression force; Pc is the nominal strength of concrete; and
Po is the nominal strength of composite section. 

The damage function and ductility function equations together may be used to assess 
the local capacity of RCFT members at multiple limit states.   In this paper, for 
brevity, the damage assessment study is presented only for beam-column specimens. 
The damage assessment studies of the remaining RCFT member and connection 
types may be found in Tort and Hajjar (2003).

Monotonically Loaded Beam-Columns

The monotonically-loaded beam-column specimens recorded in the database 
were studied in distinct groups depending on the type of loading (Tort and Hajjar, 
2003).  For brevity, the beam-column specimens that were tested under constant axial 
compression (P) and monotonically increasing shear force (V) will be presented.

The local damage levels reported in the beam-column tests were yielding of 
compression flange (YCF), yielding of tension flange (YTF), local buckling in the 
compression flange (LBF), and local buckling in the web (LBW).  These damage 
levels were detected by direct assessment of the load-deflection curves.  Concrete 
cracking and concrete crushing local damage levels could not be determined 
accurately from the experiments in the database and were thus assessed based upon 
simple analytical procedures as discussed in Tort and Hajjar (2003). The YTF 
damage level is discussed below as an example of the available results.  

Equation 5 was derived to estimate the displacement-based damage function values at 
the initiation of YTF ( oty dd / ): 

1.47 5.28 3.85ty s

o o o

d P P
d P P

= − + [5]



where P is the axial compression force; Ps is the nominal strength of steel tube.  As 
can be noticed from Equation 5, the experimental results indicated that the specimens 
having a high axial load ratios (i.e., high oPP / ) experienced the YTF damage level at 

later stages of loading compared to the ones with low axial load ratios.  In addition, it 
was also found that if the specimens have a large steel ratio (i.e., large os PP / ), the 

steel tube takes a larger share of the load, causing the YTF damage level to take place 
earlier.  A similar trend was also obtained for the energy-based damage function at 
YTF damage level ( totalty EE / ).  Figure 1 illustrates the variation of totalty EE /  with 

respect to the parameters of oPP /  and tD / .  It is evident from Figure 1 that the 

specimens having a high axial load ratio (i.e., high oPP / ) experience the YTF 

damage level later than specimens with a large steel ratio (i.e., large tD /  or large 

os PP / ).  In Figure 1, the damage function values were presented with the available 

ductility of the specimens, showing that the beam-columns have a large deformation 
capacity without significant reduction in strength, particularly when YTF occurs 
earlier in the loading history.  

A summary of the deformation-based and energy-based damage functions including 
their limits of applicability (e.g., fy, f’c, D/t) and statistical properties [number of data 
points (N), coefficient of correlation (R2), mean value(η), standard deviation(σ)] can 
be seen in Table 1.   Similar tables were developed for the other member types 
covered in the experimental database and may be found in Tort and Hajjar (2003).  

Cyclically Loaded Beam-Columns

The cyclically-loaded beam-columns in the database that are presented in this 
paper were tested under constant axial load and cyclically applied shear loading at the 
free end.  Local damage levels similar to those of monotonically loaded beam-
columns were observed.  The energy-based damage function given in Equation 3 was 
utilized for damage assessment.  As an example of the damage assessment for 
cyclically loaded beam-columns, the LBF local damage level is discussed below.

In Figure 2, the energy-based damage index at LBF ( mlbf EE / ) is plotted with 

respect to the parameter sy EftD /)/( × .  The results were presented for two groups 

based on the axial load ratios.  It was found that for both low and high axial ratios, 

mlbf EE / exhibits a decreasing trend for increasing values of sy EftD /)/( × .  

However, no trend of mlbf EE / was observed with respect to the level of axial load.

Parametric Study

The range of damage function values attained by RCFT members was 
investigated by performing a parametric study of the proposed damage function
equations.  This was achieved by generating multiple RCFT specimens through
varying their structural parameters within the ranges where the damage function



equations are applicable.  The damage function values corresponding to each local 
damage level were then evaluated and the resulting damage function values were all
plotted on the same graph.  This allowed comparison of the sequence of occurrence 
of local damage in the RCFT members and connections.

For example, a parametric study of RCFT beam-columns tested under constant axial 
load and monotonically increasing shear load at the ends was performed by varying 
the structural properties of D/t, L/D, f’c and fy.  A total of sixteen specimens were 
generated and for each specimen the damage index and ductility values were 
evaluated.  Figure 3 presents the result of the parametric study for the energy-based 
damage function of RCFT beam-columns.  If the sequence of local damage levels is 
compared, an intricate relation between the damage states may be observed 
depending on the properties of the RCFTs (not presented here for brevity).  For 
example, lower ductility is clearly exhibited for members in which local buckling of 
the steel tube web occurs prior to yielding of the steel tube flange.  With the 
composite action occurring between the constituent materials, the relationship of 
which RCFTs will achieve good ductility is complex, as seen in Figures 1 and 2.   

Based on the ranges of the damage function values, it is possible to correlate the local 
damage states into performance levels.  For example, in the case of monotonically 
loaded beam-columns, LBW often has damage function values between 0.30 and 
0.45.  These may be associated with a life safety performance level, as local buckling 
should be avoided for low levels of loading. However, LBW has damage index 
values ranging from 0.30 to 0.70 for cyclically loaded beam-columns, such that it is 
appropriate to associate LBW with either the life safety or near collapse damage 
levels. Thus, the complex interactions seen between the damage states due to the 
composite interaction of the member mean that a single local damage state must often 
be associated with different performance levels depending on the specific material 
and geometric properties of the RCFT member. Similar categorizations were made 
for all the damage levels for monotonically- and cyclically loaded RCFTs members 
and connections in Tort and Hajjar (2003, 2004).

Capacity Assessment at the Global Level

In PBD, the acceptance criteria for the intended performance-objectives are 
often checked both at the local and global level (Krawinkler, 1999).  In contrast to the 
capacity of structural components that is commonly determined from experimental 
tests, the capacity of structural systems is usually calculated using parametric analysis 
methods utilizing nonlinear time history analysis (e.g., Vamvatsikos and Cornell, 
2002; Ibarra, 2003).  In this research, a non-linear fiber-based finite element 
formulation of RCFT beam-columns was formulated to be used for non-linear 
dynamic analysis of RCFT frames.  The formulation was implemented with new steel 
and concrete uniaxial constitutive rules accounting for the salient features of RCFTs. 



Finite Element Formulation

In prior work, a 3D beam-column finite element formulation was developed to 
analyze frame structures having steel girders framing into RCFT columns (Hajjar et 
al., 1998).  The beam-column finite element formulation was implemented in a 
general structural analysis program allowing both geometrically and materially 
nonlinear analysis of RCFT frames. The slip between the steel tube and concrete 
core was accounted for by defining separate translational degrees-of-freedom for the 
steel tube and concrete core.  The rotational degrees-of-freedom defined for the steel 
tube and concrete were assumed to be the same.  Penalty constraints were defined 
between the shear translational degrees of freedom of steel tube and concrete core.  
Therefore, the steel tube and concrete core exhibit differential movement with respect 
to each other only in the axial direction (Hajjar et al., 1998).  A distributed plasticity 
approach was adopted to account for material nonlinear effects.  The element ends 
were discretized into individual steel and concrete fibers.  Throughout the analysis, 
the stress and strain response of each fiber is tracked. In this research, the 
formulation was reworked as a mixed finite element formulation to calculate the 
internal element forces using a Hellinger-Reissner two-field variational formulation 
following the work by Alemdar (2001).

Concrete Constitutive Model

The uniaxial concrete stress-strain model developed by Chang and Mander 
(1994) is implemented in this research. The stress-strain response was simulated by a 
family of curves represented by polynomial expressions.  Three types of curves were 
introduced, including envelope curves, connecting curves, and transition curves.
Envelope curves define the boundaries of the hysteretic response.  Different envelope 
curves are derived for the tensile and compressive response of concrete.  Connecting 
curves identify the rule to connect envelope curves.  Any strain reversal requires 
shifting from the current connecting curve to the one going in the opposite direction.  
The rule for this process is defined by the transition curves. 

In this research, the envelope curve in compression proposed by Chang and Mander 
(1994) was modified to account for the typical characteristics of RCFT members.  No 
enhancement in concrete strength due to confinement was accounted for.  A plain 
concrete response was assumed until the compressive strength is attained and the 
stress-strain response in the pre-peak region was adopted from Collins and Mitchell 
(1991).  The post-peak response of the envelope curve was assumed to have linear 
strength degradation region followed by constant strength response at large strain 
levels.  The strength degradation and constant strength regions were characterized by 
the parameters of Kc and frc, respectively.  Kc is the slope of strength degradation 
region and frc is the residual strength of concrete at high strain levels.   Equations 6
and 7 were proposed to calculate Kc and frc, respectively.  These equations were 
derived from the stress-strain data provided by Sakino and Yuping (1994) and Varma 
(2000).  The R2 values of Kc and frc were determined to be 0.73 and 0.68, 
respectively:
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The connecting curves, transition curves, and the tensile envelope curve proposed by 
Chang and Mander (1994) were kept unchanged for RCFT specimens. 

Steel Constitutive Model

The stress-strain response of steel tube was simulated through a uniaxial 
bounding surface plasticity model developed by Mizuno et al. (1992).  The original 
model was modified to account for the local buckling effect of the steel tube.  It was 
assumed that steel undergoes a linear strength degradation region once local buckling 
strain level is attained. Similar to the envelope curve of concrete, following the
strength degradation response, a constant strength region is maintained. The strain 
level at initiation of local buckling (εlbf) was determined from the experimental results 
of axially load RCFT columns tests.  Equation 8 provides εlbf as a fraction of yield 
strain (εy).   The R2 of Equation 8 was calculated as 0.61:
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The parameters defining the response of the steel after local buckling were defined to 
be slope of strength degradation region (Ks) and the residual strength at high strain 
levels (frs).  These parameters were determined through a calibration study performed 
on axially loaded RCFT specimens with wide ranges of material strength and 
geometric properties.  Equations 9 and 10 were derived to estimate Ks and frs.  The 
values of R2 for Equation 9 and 10 were found to be 0.85 and 0.64, respectively.
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Verification of RCFT Fiber-Element Formulation

Two sets of analyses were performed to verify the fiber-element formulation 
for RCFT beam-columns having a wide range of properties and subjected to 
monotonic loading.  Ongoing research continues verification of the performance for 
cyclic loading prior to engaging in parametric studies to assess global capacity and 
seismic demand of suite of RCFT frame structures.  

In the first verification set, RCFT columns tested under eccentrically applied loading 
were studied.  RCFT beam-column specimens tested by Bridge (1976), Shakir-Khalil 



and Zeghiche (1989), and Cederwall et al. (1990) were analyzed, typically using two 
to four elements along the length of the member, with comparisons shown in Figure 
4.   These specimens, including 1, 1*, 2, 7, 10, and 13, have values, respectively, of 
D/t (depth/thickness) = 24, 20, 24, 24, 15, 15; L/D (length/depth) = 27, 10, 23, 23, 27, 
27; f’

c = 6.8, 4.3, 5.8, 6.4, 5.6, 11.6 ksi; fy = 44, 42, 56, 52, 55, 53 ksi.  The second set 
of specimens was selected from experiments where RCFT beam-columns were tested 
under constant axial load and monotonically increasing bending moment, putting the 
member into single curvature.  Specimens from Tomii and Sakino (1979), Varma 
(2000), and Nakahara and Sakino (1998) were analyzed.  In Figure 5, these
specimens, including BC328020, BC484622, BR4-3-10-02, BR4-3-10-02, BR8-6-10-
02, III-2, and III-5 (shown left to right in the figure) have values, respectively, of D/t
(depth/thickness) = 34,  52, 63, 31, 33, 33; L/D (length/depth) = 5, 5, 3, 3, 3, 3; f’

c = 
16.0, 16.0, 17.3, 17.3, 3.0, 3.0 ksi; fy = 81.2, 68.3, 45.0, 113.3, 42.0, 42.0 ksi; P/Po = 
0.21, 0.22, 0.20, 0.20, 0.20, 0.50.

Conclusions

This paper presents the evaluation of local capacity of RCFT members.  In 
addition, a fully nonlinear analysis model to be used in global capacity and demand 
assessment of RCFT frames was reported.  The main conclusions are listed below:

1. The local damage types recorded in the experimental database developed in this 
work document the progression of damage for the damage states to be considered 
in performance-based design of RCFT members

2. The proposed displacement and energy-based damage functions provided an 
efficient way of to quantify the capacity of RCFT members. 

3. The damage function values were correlated versus parameters representing the 
composite nature of RCFT members.

4. Complex interactions were seen between the damage states due to the composite 
interaction of the member, with some damage states occurring either earlier or 
later than others depending on the material and geometric properties of the RCFT.  
Thus, a single local damage state must often be associated with different 
performance levels depending on the RCFT properties.

5. The stress-strain relationships derived for the steel tube and concrete core were 
able to account for the effects local buckling of the steel tube and confinement of 
the concrete.  Accurate analysis results of RCFT members were obtained for wide 
ranges material strengths and geometric dimensions. Ongoing research is 
documenting the global capacity and demand of a suite of RCFT frames to 
complete the development of the RCFT performance-based design methodology.
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Figure 1. D/t and P/Po vs. Ety/Etotal Figure 2.  y sD t f E vs. Elbf/E for 
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Figure 3. Comparison of energy-based damage indices for monotonically-loaded 
beam-column tests 
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Table 1: Damage Index Equations for Monotonically-Loaded Beam-Columns
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