
SSCS: A Smart Spell Checker System

Implementation
Using Adaptive Software Architecture

Deepak Seth1 and Mieczyslaw M. Kokar2

1 Northeastern University, Boston, MA 02115, USA,
seth@coe.neu.edu

2 Northeastern University, Boston, MA 02115, USA,
kokar@coe.neu.edu,

WWW home page: http://www.coe.neu.edu/~kokar

Abstract. The subject of this paper is a Smart Spell Checker System
(SSCS) that can adapt to a particular user by using the user’s feedback
for adjusting its behavior. The result of the adjustment is manifested
in a different ordering of the suggestions to the user on how a particu-
lar spelling mistake should be corrected. The SSCS uses the Adaptive
Software Architecture (ASA). The ASA consists of a hierarchy of lay-
ers, each containing a number of components calledKnowledge Sources.
The layers are connected by a software bus called Domain. External ele-
ments include User and Initiator(s). Initiators supply input data to the
system. The system also includes an Evaluator that generates feedback.
Each Knowledge Source is responsible for generating suggestions for cor-
recting a specific type of error. Feedback is propagated to Knowledge
Sources after the user makes a selection of the correction. In response to
feedback, Knowledge Sources adjust their algorithms. In this paper we
present the results of the evaluation of the adaptability of the SSCS.

1 Introduction

Spell checking applications are not only common in today’s marketplace, but
have reached a plateau; it is often difficult to distinguish between one application
and the other because they offer almost the same features and functionalities. In
general, spell checking applications present valid suggestions to the user based
on each mistake they encounter in the user’s document. The user then either
makes a selection from a list of suggestions or chooses to ignore the suggestions
and accepts the current word as valid. Regardless of how often this is done,
the spell checking application will perform its task independent of the types of
mistakes most commonly made by that particular user.
Most spell checkers available today tend to be inflexible because their inter-

faces present suggestions in alphabetical order. They are tailored to the needs
of the general population rather than to the mistakes of a particular individual.
There is a need for adaptive interfaces that can anticipate and adapt to the
specific spelling mistakes of any user [10]. A self-adapting interface [9] monitors

2 D. Seth and M. M. Kokar

the user’s activity and attempts to adjust its behavior automatically to be more
compatible with the particular user. By monitoring the user’s activity, enough
useful information about the user can be elucidated and an accurate model of the
user can be generated [8]. An adaptive spell checker monitors the user’s mistakes
and is able to determine the types of spelling mistakes the user makes. Based
on these mistakes, it presents suggestions to the user based on how frequently a
particular type of mistake has occurred in the past, instead of simply displaying
them in alphabetical order. We believe that an adaptive spell checker makes a
good case study for self-adapting software.
In many cases, there are many different ways to correct an erroneous word.

The spell checker needs to decide which correction to propose to the user. For the
efficiency of the spell checking process, it is important that the right suggestion is
presented as a default suggestion. In such a case, the user needs only to confirm
the default suggestion and proceed with the next error. Otherwise, the user needs
to scroll through a list of suggestions and pick one as the right one. Even worse,
often the right suggestion is not on the list and thus the user needs to type the
full word again. Our Smart Spell Checker System (SSCS) attempts to adapt to
the user by learning most typical mistakes made by that particular user and
incorporate this knowledge into the process of selecting the default suggestion
that is put on the top of the list of suggestions.
The goal of the research presented in this paper was to implement and ana-

lyze an intelligent spell checker that adapts to the user’s mistakes using a new
paradigm in software architecture - self-adaptive software (cf.[2–4, 8]). This ar-
chitecture is designed upon the structure of an adaptive controller [2, 5, 6] that
uses the feedback mechanism to induce adaptability of the system. Towards this
aim, we implemented a modular and flexible program, the SSCS, which incor-
porates some of the ideas of adaptive control systems [1]. The modularity of the
architecture, called the Adaptive Software Architecture (ASA), allows easy ad-
ditions of new components into the system, such as additional knowledge sources
or domains to the overall system.
To demonstrate the adaptability feature of the SSCS, we evaluated the sys-

tem against a non-adaptive system. The results of these comparisons were then
mapped against a theoretical scenario. Finally, we analyzed the results and drew
conclusions based on this study and proposed directions for future research.

2 Adaptive Software Architecture

The basic structure of the ASA is shown in Figure 1. The main components of
this architecture are Knowledge Sources (KSs), Domains, Initiator and Evalu-
ator. Knowledge Sources are the main working modules of an application. Do-
mains act as software buses (also known as “blackboards” [7]) and connect the
Knowledge Sources, Initiators and Evaluators. KSs take data from the Domain
below, but the results are placed on either the Domain below or above, depending
on a particular system configuration (design).

A Smart Spell Checker System 3

EVALUATOR

INITIATOR

KS KS

KS KS

DOMAIN

DOMAIN

DOMAIN

data feedback

Fig. 1. Adaptive Software Architecture (ASA)

The input data are placed on the first Domain by the Initiator (the source
of data) and consequently become visible to the KSs that are connected to the
Domain. Each KS is equipped with a mechanism (knowledge) for making deci-
sions on whether to process the data or not. The algorithms for data processing,
decision-making, score generating and updating are also implemented in the KSs.
After the first layer of KSs process the data placed on the first Domain, the re-
sults are placed either on the same Domain or on the next Domain (above),
depending on the configuration of the system. If the new data are placed on the
lower domain the same processing starts over. When the processing ceases, the
second layer of KSs invoke their algorithms - first to make decisions on whether
to process the data or not, and then their processing algorithms, if the decision is
to process. When the processing reaches the highest Domain, the Evaluator as-
sesses the quality of each of the results and gives feedback on whether the result
was good or not. This feedback is then backpropagated through Domains and

4 D. Seth and M. M. Kokar

KSs so that it reaches only those KSs that participated in the processing, i.e.,
those KSs that made the decision to process. In response to the received feed-
back, the KSs adjust their processing algorithms so that the next time around
the processing is different, tuned towards higher feedback scores.

3 Experimental Scenario

To investigate the adaptability of the system we use the application of spell
checking. The input to the system is a text file containing a list of words. The
goal of the system is to recognize erroneous words and then to attempt to correct
the identified erroneous words and present suggestions to the user on what word
should be used instead. The suggestions presented to the user are based on the
mistakes made most often in the document.
The application, called here SSCS (Smart Spell Checking System) has been

implemented as an instance of the Adaptive Software Architecture (cf. [2–4])
shown in Figure 1. The structure of the SSCS is shown in Figure 2. It con-
sists of three domains (Input, Error and Evaluation) and nine KSs. Both the
detection and correction of erroneous words are implemented within the KSs.
The detection of erroneous words is implemented using a Dictionary and a User
Defined Dictionary. The User Defined Dictionary contains words that the user
wishes to be considered, in addition to standard dictionary entries. The following
Knowledge Sources were used for correcting erroneous words:

– Left-Right Character Shifter
– Character Doubler
– End Character Appender
– Character Remover
– Subsequent Character Switcher

Each KS reflects one kind of typing mistake that has its source in the domain,
i.e., in typing. The Left-Right Character Shifter corrects mistakes that arise due
to misplacement of the hand on the keyboard. For example the UNIX command
“cd” can be erroneously typed as “vf” or “xs”. The Left-Right Character Shifter
then replaces the characters with their neighbors on the keyboard and makes such
a suggestion to the user. The Character Doubler assumes that a character was
typed once instead of twice and corrects words by repeating characters that are
potentially missing. For example, the erroneous word “siting” would be corrected
as “sitting”. The End Character Appender corrects erroneous words that have
the end character missing. For example, the erroneous word “facto” would be
corrected as “factor”. The Character Remover corrects an erroneous word by
removing a single character to produce a correct word. For example, “networjk”
would be corrected as “network”. The Subsequent Character Switcher swaps
two consecutive characters in an erroneous word to generate a correct word. For
example, “hta” would be corrected as “hat”.
Each KS has associated with it a probability given by the equation:

P (t) = c/N

A Smart Spell Checker System 5

where c is the number of times that the correct suggestion was at the top of
the list after t attempts, and N is the number of valid suggestions presented
to the user. This value is a measure of the degree of success in generating the
correct words selected by the user. Every time a user selects a word generated
by a particular KS, the probability factor of that KS is incremented (the count
c of correct words incremented by one). This value is used in determining the
order of suggestions presented to the user. Suggestions generated by KSs that
have a higher probability factor will be ahead of suggestions generated by other
KSs.
The suggestions generated by the KSs are presented to the Evaluator. The

Evaluator compares these words against a dictionary and displays the valid sug-
gestions to the user. The user chooses a suggestion or selects Ignore. Based on
the user’s choice, feedback is generated and is passed back to the KSs.

4 SSCS Operation

The Initiator reads a text file and places the extracted words from the text
file, one at a time, on the Input Domain. The extracted words are examined
by both the Dictionary and the User-Defined Dictionary. If a word is present in
the Dictionary or the User-Defined Dictionary, it is interpreted as a valid word
and the Input Domain asks for the next word. If a word in not present in either
dictionary, it is forwarded to the Error Domain.
All of the Knowledge Sources (Left-Right Character Shifter, Character Dou-

bler, End Character Appender, Character Remover and Subsequent Character
Switcher) attempt to correct the erroneous word based on their algorithms. For
example, for the given erroneous word, the Knowledge Sources’ algorithms will
generate the words shown in Table 1. Note that these are not the suggestions
that the user will see since only the words that pass the dictionary comparison
test will be displayed.

Table 1. An example of generated suggestions

Knowledge Source Erroneous Word Generated Suggestions

Left-Right Character jod his, pkf
Shifter

Character Appender hai haia, haib, haic, haid, haie, haif, haig, haih
haij, haik, hail, haim, haio, haip, haiq, hair
hais, hait, haiu, haiv, haiw, haix, haiy, haiz

Character Doubler ben bben, been, benn

Character Remover caree aree, cree, caee, care

Subsequent Character hta tha, hat
Switcher

6 D. Seth and M. M. Kokar

UDICT

KS2

EVALUATOR

data feedback

KS3 KS4 KS5 KS1

DICT: Dictionary
UDICT: User Defined Dictionary
KS1: Left-Right Character Shifter
KS2: Character Doubler
KS3: End Character Appender
KS4: Character Remover
KS5: Subsequent Character Switcher

EVALUATION DOMAIN

INPUT DOMAIN

ERROR DOMAIN

INITIATOR

DICT DICT

Fig. 2. Smart Spell Checker System (SSCS)

Each Knowledge Source generates the above words as suggestions and for-
wards them to the Evaluation Domain. Along with these suggestions, it also
forwards its probability value. The Evaluation Domain receives this informa-
tion, concatenates the suggestions and probability of all KSs and passes them
to the Evaluator. The Evaluator receives these suggestions and compares each
suggestion against the words in the dictionary. The suggestions that exist in the
dictionary are displayed to the user. The order in which they appear is based
on the probability associated with the particular KSs that generated the sugges-
tions. Therefore, words associated with errors that appear more frequently will
be above those that are less frequent.
The KSs receive notification in the form of a feedback from the Evaluator

whether any word from their suggestion was selected or not. All inputs to and

A Smart Spell Checker System 7

Suggestions

Erroneous
Word

Received
Feedback

Forwarded
Feedback

KS

Fig. 3. Inputs and Outputs of a Knowledge Source

outputs from a KS, including feedback propagation, are shown in Figure 3. After
receiving feedback, KSs update their probability values according to the following
formula:

P (t+ 1) = c ± 1
N

If the suggestion is accepted by the user, the probability increases, other-
wise it decreases. Note that the selection of the default suggestion is based on
the relative value of the probability with respect to the probabilities of other
Knowledge Sources, and not just on the absolute value.

5 Measuring Adaptability

To assess the adaptability of the SSCS, we employed a “black box” approach
by sending an identical input file to two systems and comparing the outputs;
the first system is the SSCS, with the adaptability mechanism, and the second
system is without any adaptability mechanism. We ran the same set of tests
independently on the two systems using the same input words and selecting
words in the same order for both the adaptive and non-adaptive systems. Based
on their respective outputs, we then calculated the probability that the correct

8 D. Seth and M. M. Kokar

word was presented at the top of the list. For measurement purposes, we made
the following assumptions:

– User errors can be processed by at least one of the Knowledge Sources
– Cases where user-defined words are processed were not included, since most
spell checkers have a similar capability and, therefore, adaptation does not
present any differentiation.

The main idea of our tests is presented in Table 2. One of our goals was to
obtain results in terms of the number of suggestions that are spread over a
range of numbers. This is difficult to achieve when using a randomly selected
text file. We also wanted to be able to test all of the Knowledge Sources in action.
Again, in a randomly selected file this is not necessarily the case. For these
reasons, and keeping in mind that our real goal was to evaluate the adaptability
mechanism of our architecture, we decided to generate a text file with artificially
constructed words that satisfy the requirements of our test. Similarly, we pre-
selected the user’s choice of correct words. The test cases produced 9, 12, 15 and
18 suggestions, as shown in Table 2.

Table 2. Examples of test cases (artificial words)

Input Number of Suggested words

Text Suggestions

bc 9 vx, nv, bbc, bcc, bca, bcz, c, b, cb

bcd 12 vxs, nvf, bbcd, bccd, bcdd, bcda, bcdz, cd, bd, bc, cbd, bdc

bcde 15 vxsw, nvfr, bbcde, bccde, bcdde, bcdee, bcdea, bcdez, cde
bde, bce, bcd, cbde, bdce, bced

bcdef 18 vxswd, nvfrg, bbcdef, bccdef, bcddef, bcdeef, bcdeff, bcdefa
bcdefz, cdef, bdef, bcef, bcdf, bcde, cbdef, bdcef, bcedf, bcdfe

A sample of output displays of the SSCS with an input word “bc” that
generates 9 suggestions is shown in Table 3. The “*” indicates which word was
selected from the list of suggestions.
The first nine suggestions were generated by the following Knowledge Sources:

“vx” and “nv” Left/Right Character Shifter
“bbc” and “bcc” Character Doubler
“bca” and “bcz” End Character Appender
“c” and “b” Character Remover
“cb” Subsequent Character Switcher

At the first display, the user picks “bbc”, which is generated by the Character
Doubler. When the next time suggestions are presented to the user in the second
display, suggested words generated by the Character Doubler appear before the

A Smart Spell Checker System 9

Table 3. Examples of displays

First Display Second Display Third Display Fourth Display
1: nv bbc nv c
2: vx bcc vx b
3: bbc* bca bbc nv
4: bcc bcz bcc vx
5: bca c bca bbc
6: bcz b bcz bcc
7: c nv c* bca
8: b vx* b bcz
9: cb cb cb cb

10: Ignore All Ignore All Ignore All Ignore All

words generated by the other KSs. The same behavior can be observed in the
third and the fourth displays.
The kind of test cases as presented in this paper was used to measure the

adaptability of the SSCS, and not to test its functionality. For the adaptability
test cases, we fed the same word into the initiator four times, and selected a
word generated by a different KS every time. Normally, this would not occur in
real interactions with a spell checker, but this test case was chosen to emphasize
the demonstration of the adaptability mechanism.
The results of our tests are summarized in Figure 4. This figure shows a

reference curve (marked with diamonds) obtained under the assumption that a
word from a list of suggestions appears on the top of the list of suggestions (as
default) randomly, i.e., the probability is

P (N) = 1/N

This kind of behavior was actually observed in a system without adaptability.
In Figure 4, this behavior is represented by the triangle symbols. The SSCS,
on the other hand, exhibits a different behavior. The probability of a correct
suggestion being on the top of the list of suggestions presented by the system
to the user only slightly decreases with the number of generated suggestions.
This is a desirable behavior, since it means that more knowledge sources can be
added to the system without putting more burden on the user who otherwise
would need to sift through a huge number of generated suggestions.

6 Conclusions and Future Research

The goal of the experiments presented in this paper was to demonstrate the
usability of the idea of Adaptive Software Architecture [2–4] in constructing
adaptive human-computer interfaces. As a case study, we selected the applica-
tion of spell checking. The goal of the system was to pick the right word for a

10 D. Seth and M. M. Kokar

$GDSWDELOLW\�0HDVXUHPHQW

�����

�����

�����

�����

�����

�����

� � � � � �� �� �� �� �� ��

1XPEHU�RI�6XJJHVWLRQV

3
U
R
E
D
E
L
O
L
W
\

7KHRUHWLFDO

$GDSWLYH

1RQ�$GDSWLYH

Fig. 4. Adaptability: Experimental Results

replacement of an erroneous word typed by the user and to adapt to the mistakes
made by a particular user.
To achieve this goal, we mapped the ASA to the spell checking application,

a Smart Spell Checking System (SSCS). Towards this goal, we had to select
an instance of the architecture and populate particular components (Knowledge
Sources) with domain specific knowledge. We implemented the system and tested
it on various text files.
To evaluate the adaptability mechanism of the SSCS we developed a number

of artificial test cases. The test cases consisted of artificial words, i.e., words that
are normally not legal English words. We also generated annotations indicating
which word was selected by the user as the right word. We ran this kind of
tests and collected quantitative results that allowed us to develop characteristic
curves of the SSCS, as shown in the paper. We ran the same experiments on the
SSCS with the adaptive mechanism switched off. Additionally, we developed a
theoretical performance curve of a non-adaptive system. We assumed that such
a system would make its decisions randomly and thus the probability of right
selection would depend only on the number of suggestions. This proved to be
the behavior of our system without the adaptability mechanism.
Our adaptive system, on the other hand, performed much better and picked

the right corrected word in more than 80% of the cases. Moreover, this kind of be-
havior was observed even with larger numbers of suggestions to pick from. The
non-adaptive system’s performance degraded significantly with the increased
number of possible suggestions. This is a very encouraging result, since it indi-
cates that the system can scale up to more Knowledge Sources. This feature is

A Smart Spell Checker System 11

very important since the five Knowledge Sources developed in this experiment
would not be sufficient for a real spell checker.
While the above implementation and results proved the possibility of building

an adaptive spell checker, it is clear that more research surrounding the archi-
tecture and the adaptability measurement is needed. A more accurate measure
of the SSCS’s adaptability is to run the system using real words and using a full-
fledged dictionary. The data points obtained from such a study would represent
a more conclusive result as to how adaptable the system is.
It is clear that for a real spell checker more knowledge sources would need

to be added. A larger number of KSs would produce more valid suggestions to
the system and consequently would result in better coverage of spelling errors.
At the same time the convergence to the real error distribution of a given user
would become slower. The question of what is the convergence rate would have
to be answered based on results collected using real human subjects rather than
artificially generated text.
In order to make a decision on whether to use such an architecture in a real

system one would need to first decide what should be the usability measure
and then conduct more intensive studies to assess the impact of this kind of
adaptability on the selected usability metric. One candidate for such a measure
could be the time spent for correcting one error. This metric would tell what is
the value added in terms of the productivity of people using this kind of spell
checker. However, the goal of the study presented in this paper was merely to
provide an indication of the adaptability of the proposed architecture. The spell
checking application was just a case study to achieve this goal. Human factor
studies were not within the scope of this research.

Acknowledgments

The authors would like to thank the members of the Software Engineering
Project class for their work on the Adaptive Software Architecture: Bob Bam-
berg, Prasad Bandaru, Jianqing Huang, Amir Kompany, Tamnun Mursalin,
Madhavi Narla, Firozur Rahman and Charles Tan.

References

1. K. J. Åström. Adaptive Control. Addison-Wesley, Reading, MA, 1989.
2. Y. A. Eracar. Raacr: A reconfigurable architecture for adapting to changes in the

requirements. Master’s thesis, Northeastern University, Boston, MA, 1996.
3. Y. A. Eracar and M. M. Kokar. An architecture for software that adapts to changes

in requirements. Journal of Systems and Software, 50:209–219, 2000.
4. M. M. Kokar, K. Baclawski, and Y. Eracar. Control theory-based foundations of

self-controlling software. IEEE Intelligent Systems, May/June 1999:37–45, 1999.
5. M. M. Kokar, K. M. Passino, K. Baclawski, and J. E. Smith. Mapping an ap-

plication to a control architecture: Specification of the problem. Lecture Notes in
Computer Science, 1936:75–89, 2001.

12 D. Seth and M. M. Kokar

6. I. Mareels and J. W. Polderman. Adaptive Systems: An Introduction. Birkhauser,
Boston, MA, 1996.

7. H. P. Nii. Blackboard systems. AI Magazine, (7(4)):82 – 107, 1986.
8. P. Robertson, H. Shrobe, and R. Laddaga. Self-Adaptive Software. Lecture Notes

in Computer Science, Volume 1936. Springer-Verlag, 2001.
9. M. Schneider-Hufschmidt, T. Kuhme, and U. Malinowski. Adaptive User Inter-

faces: Principles and Practices. North-Holland, Amsterdam, The Netherlands,
1993.

10. K. P. Vaubel and C. F. Gettys. Inferring user expertise for adaptive interfaces.
Human Computer Interaction, 5:95–117, 1990.

