
S E L F - A D A P T I V E S O F T W A R E

Control Theory-Based
Foundations of Self-
Controlling Software
Mieczyslaw M. Kokar, Kenneth Baclawski, and Yonet A. Eracar, Northeastern University

ALGORITHMS WITH EMBEDDED
control and adaptation are common in soft-
ware systems. Some examples are

• software for dynamically adjusting a
database-management system’s buffering
strategy,

• routing algorithms for networks,
• load-balancing algorithms for distributed

computer systems,
• graphical user interfaces that adapt to the

user, and
• caching strategies for OS memory man-

agement.

All these software subsystems interact with
an environment that could be the external phys-
ical world or another layer of the computer sys-
tem. Such environments can be characterized
as dynamic systems.1 The essence of a dynamic
system is that its output depends on the system’s
state. So, the system does not shift dramatically
from one output to another (in response to
changes in the input) but exhibits some form of
inertia (because of the dependence on state).
When designing a software system that inter-
acts with a dynamic environment, software
engineers need to take into account the dynamic
characteristics of the environment and computer
system, or the system might behave differently
from what the engineer expected.

In computer systems, the first observed
form of inertia was locality of reference. This
property has been exploited heavily ever since
in both hardware and software. Hardware
devices use caches and buffers to exploit
locality of reference. Operating systems use
locality of reference to improve the perfor-
mance of virtual memory and file systems.
Communication networks have two kinds of
locality of reference. Physical locality of ref-
erence is the tendency for communication to
be between computers that are physically near
one another. Temporal locality of reference is
the tendency, once a pair of computers has
communicated, for that pair to communicate
again in the near future, and then repeatedly.

In spite of the obvious analogy of software
systems to control systems, the basic para-
digm of control has not found its place as a

first-class concept in software engineering.
For instance, Mary Shaw and David Garlan
use the control architecture to identify an
architectural style that they call the process-
control paradigm.2 However, they consider
the possibility that only the controller that
controls a physical system (in control termi-
nology, such a controlled system is called a
plant) is implemented in software. They do
not consider a plant that is itself software.
Also, they do not go beyond the basic con-
trol model.

Control theory generally concerns systems
that repeatedly interact with the world through
a sense-response-act loop. Applications that
can exploit this pattern are common in soft-
ware engineering. Two examples are the read-
evaluate-print loop of traditional batch pro-
cessing or the event-dispatch-handle loop of

THE AUTHORS’ CONTROL THEORY-BASED PARADIGM GIVES A

FRAMEWORK FOR SPECIFYING AND DESIGNING SOFTWARE

THAT CONTROLS ITSELF AS IT OPERATES. BASED ON THIS

PARADIGM, THEIR SELF-CONTROLLING SOFTWARE MODEL

SUPPORTS THREE LEVELS OF CONTROL: FEEDBACK,
ADAPTATION, AND RECONFIGURATION.

MAY/JUNE 1999 1094-7167/99/$10.00 © 1999 IEEE 37

graphical user interfaces. These examples’
common features have been abstracted in the
controller object-oriented design pattern.3 The
controller design pattern does not have an
explicit feedback mechanism, so it represents
only the simplest form of control model—
namely, the open-loop model, which we’ll
describe in the next section. The control-the-
ory paradigm goes beyond open-loop systems;
it includes, for example, the read-match-fire
loop of rule-based systems and the sense-
response-act loop of intelligent agent systems.

Significant advances can be achieved by
mapping the concepts of control theory to
software engineering and then transferring
the concepts and tools developed in control
theory—for example, controllability, stabil-
ity, and sensitivity analysis. Toward that end,
we propose a new paradigm for software
development that explicitly and systemati-
cally addresses self-control of software. This
paradigm

• regards the software system as a plant to
be controlled;

• models the behavior of the plant and the
environment as a dynamic system;

• identifies measurable inputs to the plant
and classifies them as control inputs,
which control the plant’s behavior, or dis-
turbances, which alter the plant’s behav-

ior unpredictably;
• includes a controller subsystem for

changing the values of the control inputs
to the plant; and

• adds, if necessary, a quality of service
(QoS) subsystem for computing feed-
back. The controller uses this feedback to
control the plant.

This paradigm can exploit the considerable
research and industrial experience in control
theory. Also, with this paradigm we can sys-
tematically derive models for self-control-
ling software.

Control theory-based
software models

A self-controlling software system distin-
guishes two primary entities: the computer
system and its environment, also called the
world. Typically, the world is a dynamic sys-
tem whose behavior is a function of its pre-
vious state, actions exerted on it by the com-
puter system, and time. We presume that the
computer system attempts to satisfy an exter-
nally defined goal through the appropriate
selection of actions. Actions are generated
based on various sensory inputs, the goal,
and the computer system’s internal state. Fig-

ure 1 illustrates a basic software system.
We now introduce a series of progressively

more complex control problems and describe
the control models that the control commu-
nity has developed to address these problems.
These models add redundancy to the basic
function (plant) of a software system to intro-
duce various levels of self-controllability to
the overall system.

An image-recognition example. Through-
out the article, we’ll use a hypothetical
image-recognition system4,5 to illustrate our
ideas. The system’s basic function (the part
that does not involve any control) is simply
to recognize certain features of input images.
For simplicity, assume that only two classes
of inputs are possible: square and nonsquare.
The program’s goal is then to classify input
images into these two classes.

38 IEEE INTELLIGENT SYSTEMS

Goal

Environment

Computer
system

Action Input

Figure 1. The basic system model.

δα

Environment

(a) (b)

Controller
 = f (Θ)

Θ Θ

Θ Θ

Θ

α
α

δ δ

δ

Plant

Environment

Goal
Controller Plant

(c)

Environment

Controller Plant QoS
Goal QoS

(d) (e)

Environment

Controller Plant

Controller
designer

Model
estimator

QoS
Goal QoS

K

Environment

Controller Plant

Controller
selector

Model
selector

QoS
Goal QoS

K

Controller
database

Model
database

α δα

δα

δ

ss

δ

Figure 2. Control models: (a) open-loop; (b) closed-loop (feedback); (c) closed-loop with a quality-of-service subsystem; (d) indirect-adaptive; (e) reconfigurable.

Suppose that the program consists of two
components: edge identification and object
classification. Let’s focus on object classifi-
cation. Assume this component is imple-
mented as a statistical classifier that tests the
hypothesis that the image is a square based
on a confidence coefficient α. It outputs its
classification decision δ. The inputs to this
component are edges represented as classes
Θi of gradient values for each edge point. The
means –Θi and variances si for these classes
are also computed by the plant and used in
its hypothesis testing. The edge-detection
component detects the edge points and cal-
culates the classes Θi. When no controller is
involved, the value of α is selected at the time
of system design and remains fixed through-
out the classifier’s life.

Open-loop control. This model selects the
control-input value according to a control
law that calculates the control input based
on the values of other inputs. The control
law is part of the controller. Unlike the basic
system (see Figure 1), the open-loop con-
trol model splits the system into a plant and
controller.

In the image-recognition example, this
model could involve the calculation of the
confidence coefficient α as a function of the
inputs, α = f(Θ). Specifically, this function
could be defined such that for inputs with
higher variances, the confidence coefficient
α would have a lower value.

Figure 2a shows the information flow in
this example. In this and later figures, the
annotations on the arrows illustrate how the
model would be used for the image-recogni-
tion example. Arrows with no source are
inputs from the environment; arrows with no
target are outputs to the environment.

Closed-loop (feedback) control. This model
explicitly and immediately feeds back the
plant’s output to the controller (see Figure 2b).

Although control theory assumes that the
plant directly provides feedback, we can’t
assume this for software systems. So usually,
a QoS subsystem must be introduced. In
some cases, it computes the feedback’s value
as a function of input and output variables.
In other cases, it might take an external input
(for example, from the user) and then com-
pute the feedback’s value based on all avail-
able information. The controller uses the
feedback produced by the QoS subsystem to
compute control inputs. Figure 2c shows the
feedback model with a QoS subsystem.

This control model is more precisely
expressed as a feedback loop. In each loop
iteration, the plant receives input from the
environment, makes a decision based on the
input, and acts by affecting the environment
and then producing output signals. It sends
these signals to the QoS subsystem and then
to the controller. To make the decision, the
plant uses input from the controller and inter-
nal state information as well as the sensor
input. The controller receives plant output
through the feedback loop. It also knows the
control goal. It then evaluates whether the
goal is satisfactorily being achieved. If not,
the controller changes its input to the plant
to achieve the control goal. (In software engi-
neering, this model is often classified as an
adaptive software model, but it would not be
classified as adaptive in control theory.)

In our image-classification example (see
Figure 2c), the feedback is the probability of
correct recognition, PCR(t), for each input
frame t. This probability is updated by the
following equation, which is part of the QoS
subsystem:

,

where PCR(0) = 1 and is the external
feedback input (in our example, the correct
classification decision). The goal is to
achieve the highest probability of correct
recognition—that is, PCR(t) = 1. The con-
trol input α is computed by

α(t) = K ⋅ (PCR(t − 1) − PCR(t)) + α(t − 1).

Adaptive control. Many of today’s control
problems make high demands on the con-
troller. These problems inherently involve
large-range dynamic disturbances of all kinds
and stringent time requirements. Also, the
disturbances occur and change unpredict-
ably, causing an unpredictable response
because of the plant’s nonlinear characteris-
tics. Changing the goal can add yet another
range of disturbances.

To solve this problem, Karl Åström intro-
duced adaptive control,6 which can deal with
the uncertainty in the model parameters of
the controlled plant. The exact values of these
parameters and of the controller do not need
to be known when an adaptive controller is
designed.

There are two general approaches to adap-
tive control. Direct adaptive control para-
meterizes the plant model in terms of the con-

troller parameters. It then estimates the con-
troller parameters directly. Indirect adaptive
control estimates plant parameters online and
uses them to calculate the controller para-
meters. This approach adds two subsystems:
the model estimator and controller designer.
It adjusts the controller parameters based on
the plant’s model that is being updated dur-
ing execution. Figure 2d shows the software
model for indirect adaptive control.

For our image-classification example, the
plant is a statistical classifier, so the plant’s
model is probabilistic and is represented by
a normal distribution N(Di; µi, σi), where Di

is the angle between two consecutive edges
Θi and Θ i − 1,

.
The model estimator updates the model (the
estimates for µi and σi) incrementally after
receiving input from the plant (the mean edge
gradient–Θi and variance si

2) according to this
rule:

,

where ni is the number of edge classes for
image t. The model estimator averages the
updated estimates for σi over all pairs of con-
secutive edges and passes the estimates σ to
the controller designer. The controller de-
signer updates the gain K of the control law
according to K = C ⋅ σ, where σ = s2 and C is
a fixed constant.

Reconfigurable control. Adaptive control,
although more flexible than conventional
feedback control, has its own limitations. The
most obvious limitation is that the logic for
both the identification and decision functions
is implemented at the time of controller design
and remains fixed for its lifetime. Thus, the
adaptive controller has a limited ability to
update the control law: it can only update the
control-law parameters within a predefined
class of models (the parametric uncertainties
of the model). It cannot, however, deal with
all kinds of nonparametric uncertainties,
including high-frequency unmodeled dynam-
ics, low-frequency unmodeled dynamics, and
sensor noise. Sometimes when the plant has
a characteristic even slightly different than that
presumed in the adaptive-controller design,
the results can be catastrophic. As Charles
Rohrs and his colleagues showed, when a
plant’s dynamics are not modeled correctly,
even small uncertainties can lead to severe
parameter drifting and plant instability.7 Much

s D
s

n

s

ni
i

i

i

i
() = + −

−

2
1

2

1

Di i i= − −Θ Θ 1

δ

PCR t
PCR t t

t
() = −() ⋅ −() +1 1 δ

MAY/JUNE 1999 39

research has been performed to address the
basic problems that Rohrs and his colleagues
pointed out.

Moreover, even if an adaptive controller
can adapt to new situations, a nonlinear char-
acteristic of the controlled plant might peri-
odically resurface. Adapting to this recurring
situation every time seems unreasonable. A
much more economical approach would
probably be to learn a control law associated
with a particular dynamic characteristic type,
store it in the controller’s database, and use
it whenever the recurrence of a known situ-
ation is recognized. This requires an intelli-
gent controller with both adaptive and learn-
ing capabilities that not only can adapt to and
memorize the new control law, but also can
select an appropriate control law.

Improving upon adaptive control. Reconfig-
urable control8 is a relatively new model in
the design and implementation of control sys-
tems. The driving force behind this approach’s
development was the need to control plants
that unpredictably change their dynamics
structurally. This means that at different points
in time, the plant’s dynamic model must be
described by equations having different vari-
ables and different mathematical operators.
The main idea is to be able to monitor the sit-
uation, recognize structural changes, and then
redesign the controller in real time to com-
pensate for the structural changes.

Figure 2e shows the software model
based on a reconfigurable controller. This
model contains two new subsystems—the
model selector and controller selector—and
databases—the model database and con-
troller database. The model selector incor-
porates all the features of the model esti-

mator in the adaptive control model. Addi-
tionally, when it detects significant changes
in the model, it can select a different model
from its model database. This triggers the
selection of a new controller from the con-
troller database.

Reconfigurable control is applicable in
many situations, such as damage to the plant.
Damage need not result in a catastrophe. In
many cases, radically changing the control
strategy can compensate for damage. This is
possible when redundancy exists in the con-
trolled system. For instance, imagine a two-
legged robot, whose right leg has been dam-
aged, using the left leg for moving (jumping),
like humans or animals would naturally do.

Referring to our image-recognition exam-
ple, the model selector might decide that the
normal distribution model is inappropriate for
a given sequence of input images. Its database
might have other probabilistic models, repre-
sented, for example, by the Poisson distribu-
tion, Weibull distribution, or gamma distribu-
tion. Selecting one of these models requires
selecting a new controller and the controller
designer’s rules for updating control laws.

Reconfiguring the plant. In control, the plant is
a physical object whose basic structure remains
fixed over the control system’s lifetime.
Changing a plant would require redesigning
its mechanical and electrical parts, manufac-
turing, installation, and so on. However, we’re
dealing with plants that are software systems.
Because of software’s great flexibility, we
should be able to more easily reconfigure a
plant. In this process, we are guided by such
constraints as inputs from the environment and
control goals. We are free to change the plant’s
algorithms for as long as this guarantees the

achievement of the control goals.
For our image-recognition example, con-

sider the edge-detection component. The per-
formance of edge-detection algorithms depends
on various characteristics of the input images.
For instance, we can have two algorithms for
edge detection: a Sobel edge detector and a
Laplacian edge detector. The former works
better with horizontal and vertical edges, while
the latter is better for finding edges that are not
perpendicular to the axis and that are not
straight lines. A software system based on the
reconfigurable-control model will select an
edge detector appropriate to the specific type
of input.

The self-controlling software
model

Our self-controlling software model (see
Figure 3) combines and generalizes the fea-
tures of the control models we just described.
This model’s structure is basically three
loops, each of which represents a different
timescale for control activity:

• In the feedback loop, the controller sets
parameters for the plant based on the goal
and feedback received from the QoS sub-
system.

• In the adaptation loop, the evaluator eval-
uates the behavior and performance to
determine whether the plant’s model is
appropriate. It then adapts the model, if
necessary, which in turn triggers a change
in the control law.

• The reconfiguration loop is a drastic and
relatively costly action that the reconfig-
urer performs at the evaluator’s request.
The reconfiguration can involve struc-
tural changes in the plant model, QoS
subsystem, evaluator, controller, con-
troller designer, goal, or even plant. The
reconfigurer itself remains fixed. During
decision making, the reconfigurer uses
the specification database, which con-
tains a high-level system requirement,
including a high-level goal. During re-
configuration planning, it uses the com-
ponent database to assemble various sys-
tem elements.

We believe this model can lead to software
systems with an impressive capability for
responding, adapting, and reconfiguring. Of
course, self-controllability does not come for
free. As we mentioned before, the applica-

40 IEEE INTELLIGENT SYSTEMS

Environment

Feedback loop

Adaptation
 loop

Reconfiguration
 loop

Controller

Θ

Plant

Controller
designer

Evaluator

QoS

Goal

Reconfigurer
Information transfer
Reconfiguration

Specification
database

Component
database

δ

δ

Figure 3. The self-controlling software model combines and generalizes the features of the control models shown in
Figure 2.

tion’s functionality must be supplemented
with some redundancy to implement the
mechanisms of self-adaptability: evaluation,
model estimation, adaptation, and reconfigu-
ration. However, we can reduce this overhead
and improve overall system performance by

• evaluating the behavior based on a sam-
ple of feedback iterations rather than on
every iteration;

• generating more efficient interfaces be-
tween components at runtime; and

• constructing more efficient component
organizations, scheduling algorithms, and
evaluation algorithms at runtime.

In the following subsections, we give a
more detailed definition of the self-control-

ling software model by discussing the respon-
sibilities of the various subsystems and the
approach we have taken to realizing these sub-
systems in our research prototype systems.

The feedback loop. This loop consists of the
controller, the plant, and the QoS module.
The controller must adjust the plant’s para-
meters to maintain the quality of service. In
adjusting these parameters, the controller
must obey various constraints. The most
important constraints from the control the-
ory point of view are the controllability and
stability constraints. The controller must be
designed such that the whole system is sta-
ble; that is, small changes in the control input
do not cause large changes in the system’s
behavior. The system must also be control-

lable; that is, the controller should be able to
drive the system to achieve its goal. To design
a controllable and stable system, the con-
troller’s designer must know the plant’s
dynamic characteristics. (For other con-
straints, see the sidebar.)

The plant’s dynamic characteristics de-
pend on the software it executes and the hard-
ware on which it executes. But the plant’s
main role is to perform some computation
for the environment. Our approach treats the
environment as an external system, its impact
on the plant as disturbances, and its impact
on the model as perturbations. The method
we use to model the environment depends on
its type. For instance, if the environment is
constant or steady-state, the modeling job is
much simpler than when the environment has

MAY/JUNE 1999 41

SOFTWARE AD GOES
HERE. DALE TO

PROVIDE TEXT, TONI
TO CREATE.

a significant dynamic component.
In some situations, we might not need to

model the environment (the disturbances).
Nevertheless, we still need a good model of
the plant’s dynamics. In principal, we can
derive such a model from models of the soft-
ware and hardware, such as state-chart mod-
els, Petri net models, or logical models
expressed in a temporal logic. In this case,
the main problem becomes optimization—
that is, optimizing the plant’s performance
with respect to the performance-evaluation
measure developed by the evaluator.

When the environment is dynamic, we
need to know its model to design the con-
troller. Environments are either continuous
or discrete. For continuous environments, the
models are given by differential equations;
for discrete environments, they are given by
difference equations. Controllers can be clas-
sified along the same lines. When a controller
is implemented in software, it will not nec-
essarily be continuous, and might be either
discrete or hybrid. In hybrid control, both the

plant and the controller have continuous and
discrete dynamics and variables.9

Dynamic environments are the center of
attention of the whole control research com-
munity. We believe that when dealing with
this kind of environment, the software engi-
neer developing a self-controlling software
system should seek a control engineer’s
expertise, to exploit his or her knowledge of
controller design.

Evaluation of the plant’s behavior and per-
formance is based on quality of service.10 The
QoS module computes a measure of behavior
and performance that takes the form of a mul-
tidimensional function similar to the benefit
function.10 The difference is that the benefit
function measures the benefits received by an
end user, while the QoS module measures how
well the plant and its components perform rel-
ative to the system’s specified mission. The
evaluator measures the system’s performance
using either a quantitative measure of how
well the system performed or a probability of
correct operation for specific missions.

The adaptation loop. This loop adds two
components to the feedback loop: the evalua-
tor and the controller designer. If the self-con-
trolling software includes only the feedback
loop, the plant’s model is not represented
explicitly in the system; the human designer
uses it to derive a control law (to design the
controller). When the adaptation loop is imple-
mented, the evaluator knows that model. The
evaluator generalizes the concept of the model
estimator in Figure 2d and model selector in
Figure 2e. In the adaptation loop, the evaluator
assesses whether the plant’s behavior is com-
patible with the plant’s model and compen-
sates the model’s parameters accordingly. The
controller designer uses these model parame-
ters to update the control law. It then passes the
updated control law to the controller, which
uses the control law to compute new conrol
inputs to the plant.

Similarly to the feedback loop, self-con-
trolling software that implements the adap-
tation loop must satisfy the additional con-
straints for an adaptive controller. Again, the

G E T C O N N E C T E D . . .

. . . with content for CS professionals:
❖ Peer-reviewed articles and tutorials report the latest developments in

Internet-based applications and enabling technologies.
❖ Companion webzine, IC Online, offers unique content and links to

other useful sites at http://computer.org/internet/.

To subscribe:
❖ Send check, money order, or credit card number to

IEEE Computer Society, 10662 Los Vaqueritos, CA 90720-1314.
❖ $32 paper/$26 electronic/$42 combo format to

members of the IEEE Computer or Communications Societies.

http://computer.org/internet/

most important constraints are controllabil-
ity and stability.

The reconfiguration loop. This loop extends
the adaptive model by adding three compo-
nents: the reconfigurer, the specification data-
base, and the component database. Addition-
ally, the evaluator’s role is extended by
including the ability to evaluate the whole
system’s performance relative to the envi-
ronment’s variability. The component and
specification databases store replacement
components (and their specifications) that can
be reconfigured: plants, QoS modules, con-
trollers, controller designers, and evaluators.

A self-controlling system’s ability to adapt
to the environment’s variability can be mea-
sured with the Total Requirements Volatility
measure.11 Strictly speaking, the TRV mea-
sures the volatility of requirements, not that
of the environment. However, these two are
closely related. Functional requirements can
be expressed in many ways, but one of the
most common is through preconditions and

postconditions. Preconditions on the input
parameters of a function represent the ranges
or other constraints on input parameters that
are required for the function to perform ade-
quately. The environment’s volatility is man-
ifested in input values that do not satisfy the
preconditions. To handle such input values,
we must modify the preconditions—that is,
modify the requirements. Such modifications
are precisely what the TRV measures.

We considered using function points
instead of the TRV for measuring require-
ments volatility. Although function points are
more popular among software engineers,
they are not appropriate for this problem.
Unlike the TRV measure, the properties that
define the function-point measure do not
reflect changes in the environment.

Reconfiguration can be accomplished by
component selection, transformation, and
composition. In the first and simplest case,
when the component does not perform
according to the criteria set forth by the eval-
uator, the reconfigurer searches the compo-

nent database for a replacement. Toward this
goal, it first matches the interfaces of the com-
ponents. If it finds a matching component, it
checks the component’s specification. We
intend to use formal specifications for defin-
ing the purposes and interfaces of compo-
nents. An algebraic specification of a com-
ponent contains sorts, operations, and axioms.
Collectively they define the component’s
function. To compose various component
specifications, we must also specify the inter-
faces among the components (when the com-
ponents are independent processes). A com-
ponent can replace another component if its
specification satisfies that of the component
being replaced. This relatively simple opera-
tion might not be successful for a given spec-
ification database. Component transforma-
tion and composition can then be invoked to
achieve the goal.

Researchers are investigating various ap-
proaches to transformations and composition
for software architecture.12 For instance, SRI
is developing a provably correct approach to

1999 Editorial Calendar
January-March Understanding Multimedia

April-June Media Spaces

July-September Multimedia Mix: MPEG-7,
teleconferencing, and
retrieving visual information

October-December Satellite Systems for Mobile
Multimedia Services

http://computer.org/multimedia

the hierarchical refinement of software archi-
tectures. This approach first specifies an archi-
tecture in SADL, an architecture specification
language, and then uses several provably cor-
rect transformations to progressively refine the
architecture. Logical theories represent speci-
fications. Refinement is guided by patterns and
styles, which are structure-preserving map-
pings on theories. To address component com-
position, this approach uses dynamic archi-
tectures, which reconfigure the software
architecture while the program is running.13

The SRI approach addresses such problems as
how to select components, connectors, and
topologies (interface matching) and how to
decide whether a particular architectural solu-
tion satisfies given architectural constraints.

Our self-controlling software model adds
to this transformation model these elements:

• architectural components, such as the
plant and controller, that are well-defined
in control theory;

• an architecture that has evolved as a result
of many years of research by the control
community; and

• a set of control-theoretic constraints, such
as controllability and stability, which
have been proven useful and adequate.

SOFTWARE SYSTEMS REPRESENT
some of the most complex artifacts ever cre-
ated. Yet, as software’s name suggests, it is
not embodied in immediately tangible phys-
ical structures but in the electronic memories
of computers. In contrast, the term hardware
generically refers to the tangible physical
artifacts associated with complex artifacts.
In theory, software should be more flexible
than hardware because it can be manipulated
at electronic speeds without altering physi-
cal structures. Yet reconfiguring software to
achieve its purpose better is often much more
difficult than reconfiguring hardware. Even

upgrading a software component from one
version to the next one can be very difficult
and has caused major system failures. Peter
Neumann’s ACM Risks Forum mentions
several examples of these.14

Recent research in dynamic architectures
has addressed the problem of automatic
reconfiguration of software at runtime. But
this recent research has not addressed the
problems that occur when the environment is
dynamic and the reconfigured algorithms pro-
duce unexpected consequences. For instance,
the system might not properly steer toward
the desired goal (the controllability problem),
and uncontrolled oscillations might occur in
response to small changes in the input (sta-
bility problems).

Control engineers have long observed these
kinds of problems, and control theory has
developed a host of concepts, architectures,
and techniques to deal with these problems.
These techniques include functional elements
such as the controller, the model estimator, and
the control designer. In addition, many classes
of plants have been analyzed, and architectures
for organizing the functional elements have

44 IEEE INTELLIGENT SYSTEMS

Issues in the use of control theory for
software engineering

The following issues, which have been investigated in control theory,
are relevant to software engineering:

• Controllability: This is the ability to steer the system (plant) in
desired directions. This concept is well-defined in control theory. A
plant must be proved controllable to ensure that it will perform
according to the specifications when inputs to the plant change in
unexpected (but bounded) ways. Control theory offers good tools
for analyzing the controllability of linear systems. Tools for analyz-
ing the controllability of software in a more general sense need to
be investigated.

• Observability: This is the ability to determine a system’s (initial)
state from measurements of the system. To control the system’s
state, we must be able to determine its current state.

• Stability: Basically, this is the system property that ensures that
small changes (disturbances) in an initial state (also called an equi-
librium state or invariant set) eventually have negligible effects on
the system’s behavior. It might mean, for instance, that the system
does not exhibit oscillations as a result of small input. Control the-
ory provides many (two dozen or so) definitions of stability.1 Ana-
lyzing these definitions and assessing their appropriateness are
important for the analysis of software stability.

• Robustness: This property is the controller’s ability to achieve its
objectives even if large, unanticipated variations occur in the plant.
In other words, as the environment departs from the domain for
which the system was designed, the system degrades gradually in
performance rather than exhibiting a catastrophic failure.

• Autonomy: Because a self-controlling system performs reconfigura-
tion without direct supervision, it exhibits a great deal of autonomy.
Autonomy is intelligent control’s focus.

• Generality: A system’s generality is limited by its knowledge base.
When it encounters a situation that the knowledge base does not

cover, even its general-purpose reasoning mechanisms will fail. So,
to be able to adjust to new situations, a self-controlling system
should be able to incorporate new knowledge. The self-controlling
software model is amenable to any number of control strategies,
such as expert control, neural and fuzzy control, hybrid control, and
learning control. All these methods (used in intelligent control) deal
with both autonomy and generality.

• Chattering: If the environment reaches a state that is on the bound-
ary between two control regimes, the system might chatter—that is,
reconfigure repeatedly between two or more configurations. Be-
cause reconfiguration incurs an overhead, chattering can degrade
overall system performance.

In addition to the control-theory issues, research on the self-control-
ling software model must address these software-system issues:

• Scheduling: Component scheduling is important for any system
model. It is especially important for a system using the self-control-
ling software model because activities take place on multiple loops
implemented on different time scales.

• Proactive reconfiguration: Reconfiguration is normally reactive;
that is, it’s triggered by an evaluation indicating that the system is
not accomplishing its mission. The software model should also pro-
vide for proactive reconfiguration—a speculative reconfiguration
that occurs because the system has determined that another config-
uration will likely perform better.

• Efficiency: The model should minimize the cost of the redundancy
necessary for self-adaptability. For instance, in optimal control, the
controller’s goal is to minimize a cost function.

Reference

1. K. Passino and K. Burgess, Stability Analysis of Discrete Event
Systems, John Wiley & Sons, New York, 1998.

evolved. Control engineers have identified
important properties that self-controlling sys-
tems should satisfy, such as controllability, sta-
bility, observability, and robustness. Mathe-
matical techniques and heuristics for designing
and analyzing control systems have been
developed.

Software systems are increasingly impor-
tant components of the world’s social and
economic infrastructure. The expectations
for availability, performance, and reliability
are continually rising, which has led to the
need for self-controlling systems capable of
online reconfiguration. Such systems have
already been developed in research labs and
will soon be applied in industrial and com-
mercial settings. Although mapping control
theory concepts to software engineering is
not easy, we believe that these concepts can
make an important contribution to the devel-
opment of these and other large, complex
software systems. An architecture such as
we’ve described in this article will expedite
this mapping, letting software engineers
exploit the vast amounts of knowledge and
experience accumulated in control theory.

References
1. M.D. Mesarovic and Y. Takahara, Abstract

Systems Theory, Springer-Verlag, Berlin,
1989.

2. M. Shaw and D. Garlan, Software Architec-
ture: Perspectives on an Emerging Discipline,
Prentice Hall, Upper Saddle River, N.J.,
1996.

3. C. Larman, Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and
Design, Prentice-Hall, 1998.

4. Y.A. Eracar and M.M. Kokar, “An Architec-
ture for Software That Adapts to Changes in
Requirements,” to be published in J. Systems
and Software, 1999.

5. Y.A. Eracar, RAACR: A Reconfigurable
Architecture for Adapting to Changes in the
Requirements, master’s thesis, Northeastern
Univ., Boston, Mass., 1996.

6. K.J. Åström, Adaptive Control, Addison-
Wesley, Reading, Mass., 1989.

7. C.E. Rohrs et al., “Robustness of Continuous-
Time Adaptive Control Algorithms in the
Presence of Unmodelled Dynamics,” IEEE
Trans. Automatic Control, Vol. 30, 1985, pp.
881–889.

8. J.S. Shamma, “Linearization and Gain-
Scheduling,” The Control Handbook, CRC
Press, Boca Raton, Fla., 1996.

9. M.S. Branicky, B.S. Borkar, and S. Mitter, “A
Unified Framework for Hybrid Control:
Model and Optimal Control Theory,” IEEE
Trans. Automatic Control, Vol. 43, No. 1, Jan.
1998, pp. 31–45.

10. S. Chatterjee et al., Modeling Applications for
Adaptive QoS-Based Resource Management,
tech. report, SRI Int’l, Menlo Park, Calif.,
1997.

11. R.J. Costello and D.-B. Liu, “Metrics for
Requirements Engineering,” J. Systems and
Software, Vol. 29, No. 1, Apr. 1995, pp. 39–
63.

12. M. Moriconi, X. Qian, and R.A. Riemen-
shneider, “Correct Architecture Refinement,”
IEEE Trans. Software Eng., Vol. 21, No. 4,
Apr. 1995, pp. 356–372.

13. D.C. Luckham and J. Vera, “An Event-Based
Architecture Definition Language,” IEEE
Trans. Software Eng., Vol. 21, No. 9, Sept.
1995, pp. 717–734.

14. P. Neumann, “System Development Woes,”
Comm. ACM, Vol. 40, No. 12, Dec. 1997,
p. 160.

Mieczyslaw M. Kokar is an associate professor
of electrical and computer engineering at North-
eastern University. His research interests include
formal methods in software engineering, intelli-
gent control, and information fusion. He has an
MS and a PhD in computer systems engineering
from the Technical University of Wroclaw, Poland.
He is a member of the IEEE and ACM. Contact
him at the Dept. of ECE, Northeastern Univ., 360
Huntington Ave., Boston, MA 02115; kokar@
coe.neu.edu; www.coe.neu.edu/~kokar.

Kenneth Baclawski is an associate professor of
computer science at Northeastern University. His
research interests include formal methods in soft-
ware engineering, information retrieval, and data-
base management systems. He has a BS from the
University of Wisconsin and a PhD from Harvard
University. He is a member of the IEEE and ACM.
Contact him at the College of Computer Science,
Northeastern Univ., 360 Huntington Ave., Boston,
MA 02115; kenb@ccs.neu.edu; www.ccs.neu.edu/
home/kenb.

Yonet A. Eracar is a PhD candidate in the Col-
lege of Engineering at Northeastern University and
is a software engineer at Teradyne Inc. His inter-

ests include software architectures, object-oriented
design and modeling, compiler design, and code
generators. He has a BS in electrical engineering
and in physics from Bogazici University, Istanbul,
and an MS in computer systems engineering and
in engineering management from Northeastern
University. Contact him at the Dept. of MIME,
Northeastern Univ., 360 Huntington Ave., Boston,
MA 02115; yeracar@coe.neu.edu; www.coe.neu.
edu/~yeracar.

MAY/JUNE 1999 45

How to Reach Us
Writers

For detailed information on submitting articles,
write for our Editorial Guidelines (m.davis@
computer.org), or access http://computer.org/
intelligent/edguide.htm.

Letters to the Editor
Send letters to

Managing Editor
IEEE Intelligent Systems
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
dprice@computer.org

Please provide an e-mail address or
daytime phone number with your letter.

On the Web
Access http://computer.org/intelligent/ for
information about IEEE Intelligent Systems.

Subscription Change of Address
Send change-of-address requests for maga-
zine subscriptions to address.change@ieee.
org. Be sure to specify Intelligent Systems.

Membership Change of Address
Send change-of-address requests for the
membership directory to directory.updates@
computer.org.

Missing or Damaged Copies
If you are missing an issue or you received
a damaged copy, contact membership@
computer.org.

Reprints of Articles
For price information or to order reprints,
send e-mail to m.davis@computer.org or fax
(714) 821-4010.

Reprint Permission
To obtain permission to reprint an article, con-
tact William Hagen, IEEE Copyrights and
Trademarks Manager, at whagen@ieee.org.

How to Reach Us

& the i r app l i cat ions

IEEE

