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Is it possible to reduce the expected response time of every request at a web server, simply by
changing the order in which we schedule the requests? That is the question we ask in this paper.

This paper proposes a method for improving the performance of web servers servicing static
HTTP requests. The idea is to give preference to requests for small files or requests with short
remaining file size, in accordance with the SRPT (Shortest Remaining Processing Time) scheduling
policy.

The implementation is at the kernel level and involves controlling the order in which socket
buffers are drained into the network. Experiments are executed both in a LAN and a WAN envi-
ronment. We use the Linux operating system and the Apache and Flash web servers.

Results indicate that SRPT-based scheduling of connections yields significant reductions in
delay at the web server. These result in a substantial reduction in mean response time and mean
slowdown for both the LAN and WAN environments. Significantly, and counter to intuition, the
requests for large files are only negligibly penalized or not at all penalized as a result of SRPT-based
scheduling.

Categories and Subject Descriptors: C.5.5 [Computer System Implementation]: Servers;
D.4.1 [Operating Systems]: Process Management—Scheduling; D.4.8 [Operating Systems]:
Performance—Queueing theory

General Terms: Performance, Algorithms, Design, Experimentation, Measurement

Additional Key Words and Phrases: Conservation law, networking, scheduling, SRPT, SJF, system
performance and design, web servers

1. INTRODUCTION

A client accessing a busy web server can expect a long wait. This paper considers
how we might reduce this wait for the case of static requests, of the form “Get
me a file.” Evidence suggests that while the number of dynamic requests are
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growing, the majority of the requests at most web servers are still static [Manley
and Seltzer 1997; Krishnamurthy and Rexford 2001, p. 8; Feldmann 1999; Arlitt
et al. 1999]. Serving static requests quickly is the focus of many companies, for
example, Akamai Technologies, and much ongoing research.

In this paper we are concerned with response time, which is defined to be
the time from when the client sends out the SYN-packet requesting to open a
connection until the client receives the last byte of the file requested.

Our idea is simple. Traditionally, requests at a web server are time-shared:
the web server proportions its resources fairly among those requests ready
to receive service. We call this scheduling policy FAIR scheduling. We pro-
pose, instead, unfair scheduling, in which priority is given to requests for
short files, or those requests with short remaining file size, in accordance
with the well-known scheduling algorithm preemptive Shortest-Remaining-
Processing-Time-first (SRPT). It is well-known from queueing theory that
SRPT scheduling minimizes queueing time [Schrage and Miller 1966]. Al-
lowing short requests to preempt long requests is desirable because forcing
long requests to wait behind short requests results in much lower mean re-
sponse time than the situation where short requests must wait behind long re-
quests. Our expectation is that using SRPT scheduling of requests at the server
will reduce the queueing time at the server, and therefore the total response
time.

Despite the obvious advantages of SRPT scheduling with respect to mean
response time, applications have shied away from using this policy for two
reasons: First SRPT requires knowing the time to service the request. Our
experiments show that the time to service a request is well-approximated by the
size of the file requested, which is well-known to the server. We found a linear
relationship between the service time of the request and its file size, modulo
a small overhead. Second, there is the fear that SRPT “starves” requests for
large files [Bender et al. 1998; Stallings 2001, p. 410; Silberschatz et al. 2002,
p. 162]. A primary goal of this paper is to investigate whether this fear is valid
in the case of web servers serving typical web workloads.

It is not immediately clear what SRPT means in the context of a web server.
A web server is not a single-resource system. To understand which of the web
server’s resources need to be scheduled, we need to understand which resource
in a web server experiences high load first, that is, which is the bottleneck
resource. The three contenders are: the CPU; the disk to memory bandwidth;
and the server’s limited fraction of its ISP’s bandwidth. On a site consisting
primarily of static content, a common performance bottleneck is the limited
bandwidth which the server has bought from its ISP [Microsoft 2001; Cockcroft
1996; Maggs 2001]. Even a fairly modest server can completely saturate a T3
connection or 100 Mbps Fast Ethernet connection. Also, buying more bandwidth
from the ISP is typically relatively more costly than upgrading other system
components like memory or CPU.

In this paper, we model the limited bandwidth that the server has purchased
from its ISP by placing a limitation on the server’s uplink, as shown in Figure 1.
In all our experiments (using both a 10 Mbps and 100 Mbps uplink, and 256 MB
of RAM, and running various trace-based workloads) the bandwidth on the
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Fig. 1. (a) Server’s bottleneck is the limited fraction of bandwidth that it has purchased from
its ISP. (b) How our implementation setup models this bottleneck by limiting the server’s uplink
bandwidth.

server’s uplink is always the bottleneck resource. The system load is therefore
defined in terms of the load on the server’s uplink, which we refer to as the
uplink load. For example, if the web server has a 100 Mbps uplink and the
average amount of data requested by the clients is 80 Mbps, then the uplink
load is 0.8. Although in this paper we assume that the bottleneck resource is
the limited bandwidth that the server has purchased from its ISP, the main
ideas can also be adapted for alternative bottleneck resources.

The focus in the rest of the paper is on how to schedule the server’s up-
link bandwidth, and the performance effects of this scheduling. To schedule
the server’s uplink bandwidth, we need to apply the SRPT algorithm at the
level of the network. Our approach is to control the order in which the server’s
socket buffers are drained. Recall that for each (non-persistent) request a con-
nection is established between the client and the web server. Corresponding to
each connection, there is a socket buffer on the web server end into which
the web server writes the contents of the requested file. Traditionally, the
different socket buffers are drained in Round-Robin Order, with equal turns
being given to each eligible connection, where an eligible connection is one
that has packets waiting to be sent and for which TCP congestion control al-
lows packets to be sent. Thus each eligible connection receives a fair share
of the bandwidth of the server’s uplink. We instead propose to give priority
to those sockets corresponding to connections requesting small files or where
the remaining data required by the request is small. Throughout, we use the
Linux OS.
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The goal of this paper is to compare FAIR scheduling with SRPT scheduling.
These are defined as follows:

FAIR scheduling: This uses standard Linux (fair-share draining of socket
buffers) with an unmodified web server.

SRPT scheduling: This uses modified Linux (SRPT-based draining of socket
buffers) with the web server modified only to update socket priorities.

We experiment with two different web servers: the common Apache server
[Apache 2001], and the Flash web server [Pai et al. 1999], which is known for
speed. Since results are quite similar, we primarily show here only the results
for the case of Apache, and leave the Flash results for the associated technical
report [Harchol-Balter et al. 2000]. Our clients make requests according to a
web trace, which specifies both the time the request is made and the size of
the file requested. Experiments are also repeated using requests generated by
a web workload generator.

Experiments are first executed in a LAN, so as to isolate the reduction in
queueing time at the server. Response time in a LAN is dominated by queueing
delay at the server and TCP effects. Experiments are next repeated in a WAN
environment. The WAN allows us to incorporate the effects of propagation delay,
network loss, and congestion in more fully understanding the client experience.
WAN experiments are executed both by using a WAN emulator and by using
geographically dispersed client machines.

Synopsis of results obtained for a LAN:

—SRPT-based scheduling decreases mean response time in a LAN by a factor
of 3–8 for uplink loads greater than 0.5.

—SRPT-based scheduling helps requests for small files a lot, while negligibly
penalizing requests for large files. Under an uplink load of 0.8, 80% of the
requests improve by a factor of 10 under SRPT-based scheduling. Only the
request for the largest file suffers an increase in mean response time under
SRPT-based scheduling (by a factor of only 1.2).

—There is no negative effect on network throughput or CPU utilization from
using SRPT as compared with FAIR.

Synopsis of results obtained for a WAN:

—While propagation delay and loss diminish the improvement of SRPT over
FAIR, loss has a much greater effect.

—For an RTT of 100ms, under an uplink load of 0.9, SRPT’s improvement over
FAIR is still a factor of 2.

—Network loss further diminishes the improvement of SRPT over FAIR. Under
high network loss (10%), SRPT’s improvement over FAIR is only 25% under
an uplink load of 0.9.

—Unfairness to requests for large files remains negligible or non-existent under
WAN conditions.
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Fig. 2. (a) Data flow in standard Linux. The important thing to observe is that there is a single
priority queue into which all ready connections drain fairly. (b) Linux with priority queueing. There
are several priority queues, and queue i is serviced only if all of queues 0 through i − 1 are empty.

Section 2 describes our implementation of SRPT scheduling. Section 3 de-
scribes the LAN experimental setup and the LAN results. Section 4 describes
the WAN experimental setup and the WAN results. Section 5 provides an in
depth look at why SRPT scheduling is an improvement over FAIR scheduling.
Section 6 describes previous work. Finally in Section 7, we elaborate on broader
applications of SRPT-based scheduling, including its application to other re-
sources, and to non-static requests. We also discuss SRPT applied to web server
farms and Internet routers.

2. IMPLEMENTATION OF SRPT

In Section 2.1 we explain how socket draining works in standard Linux, and
we describe how to achieve priority queueing in Linux (versions 2.2 and above).
Section 2.2 describes the implementation end at the web server and also deals
with the algorithmic issues such as how to choose good priority classes and the
setting and updating of priorities. Furthermore we consider the problem that
for small file requests, a large portion of the time to service the request is spent
before the size of the requested file is even known, and we find a solution for
this problem.

2.1 Achieving Priority Queueing in Linux

Figure 2(a) shows data flow in standard Linux.
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There is a socket buffer corresponding to each connection. Data streaming
into each socket buffer is encapsulated into packets that obtain TCP headers
and IP headers. Throughout this processing, the packet streams corresponding
to each connection are kept separate. Finally, there is a single1 “priority queue”
(transmit queue), into which all streams feed. All eligible streams (eligible via
TCP congestion control) take equal turns draining into the priority queue. Al-
though the Linux kernel does not explicitly enforce fairness, we find that under
conditions where clients are otherwise equal, TCP governs the flows so that
they share fairly on short time scales. This single “priority queue,” can get as
long as 100 packets. Packets leaving this queue drain into a short Ethernet
card queue and out to the network.

To implement SRPT we need more priority levels. To do this, we first build
the Linux kernel with support for the user/kernel Netlink Socket, QOS and
Fair Queueing, and the Prio Pseudoscheduler. Then we use the tc [Almesberger
1999] user space tool to switch the Ethernet card queue from the default 3-band
queue to the 16-band prio queue. Further information about the support for
differentiated services and various queueing policies in Linux can be found in
Radhakrishnan [1999]; Almesberger [1999] and Almesberger et al. [1999].

Figure 2(b) shows the flow of data in Linux after the above modification: The
processing is the same until the packets reach the priority queue. Instead of a
single priority queue (transmit queue), there are 16 priority queues. These are
called bands and they range in number from 0 to 15, where band 15 has lowest
priority and band 0 has highest priority. All the connections of priority i feed
fairly into the ith priority queue. The priority queues then feed in a prioritized
fashion into the Ethernet Card queue. Priority queue i is only allowed to flow
if priority queues 0 through i − 1 are all empty.

A note on experimenting with the above implementation of priority queue-
ing: Consider an experiment where each connection is assigned to one of two
priorities. We have found that when the number of simultaneous connections is
very low, the bandwidth is not actually split such that the first priority connec-
tions get 100% of the bandwidth and the second priority connections get 0% of
the bandwidth. The reason is that with very few connections, the first priority
connections are unable to fully utilize the link, and thus the second priority
connections get a turn to run. However, when the number of simultaneous con-
nections is higher (e.g., above 10), this is not a problem, and the first priority
connections get 100% of the bandwidth. In all the experiments in this paper,
we have hundreds of simultaneous connections and the above implementation
of priority queueing works perfectly.

2.2 Modifications to Web Server and Algorithmic Issues in
Approximating SRPT

The modified Linux kernel provides a mechanism for prioritized queueing. In
our implementation, the Apache web server uses this mechanism to implement
the SRPT-based scheduling policy. Specifically, after determining the size of the

1The queue actually consists of 3 priority queues, a.k.a. bands. By default, however, all packets are
queued to the same band.
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requested file, Apache sets the priority of the corresponding socket by calling
setsockopt. As Apache sends the file, the remaining size of the requested file
decreases. When the remaining size falls below the threshold for the current pri-
ority class, Apache updates the socket priority with another call to setsockopt.

2.2.1 Implementation Design Choices. Our implementation places the re-
sponsibility for prioritizing connections on the web server code. There are two
potential problems with this approach. These are the overhead of the system
calls to modify priorities, and the need to modify server code.

The issue of system call overhead is mitigated by the limited number of
setsockopt calls that must be made. Typically only one call is made per con-
nection. Even in the worst case, we make only as many setsockopt calls as
there are priority classes (6 in our experiments) per connection.

A clean way to handle the changing of priorities totally within the kernel
would be to enhance the sendfile system call to set priorities based on the
remaining file size. We do not pursue this approach here as neither our version
of Apache (1.3.14) nor Flash uses sendfile.

2.2.2 Size Cutoffs. SRPT assumes infinite precision in ranking the remain-
ing processing requirements of requests. In practice, we are limited to only 16
priority bands.

Based on experimentation, we have come up with some rules-of-thumb for
partitioning the requests into priority classes that apply to the heavy-tailed web
workloads. The reader not familiar with heavy-tailed workloads will benefit by
first reading Section 5.

Denoting the cutoffs by x1 < x2 < · · · < xn:

—The lowest size cutoff x1 should be such that about 50% of requests have size
smaller than x1. These requests comprise so little total load in a heavy-tailed
workload that there’s no point in separating them.

—The highest cutoff xn needs to be low enough that the largest (approx.)
0.5%–1% of the requests have size >xn. This is necessary to prevent the
largest requests from starving.

—The middle cutoffs are far less important. A logarithmic spacing works well.

In the experiments throughout this paper, we use only 6 priority classes to
approximate SRPT. Using more improved performance only slightly.

2.2.3 Priority to SYNACKs. At this point one subtle problem remains: For
requests for small files, a large portion of time to service the request is spent
during the connection setup phase, before the size of the requested file is even
known. The packets sent during the connection startup might therefore end up
waiting in long queues, making connection startup very costly. For requests for
small files, a long startup time is especially detrimental to response time. It
is therefore important that the SYNACK be isolated from other traffic. Linux
sends SYNACKs, to priority band 0. It is important when assigning priority
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bands to requests that we:

(1) Never assign any sockets to priority band 0.
(2) Make all priority band assignments to bands of lower priority than band 0,

so that SYNACKs always have highest priority.

Observe that giving highest priority to the SYNACKs doesn’t negatively im-
pact the performance of requests since the SYNACKs themselves make up only
a negligible fraction of the total uplink load.

Giving priority to SYNACKs is important in SRPT because without it the
benefit that SRPT gives to small file requests is not noticeable. Later in the
paper (Section 5.1) we consider whether the FAIR policy might also benefit
by giving priority to SYNACKs, but find the improvement to FAIR to be less
significant.

Assigning highest priority to SYNACKs has the negative effect of increasing
the system’s vulnerability to SYN-flooding attacks and severe overload. One
possible solution to this problem is to take advantage of the fact that SYNACKs
have their own priority band under SRPT and to monitor the rate of arrivals
into this priority band. If the rate suddenly increases, indicating a potential
SYN-flooding attack, we could drop the priority of SYNACKs, thus returning
to a system closer to FAIR.

2.2.4 The Final Algorithm. Our SRPT-like algorithm is thus as follows:

(1) When a request arrives, it is given a socket with priority 0 (highest priority).
This allows SYNACKs to travel quickly, as explained in Section 2.2.3.

(2) After the size of the file requested is determined (by looking at the URL of
the file), the priority of the corresponding socket is reset based on the size
of the requested file, as shown in the table below.

Priority Size (Kbytes)
0 (highest) —

1 ≤1K
2 1K–2K
3 2K–5K
4 5K–20K
5 20K–50K

6 (lowest) >50K

(3) As the remaining size of the requested file diminishes, the priority of the
socket is dynamically updated to reflect the remaining size.

3. LAN SETUP AND RESULTS

In Section 3.1 we describe the experimental setup and workload for the LAN
experiments. Section 3.2 compares SRPT versus FAIR with respect to mean
response time, in a LAN environment. Section 3.3 again compares SRPT versus
FAIR in a LAN environment, but this time with respect to their performance
on requests for large files. Finally Section 3.4 illustrates a simplification of the
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Fig. 3. Three models for how the requests to a web server are generated. In all cases, every
individual request averages into the mean response time.

SRPT idea which involves only two priorities and yet still yields quite good
performance.

3.1 LAN Experimental Setup

3.1.1 Machine Configuration. Our experimental setup involves six ma-
chines connected by a 10/100 Ethernet switch. Each machine has an Intel Pen-
tium III 700 MHz processor and 256 MB RAM, and runs Linux 2.2.16. One of
the machines is designated as the server and runs Apache 1.3.14. The other
five machines act as web clients and generate requests as described below. Be-
low we show results for both the case where the server uplink bandwidth is 10
Mbps and the case where the server uplink bandwidth is 100 Mbps. For the
case of the 10 Mbps bandwidth, at any moment in time there may be a couple
of hundred simultaneous connections at the server. For the case of 100 Mbps
bandwidth the number of simultaneous connections is in the thousands.

3.1.2 Open versus Closed Systems. To properly evaluate the performance
of a server we need to understand how clients generate requests that drive the
web server. The process by which clients generate requests is typically modeled
either as an open system or as a closed system, as shown in Figure 3.

In an open system each user is assumed to visit the web site just once. The
user requests a file from the web site, waits to receive the file, and then leaves.
A request completion does not trigger a new request. A new request is only
triggered by a new user arrival.

In a closed system model, it is assumed that there is some fixed number of
users. These users sit at the same web site forever. Each user repeats these
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2 steps, indefinitely: (i) request a file, (ii) receive the file. In a closed system, a
new request is only triggered by the completion of a previous request.

When using a trace to generate requests under an open system model, the
requests are generated at the times indicated by the trace, where interarrival
times have been scaled to create the appropriate test load. When using a trace
to generate requests under a closed system model, the arrival times of requests
in the trace are ignored.

Neither the open system model nor the closed system model is entirely re-
alistic. Throughout this paper we use the open system model. We also present
results, however, for a different model that we call the partly-open model, which
captures properties of both the open and closed models. Under the partly-open
model, each user is assumed to visit a web site, make k requests for files at
the web site, and then leave the web site. The k requests are made consecu-
tively, with each request completion triggering the next request. We find that
the results of the partly-open model are largely similar to those for an open
model—see Figure 7.

In all the figures below, unless otherwise stated, we assume an open system
model.

3.1.3 Trace-Based Workload. Throughout the paper we use a trace-based
workload consisting of 1-day from the 1998 World Soccer Cup, obtained from
the Internet Traffic Archive [ITA 2002]. The trace contains 4.5 million HTTP
requests, virtually all of which are static. In our experiments, we use the trace
to specify the time the client makes the request and the size in bytes of the file
requested.

The entire 1 day trace contains requests for approximately 5000 different
files. Given the mean file size of 5K, it is clear why all files fit within main
memory and why the disk is not a bottleneck. Each experiment was run using
a busy hour of the trace (10:00 a.m. to 11:00 a.m.). This hour consisted of about
1 million requests.

Some additional statistics about our trace workload: The minimum size file
requested is a 41 byte file. The maximum size file requested is about 2 MB.
The distribution of the file sizes requested fits a heavy-tailed truncated Pareto
distribution (with α-parameter ≈1.2). The largest <3% of the requested files
make up >50% of the total load, exhibiting a strong heavy-tailed property. 50%
of files have size less than 1K bytes. 90% of files have size less than 9.3K bytes.
The distribution of requested file sizes is shown in Figure 4.

We also repeated all experiments using a web workload generator, Surge
[Barford and Crovella 1998] to generate the requests at the client machines.
The Surge workload is created to be statistically representative of the file sizes
at a web site, the sizes of files requested from a web site, the popularity of files
requested, and more. We modified Surge simply to make it an open system. We
have included in the associated technical report [Harchol-Balter et al. 2000] the
same set of results for the Surge workload. The Surge workload had a higher
mean size of file requested (7K, rather than 5K), however in all other respects
was statistically very similar to our trace-based workload. Not surprisingly,
the factor improvement of SRPT over FAIR is very similar under the Surge and
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Fig. 4. Inverse Cumulative Distribution Function, F̄ (x), for the trace-based workload. F̄ (x) =
Pr{size of the file requested >x}.

trace-based workloads. To be precise, all the response times for both FAIR and
for SRPT are 50% higher under the Surge workload, and therefore the factor
improvement is the same.

3.1.4 Generating Requests at Client Machines. In our experiments, we use
sclient [Banga and Druschel 1999] for creating connections at the client ma-
chines. The original version of sclient makes requests for a certain file in
periodic intervals. We modify sclient to read in traces and make the requests
according to the arrival times and file names given in the trace. As in sclient,
we assume a new connection for each request (no persistent connections).2

To create a particular uplink load, say 0.8, we simply scale the interarrival
times in the trace’s request sequence until the average number of bits requested
per second is 8Mb/sec. We validate the uplink load both analytically and via
measurement.

3.1.5 Performance Metrics. For each experiment, we evaluate the following
performance metrics:

—Mean response time. The response time of a request is the time from when
the client submits the request until the client receives the last byte of the
requested file.

—Mean slowdown. The slowdown metric attempts to capture the idea that
clients are willing to tolerate long response times for requests for large files
and yet expect short response times for small file requests. The slowdown of
a request is therefore its response time divided by the time it would require if

2The effect of persistent connections on comparing FAIR and SRPT has been shown to be minimal.
Under persistent connections, rather than using a new connection for each request, each connection
opened by a client is reused for k requests, thus reducing the connection startup overhead of the
TCP 3-way-handshake. Under a WAN setting with 100ms delay and 2.5% loss, both FAIR and SRPT
benefit by a factor of 2 under persistent connections with k = 5. This effect is largely due to the
savings in RTTs. Under a LAN setting, persistent connections are 50% more beneficial to FAIR as
compared with SRPT because SRPT’s 3-way-handshake time is already shorter, since SRPT gives
priority to SYNACKs, and RTTs are not an issue.
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Fig. 5. Mean response time under SRPT versus FAIR as a function of uplink load, under trace-
based workload, in LAN environment with uplink bandwidth 10 Mbps. (a) Assumes open system
model. (b) Assumes partly-open system model with k = 5 request-iteration cycles per user.

it were the sole request in the system. Slowdown is also commonly known as
normalized response time or stretch factor and has been widely used [Bender
et al. 1998; Roberts and Massoulie 1998; Downey 1997; Harchol-Balter and
Downey 1997].

—Mean response time as a function of the size of the file requested. This metric
indicates whether requests for large files are being treated unfairly under
SRPT as compared with FAIR-share scheduling.

3.2 Mean Improvements of SRPT under LAN

Before presenting the results of our experiments, we make some important
comments.

—In all of our experiments the server’s uplink bandwidth was the bottleneck
resource. CPU utilization during our experiments remained below 5% for all
the 10 Mbps experiments and below 80% for the 100 Mbps experiments, even
for uplink load 0.95.

—The measured throughput and bandwidth utilization under the experiments
with SRPT scheduling is identical to that under the same experiments with
FAIR scheduling. The same exact set of requests complete under SRPT
scheduling and under FAIR scheduling.

—There is no additional CPU overhead involved in SRPT scheduling as com-
pared with FAIR scheduling. Recall that the overhead due to updating pri-
orities of sockets is insignificant, given the small number of priority classes
that we use.

Figure 5 shows the mean response time under SRPT scheduling as compared
with the traditional FAIR scheduling as a function of uplink load. Figure 5(a) as-
sumes that requests are generated according to an open model and Figure 5(b)
assumes a partly-open system model, where each user generates k = 5 re-
quests. Results are very similar in (a) and (b). For lower uplink loads the
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Fig. 7. Performance of FAIR shown for a partly-open system model, using trace-based workload
in a LAN with uplink bandwidth 10 Mbps, where k = 1, k = 5, and k = 50.

mean response times are similar under FAIR and SRPT. However for up-
link loads >0.5, the mean response time is a factor of 3–8 lower under SRPT
scheduling.

The performance results are even more dramatic for mean slowdown.
Figure 6 shows the mean slowdown under SRPT scheduling as compared with
the traditional FAIR scheduling as a function of load. For lower loads the slow-
downs are the same under the two scheduling policies. For uplink load 0.5, the
mean slowdown improves by a factor of 4 under SRPT over FAIR. Under an
uplink load of 0.9, mean slowdown improves by a factor of 16.

Looking at the partly-open system model more closely we observe that mean
response times are almost identical, regardless of the value of k. Figure 7 shows
the performance of FAIR under a range of k values: k = 1, k = 5, and k = 50.
It turns out that SRPT is even less sensitive to the choice of k.3

3Having experimented with many k values, we find the following subtle trend as we increase
k: When we initially increase k, we find that response times drop a bit. The reason is that by
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Fig. 8. Mean response time under SRPT versus FAIR as a function of uplink load, under trace-
based workload, in LAN environment with server uplink bandwidth 100Mb/sec.

Throughout we show results for the open system model, however we have
verified that all these results are almost identical under the partly-open system
model with k = 5.

We conclude this section by once again considering the improvement of SRPT
over FAIR, but this time in the case of a 100 Mbps uplink. Results are shown
in Figure 8 under the Flash web server. We see that SRPT performs 5 times
better than FAIR for an uplink load of 0.8 (i.e., 80 Mbps requested through a
100 Mbps uplink). This is comparable to the factor improvement achieved in
the case of the 10 Mbps uplink under the Apache server, Figure 5(a).

The significant improvements of SRPT over FAIR observed in this section
are easily explained. The time-sharing behavior of FAIR causes small requests
to be delayed in part by requests for large files, whereas SRPT allows requests
for small files to jump ahead of requests for large files. Since most requests are
for small files, most requests see an order of magnitude improvement under
SRPT. Another way to think of this is that SRPT is an opportunistic algorithm
that schedules requests so as to minimize the number of outstanding requests
in the system (it always works on those requests with the least remaining work
to be done). By minimizing the number of outstanding requests in the system,
Little’s Law [Little 1961] tells us that SRPT also minimizes the mean response
time.

3.3 Performance of Requests for Large Files under SRPT in LAN

The important question is whether the significant improvements in mean re-
sponse time come at the price of significant unfairness to large requests. We

synchronizing the times at which requests are generated, so that they are generated only when a
previous request completes, we do a better job of evening the burstiness in the number of connections
at the server. As k increases further, however, the partly-open system starts to look like a closed
system with zero think time. This has the effect of creating a near-one uplink load at all times,
which causes response times to go up.
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answer this question for both the open system model and the partly-open system
model. We first look at the case of 10 Mbps uplink and then at the case of 100
Mbps uplink.

Figure 9 shows the mean response time as a function of the size of the re-
quested file, in the case where the uplink load is 0.6, 0.8, and 0.9 and the
bandwidth on the server’s uplink is 10 Mbps. In the left column of Figure 9,
the sizes of the files requested have been grouped into 60 bins, and the mean
response time for each bin is shown in the graph. The 60 bins are determined
so that each bin spans an interval [x, 1.2x]. Note that the last bin actually con-
tains only requests for the very biggest file. Observe that requests for small files
perform far better under SRPT scheduling as compared with FAIR scheduling,
while requests for large files, those >1 MB, perform only negligibly worse un-
der SRPT as compared with FAIR scheduling. For example, under uplink load
of 0.8 (see Figure 9(b)) SRPT scheduling improves the mean response times of
requests for small files by a factor of close to 10, while the mean response time
for the very largest size request only goes up by a factor of 1.2.

Note that the above plots give equal emphasis to small and large files. As
requests for small files are much more frequent, these plots are not a good
measure of the improvement offered by SRPT. To fairly assess the improvement,
the right column of Figure 9, presents the mean response time as a function
of the percentile of the requested file size distribution, in increments of half
of one percent (i.e. 200 percentile buckets). From this graph, it is clear that at
least 99.5% of the requests benefit under SRPT scheduling. In fact, requests
for the smallest 80% of files benefit by a factor of 10, and all requests outside
of the top 1% benefit by a factor of >5. For lower uplink loads, the difference
in mean response time between SRPT and FAIR scheduling decreases, and
the unfairness to requests for large files becomes practically nonexistent. For
higher uplink loads, the difference in mean response time between SRPT and
FAIR scheduling becomes greater, and the unfairness to requests for large files
also increases. Even for the highest uplink load tested though (.95), there are
only 500 requests (out of the 1 million requests) that complete later under SRPT
as compared with FAIR. These requests are so large however, that the effect on
their slowdown is negligible.

Results for the partly-open system model are similar to those in Figure 9,
with slightly more penalty to the requests for large files, but still hardly notice-
able penalty. For the case of k = 5, with uplink load ρ = 0.8, the mean response
time for the largest 1% of requested files is still lower under SRPT (1.09 seconds
under SRPT as compared with 1.12 seconds under FAIR). The request for the
very largest file has a mean response time of 9.5 seconds under SRPT versus
8.0 seconds under FAIR.

For the 100 Mb/sec experiments all requests, large and small, preferred SRPT
scheduling in expectation under all uplink loads tested.

3.4 SRPT with Only Two Priorities

Our SRPT algorithm is only a rough approximation of true SRPT since we use
only 6 priority classes. An interesting question is how much benefit one could
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Fig. 9. Mean response time as a function of the size of the requested file under trace-based work-
load, shown for a range of uplink loads (corresponds to Figure 5(a)). The left column shows the
mean response time as a function of the size of the file requested. The right column shows the
mean response time as a function of the percentile of the requested file size distribution.
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get with only 2 priority classes. That is, each request would simply be high
priority or low priority.

To explore the performance of SRPT with only two priority classes, we define
high-priority requests as those corresponding to the smallest 50% of files and
low-priority requests as those corresponding to the largest 50% of files. The
cutoff file size falls at 1K. We find that this simple algorithm results in a factor
of 2.5 improvement in mean response time and a factor of 5 improvement in
mean slowdown over FAIR. We also find that all requests, of either priority,
have lower expected response times under SRPT than under FAIR using this
simple algorithm.

4. WAN SETUP AND EXPERIMENTAL RESULTS

To understand the effect of network congestion, loss, and propagation delay in
comparing SRPT and FAIR, we also conduct WAN experiments. We perform
two types of WAN experiments: (i) experiments using our LAN setup together
with a WAN emulator (Section 4.1) and (ii) experiments using physically ge-
ographically dispersed client machines (Section 4.2). Throughout this section
we use an uplink bandwidth of 10 Mbps.

4.1 WAN Emulator Experiments

The two most frequently used tools for WAN emulation are probably NISTnet
[NISTNet 2002] and Dummynet [Rizzo 1997].

NISTnet is a separate package available for Linux, that can drop, delay or
bandwidth-limit incoming packets. Dummynet applies delays and drops to both
incoming and outgoing packets, hence allowing the user to create symmetric
losses and delays. Since Dummynet is currently available for FreeBSD only,
we implement Dummynet functionality in the form of a separate module for
the Linux kernel. More precisely, we change the ip rcv() and the ip output()
function in the TCP-IP stack to intercept in- and out-going packets to create
losses and delays.

In order to delay packets, we use the timeout() facility to schedule trans-
mission of delayed packets. We recompile the kernel with HZ=1000 to get a
finer-grained millisecond timer resolution.

In order to drop packets we use an independent, uniform random loss model
(as in Dummynet) that can be configured to a specified probability.

The experimental setup for our experiments is identical to that used for the
LAN experiments (see Section 3.1) except that the WAN emulator functionality
is now included in each client machine.

Figure 10 shows the effect of increasing the round-trip propagation delay
(RTT) from 0 ms to 100 ms for FAIR and SRPT in the case of uplink load 0.7
and uplink load 0.9. Adding WAN delays increases response times by a constant
additive factor on the order of a few RTTs for both FAIR and SRPT. The effect
is that the relative improvement of SRPT over FAIR drops. Under uplink load
ρ = 0.9, SRPT’s improvement over FAIR drops from a factor of 4 when the RTT
is 0 ms to a factor of 2 when the RTT is 100 ms. Under uplink load ρ = 0.7, the
factor improvement of SRPT over FAIR drops from a factor of 2 to only 15%.
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Fig. 10. Effect on SRPT and FAIR of increasing RTT from 0 ms to 100 ms.

Fig. 11. Effect on SRPT and FAIR of increasing loss from 0% to 10%.

With respect to unfairness, we find that any unfairness to requests for large
files decreases as the RTT is increased. The reason is obvious—any existing
unfairness to requests for large files is mitigated by the additive increase in
delay imposed on both FAIR and SRPT.

Figure 11 assumes that the RTT is 0 ms and shows the effect of increasing
the network loss from 0% to 10% under both FAIR and SRPT. Increasing loss
has a more pronounced effect than increasing the RTT. We observe that the
response times don’t grow linearly in the loss rate. This is to be expected since
TCP’s throughput is inversely proportional to the square root of the loss. Under
uplink load ρ = 0.9, SRPT’s improvement over FAIR drops from a factor of 4
when loss is 0% to a factor of 25% when loss is 10%. Under uplink load ρ = 0.7,
loss beyond 2% virtually eliminates any improvement of SRPT over FAIR.

With respect to unfairness, we find that loss slightly increases the unfairness
to the request for the largest file under SRPT. The request for the largest file
performs 1.1 times worse under 3% loss, but 1.5 times worse under loss rates up
to 10%. Nevertheless, even in a highly lossy environment, the mean response
time of requests for files in the top 1%-tile is still higher under FAIR as compared
to SRPT.
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Fig. 12. Effect on SRPT and FAIR of increasing loss and delay.

Finally Figure 12 combines loss and delay. Since the effect of loss dwarfs the
effect of propagation delay, the results are similar to those in Figure 11 with
loss only.

4.2 Geographically-Dispersed WAN Experiments

We now repeat the WAN experiments using physically geographically-dispersed
client machines. The experimental setup is again the same as that used for the
LAN (see Section 3.1) except that this time the client machines are located at
varying distances from the server. The table below shows the location of each
client machine, indicated by its RTT from the server machine.4

Location Avg. RTT
IBM, New York 20ms
Univ. Berkeley 55ms

UK 90-100ms
Univ. Virginia 25ms
Univ. Michigan 20ms

Boston Univ. 22ms

Unfortunately, we were only able to get accounts for Internet2 machines
(schools and some research labs). The limitation in exploring only an Internet2
network is that loss and congestion may be unrealistically low.

Figure 13 shows the mean response time as a function of uplink load for each
of the six hosts. The improvement in mean response time of SRPT over FAIR
is a factor of 8–20 for high uplink load (0.9) and only about 1.1 for lower uplink
load (0.5).

Figures 14(a) and 14(b) show the mean response time of a request as a func-
tion of the percentile of the size of the requested file, at an uplink load of 0.8, for
the hosts at IBM and UK respectively. It turns out that all requests have higher

4The measured bandwidth available at these client sites ranged from 1 Mbps, at Boston University,
to 8 Mbps, at IBM. Experiments were instrumented such that the bandwidth at the client site would
not be a bottleneck.
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Fig. 13. Mean response time under SRPT versus FAIR in a WAN under uplink load (a) 0.9, (b)
0.8, (c) 0.7, and (d) 0.5.

Fig. 14. Response time as a percentile of the size of the requested file under SRPT scheduling
versus traditional FAIR scheduling at uplink load 0.8, measured for (a) the IBM host and (b) the
UK host.
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mean response time under FAIR, as compared with SRPT. For the largest file,
the mean response time is almost the same under SRPT and FAIR. The reason
for the lack of unfairness is the same as that pointed out in the WAN emulation
experiments for the case of significant RTT, but near-zero loss.

We next compare the numbers in Figure 13 with those obtained using the
WAN emulation. For the case of uplink load 0.5, 0.7, and 0.8, the values of
response time in Figure 13 are comparable with those obtained using the WAN
emulator with propagation delay, but near-zero loss (compare with Figure 10).

Observe that the response times under uplink load 0.9 in Figure 13 are much
higher than those for the WAN emulator for the case of FAIR but not for SRPT.
The reason is that the WAN environment creates some variance in the uplink
load. Thus an average uplink load of 0.9 translates to fluctuations ranging
from 0.75 to 1.05, which means that there are moments of transient overload.5

Transient overload affects FAIR far worse than SRPT because the buildup in
number of requests at the server during overload is so much greater under FAIR
than under SRPT. Transient overload even occasionally results in a full SYN
queue under FAIR in our experiments. This means that incoming SYNs may
be dropped, resulting in a timeout and retransmit. In the LAN environment
where uplink load can be better controlled, we never experience SYN drops in
our experiments (although SYN drops might occur in alternative setups where
the CPU is the bottleneck resource).

The trends shown in Figures 13 and 14 are in agreement with the WAN
emulator experiments. To summarize: (i) The improvement of SRPT over FAIR
is higher at higher uplink loads; (ii) The improvement of SRPT over FAIR is
diminished for far away clients; (iii) The unfairness to requests for large files
under SRPT becomes non-existent as propagation delay is increased.

5. WHY DOES SRPT WORK?

In this section we look in more detail at where SRPT’s performance gains come
from and we explain why there is no starvation of requests for large files.

5.1 Where do Mean Gains Come From?

The high-level argument has been given before: SRPT is an opportunistic al-
gorithm that schedules requests so as to minimize the number of outstanding
requests in the system (it always works on those requests with the least re-
maining work to be done). By minimizing the number of outstanding requests
in the system, Little’s Law tells us that SRPT also minimizes the mean response
time: Little’s Law [Little 1961] states that the mean number of requests in the
system equals the product of the average arrival rate and the mean response
time. In fact our measurements show that when the load is 0.7 the number of
open connections is 3 times higher under FAIR than under SRPT. At load 0.9,
this number jumps to 5 times higher. This corresponds to the improvement in
mean response time of SRPT over FAIR.

5When we say that there is a transient load of 1.05, we mean that during some 1-second intervals
there may be 10.5 Mbits of data requested where the uplink bandwidth is only 10 Mbps.
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Mathematically, the improvement of SRPT over FAIR scheduling with re-
spect to mean response time has been derived for an M/G/1 queue in Bansal
and Harchol-Balter [2001].

At an implementation level, while our implementation of SRPT, described
in Section 2.1 is not an exact implementation of the SRPT algorithm, it still
has the desirable properties of the SRPT algorithm: requests for small files (or
those with small remaining time) are separated from requests for large files
and have priority over requests for large files. Note that our implementation
does not interact illegally with the TCP protocol in any way: scheduling is only
applied to those connections that are ready to send via TCP’s congestion control
algorithm.

The above discussion shows that one reason that SRPT improves over FAIR
with respect to mean response times is because it allows small file requests to
avoid time-sharing with large file requests. We now explore two other potential
reasons for the improvement of SRPT over FAIR and eliminate both.

One potential reason for the improvement of SRPT over FAIR might be that
FAIR causes the SYN queue to overflow (because of the rapid buildup in num-
ber of connections) while SRPT does not. Recall that if the web server’s SYN
queue fills up, new connection requests will experience expensive timeouts (on
the order of 3 seconds). Our measurements show that the SYN queue is in fact
significantly fuller under FAIR than under SRPT for high uplink loads, as ex-
pected, since SRPT minimizes the number of outstanding requests. However,
in all of our experiments except one WAN experiment, the SYN queue never
fills up under FAIR or SRPT.

Yet another potential reason for SRPT’s performance gains over FAIR is that
by having multiple priority queues SRPT is essentially getting to use more
buffering, as compared with the single transmit queue of FAIR (see Figure 2).
It is possible that there could be an advantage to having more buffering inside
the kernel, since under high uplink loads we have observed some packet loss
(5%) within the kernel at the transmit queue under FAIR, but not under SRPT.
To see whether SRPT is obtaining an unfair advantage, we experimented with
increasing the length limit for the transmit queue under FAIR from 100 to
500, and then to 700, entirely eliminating the losses. This helped just a little—
reducing mean response time from about 400ms to 350ms under FAIR. Still,
performance was nowhere near that of SRPT.

5.2 Why are Requests for Large Files Not Hurt?

It has been suspected by many that SRPT is a very unfair scheduling policy
for requests for large files. The above results have shown that this suspicion
is false for web workloads. It is easy to see why SRPT should provide huge
performance benefits for the requests for small files, which get priority over all
other requests. In this section we describe briefly why the requests for large files
also benefit under SRPT, in the case of workloads with a heavy-tailed property.

In general a heavy-tailed distribution is one for which

Pr{X>x} ∼ x−α,
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where 0<α<2. A set of file sizes following a heavy-tailed distribution has some
distinctive properties:

(1) Infinite variance (and if α ≤ 1, infinite mean). (In practice, variance is
not really infinite, but simply very high, since there is a finite maximum
requested file size).

(2) The property that a tiny fraction (usually<1%) of the very longest requests
comprise over half of the total uplink load. We refer to this important prop-
erty as the heavy-tailed property.

The lower the parameter α, the more variable the distribution, and the more
pronounced is the heavy-tailed property, that is the smaller the fraction of
requests for large files that comprise half the uplink load.

The sizes of requested files have been shown to often follow a heavy-tailed
distribution [Crovella and Bestavros 1997; Crovella et al. 1998]. Our traces have
strong heavy-tailed properties. (In our trace the largest <3% of the requests
make up >50% of the total uplink load.)

Consider a workload where the sizes of the files requested exhibit the heavy-
tailed property. Now consider a request for a file in the 99%-tile of the requested
file size distribution. This request will actually do much better under SRPT
scheduling than under FAIR scheduling. The reason is that, under SRPT, this
request only competes against 50% of the uplink load (the remaining 50% of
the uplink load is made up of requests for the top 1%-tile of files) whereas it
competes against 100% of the uplink load under FAIR scheduling. The same
argument could be made for a requested file in the 99.5%-tile of the file size
distribution.

However, it is not obvious what happens to a request in the 100%-tile of the
requested file size distribution (i.e. the largest possible file). It turns out that,
provided the uplink load is not too close to 1, the request in the 100%-tile will
quickly see an idle period, during which it can run. As soon as the request gets
a chance to run, it will quickly become a request in the 99.5%-tile, at which
time it will clearly prefer SRPT. For a mathematical formalization of the above
argument, in the case of an M/G/1 queue, we refer the reader to Bansal and
Harchol-Balter [2001].

Despite our understanding of the above theoretical result, we were never-
theless still surprised to find that results in practice matched those in theory—
there was little if any unfairness to large requests. It is understandable that
in practice there should be more unfairness to requests for large files since re-
quests for large files pay some additional penalty for moving between priority
queues.

6. PREVIOUS WORK

There has been much literature devoted to improving the response time of
web requests. Some of this literature focuses on reducing network latency, for
example, by caching requests [Gwertzman and Seltzer 1994; Braun and Claffy
1994; Bestavros et al. 1995] or improving the HTTP protocol [Padmanabhan
and Mogul 1995]. Other literature works on reducing the delays at a server,
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for example, by building more efficient HTTP servers [Apache 2001; Pai et al.
1999] or improving the server’s OS [Druschel and Banga 1996; Banga et al.
1998; Kaashoek et al. 1996; Mogul 1995].

In the remainder of this section we discuss only work on priority-based or
size-based scheduling of requests. We first discuss related implementation work
and then discuss relevant theoretical results.

Almeida et al. [1998] use both a user-level approach and a kernel-level im-
plementation to prioritizing HTTP requests at a web server. The user-level ap-
proach in Almeida et al. [1998] involves modifying the Apache web server to
include a scheduler process that determines the order in which requests are fed
to the web server. This modification is all in the application level and therefore
does not have any control over what the OS does when servicing the requests.
The kernel-level approach in Almeida et al. [1998] simply involves setting the
priority of the process that handles a request in accordance with the priority
of the request. Observe that setting the priority of a process only allows very
coarse-grained control over its scheduling, as pointed out in the paper. The
user-level and kernel-level approaches in this paper are good starting points,
but the results show that more fine-grained implementation work is needed.
For example, in their experiments, the high-priority requests only benefit by
20% and the low priority requests suffer by up to 200%.

Another attempt at priority scheduling of HTTP requests that deals specifi-
cally with SRPT scheduling at web servers is that of Crovella et al. [1999]. This
implementation does not involve any modification of the kernel. The authors
experiment with connection scheduling at the application level only. They de-
sign a specialized Web server that allows them to control the order in which
read() and write() calls are made, but does not allow any control over the
low-level scheduling that occurs inside the kernel, below the application layer
(e.g., control over the order in which socket buffers are drained). Via the exper-
imental Web server, the authors are able to improve mean response time by a
factor of up to 4, for some ranges of uplink load, but the improvement comes at
a price: a drop in throughput by a factor of almost 2. The explanation, which
the authors offer repeatedly, is that scheduling at the application level does
not provide fine enough control over the order in which packets enter the net-
work. In order to obtain enough control over scheduling, the authors are forced
to limit the throughput of requests. This is not a problem in our paper. Since
the scheduling is done at the kernel, we have absolute control over packets en-
tering the network. Our performance improvements are greater than those in
Crovella et al. [1999] and do not come at the cost of any decrease in throughput.

The papers above offer coarser-grained implementations for priority schedul-
ing of connections. Very recently, many operating system enhancements have
appeared that allow for finer-grained implementations of priority scheduling
[Radhakrishnan 1999; Almesberger 1999; Almesberger et al. 1999].

Several papers have considered the idea of SRPT scheduling in theory.
Bender et al. [1998] consider size-based scheduling in web servers. The au-
thors reject the idea of using SRPT scheduling because they prove that SRPT
will cause large files to have an arbitrarily high max slowdown. However, that
paper assumes a worst-case adversarial arrival sequence of web requests. The
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paper goes on to propose other algorithms, including a theoretical algorithm
that does well with respect to max slowdown and mean slowdown.

Roberts and Massoulie [1998] consider bandwidth sharing on a link. They
suggest that SRPT scheduling may be beneficial in the case of heavy-tailed
(Pareto) flow sizes.

Lastly, Bansal and Harchol-Balter [2001] investigate SRPT scheduling ana-
lytically for an M/G/1/SRPT queue (Poisson arrivals and general service times).
We discussed these theoretical results in Section 5.

7. CONCLUSION AND FUTURE WORK

This paper demonstrates that the delay at a busy server can be greatly reduced
by SRPT-based scheduling of the bandwidth that the server has purchased from
its ISP. We show further that the reduction in server delay often results in a
reduction in the client-perceived response time.

In a LAN setting, our SRPT-based scheduling algorithm reduces mean re-
sponse time significantly over the standard FAIR scheduling algorithm. In a
WAN setting the improvement is still significant for very high uplink loads, but
is far less significant at moderate uplink loads.

Surprisingly, this improvement comes at no cost to requests for large files,
which are hardly penalized, or not at all penalized. Furthermore these gains
are achieved under no loss in byte throughput or request throughput.

Our current setup involves only static requests. In future work we plan to
expand our technology to schedule cgi-scripts and other non-static requests.
Determining the processing requirement of non-static requests is an important
open problem, but companies are making excellent progress in predicting the
run times of dynamic requests. We propose additionally to deduce the run time
of a dynamic request as it runs. The request is initially assigned high priority,
but its priority will decrease as it runs.

Our current setup considers the bottleneck resource at the server to be the
server’s limited bandwidth purchased from its ISP, and thus we do SRPT-based
scheduling of that resource. In a different application (e.g. processing of cgi-
scripts) where some other resource was the bottleneck (e.g., CPU), it might be
desirable to implement SRPT-based scheduling of that resource.

Our current work also does not consider some practical aspects of implement-
ing SRPT, such as vulnerability to denial of service attacks and other security
issues.

Although we evaluate SRPT and FAIR across many uplink loads, we do not in
this paper consider the case of overload. This is an extremely difficult problem
both analytically and especially experimentally. Our preliminary results show
that in the case of transient overload SRPT outperforms FAIR across a long
list of metrics, including mean response time, throughput, server losses, and so
forth.

Our SRPT solution can also be applied to server farms. Again the bottleneck
resource would be the limited bandwidth that the web site has purchased from
its ISP. SRPT-based scheduling could then be applied to the router at the joint
uplink to the ISP or at the individual servers.
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