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Abstract

Typically, management of networkedcomputational and
sensingnodes is basedupon a quality of servicemetric
(QoS) that is basedon somegeneric principles, like “be
fair in allocating resources” or “utilize the CPU capacity
to the maximum”. Theconsequencesof acceptingsuch a
startingpoint is that(1) task-specificresourcerequirements
arenottakeninto consideration,and(2) computationaland
communicationresourcesare saturatedwithoutpaying at-
tentionto whethersuch a high load is necessaryor not. In
this paper we describesomeof our efforts on how to im-
prove thesituationdescribedabove. In particular, we dis-
cussoneof theapproachesthatwearecurrentlyinvestigat-
ing that can be summarizedby the following threepoints.
(1) We usea task-specificQoS(TS-QoS) asa variablethat
is controlled by our system.(2) Requestsfor resourcesare
generatedbasedupon thefeedback providedbytheTS-QoS,
where the requestgenerator’ s parameters are adjustedus-
ing a simplePID controller. (3) A DynamicProgramming
basedalgorithm is usedfor scheduling resource. Simula-
tionsusingsensorresourcesshowsomeof the advantages
of theproposedapproach.

1. Intr oduction

The goal of managementof networked computational
and sensingnodesis to attemptto optimize performance
as measuredby a quality of service metric (QoS) (cf.
[6, 1, 2, 3, 5, 8]). Performanceis most commonly mea-

suredusinggeneric principles which neednot be relevant
in a particularcase.For performancemeasurementsto be
meaningful, theQoSshould bespecificto theparticular do-
mainandtaskbeingperformed. A QoSwith this property
is calleda task-specific QoS(TS-QoS).

To investigateTS-QoSbasedresourcemanagementwe
selectedascenarioin whichthereis oneresource(asensor)
whosegoal is to monitor � abstractobjects(radarillumina-
tions). Thesensorneedsto bedirectedto tuneto a specific
frequency (of theradar)at a specifictime. Sincetheobject
(the illumination) is visible only at sometimes,i.e., when-
ever theradaris illuminating in thedirectionof thesensor,
a generic QoSmetric,like theamount of time thatthesen-
soris allocatedto a particular radar, will not work. It is the
timing of thetuningthatmattersthemost.Thesensoris lo-
catedon a moving platform (aircraft). Theworkloadof the
sensoris definedby thenumber of emittersin theenviron-
mentandtheir illumination times. TheTS-QoSrepresents
theuncertaintyaboutthestatesof theemitters.

In general, we deal with algorithms of soft real-time,
non-preemptive resourcescheduling for a scenariowith
the following characteristics: (1) The environment is non-
deterministic, i.e., theschedulerdoes not know thestateof
theenvironmentandthevalueof thegainfrom scheduling a
particular taskat a giventime. (2) Theproblemis dynamic
in thesensethat thevalue of thegaindependsnot only on
thescheduling decisionbut alsoonthestateof theenviron-
mentandthepassageof time. (3)Thesystemis overloaded,
i.e., thedemand(theworkload) for theresourceexceeds its
physicalcapacity.

The consequenceof theseconstraints is that the sched-



uler needs to estimatefuture statesof the environment,
which in a senseis equivalent to estimatingfuture tasks.
Moreover, since the systemis overloaded,the scheduler
needs to optimizeits schedulingdecisions.And sincethe
environment is dynamic, the schedule needsto adaptto
changingdemands.

The resourceschedulingproblem described above is a
caseof the problem called sensormanagement (SM) (cf.
[7]). The specific featureof the SM problem is that the
scheduler mustnot only scheduletasks,but alsogenerate
tasks(sensingrequests).TheTS-QoSthendependsonboth
thetaskgeneration stepandthescheduling step.

In this study we considered two kinds of task genera-
tion approach: periodic taskgeneration andcontrol-based
taskgeneration. In the periodic taskgeneration approach,
to ensurethe detectionof eachillumination (without any
prior knowledgeof theoccurrenceof the illumination) the
receiver mustbe tunedto a given radar’s frequency every�������

time units,where
���	���

is thedurationof the illumina-
tion (in a givendirection) for a given radar. Thestreamof
generatedtasksaccording to this policy shows a fixedpat-
tern over time. It doesnot depend on any feedback from
thedetector, i.e., thepatternremains fixedindependently of
whether a given radarwasdetectedor not. In the control-
basedtaskgeneration approach(cf. [11]), thepatternis up-
datedafterreceiving feedbackfrom thedetector.

The main goal of this paperis to proposeandanalyze
variousapproachesto scheduling appropriateto thecharac-
teristicsof theproblemlistedabove. It is known [4] thatthe
periodic taskgenerationapproach(combinedwith Earliest
Deadline First (EDF) scheduling) is computationallyfeasi-
ble only for low workloads[10]. Our goal is to find other
approachesthatpushthesolvability of thisscheduling prob-
lemtohigherworkloadswhilemaintaining thesamelevelof
theTS-QoS.In this paperwe compare four solutionswith
two different kinds of taskgenerationandscheduling: (1)
periodic taskgeneration,EDF scheduling; (2) periodic task
generation,DP scheduling; (3) control basedtask gener-
ation, TS-QoS-basedgreedy scheduling (4) control based
taskgeneration,DP scheduling.

Thispaper is organizedasfollows. First, in Section2 we
briefly describeoursimulatedscenario.This is followedby
thedescriptionof thealgorithmsusedto estimatethestate
of thesystem(Section3). In Section4 we briefly describe
ourQoSmeasureandthebenefitfunctionusedfor optimiza-
tion. In Section5,wedefineourproblemasaconstraint sat-
isfactionproblem. This is followedby the presentation of
themethodsof taskgeneration, i.e.,periodic taskgeneration
andcontrol basedtaskgeneration,describedin Sections6
and7. An analysisof thetimecomplexity of thealgorithms
usedin our studyis given in Section8. Finally, we present
resultsof our simulations in Section9 andconclusionsand
future work in Section10.

2. Scenario

In our simulations we considera scenariowith onesen-
sor locatedon an aircraft moving in a straight line with
constant velocity. The number of radarsin the environ-
mentranges from 10 for a light workload up to 120 for a
heavy workload. The radarsdiffer in various parameters,
like emissionfrequencies,illuminationtimesandillumina-
tion periods. As theaircraftmoves, someradars arewithin
thedetectionrange andsomeothers areoutsidethe detec-
tion range. It is assumedthat the the frequenciesof the
radars, the lengths of their illuminations, the illumination
periods and the required dwell times areknown, but illu-
minationtimes,radar locations andphasesarenot. In other
words,thereceiverknowswhatkindsof radarto expect,but
it doesnotknow whenandwhere.In orderto detectaradar,
thereceiverneedsto tuneto theradar’s frequency (dwellon
it) for a longenough time. Thedwell mustoverlapwith the
radar’s illuminationin theaircraft’s direction.

3. StateEstimation

Sincethesuccessof a schedule,i.e.,detection of a radar
illumination, depends on the knowledge of the direction
(phase)of the radar illumination 
������������� ��������� , we are
interestedin estimatingthis variable. Towardsthis aim we
model eachof theemitters� at time � asfollows.�� � 
 �!�������#"$�%� & � �	�('*),+*- ���� (1)

In thisequation
�.�	�('

is theilluminationperiodof theemitter
and

+ - ���� is thenoise.Noiseis assumedto bewhiteGaus-
sianwith zeromean.In theexperiments,we setthe initial
valueof 
 to 0 andthencompute thevaluesof 
 �!������� from
this model.

We thendiscretizethe statevariable 
 so that our state
spaceis finite. /10 represents the estimateof the current
state. /203"54 
 �!������67��%� 8 9;: �=< (2)

Theresultingdiscretespacethenis:> "@?%/BAC�EDFDGDG��/2HJI (3)

whereK is equal to
9;: � . Sincethevalueof / is notknown,

we treat / asa random variable with probability distribu-
tion L �M/N"N/BAO�7�EDPDEDP� L �M/N"N/2HB� (4)

where
L �Q/R"S/UT=� is theprobability of illumination in the

direction / T . We initialize this distribution to beuniform,
i.e., L �Q/3"N/ T �#" VK ��WX" V ���Y�PDGDFDG�ZK (5)



Notethatotherwaysof modeling thelack of initial knowl-
edge canbeused.

Theestimationprocessconsistsof two steps:computing
the aging effect, i.e., the effect of time on the certaintyof
the information about the phasesof particular radars,and
updating the probability distribution after an observation
event.

SubSectionTheAging Effect
Whenthereceiver is not tunedto a particular emitterfor

sometime, thecertaintyof thephaseof thatemittershould
decrease.Essentially, weexpectthatin thelimit, if thesys-
temdoesnot receiveany detectionevents (updates)thedis-
tribution of / should becomeuniform. We call this theag-
ing effect. To accountfor this effectwe updatethedistribu-
tion every illumination time of a given emitteraccording to
thefollowing algorithm.

First, we perform convolution ( [ ) of thedistribution of/ with white noise\^]_�`a� :bL �M/1�c" L �M/1�d[,\feg�`a� (6)

wherethe index h in \ e represents thewindow size. In
our experimentswe set h "ji � , the beamwidth of the
emitter. Thevalueof

bL �Q/1� is thenusedto computethenew
distribution according to thefollowing formula:L �Q/3"N/*TE�#" bL �Q/3"N/ TZkmlGeUn�oZp � 8 VVmqsr (7)

wherer " t eUn�oZuv �Gw A bL �Q/N"N/ � � ) H k�eyx Av�Gw H kzlGe2n�oZp bL �Q/3"N/ � � (8)

3.1. BayesianUpdate

Whenever the receiver is tunedto a givenemitter’s fre-
quency, oneof two events ( {X0 ) canoccur:detectionat /X0
(wedenoteit as | 0 ) or non-detection(wedenoteit as } 0 )./ 0 is computedaccording to Eq. 2 with 
 obtained from
the dynamic model (Eq. 1). The probabilities of illumi-
nationarethenupdated for this emitter. We useBayesian
updating(cf. [9]):L �Q/3"$/*T�~ { 0 �c" L �!{�0f~ /$"3/ T � 8 L �M/N"N/ T �H�� w A L ��{*0f~ /3"$/ � � 8 L �Q/3"N/ � �

(9)
Theposteriorprobability dependsontheprior probabil-

ity
L �Q/�"�/*T=� andthe probability of a given event (de-

tectionor non-detection)
L ��{ 0 ~ /@"@/*TE� . Thelatterprob-

ability representsthe level of certaintyof detection.In our
casewemodelthisdependenceusingtwo parameters:

LU� '
-

theprobability of falsedetection(or falsepositive)and
L1�E�

- the probability of falsenon-detection(or falsenegative).
For adetectioneventtheprobability isL ��|f0^~ /N"3/ T �#"R� Vmq L�� ' � / T "3/20L.�=� � / TX�"3/20 (10)

For anon-detectionevent wehaveL �!} 0 ~ /N"3/*TE�c" � L �=� � /*T*"3/ 0Vmq L � ' � /*T �"3/ 0 (11)

If one detection/non-detectionevent can be associated
with morethanoneelement/�T of thesamplespace

>
(i.e.,

whenthestatespaceis discretizedinto increments smaller
thanthebeamwidth i � of theemitter)thentheprobability
updateformula given by Eq. 9 mustbeextended to incor-
porate this fact.For this reason,weusethefollowing Gaus-
sianmodelto distributetheposteriorprobability (in caseof
adetectionevent) overneighbor statesof /�0 :L �Q/3"$/ T ~ |^01�c" V� ��� 8=���O��� q��FW

qa� � o� � o (12)

where
� "�� , � "�i � , and WN" V �PDEDPDO��K�D For a non-

detectionevent we justuseEquation 9.

4. Quality of Service

Optimizing the solutionto a resource scheduling prob-
lem requires that therebe somemeasure of quality that is
beingoptimized. The quality of service(QoS) for sensor
managementformalizesthedegreeof uncertainty that one
hasabout eachemitter. In theabsenceof any observation,
theuncertainty increaseswith time, while observations re-
ducetheuncertainty. Observationsthatdetectanillumina-
tion reducetheuncertainty to zero,while observationsthat
donotdetectanillumination alsoreducetheuncertaintybut
by muchless. The formal specificationof the QoSis the
following:

�B��> ��������c" � ����� �	��' �!�	�28 �� q �����!�	�Z� )�� �!���Z�	�!� (13)

where� �!����� � �#"��� � � ���� � � " �� � � � � � � �!�	� ¡ �� � �!����� x� � q � �!�	� 8d¢C£�¤�¥�¦ �G§¢ £!¤(¨ ¦ �G§ � � � � � ����©¡ � � �!���
(14)

In this formula,
�������

is the the lenghtof illumination of
anemitter, � � ���� is thetimeof lastdetectionof emitter� , and� �!�	� is theweight(or priority) associatedwith this emitter.� �;�!�	� is thesetof detectiontimesfor thisemitterat thestart



time
�  

, and
� ������ is the set of observation times for this

emitter. We consider the observation time to be the time
at theendof theobservation,so

� � �!��� is a subsetof
� � �!��� .

Notethatthefunction
� ����Z� � � is updatedonly atobservation

times.
To make a rational scheduling decision, we need to

estimatethe expectedbenefit from scheduling versusnot
scheduling of a givenemitterat a particulartime. We base
this benefit on the valueof expectedgain in the QoSasa
resultof aschedulingdecision.

If thereceiver is scheduledto dwell on a givenemitter �
at time ��6 , theexpectedQoScanbecomputedas:ª����> ������ 6 �c" L �Q/3"$/ 0X« ��� 8 �B��> ����Z� 6 "¬� � � )� Vmq L �M/N"3/ 0�« ����� 8 ����> ������ 6 "� � � (15)

where/B0 - thebeamdirectionof thegiven emitter, is com-
putedfrom Eq. 2 and

L �Q/®"¯/f0 « ��� is theprobability of
detection of emitter � at time �O6 in the direction /J0 . This
value is thentheexpectedvalueof theQoS,wherethefirst
partof theequationaccounts for thedetectionof theemitter
andthesecondpartaccounts for non-detection.We cansee
from Eq. 13 thatatdetectiontime

�B��> �!�����E67�c"$� .
Now wecandefinethebenefitfor emitter � beingsched-

uledandbeingnotscheduledas:

i�����Z� 6 �c"�� � �±°Y²;³�´�µ�¶ �E·�¸�¹F�=·ª�B��> �!���Z� 6 � q �B��> ����Z� 6 � �j´�µ�¶ �E·�¸�¹F�=· (16)
In the secondcase,the benefit is computed as the differ-
encebetweenthe expectedvalue of QoSwhenthe task is
scheduled and the value of QoS when it is not. In other
words, if emitter � is not scheduledto bedwelledupon by
thereceiver at time �76 , theexpectedQoScanbecomputed
directlyfrom Eq.13byassumingthattherearenodetection
or no-detectioneventsin thegiventime interval � ������6Z� .
5. Problem Formulation

For windowing-basedscheduling, tasks for a specific
window aregeneratedin advance.Scheduling decisionsare
madeat thebeginningof thewindow andthescheduling re-
sultsarereceived at theendof thewindow. By partitioning
time into a sequence of non-overlappingsub-intervals (or
time windows), the resource managementproblem canbe
partitionedinto a sequence of sub-problems.For a specific
window, thetasksfor the � �!º emitterare:� � "»? � �A � � �o �PDGDFDG� � �� ¤ I (17)

Eachtask
� �T is definedas� �T "¼���½ �T ���	� �T �Z¾E� � ��¿ � � (18)

where�Z½ �T is thereleasetime, i.e., theearliesttime that this
taskcanbescheduled, ��� �T is thelatesttimethatthis taskcan
bescheduled, ¾ � � is thedwell time, i.e., thetime thatthere-
ceiverneedsto dwell onthisemitterin orderto detectit, and¿ � is thefrequency bandfor theemitter. Theseparameters
aredefinedin Section6. Thesetof all tasksfor a window
is then: � "ÁÀÂ�Fw A � � (19)

whereÃ denotesthenumber of emitters.
To formulate thesensorscheduling problemwe needto

introducesomenotation.Let �E6 �T denotethetimeof schedul-
ing of task

� �T . Let the benefitof scheduling bewritten asi�� � �T � where i�� � �T �#"i��!���Z��6 �T � (20)

And finally, let ¾ � � � �T �B"�¾ �T be thedwell time for task
� �T

associatedwith emitter � . Using this notation, the sensor
scheduling problem canbeformulatedasfollows. Givena
setof tasks

�
asdefinedin Eq.19for atimewindow � �Y��hN� ,

choosea subset
� 6 of tasksfrom thesetof tasks

�
,
� 6�Ä �

suchthatthis setmaximizesthebenefitv
¢ ¤ÅCÆ ¢%Ç iy�

� �T �c"¯ÈÊÉ �¢%ËCÌ�¢ v
¢ ¤Å%Æ ¢%Ë i��

� �T � (21)

subjectto thesatisfactionof thefollowing constraints:Í ResourceConstraint:v
¢ ¤Å%Æ ¢ Ç ¾ � �

� �T �zÎÏh (22)

Í Non-overlappingConstraint:� � 6 �ÑÐT Ð ��� 6 �ÑÐT Ð ) ¾ � � � �ÒÐT Ð �Z��Ó*� � 6 �GÔT Ô ��� 6 �GÔT Ô ) ¾ � � � �FÔT Ô ���#"$
 (23)

where
� �ÒÐT Ð and

� �GÔT Ô areany two tasksin theset
�.Õ

.

As we mentionedearlier in this paper, evenan optimal
solutionmay be unsatisfactory. Consequently, we formu-
lateourproblemasaconstraint satisfactionproblem, rather
thanasanoptimizationproblem. In sucha caseit wouldbe
required to find a satisfactoryschedule,i.e., onethatsatis-
fiesthecondition v

¢ ¤Å%Æ ¢ Ç iy�
� �T ��� 6 �T �_Ö×i�Ø (24)

wherei Ø is a requiredlevel of thebenefit.



6. Periodic Task Generation

The periodic taskgeneration approachis basedon two
assumptions. First, it is assumedthat radars’illumination
periods,

� �	�('
, arefixed.Moreover, it is assumedthatradars’

beamwidths, i � , arefixed,andconsequently radars’illu-
mination times,

� �	�F�
, arefixed. The main idea then is to

generatea taskperiodically with theperiod equalto the il-
luminationtime,

� �	�F�
. This ideais representedin Figure6.

Figure 1. Periodic illumination pattern

Tasks(seeEq. 17) aregeneratedindependentlyfor each
emitter. Becauseof the lack of any prior knowledge, the
releasetime for thefirst task, ��½ � A is chosenrandomly. Then
releasetimes��½ �T andlatestexecution times� �� T arecomputed
according to thefollowing rules:��½ �T "��½ �TOx A ) � �	�F�

(25)�	� �T "×��½ �T ) � �	�F� q ¾ �� (26)

Consequently, the streamof generatedtasksaccording to
this policy shows a fixed patternover time, although the
taskgeneration algorithmis not deterministic. It doesnot
dependon any feedbackfrom thedetector, i.e., thepattern
remains fixed independently of whethera given radarwas
detectedor not. Notethatall thetasksfor thesameemitter
havethesame¾=½�Ù � and ¾C� � .

Notethat,if eachof thetasksgeneratedby thisapproach
is scheduled, i.e., if thereceiver tunesto agiven radar’s fre-
quency onceevery illuminationtime,thereceiver is assured
detection of eachillumination (modulo probability of non-
detection).

7. Control BasedTask Generation

While theperiodic taskgenerationapproachguarantees
very goodresults,i.e., detectionof eachradarillumination
whenall thetasksgeneratedby thisapproacharescheduled,
it saturatesthesystemvery quickly. Notethat from all the
dwellsonly theonesthatcoincide with theradarillumina-
tion canactuallydetectthe illumination. In otherwords,
thebestwe cando is to have onedwell every illumination
period,

� �	�('
, ratherthanevery illumination time,

� �	�F�
. For

instance,assumingthat the beamwidth of the radaris 2 Ú ,
only oneof the180dwellsis ableto detectanillumination.
If we hada perfect knowledgeof thenext illumination we
would be able to dwell only onceper illumination period
andthussignificantlyincreasetheefficiency of thereceiver.
However, dueto thevarious typesof uncertainty presentin
thesystem,anddueto thefactthatthis is adynamicsystem
(moving sensorandrotatingradars)weneedto haveamore
robust solutionof thisproblem.

In [11] we proposeda taskgenerator thatusesfeedback
to control the patternof dwells (seeFigure2). In this ap-
proach, aftereachdwell, two measuresarecomputed: the
QoS measurefor eachemitter and the instant workload.
Thesetwo measuresarethenusedasfeedback to two con-
trollers. Oneof thecontrollers adjuststhereleasetime � ½ �T
baseduponthe QoSfeedback. This resultsin a changing
patternof taskgeneration, andconsequentlyin the reduc-
tion of the load on the system(fewer tasksto schedule).
However this doesnot guaranteethat the instantworkload
is within thecapacityof thereceiver. In otherwords,there
still might bemore tasksthanthereceiver canservice.Ac-
cordingly, we addeda secondcontroller that controls the
workloadbaseduponthemeasuredworkload.

In this study we simply usedproportional controllers
(oneper emitter). The outputof a controller

r �!���Z��� , was
computedasr �!�������#"K ' �!��� 8 � L �!��� q ����> ������ (27)

whereK��!��� wasaproportional parameterand
L �!��� wasthe

priority of agivenemitter(weusedit asthereferencevalue
of theQoS).Thiscontrol output wasthenusedby theCDW
Generaror to to adjustthe revisit time. Intuitively this ef-
fect canbeexplainedasthemultiplication of thecontroller
output by theillumination period, i.e.,

¾P½�ÙÛ��������Ü" r ����Z��� 8 � �	�(' �!��� (28)

For the secondcontrollerwe usedonestandardPID con-
troller with appropriately tuned proportional, itegral and
differential coefficients. Its responsibility wasto compen-
satefor changesin thedemand for theworkload (overload)
of thereceiver.

In this approach, the taskpatterndepends on the feed-
back. Whenthe radarillumination periodis constant,the
patternwill eventually stabilizeso thatonedwell pereach
illumination period is generated. However, when an ex-
pectedillumination is missed,the patternbecomesdenser.
This approachadaptsthe patternto the dynamicsandthe
uncertaintyof thesystem.



Figure 2. Contr ol Based Task Generation

8. Complexity Analysisof TaskGenerationand
Scheduling Algorithms

To analyze the time complexity of the algorithms we
usedin this studywe first consider the time complexity of
taskgeneration.Sincetasksaregeneratedindependentlyof
eachother, the time complexity of generating one task isÝ � V � . In the caseof the periodic approach,the total com-
plexity is

Ý � � � , where

� " Àv �Gw A h,& �d�	�F� ���� (29)

and Ã is the number of emitters. The control basedap-
proach generatesfewer tasksin general,but in the worst
caseit producesthe samenumber, so the time complexity
of control basedtaskgenerationis thesameasthatof peri-
odic taskgeneration.

Forscheduling,wemakethesimplifyingassumption that
every taskrequiresthesameamount of timeandthatthere-
ceiver capacitylimits thenumberof tasksthatcanbesched-
uled in a window to Þ . Let � be thenumber of taskscom-
petingto bescheduled in thewindow, where � is givenby
Eq. 29. In thecaseof EDF scheduling, the time complex-
ity is

Ý �Èfß ° ��Þ�� � � ¹ ²áà � � because the scheduler must sort
the tasksby their deadlines. Greedy scheduling basedon
the valueof the QoSis alsobasedon sortingso it hasthe
samecomplexity. DP basedscheduling, on theotherhand,
is morecomplex becauseit mustevaluatethemetricbeing
optimized on a largenumber of permutationsof the tasks.
Assumingthat �,â Þ , onemustevaluateevery permutation
of every Þ -element subsetof the taskset. The number ofÞ -elementsubsetsof thetasksetis�äã� � q Þ�� ã Þ ã

andthereare Þ ã permutationsof eachof thesesubsets.Ac-
cordingly, the complexity of DP basedscheduling in this
caseis: Ý � �äã� � q Þ�� ã �OD
If � Î¬Þ , thenall taskscanbescheduled, sooneonly needs
to determinethe order in which the tasksshouldbe exe-
cuted. Therefore the complexity is �äã . The complexity is
even higher if we allow for the possibility of scheduling
fewer than Þ tasksduringthewindow. For example, if there
canbea singlegapin theschedule,thenthegapis combi-
natorially equivalent to anothertask,sothatthecomplexity
in this caseis Ý � � � ) V � ã� � ) Vmq Þ�� ã �
when � ) V â Þ and � � ) V � ã when � ) V Î×Þ .
9. Simulation Results

To study algorithms for resourcescheduling we simu-
latedthescenariodescribed in Section2. In all simulations
weassumedthattherequired level of QoSis:�B��> Î V

(30)

Thecomparisonof thefour algorithmsusedin ourstudy
is given in Figures3 and4. The four curvesrepresentthe
following combinationsof taskgeneration andscheduling:
(1) fixedpatternwith EDFscheduling(topcurve), (2) fixed
patternwith DP scheduling(secondfrom top), (3) control-
basedpatterngeneration with QoSbasedgreedy scheduling
(third from top), (4) control-basedpatterngeneration with
DP scheduling (bottom).

In thefirst casethe loadwaslight (0.9837). As we can
seefrom Figure3, all of thefour approachesgive satisfac-
tory results,i.e., theQoSis under therequiredbound of 1.
However, thetwo approachesbasedupon periodic taskgen-
erationarebetterthanthosebasedonthecontrol-basedtask
generation. This is an expectedresult,sincein the former
casetasksaregeneratedvery densely, i.e., at eachillumi-
nationtime of eachradar. Consequently, sincethereceiver
canserve eachof thetasks,it candetecteachof theillumi-
nations. Moreover, sinceaccording to thedefinitionof the
QoS(seeEq. 13) it decreasesby certainamount aftereach
dwell, regardlessof whetheran illumination wasdetected
or not, the high density of tasksgeneratedby the periodic
approachpushesthevalueof meanQoSdown. This is not
thecasefor control basedtaskgeneration, sincein thatcase
thetasksaregeneratedmoresparselyandthus,even though
the detection rateis very good, the effect describedabove
doesnot takeplace.

In thesimulations shown in Figure4 theloadwasheavy
(3.4495). As we can seefrom this figure, for this load



Figure 3. Comparison of perf ormance of algo-
rithms for light workload (0.9837)

the fixed patterngenerationwith EDF scheduling system
is unstable,i.e., the QoSis not bounded. The meanQoS
of the control basedtaskgeneration with greedy schedul-
ing gives a bit betterperformance in termsof QoS than
periodic taskgeneration with DP scheduling. Note, how-
ever, thatin theperiodic taskgenerationthesameeffect (as
described above) of the lowering of the QoS due to high
density of taskgeneration takesplace.Consequently, even
thoughthisapproachis abit betterin termsof QoSthanthe
periodic/DPcombination,thepricefor this small improve-
mentis the higher densityof tasksthat the receiver hasto
handle. The combination of control-basedtaskgeneration
with DPscheduling givesthebestperformancewith theav-
erage QoSequalto 0.88, which is betterthan0.96and0.97
for theothertwo approaches.

10. Conclusions

We presented four approachesto resource management
for the problem described in Section1. Eachof themhas
its own advantagesand disadvantages. The simplestone
- periodic taskgeneration andEDF task scheduling - has
the advantagethat it is simpleanddoesnot require much
computation.However, it canhandle only workloadsup to
1. This approachis not applicable to scenarioswith higher
loads. The approach in which tasksare generated peri-
odically and thenscheduledusingdynamic programming
shows a betterperformancein termsof satisfiabilityof the

Figure 4. Comparison of perf ormance of algo-
rithms for heavy workload (3.4495)

requirementsfor the level of QoS,but it is morecomputa-
tionally involved. The third approach (control basedtask
generationandQoSbasedgreedy scheduling) shows some
improvement in performanceover theprevious two. How-
ever, this approach,similarly as the first one, resultsin a
veryhighdensityof generatedtasksandthusimposesavery
highloadonthereceiver. Thebestperformanceis achieved
with the combinationof control basedtaskgeneration and
dynamicprogramming basedscheduling.

While theconclusion from this studyis clear- usecon-
trol basedtaskgenerationandDPscheduling - therearevar-
ious issuesthat canbe investigated further. For instance,
sincethis scheduling problem is known to beNP-hard, it is
important to analyzethecomplexity of thecomputationof
the schedule. We arestudyingthis problem at the current
time. Anotheraspectthat shouldbe studiedis the impact
of the window sizeon the complexity of the computation,
achievable QoS and schedulable workload. All threepa-
rameterscanbemeasuredandthencanbeusedasfeedback
to control thewindow size.
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