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Abstract

Typically, mangemaet of networled computdional and
sensingnodes is basedupm a qudity of service metric
(Qo9 that is basedon somegeneric principles, like “be
fair in allocatingresouces” or “utilize the CPU capeity
to the maximum”. The corsequencesf acceptingsud a
startingpoirt is that (1) task-specificesoucerequirements
arenottakeninto consideation,and(2) compuationaland
commuicationresoucesare satutatedwithout payirg at-
tentionto whethersud a high load is necessaryr not. In
this pape we describesomeof our efforts on how to im-
provethe situationdescribedabove In particular, we dis-
cussoneof theapproadesthatweare currentlyinvestigat-
ing that can be summarizedy the following three poirts.
(1) We usea task-specifiQoS(TS-Qo$ asa variable that
is contolled by our system.(2) Request$or resoucesare
genemtedbasedupm thefeedbak providedbythe TS-QoS,
whee therequesigeneata’ s parametes are adjustedus-
ing a simplePID controller. (3) A DynamicProgramming
basedalgorithmis usedfor schedding resouce Simula-
tions usingsensomresoucesshowsomeof the advantages
of the proposechpproach.

1. Intr oduction

The goal of managmentof networked compuational
and sensingnodesis to attemptto optimize perfamane
as measuredby a quality of service metric (QoS) (cf.
[6, 1, 2, 3, 5, 8]). Performanceis mostcommaly mea-

suredusing geneit principles which neednot be relevant
in a particularcase. For perfamancemeasuementsto be
meanimyful, the QoSshoud be specificto the particuar do-
mainandtaskbeingperfamed. A QoSwith this propety
is calledatask-specifi QoS(TS-QoS).

To investigateTS-QoSbasedresourcemanagmentwe
selectedascenarian whichthereis oneresourcdgasensor)
whosegod is to monita n abstracbbjects(radarillumina-
tions). Thesensomeeddo be directedto tuneto a specific
frequeng (of theradar)at a specifictime. Sincethe object
(theillumination) is visible only at sometimes, i.e., when-
evertheradaris illuminatingin the directionof the sensor
a gereric QoSmetric, like theamoun of time thatthe sen-
soris allocatedo a particdar radar will notwork. It is the
timing of thetuningthatmattersthe most. The sensoitis lo-
catedon amoving platform (aircrat). Theworkload of the
sensotis definedby the numter of emittersin the erviron-
mentandtheir illumination times. The TS-QoSrepresets
theuncetainty aboutthe statesof the emitters.

In gereral, we deal with algoilithms of soft real-time,
nonpreenptive resourceschedling for a scenariowith
the following charateristics: (1) The ervironmet is non-
deterninistic, i.e., thescheduledoes not know the stateof
theenvironmentandthevalueof thegainfrom schedling a
particdar taskat a giventime. (2) The prablemis dynamic
in the sensethatthe value of the gain dependsnot only on
the scheduliig decisionbut alsoon the stateof the erviron-
mentandthepassagef time. (3) Thesystemis overloaded,
i.e.,thedemandtheworkload for theresouce exceed its
physical capacity

The consegenceof theseconstrints is that the sched-



uler need to estimatefuture statesof the ervironment,
which in a senseis equivalent to estimatingfuture tasks.
Moreover, since the systemis oveloaded,the scheduler
need to optimizeits schedulingdecisions.And sincethe

environment is dynamic, the schedie needsto adaptto

chamging demauls.

The resourceschedulingprodem descriled above is a
caseof the problen called sensormangemat (SM) (cf.
[7]). The specificfeatureof the SM prablem is that the
schedler mustnot only scheduletasks,but also generge
tasks(sensingequests)The TS-QoSthendependson both
thetaskgeneratio stepandthe schedling step.

In this study we consideed two kinds of task genera-
tion apprach: periodc taskgeneation andcontrolbased
taskgeneation. In the periodc taskgeneratio apprach,
to ensurethe detectionof eachillumination (without ary
prior knowvledgeof the occurenceof theillumination) the
recever mustbe tunedto a given radats frequeng every
T.;; time units, whereT,;; is the durationof theillumina-
tion (in a givendirectior) for a given radar The streamof
gereratedtasksaccordimy to this policy shovs a fixed pat-
tern over time. It doesnot depew on ary feedtack from
thedetectori.e.,thepatternremairs fixedindependetly of
whethe a given radarwasdetectedr not. In the cortrol-
basedaskgenersion apgoach(cf. [11]), the patternis up-
datedafterreceving feedkackfrom the detector

The main goal of this paperis to progposeand analyz
variousapprachedo schedulilg appiopriateto the charac-
teristicsof theprodem listedabore. It is known [4] thatthe
periadic taskgeneation appoach(combired with Earliest
Deadlire First (EDF) schedling) is compuationally feasi-
ble only for low workloads[10]. Our goalis to find other
appoacheshatpushthesolvability of thisschedling prob-
lemto higherworkloadswhile maintainirg thesamedevel of
the TS-Qo0S.In this paperwe compae four solutionswith
two differert kinds of taskgererationandscheduliig: (1)
periadic taskgeneation, EDF schedling; (2) periodc task
gereration, DP schedling; (3) contiol basedtask gener
ation, TS-QoShasedgreed schedling (4) control based
taskgeneation,DP schediing.

This pageris organizedasfollows. First,in Section2 we
briefly describeour simulatedscenarioThis s followedby
the descriptionof the algoiithms usedto estimatethe state
of the system(Section3). In Section4 we briefly descrile
ourQoSmeasue andthebenefifundion usedfor optimiza-
tion. In Sections, we defineour prodemasaconstraim sat-
isfactionproblem This is followed by the presetation of
themethalsof taskgeneréion, i.e.,periodc taskgeneation
andcontrd basedaskgeneation, describedn Sections6
and7. An analysis of thetime comgexity of thealgorithms
usedin our studyis given in Section8. Finally, we presen
resultsof our simulatiors in Section9 andconclwsionsand
future work in Section10.

2.Scerario

In our simulatiors we considera scenariovith onesen-
sor locatedon an aircraft moving in a straightline with
constah velocity. The nunber of radarsin the environ-
mentranges from 10 for a light workload up to 120for a
heary workload The radarsdiffer in various paraneters,
like emissionfrequenciesjlluminationtimesandillumina-
tion periads. As theaircraftmoves, someradas arewithin
the detectionrange andsomeothes are outsidethe detec-
tion range. It is assumedhat the the frequenciesof the
radas, the lengtls of their illuminations, the illumination
periads andthe requred dwell times are known, but illu-
minationtimes,rada locatiors andphasesrenot. In other
words,thereceverknowswhatkindsof radarto expect,but
it doesnotknow whenandwhere.In orderto detectaradar
therecever needgo tuneto theradars frequeng (dwellon
it) for alongenowghtime. Thedwell mustoverdap with the
radats illuminationin theaircrat’'s direction.

3. State Estimation

Sincethe succes®f aschedulei.e., detectio of aradar
illumination, depads on the knowledge of the direction
(phase) of therada illumination ¢(i,t) € [0,2x], we are
interestedn estimatingthis varieble. Towardsthis aim we
mocel eachof theemittersi attime ¢ asfollows.

%¢(l, t) = 27T/Tez'p + we (Z) (1)

In thisequatiorl;), is theillumination periodof theemitter
andw, (i) is thenoise.Noiseis assumedo be white Gaus-
sianwith zeromean. In the expeliments,we setthe initial
valueof ¢ to 0 andthencompue the valuesof ¢(i, t) from
this mocel.

We thendiscretizethe statevarialde ¢ sothat our state
spaceis finite. ©,, represets the estimateof the current
state.

0 = 1201 507 @

Theresultingdiscretespacethenis:
S ={04,...,0k} (3)

whereK is equal to 360. Sincethevalueof © is notknown,
we treat® asa rancdm varable with probability distribu-
tion

P(©®=0,),...,P(0 =0k) 4

whereP(0© = 0;) is the prabability of illuminationin the
directin ©;. We initialize this distribution to be uniform,
ie.,

1

PO=0)) =2 j=12..K (5)



Notethatotherwaysof modding the lack of initial knowl-
edge canbeused.

Theestimationprocessonsistof two steps:compuing
the aging effect i.e., the effect of time on the certaintyof
the information abou the phasesof particdar radars,and
updating the probaility distribution after an obseration
evert.

SubSectiomhe Aging Effect

Whenthereceveris nottunedto a particuar emitterfor
sometime, the certaintyof the phaseof thatemittershould
decease Essentiallywe expectthatin thelimit, if thesys-
temdoesnotreceie ary detectioreverts (updatesthedis-
tribution of ® shoud becane uniform. We call this the ag-
ing effect To accounfor this effectwe upcdatethedistribu-
tion everyillumination time of a given emitteraccordng to
thefollowing algorithm

First, we perform convolution (®) of the distribution of
© with white noise N, (X):

~

P(0) = P(0) ® Nw(X) (6)

wheretheindex W in Ny represets the window size. In
our expeiimentswe setW = B, the beamwidth of the
emitter Thevalueof P(0) is thenusedto computethenew
distribution accoding to thefollowing formula:

_ 1
PO=0;)=PO=0wp) 7—5
where
Lw/2) K+W-1
§=Y PO=0)+ > PO=06) (8
i=1 i=K+[W/2]

3.1 BayesianUpdate

Wheneer therecever is tunedto a given emitters fre-
qguency, oneof two everts (E,;,) canoccur:detectiorat© ,,,
(wedendeit asD,,) ornondetectionwedendeit asL,,).
0,, is compued accordng to Eq. 2 with ¢ obtaired from
the dynanic mocel (Eq. 1). The prokabilities of illumi-
nationarethenupdaed for this emitter We useBayesian
updating(cf. [9]):

P(Em|© = 0;) - P(© = 0;)

PO = ®j|Em) = K
kz_:l P(En|© =0) - P(O© =0y)

©)

Theposteriorprobability dependsontheprior probabil-
ity P(© = ©,) andthe probability of a given evert (de-
tectionor non-detection P(E,,|© = ©;). Thelatter prob-
ability repesentghe level of certaintyof detection.In our
casewe modelthis depelenceusingtwo paraneters:Pyp, -

the protability of falsedetection(or falsepositive) and Py,
- the probability of falsenondetection(or falsenegative).
For adetectioreventtheprobability is

oy 1=P 0; =0,
P(D,|0 =0;) = { Pr i ©,#0, (10)
For anon-detectionevent we have
_ N an N (")j = (")m
P(L,|0 =0,) = { 1- Py, 0, +0, (11)

If one detectiofnon-detectionevert can be associated
with morethanoneelement® ; of thesamplespacesS (i.e.,
whenthe statespaceis discretizednto incremers smaller
thanthebeamwidth B, of the emitter)thenthe prokability
upcdateformua given by Eq. 9 mustbe extendel to incor
poraethisfact. For thisreasonwe usethefollowing Gaus-
sianmodelto distributethe posteriorprobability (in caseof
adetectionevent) over neightor statesof 0 ,,:

1 (j —w?
P(©=0,D,,) = — 12
( ]| ) \/Q_W-Uexp 202 ( )
wherey = m, 0 = B, andj = 1,..., K. Foranon-

detectionevert we justuseEquatia 9.

4. Quality of Sewice

Optimizing the solutionto a resouce schedling prob-
lem requilesthat therebe somemeasue of quality thatis
beingoptimized. The quality of service(QoS)for sensor
managmentformalizesthe degreeof uncetainty thatone
hasabou eachemitter In the absencef ary obsevation,
the uncetainty increasesvith time, while obserationsre-
ducethe uncertaitly. Obsenationsthatdetectanillumina-
tion redwce the uncertaity to zero,while obserationsthat
donotdetectanillumination alsoredwethe uncertaintybut
by muchless. The formal specificationof the QoSis the
following:

V(i)
Tez'p (Z)

QoS(i,t) = - (t —ta(d)) +d(i, ) (13)

where
=T

V(i)
dii,t) =4 0 -t €Ty()\Ty
A7) = Vi) 725 0 € T\ Tl
(14)
In this formula, T,;; is thethe lenghtof illumination of
anemitter ¢4(4) is thetime of lastdetectiorof emitteri, and
V (4) is theweight(or priority) associatedavith this emitter
T4(7) is thesetof detectiortimesfor this emitteratthestart




time Ty, andT;(7) is the setof obsevation timesfor this
emitter We conside the obseration time to be the time
atthe endof the obsenation,soT4(¢) is a subsebf T;(i).
Notethatthefundion d(i, ¢;) is updatedonly atobseration
times.

To malke a ratioral schedulig decision, we needto
estimatethe expectedbenefitfrom schedulilg versusnot
schedling of a givenemitterat a particulartime. We base
this berefit on the value of expectedgainin the QoSasa
resultof aschedulinglecision.

If therecever is scheduledo dwell on a givenemitters
attimet,, theexpectedQoScanbecomptedas:

Q0S(i,ts) = P(O = Op;i) - QoS(iy ty = ta) +
(1= P(O = 0p;1)) - QoS(i,t, =t) (15)

where®,, - thebeamdirectionof thegiven emitter is com-
putedfrom Eq. 2 and P(© = ©,,;1) is the probaility of
detectim of emitteri attime ¢, in thedirection ©,,. This
value is thenthe expeded value of the QoS,wherethefirst
partof theequationaccours for thedetectiorof theemitter
andthe secondpartaccours for non-detectionWe cansee
from Eq. 13thatatdetectiortime QoS (i, ts) = 0.

Now we candefinethe benefitfor emitteri beingsched-
uledandbeingnotscheduleds:

B _ 0 : notscheduled
(i) = { QoS(i,ts) — QoS(i, t,) scheduled

(16)
In the secondcase,the berefit is compued as the differ-
encebetweenthe expectedvalue of QoSwhenthe taskis
schedled andthe value of QoS whenit is not. In other
words, if emitteri is not scheduledo be dwelledupan by
therecever attime ¢4, the expeded QoS canbe compted
directlyfrom Eq. 13 by assumindhattherearenodetection
or no-detectioreventsin thegiventime intenal [0, ¢ 4].

5. Problem Formulation

For windowing-basedschedling, tasksfor a specific
window aregeneatedin advarce. Schedulilg decisionsare
madeat the beginning of thewindow andtheschedling re-
sultsarereceived attheendof thewindow. By partitioring
time into a sequene of nonovedapping sub-interals (or
time windows, the resoure managmentproblem canbe
partitionedinto a sequene of sub-poblems.For a specific
window, thetasksfor theit* emitterare:

T ={T{,T%,... T} } (17)
Eachtasij is definedas

T} = (to}, i}, 7a*,w') (18)

wheretrg is thereleasetime, i.e., the earliesttime thatthis
taskcanbescheduledtl;'- is thelatesttime thatthis taskcan
beschedied, r;¢ is thedwelltime i.e., thetime thatthere-
ceiverneedso dwell onthis emitterin orderto detectt, and
w' is thefrequency bandfor the emitter Theseparametes
aredefinedin Section6. The setof all tasksfor a window
is then:

M
T=JT (19)
i=1

whereM dendesthenumber of emitters.

To formuate the sensorschedling problemwe needto
introcUcesomawotation.LettS;- denotethetime of schedul-
ing of taskT. Let the benefitof schedulig be written as
B(T}) where

B(T}) = B(i,,}) (20)
And finally, let 74(T}) = 7; bethe dwell time for task T’}

associatedvith emitteri. Using this notatio, the sensor
schedling problen canbe formulatedasfollows. Givena

setof tasksT" asdefinedn Eq. 19for atimewindow [0, W],

chomseasubsefl’; of tasksfrom thesetof tasksT', T, C T

suchthatthis setmaxinmizesthe benefit

Z B(T;):%g:% ‘ B(T}) (21)
TJ?ETS TJ?ETm
subjectto the satistctionof thefollowing constraits:

e ResourceConstrait

S n(T) <W (22)

e Non-overlgopingConstraint:

[ttt +7a(TE)N[ts 2, 12 +72(T12)) = ¢ (23)

$j1° 7851
whereT’;! andT;? areary two tasksin thesetT’s.

As we mentimedearlierin this paper evenan optimal
solution may be unsatishctoy. Consequetty, we formu-
late our prodem asa constraim satishctionproblem rather
thanasanoptimizationproblem. In sucha caseit would be
requred to find a satisfactoryschedulej.e., onethat satis-
fiesthe conditin

> B(T},ts5) > Bo (24)
T]?'eTs

whereBy is arequiredlevel of thebenefit.



6. Periodic Task Generation

The peridaic task geneation appoachis basedon two
assumptias. First, it is assumedhat radars’illumination
periads,T,;,, arefixed. Moreover, it is assumedhatradas’
beamwidths, B, arefixed,andconseqently radars'illu-
mination times, T,;;, arefixed. The mainideathenis to
gereratea taskperiodcally with the periad equalto theil-
luminationtime, T,;;. Thisideais represetedin Figure6.

Tez',p
|F |' \F |F
i

Figure 1. Periodic illumination pattern
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Tasks(seeEq. 17) aregeneatedindepewlentlyfor each
emitter Becauseof the lack of ary prior knowledge, the
releasdime for thefirst task,t,i is choserrancdbmly. Then
releasdimest,.; andlatestexecttion timest;; arecompited
accodingto thefollowing rules:

tr;‘ = tr;'_l + Teit (25)

s =toh 4+ Tei — 7 (26)

Conseqantly, the streamof geneatedtasksaccordng to
this policy shaws a fixed patternover time, althoudn the
task geneation algorithmis not deterninistic. It doesnot
dependon ary feedackfrom the detecto, i.e., the pattern
remairs fixed independetly of whethera givenradarwas
detectedr not. Notethatall thetasksfor the sameemitter
havethesamer,.,? andz;¢.

Notethat,if eachof thetasksgereratedby thisapprach
is schedled,i.e.,if thereceiertunesto agiven radars fre-
guency once evely illuminationtime,therecever is assured
detectim of eachillumination (moduo probability of non-
detectim).

7. Control BasedTask Generation

While the periodc taskgeneation appr@achguaratees
vely goodresults,i.e., detectionof eachradarillumination
whenall thetasksgereratedy thisappoachareschedied,
it saturateshe systemvery quickly. Notethatfrom all the
dwells only the onesthat coincice with the radarillumina-
tion can actually detectthe illumination. In otherwords,
the bestwe candois to have onedwell every illumination
periad, T,;,, ratherthanevery illumination time, T'c;;. For

instance assuminghat the beamwidth of the radaris 2°,

only oneof the 180dwellsis ableto detectanillumination.

If we hada perfectknowledge of the next illumination we

would be ableto dwell only onceper illumination period
andthussignificantlyincreaetheefficiency of therecever.

However, dueto the various typesof uncetainty presenin

thesystemanddueto thefactthatthisis adynamicsystem
(moving sensorlndrotatingradas) we needto haveamore
robust solutionof this problem

In [11] we proposedataskgenertor thatusesfeedlack
to cortrol the patternof dwells (seeFigure?2). In this ap-
proah, after eachdwell, two measues are compued: the
QoS measuregfor eachemitter and the instantworkload.
Thesetwo measuresirethenusedasfeedbak to two con-
trollers. Oneof the contrdlers adjuststhe releasdime tT;'-
baseduponthe QoS feedlack. This resultsin a changng
patternof task generéion, and corsequentlyin the redic-
tion of the load on the system(fewer tasksto schedie).
However this doesnot guaanteethat the instantworkload
is within the capacityof therecever. In otherwords,there
still might be more tasksthantherecever canservice.Ac-
cordngly, we addeda secondcontrdler that contrds the
workloadbasediponthe measuredvorkload.

In this study we simply usedproportiond cortrollers
(one per emitter). The outputof a contrdler §(i, t), was
computedas

8(i,t) = Kp(i) - (P(i) — QoS(i)) (27)

whereK (i) wasa proportional paraneterand P (i) wasthe
priority of agivenemitter(we usedit astherefererevalue
of theQoS).This contiol output wasthenusedby the CDW
Generaor to to adjustthe revisit time. Intuitively this ef-
fect canbe explained asthe multiplication of the contoller
output by theillumination periad, i.e.,

Tro (8, 8) = 8(i,t) - Teip(4) (28)

For the secondcontrollerwe usedone standardPID con-
troller with apprgriately tuned propational, itegral and
differential coeficients. Its responsibity wasto compe-
satefor changesn thedemaud for theworkload (overload)
of therecever.

In this appra@ch, the task patterndepeils on the feed-
back. Whenthe radarillumination periodis constantthe
patternwill eventwally stabilizesothatonedwell pereach
illumination periad is generéed. However, when an ex-
pectedillumination is missed the patternbeconesdenser
This apprach adaptsthe patternto the dynamicsandthe
uncetainty of thesystem.
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8. Complexity Analysisof Task Generationand
Schediling Algorithms

To analye the time compleity of the algoithms we
usedin this studywe first conside the time compleity of
taskgeneation. Sincetasksaregeneatedindepadentlyof
eachother the time comgexity of geneating onetaskis
O(1). In the caseof the periadic appioach,the total com-
plexity is O(n), where

M
n="> W/T.ui) (29)
i=1

and M is the nunber of emitters. The contiol basedap-
proach geneatesfewer tasksin general,but in the worst
caseit producesthe samenunber, sothe time compexity
of contrd basedaskgererationis the sameasthatof peri-
odictaskgeneation.

For scheduliig, we makethesimplifying assumptia that
evely taskrequresthesameamount of time andthatthere-
ceiver capacitylimits thenunberof tasksthatcanbesched-
uledin awindow to [. Letn bethe numter of taskscom-
petingto be schedled in the window, wheren is givenby
Eqg. 29. In the caseof EDF schedling, the time compex-
ity is O(min(l,n)logn) becase the schedier mustsort
the tasksby their deadlins. Greed@ schedulilg basedon
the value of the QoSis alsobasedon sortingsoit hasthe
samecompexity. DP basedschediing, onthe otherhand,
is morecompex becaseit mustevaluatethe metric being
optimized on a large numter of pernutationsof the tasks.
Assumingthatn > I, onemustevaluateevery permuation
of evely [-elerment subsetof the taskset. The numbe of
I-elementsubset®f thetasksetis

n!
(n=0D1!

andtherearel! pernutationsof eachof thesesubsets Ac-
cordngly, the compleity of DP basedschediling in this

caseis:
n!

O((n—l)!)'

If n < I, thenall taskscanbe scheduledsooneonly need
to determinethe orderin which the tasksshould be exe-
cuted. Therefae the comgexity is n!. The comgexity is
even higher if we allow for the possibility of schedling
fewerthan! tasksduringthewindow. For examge, if there
canbeasinglegapin the schedulethenthe gapis combi-
natorally equivdentto andhertask,sothatthe complexity
in this caseis
(n+1)!
(n+1- l)!)

whenn + 1 >l and(n + 1)! whenn + 1 < [.

o(

9. Simulation Results

To study algorithms for resourceschedling we simu-
latedthe scenariadescribd in Section2. In all simulatiors
we assumedhattherequred level of QoSis:

QoS <1 (30)

The comprisonof thefour algoithmsusedin our study
is given in Figures3 and4. Thefour curesrepresentthe
following combnationsof taskgeneratio andschediing:
(1) fixed patternwith EDF schedulingtop curve), (2) fixed
patternwith DP scheduling'secondrom top), (3) contiol-
basedatterngeneratio with QoSbasedyrealy schedling
(third from top), (4) contrd-basedpatterngeneratio with
DP schediing (bottom).

In the first casethe loadwaslight (0.9837) As we can
seefrom Figure3, all of thefour appoachegive satishc-
tory results,i.e., the QoSis under the required bound of 1.
However, thetwo apprachesasedupm periodc taskgen-
erationarebetterthanthosebasednthecontrd-basedask
geneation. This is an expectedresult,sincein the former
casetasksare gereratedvery dersely; i.e., at eachillumi-
nationtime of eachradar Conseqeantly, sincetherecever
cansene eachof thetasks,it candetecteachof theillumi-
natiors. Moreover, sinceaccordng to the definition of the
QoS(seeEq. 13)it decreaseby certainamount aftereach
dwell, regardlessof whetheran illumination was detected
or not, the high dersity of tasksgeneatedby the periaic
appoachpusheghevalueof meanQoSdown. Thisis not
thecasefor contol basedaskgeneratio, sincein thatcase
thetasksaregeneatedmoresparselyandthus,even thoudh
the detectian rateis very goad, the effect describedabove
doesnottake place.

In thesimulatiors shavn in Figure4 theloadwasheary
(3.4495) As we can seefrom this figure for this load
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Figure 3. Comparison of performance of algo-
rithms for light workload (0.9837)

the fixed patterngererationwith EDF schedling system
is unstablej.e., the QoSis not bounded. The meanQoS
of the contrd basedtask geneation with greed schedul-
ing gives a hit better performarce in termsof QoS than
periadic task geneation with DP scheduliig. Note, how-

ever, thatin the periadic taskgererationthe sameeffect (as
descrited abore) of the lowering of the QoS dueto high

dersity of taskgeneationtakesplace. Consegantly, even
thowhthis apprachis abit betterin termsof QoSthanthe
periadic/DP combiration, the price for this smallimprove-

mentis the higher densityof tasksthatthe recever hasto

hardle. The combiration of contiol-basedaskgeneation
with DP schedulilg givesthe bestperfamancewith the av-

erag QoSequalto 0.88 whichis betterthan0.96and0.97
for theothertwo appr@aches.

10. Conclusions

We preseted four appoachedo resoure managment
for the prodem descriled in Sectionl. Eachof themhas
its own adwartagesand disadwartages. The simplestone
- periodc task genertéion and EDF task schediing - has
the adwentagethatit is simple anddoesnot requile much
computation. However, it canhande only workloadsup to
1. This appoachis not applicalte to scenariowith higher
loads. The appoachin which tasksare geneated peri-
odicdly andthen scheduledising dynamic progmamming
shaws a betterperfomancein termsof satisfiability of the

— Wean Qo3 =7.421546

50 100 150 20 Pl k]
Time(3econd)

Figure 4. Comparison of performance of algo-
rithms for heavy workload (3.4495)

requrementsfor the level of QoS,but it is morecompua-
tionally involved. The third approah (cortrol basedtask
geneationandQoSbasedgreed schedling) shavs some
improvemert in perfomanceover the previous two. How-
ever, this apprach, similarly asthe first one, resultsin a
veryhighdensityof generéedtasksandthusimposesavery
highloadontherecever. Thebestperfomances achiered
with the comhbnation of contiol basedtaskgeneratio and
dynamicprogramning basedscheduling.

While the conclsion from this studyis clear- usecon-
trol basedaskgeneationandDP scheduliig - therearevar
ious issuesthat can be investigaed further. For instance,
sincethis schedling prodemis known to be NP-had, it is
importantto analyzethe comgexity of the compuation of
the schedle. We are studyingthis problem at the current
time. Anotheraspectthat shouldbe studiedis the impact
of thewindow size on the compexity of the computation,
achievable QoS and schediable workload. All threepa-
rametes canbemeasure@ndthencanbeusedasfeedtack
to contrd thewindow size.
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