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Abstract
A new efficient algorithm for the computation of the stability chart of

linear time delay systems is proposed and tested on several examples. The
stability chart is obtained by investigating the2d-parameter space by a first
coarse square grid which is then adaptively refined by triangulation to match
the desired tolerance. This leads to a considerable reduction in computa-
tional cost with respect to investigate a uniform fine squaregrid. Stability
of each point is determined by approximating the rightmost characteristic
root real part via a numerical scheme recently developed by the authors and
based on pseudospectral differencing methods. A Matlab code is included
in appendix.

1 Introduction

Many real phenomena in physics, engineering, chemistry, biology, economics,
etc. are better modeled and/or simulated if time delays are taken into account.
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All delay systems are characterized by the common feature ofbeing influenced,
in their present evolution, by information on their past history. The effects of the
presence of delays in the system properties and behavior still feed a wide interest
both in research and applications fields. Much of this interest is concerned with the
stability analysis of thelinear case. The lack of good estimates of the parameter
values (e.g. delays) involved in system models leads to develop opportune criteria
to determine not only whether a nominal system is stable or not, but an entire
stability region of parameters due to this uncertainty. When we deal with two
varying parameters, we talk aboutstability charts.

In this work we focus on the system ofm-dimensional linear delay differential
equations (DDEs) with multiple discrete and distributed delays

y′(t) = L0y(t) +

k
∑

l=1



Lly(t− τl) +

−τl−1
∫

−τl

Ml(θ)y(t+ θ)dθ



 , t ≥ 0, (1)

whereL0, L1, . . . , Lk ∈ Cm×m, 0 = τ0 < τ1 < · · · < τk = τ andMl : [−τ, 0] →
Cm×m, l = 1, . . . , k, are smooth functions. Delay systems such as (1) are par-
ticularly important in control theory, where the stabilityeffects of delays are a
crucial problem [Ric03], [Nic00]. Important applicationscan be found also in
machining tool such as milling, turning and drilling where the role of parameters
such as spindle speed and feed are stability determining [IS04]: these are second
order systems with time dependent coefficients and the interest is in the stability
of periodic solutions.

It is well known [HVL93] that the zero solution of (1) is asymptotically stable
if and only if all the characteristic roots, i.e. the (infinitely many) roots of

det(∆(λ)) = 0, (2)

where

∆(λ) = λI − L0 −
k
∑

l=1



Lle
−λτl +

−τl−1
∫

−τl

Ml(θ)e
λθdθ



 , λ ∈ C, (3)

have strictly negative real part. Since in every vertical strip there is only a finite
number of characteristic roots, the asymptotic stability depends on the sign of
the real part of the rightmost characteristic root and we usethis fact to determine
stability. Numerical methods to compute the rightmost rootof (1) are discussed
in Section2.

Once we have a tool to determine the stability of (1) for everychoice of
its parameters (e.g. coefficients and/or delays), we can proceed to scan the2d-
parameter plane in the following efficient way. First we set acoarse square grid
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and for each square we determine the stability of its vertices. If they all have
the same property, e.g. all “stable” (“unstable”), then thesquare is set to be stable
(unstable) and no refinement is required. Rather, if some vertex is stable and some
is not, this means that a portion of stability boundary passes through the square,
hence a refinement is required. This further analysis is carried out by evaluating
the stability of the center point of the square and dividing it into four triangles.
The stability test is then repeated for each of these triangles and if further refine-
ment is needed, then the mid point of the hypotenuse is analyzed and the triangle
is divided into two smaller ones. Moreover, a second stability test is done in order
to avoid that all the vertices of a cell (square or triangle) have the same stability
property but the stability boundary cross an edge of the celltwice. Also in this
case a refinement is required. The algorithm goes on until a given size of the cells
with different stability property at the vertices is reached.

2 Numerical computation of characteristic roots

In the last few years, numerical approaches for characteristic roots computation
have been proposed, which are based on the discretization ofeither the solution
operator associated to (1) or the infinitesimal generator ofthe solution operator
semigroup. We briefly recall that the solution operatorT (t), t ≥ 0, associated to
(1) is defined by

T (t)ϕ = yt, ϕ ∈ X,

whereX = C ([−τ, 0] ,Cm) endowed with the maximum norm,yt is the function

yt(θ) = y(t+ θ), θ ∈ [−τ, 0],

andy is the solution of (1) with initial dataϕ ∈ X. The family{T (t)}t≥0
is a

C0-semigroup with infinitesimal generatorA : D(A) ⊆ X → X given by

Aψ = ψ′, ψ ∈ D (A) , (4)

with domain

D (A) =

{

ψ ∈ X | ψ′ ∈ X andψ′(0) = L0ψ(0) +
k
∑

l=1

(

Llψ(−τl) + (5)

+

−τl−1
∫

−τl

Ml(θ)ψ(θ)dθ

)}

.

So (1) can be restated as the abstract Cauchy problem [DGVLW95]
{

dyt

dt
= Ayt, t > 0

y0 = ϕ
.
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The two following important results [DGVLW95], [HVL93]

1. det(∆(λ)) = 0 ⇔ λ = 1

t
lnµ, µ ∈ σ(T (t)) \ {0};

2. det(∆(λ)) = 0 ⇔ λ ∈ σ(A);

whereσ(·) denotes the spectrum, suggest the idea to turn the characteristic roots
approximation problem into a corresponding eigenvalue problem for suitable ma-
trix discretization of eitherT (t) (i.e. solution operatorapproach) orA (i.e. infin-
itesimal generatorapproach).

Engelborghs and Roose propose in [ER02] and [ER99] the solution operator
approach via linear multistep (LMS) time integration for system (1) without dis-
tributed delay term. Their method computes approximationsto the roots from a
large, standard and sparse eigenvalue problem and it is implemented in the MAT-
LAB package DDE-BIFTOOL for DDEs bifurcation analysis [ELR02], [ELS01].
The distributed delay case is considered in [LER03] by usingLMS methods and in
[Bre04] by using Runge-Kutta (RK) methods. The complete development of the
infinitesimal generator approach first appears in [BMV04c],[Bre02], [BMV04a]
where a matrix approximation toA is obtained discretizing the derivative in (4) by
RK, LMS and pseudospectral differencing methods, respectively. The last tech-
nique involves the exact differentiation of interpolants at selected sets of points.
The resulting differentiation matrix is nonsparse, but we can take advantage of
the well-known “spectral accuracy” to obtain very accurateapproximation with
small matrix dimension. This behavior represents in fact, for sufficiently small
tolerance, the outstanding advantage of this method compared to the previously
cited discretization schemes. Therefore we choose this oneas the core algorithm
for determining the stability of each point of the2d-parameter space and we refer
the interested readers to [BMV04a] for further details on convergence and imple-
mentation.

Pseudospectral differentiation can be applied even to moregeneral classes of
linear functional differential systems in order to numerically compute the (stabil-
ity determining) eigenvalues of related derivative operators with nonlocal bound-
ary conditions [BMV04b] such as the infinitesimal generatorfor the DDEs case.
Examples are neutral DDEs, age-structured population dynamics governed by in-
tegral equations, mixed-type (advanced and retarded) functional differential equa-
tions and partial differential equations with delay. Stability of periodic solutions
of second order DDEs with time dependent coefficients can be determined by ap-
proximating the dominant characteristic multipliers (i.e. the eigenvalues of the so-
lution operator semigroup) and pseudospectral techniquesapply as well. No mat-
ter what the system type is, when we have a numerical technique which provide us
with some stability information about a certain choice of the system parameters,
the algorithm for the computation of the stability chart remains unchanged.
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3 Stability charts computation

In this section we present the algorithm for computing the stability charts. In
particular we start in Section 3.1 describing the conditions that requires a deeper
stability analysis of a “cell”, i.e. a portion of the2d-parameter plane. Then we
follow in Section 3.2 analyzing how these cells are refined. In Section 3.3 we
talk about the initial coarse grid from which the algorithm begins the automatic
detection of the stability boundaries. Finally we end in Section 3.4 discussing
about how representing the output.

3.1 Refinement tests

Consider a triangular or square cell in the2d-parameter plane with shortest edge
l and suppose that the core algorithm for the numerical computation of the right-
most root provide us with the real partr of the rightmost root of (1) for the choices
of parameters corresponding to all the vertices of the cell.Hence we know if each
vertex is either “stable”, i.e.r < 0, or “unstable”, i.e.r ≥ 0.

Three tests are carried out in order to decide if a further stability analysis inside
this cell is necessary or not. This analysis is what we call the “cell refinement” and
it means that the cell is divided into smaller ones which are analyzed in the same
way until the conditions for no further refinement are matched. These conditions
depend either on the cell size and/or on the stability information about its vertices.

The first test concerns the size of the cell: only if

TEST1 : l > TOL,

whereTOL is the desired tolerance on the resolution of the stability boundary,
then the cell might be possibly refined according to the conditions described be-
low.

The second test concerns the stability of thenv vertices of the cell. If the
stability property (i.e. sign(r) = r/|r|) is the same among all the vertices:

TEST2 : sign(ri) = sign(rj) for all i, j = 1, . . . , nv,

then the cell might be possibly refined only according to the third test described
below. Rather, if there is at least one change among the vertices, this ensures that
a portion of stability boundary is crossing the cell on at least two edges (Figure 1
left) and the cell is refined. This is a sort of two dimensionalbisection strategy.

The previous test does not exclude the following situation:r might have the
same sign in all the vertices of the cell, but a portion of stability boundary can cross
it at only one edge (Figure 1 right). Also in this case a cell refinement is necessary,
but the question is how to detect this possibility. In order to do this consider an
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Figure 1: Example of stability boundary (dashed line) crossing a square cell at
two edges (left:r changes sign at the vertices) and at one edge (right:r does not
change sign at the vertices).

edgex1x2 with valuesr1 andr2 of the same sign at the vertices (Figure 2). We
check the possibility that a stability boundary crossing exists, i.e. there exists a
pointx ∈ x1x2 with r = 0, measuring the minimum slope at whichx is reached
both fromr1 andr2. This slope is given by

s = tanα =
|r1 + r2|

l

wherel is the length of the edge. Then we set a tolerance parameterTOLs and if

TEST3 : s ≥ TOLs,

for all the edges of the cell, then there is no need of refinement because the values
of r at the vertices of the edge are “too far” from zero with respect to the length
of the edge. Of course this is not a sufficient condition to exclude the refinement,
but at least it is a good indicator ifTOLs is chosen correctly.

r
1
 

r
2
 

x 
x

2
 x

1
 

−r
2
 

α 

Figure 2: Slope test on a cell edge.

The tests work as follows. If
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• TEST2 and TEST3 are true andr < 0 for each vertex: the cell is “stable”;

• TEST2 and TEST3 are true andr ≥ 0 for each vertex: the cell is “unstable”;

• either TEST2 or TEST3 are false then if

– TEST1 is false, i.e. the cell size is smaller thanTOL, then the cell is
“boundary”, i.e. it might contains a portion of stability boundary;

– TEST1 is true, i.e. the cell size is larger thanTOL, then the cell is
refined.

Among all the tests above, the first is the dominant one, in thesense that if a cell
refinement is required according to either the second or the third test, but the cell
size is smaller thanTOL, then no refinement is done.

3.2 Cell refinement

We start from a square cell of sizels which has to be refined according to the tests
discussed in the previous section. This square cell is first divided by its diagonals
into four (isosceles) triangular cells with cathetuslt, and the stability of the center
point is evaluated. Then, if one of these four new triangularcells satisfies the
refinement tests, it is divided by its height relevant to the hypotenuse into two
(isosceles) triangular cells and the stability of the new vertex is evaluated. The
algorithm proceeds in the same way until all the cells match the conditions for no
refinement given in the previous section.

The maximum number of possible subdivision is the minimum integern such
that

ls

(
√

2)n
≤ TOL, i.e. n =

⌈

2 log
2

(

ls
TOL

)⌉

where⌈p⌉ denotes the smallest integerq such thatq ≥ p.
Observe (Figure 3) that each possible new vertex belongs to ad × d uniform

grid of equi-spaced points with separationlg where

d = 2m + 1, lg =
ls
2m

and

m =

⌊

n+ 1

2

⌋

where⌊p⌋ denotes the largest integerq such thatq ≤ p. We use a(d × d)-matrix
S in such a way that if the vertex has coordinates(x, y) in the2d-parameter plane
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and rightmost root real partr, the corresponding matrix entry issij = r with

i =
ymax − y

lg
+ 1, j =

x− xmin

lg
+ 1,

where(xmin, ymax) are the coordinates of the left-top vertex of the square cell. In
this way, when a vertex is introduced by a further subdivision of a triangular cell,
its stability information can be recovered from the matrixS whenever this vertex
is already used in a neighboring cell previously analyzed. For instance in Figure
3, the subdivision of the cellT1 does not require the evaluation of the stability of
the subdivision vertex (◦) since this is already computed for the cellsT2 andT3.
Moreover, since not all the nodes of the square grid are necessarily vertices of
triangular cells, i.e. there is no need to know their stability property, the matrixS
is usually sparse and therefore its storing is cheap.

l
t
 

l
g
 

l
s
 

T
2
 

T
3
 

T
1
 

Figure 3: Example of square cell subdivision (left) and its matrix representation
(right).

The refinement of a square cell is implemented in a subroutinewhich starts
from the matrixS, where the stability of the four corners is known, by evaluating
the stability of the center point of the square. With this newvertex, four triangular
cells are created. Every triangular cell is stored in a(3 × 2)-matrix containing
the coordinates(x, y) of each vertex. These four matrices initialize a vector of
matricesT of length4. Then the refinement analysis starts from the last matrix of
T and the following two cases are possible.

Case 1 (Refinement)If the cell has to be refined, then

• the matrix corresponding to the originating cell is deletedfromT ;

• the subdivision vertex is calculated;

• its stability is evaluated by filling the relevant entry in the matrixS;

8



• two new triangular cells are created and stored in two new matrices added
at the end ofT .

Case 2 (No refinement)If no refinement is required the cell is deleted fromT .

The refinement analysis always resume from the last matrix ofT and it stops when
this vector is empty, that means that the whole region of the2d-parameter plane
included in the input square cell represented byS is analyzed.

3.3 Starting square grid

The algorithm starts by defining a first coarse square grid on the whole2d-para-
meter plane. The whole plane is identified by its minimum and maximum(x, y)
coordinatesXmin, Xmax, Ymin andYmax. The size of the grid square is set to
be a multiple of the tolerance parameterTOL by an integerp given in input:
ls = p ·TOL. To cover all the plane with an integer number of squares we enlarge
Xmax andYmax to Xmax = Xmin + nxls andY max = Ymin + nyls respectively
where

nx =

⌈

Xmax −Xmin

ls

⌉

and

ny =

⌈

Ymax − Ymin

ls

⌉

.

Sonx andny are the number of squares along the horizontal and vertical edges of
the plane, respectively. The stability analysis starts from the left-top square cell
and goes on towards the right and bottom directions, i.e. theusual reading/writing
ones (Figure 4).

X
min

 X
max

 

Y
min

 

Y
max

 

l
s
 

Figure 4: Example of starting square grid on the whole2d-parameter plane.

Once a square cell has to be refined (the “current” cell,Sc in Figure 5), its
information are stored into the matrixS which is passed in input to the refinement
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subroutine as explained in Section 3.2. As for the triangular cells, also the square
ones share some vertices. Surely the right, respectively bottom, vertices of the
current square cell are the same as the left, respectively top, ones of the “next”
square (Sn in Figure 5), respectively “bottom” (Sb in Figure 5). But there might
be more vertices in common originated by the refinement. Hence, to avoid any
kind of possible multiple stability evaluation, every timea square cell is refined, all
the new vertices created along the right, respectively bottom, edge of the refined
square cell are stored in ad-vectorleft and in a(nx ×d)-matrix top, respectively.
The reason of this is the following. Since the square grid is scan towards the
bottom row by row, and each row is scan towards the right, the right edge ofSc

is passed directly to the left one ofSn which is the next to be refined. Hence
a d-vector is enough as auxiliary vector to be passed to the nextcell. Opposite,
the bottom edge ofSc is the top one ofSb which will be possibly refined after
nx steps. Hence the bottom edges of all the square cells of a whole row must be
stored for the next row and a(nx×d)-matrix is necessary. Thei-th, i = 1, . . . , nx,
row of this matrix is filled with the bottom edge of thei-th square cell according
to its position along the row of the grid. The refinement subroutine provides to
update the vectorleft and the row of the matrixtop which are used next. This
applies with some attention when the current cell is the lastone of a row or even
the right-bottom one.

left 

top(1,:) 
top(2,:) 

top(3,:) 
top(4,:) 

top(5,:) 

S
c
 S

n
 

S
b
 

Figure 5: Example of starting square grid on the whole2d-parameter plane.

3.4 Output representation

There are several ways to represent the output af a stabilitychart computed as
previously described. They depend either on what the user isinterested into and
on how accurate the representation is asked to be.

For instance, if one is interested in the qualitative behavior of the real part of
the rightmost characteristic rootr as the two concerned parametersp1 andp2 vary,
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then we can interpret the stability chart as theR2 → R surfacer = r(p1, p2) and
represent its evolution over the(p1, p2)-plane by using a suitable colour mapping
varying according to the values ofr. In order to get this surface representation
it is enough to plot every triangular or square cell by interpolating the colours of
its vertices. This is readily obtained by using Matlab’s function fill3 as reported
in the code given in Appendix A. Clearly this representationis less accurate far
away from the surface zero level.

Opposite, if one is interested only in knowing the stabilityboundaries, i.e. the
curvesr(p1, p2) = 0 in the(p1, p2)-plane, then these are to be computed from the
information stored in the vertices of each triangular boundary cell. Many strate-
gies can be adopted, the simplest one being linear interpolation of the values ofr
at the vertices of each cell edge which exhibits a change in the sign ofr itself. This
is for instance the method used in Matlab’s functioncontourfor plotting the level
curves of a surface. Matlab’scontourplot is not efficient since it works on a uni-
form square grid, hence a considerable amount of stability evaluations is required
uniformly all over the region. In the following we give a (notdetailed) description
of a new strategy which leads to accurate stability boundaries requiring a minor
number of cells, i.e. a very coarse (and cheap) triangulation. The key idea is to use
the secant method on each edge in order to accurately computethe zero ofr along
that edge. Few iterations are needed for each edge. This is done for the two cell
edges which show sign change inr at its vertices. Moreover, a new intermediate
edge is computed and its zero is found. This gives an extra boundary point in-
side the cell. If the three zero points are not sufficiently aligned, it means that the
boundary curvature is large. In this case further edges are introduced accordingly,
their zeros computed and the boundary line can be drawn in an adaptive way with
respect to its curvature.

Results presented in the next section are obtained with bothmethods described
above.

4 Numerical examples

In the following we present the stability charts of the DDEs listed below computed
as described in this paper with the Matlab code given in Appendix A. For each test
we give both the output representations as discussed in Section 3.4, i.e. the surface
corresponding to the real part of the rightmost characteristic root as a function
of the two varying parameters (left figures) and the stability boundaries in the
2d-parameter plane computed with the secant method and the adaptive curvature
determination (right figures).
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Example 3 Single delay equation with varying parametersa andb:

y′(t) = ay(t) + by(t− 1)

Example 4 2d-system with two discrete delaysτ1 andτ2 as parameters [SO04]:

y′(t) =

(

−6.45 −12.1
1.5 −0.45

)

y(t) +

(

−6 0
1 0

)

y(t− τ1) +

(

0 4
0 −2

)

y(t− τ2)

Example 5 2d-system with one discrete delay, two distributed delays andvarying
parametersτ1 andτ2 [FSD00]:

y′(t) = L0y(t) + L1y(t− 1) +

−0.1
∫

−τ1

M1y(t+ θ)dθ +

−0.5
∫

−τ2

M2y(t+ θ)dθ

with coefficients matrices

L0 =

(

−3 1
−24.646 −35.430

)

, L1 =

(

1 0
2.35553 2.00365

)

,

M1 =

(

2 2.5
0 −0.5

)

, M2 =

(

−1 0
0 −1

)

Example 6 8d-system with five discrete delays depending on only two parameters
τ1 andτ2 ([AEB99] and courtesy of Prof. N. Olgac and Dr. R. Sipahi, University
of Connecticut, Mechanical Engineering Departement):

y′(t) = L0y(t) + L1(y(t− τ1) + y(t− τ2)) + L2(y(t− 2τ1) + y(t− 2τ2))+
+ L3y(t− τ1 − τ2)

Example 7 Delayed damped Mathieu equation withk = 0, 0.1, 0.2, ε = 0 and
varying parametersδ andb [IS04]:

y′′(t) + ky′(t) + (δ + ε cos 2πt/T )y(t) = by(t− 2π)

Table 1 list the input used for the computation of each test. In particularN
is the size of the matrix discretizing the infinitesimal generator to approximate
the rightmost characteristic root whileTOL, Ts, Tt, p, Xmin, Xmax, Ymin and
Ymax are explained in Appendix A.Stol is the tolerance for the secant method and
corresponds to a maximum errorStol · TOL in the 2d-parameter plane.Siter is
the maximum number of secant method iterations allowed for each edge. Finally
Tc is the tolerance for the adaptive curvature determination and it approximately
measures the error in the alignment of three consecutive computed points on the
stability boundary. In the same table we report also the total number of stabil-
ity evaluationseval and the total computational timet (on a 550Mhz Pentium 3
processor).
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Example 3 Example 4 Example 5 Example 6 Example 7
s b s b s b s b s b

N 10 15 15 30 15 15 40 40 15 15
TOL 0.05 0.5 0.05 0.05 0.5 1 5 × 10

−5
5 × 10

−4 0.05 0.1
Ts 1.2 1.5 1 1 0.2 0.2 10 1 1 1
Tt 1.2 1.5 1 2 0.2 0.2 1.2 1 0.5 1
p 8 2 10 20 2.5 2.5 4 1 20 5

Xmin -2 1.5 0 0 0 -1
Xmax 2 3.5 5 10 6 × 10

−3 5
Ymin -2 3 0 0 0 -1.5
Ymax 2 5 5 10 6 × 10

−3 1.5
Stol - 0.05 - 0.05 - 0.1 - 0.025 - 0.05
Siter - 10 - 10 - 10 - 10 - 10
Tc - 0.01 - 0.01 - 0.1 - 5 × 10

−5 - 0.01
eval 1060 262 2910 38513 624 312 4465 4806 2758 3268

t (sec) 14 3 79 2093 128 61 13185 14502 58 56

Table 1: Computation input and output (s=surface, b=boundary).
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Figure 6: Rightmost root real part surface (left) and stability boundaries (right) on
the2d-parameter plane for example 3.
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Figure 7: Rightmost root real part surface (left) and stability boundaries (right) on
the2d-parameter plane for example 4.
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Figure 8: Rightmost root real part surface (left) and stability boundaries (right) on
the2d-parameter plane for example 5.
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Figure 9: Rightmost root real part surface (left) and stability boundaries (right) on
the2d-parameter plane for example 6.
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Figure 10: Rightmost root real part surface (left) and stability boundaries (right)
on the2d-parameter plane for example 7.

APPENDIX A: MATLAB code

function [sv,tv]=schart(TOL,Ts,Tt,p,Xmin,Xmax,Ymin,Y max)

%sv=nr of square cell vertices stability evaluations
%tv=nr of triangular cell vertices stability evaluations
%TOL=tolerance parameter on stability boundary thickness
%Ts=tolerance parameter for test3 on square cells
%Tt=tolerance parameter for test3 on triangular cells
%p=integer ratio between TOL and square cell edge length
%Xmin,Xmax,Ymin,Ymax vertices of the 2d-parameter plane
%-------------------------------------------------- --------
%uses external function ’r=sval(x,y)’ to evaluate the
%rightmost root real part ’r’ of the given DDE for the
%parameters ’x’ and ’y’

hold on %figure setting:
%axis equal %optional depending on
%axis([Xmin Xmax,Xmin Xmax]) %output style (2d,3d,etc.)

ls=p * TOL; %square cell edge length
x=Xmin:ls:Xmax; %starting grid x-coordinates
y=Ymax:-ls:Ymin; %starting grid y-coordinates
nx=length(x)-1; %nr of horizontal square cells
ny=length(y)-1; %nr of vertical square cells

m=ceil(log2(sqrt(2) * ls/TOL)); %subdivision parameter
d=2ˆm+1; %size of matrix ’S’
lg=ls/(d-1); %square subdivision edge
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top=sparse(nx,d); %initialization of the
top(1,1)=sval(Xmin,Ymax); %auxiliary matrix ’top’
top(nx,d)=sval(Xmax,Ymax); %on the first row of the
for i=1:nx-1 %starting square grid

top(i,d)=sval(x(i+1),Ymax);
top(i+1,1)=top(i,d);

end

left=sparse(d-1,1); %initialization of the
left(d-1,1)=sval(Xmin,y(2)); %auxiliary vector ’left’

S=sparse(d,d); %initialization of the
S(1,:)=top(1,:); %matrix ’S’ representing
S(2:d,1)=left; %the first square cell
S(d,d)=sval(x(2),y(2));

sv=nx+3; %initialize
tv=0; %initialize
for j=1:ny %scan starting square grid top to bottom

for i=1:nx %scan starting square grid left to right
%test square cell for refinement

[left,trow,v]=ref(TOL,Ts,Tt,S,m,d,lg,ls,x(i),y(j));
tv=tv+v; %update
top(i,:)=trow; %update row of matrix ’top’
S=sparse(d,d); %update matrix ’S’:
if i<nx %check if the next

S(1,:)=top(i+1,:); %square cell is at
S(:,1)=left; %the beginning of a
S(d,d)=sval(x(i+2),y(j+1)); %new row of the
sv=sv+1; %starting grid

elseif j<ny %or if the next
S(1,:)=top(1,:); %square cell is the
S(d,1)=sval(Xmin,y(j+2)); %right-bottom one
S(d,d)=sval(x(2),y(j+2)); %of the starting
sv=sv+2; %grid

end
end

end
%-------------------------------------------------- -------%
% refinement subroutine %
%-------------------------------------------------- -------%
function [right,btm,v]=ref(TOL,Ts,Tt,S,m,d,lg,ls,xmi n,ymax)
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x=xmin:lg:xmin+ls; %x-coordinates of the square cell
y=ymax:-lg:ymax-ls; %y-coordinates of the square cell
v=0; %initialize stability evaluations

if (sign(S(1,1))==sign(S(1,d)))&(sign(S(1,d))==... %t est2
sign(S(d,d)))&(sign(S(d,d))==sign(S(d,1)))&...

(min(abs([S(1,1)+S(1,d),S(1,d)+S(d,d),... %test3
S(d,d)+S(d,1),S(d,1)+S(1,1)]))>ls * Ts)

%square cell output: optional (2d,3d,etc.)
fill3([x(1),x(d),x(d),x(1)],[y(1),y(1),y(d),y(d)],. ..
[S(1,1),S(1,d),S(d,d),S(d,1)],...
[S(1,1),S(1,d),S(d,d),S(d,1)]);

else c=d/2+.5; %square center coordinate
S(c,c)=sval(x(c),y(c)); %center stability evaluation
v=v+1; %update
T=zeros(3,2,2 * m+2); %initialize vector ’T’
T(:,:,1)=[1,1;1,d;c,c]; %of (3x3)-matrices
T(:,:,2)=[1,d;d,d;c,c]; %representing the first
T(:,:,3)=[d,d;d,1;c,c]; %four triangular
T(:,:,4)=[d,1;1,1;c,c]; %cells
lenT=4; %initialize length of ’T’
while lenT>0 %check if ’T’ is empty

Tc=T(:,:,lenT); %set current triangular cell
%compute lenght of triangular cell edges
lT=sqrt([(Tc(1,1)-Tc(2,1))ˆ2+(Tc(1,2)-Tc(2,2))ˆ2,.. .
(Tc(2,1)-Tc(3,1))ˆ2+(Tc(2,2)-Tc(3,2))ˆ2,...
(Tc(3,1)-Tc(1,1))ˆ2+(Tc(3,2)-Tc(1,2))ˆ2]) * lg;
[maxlT,i]=max(lT); %compute largest edge
a=S(Tc(1,1),Tc(1,2)); %recover stability
b=S(Tc(2,1),Tc(2,2)); %information of the
c=S(Tc(3,1),Tc(3,2)); %vertices
if maxlT>TOL %test1

if (sign(a)==sign(b))&... %test2
(sign(b)==sign(c))&...
(min(abs([(a+b)/lT(1),... %test3
(b+c)/lT(2),...
(c+a)/lT(3)]))>Tt)
%triangular cell output: opt. (2d,3d,etc.)
fill3(x(Tc(:,2)),y(Tc(:,1)),[a;b;c],[a;b;c])
T(:,:,lenT)=[]; %update tail of ’T’
lenT=lenT-1; %update length of ’T’

else T1=Tc; %triangular cell subdiv’n
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T2=Tc;
j=mod(i,3)+1;
xs=(Tc(j,2)+Tc(i,2))/2; %x subdiv’n vertex
ys=(Tc(j,1)+Tc(i,1))/2; %y subdiv’n vertex
%subdiv’n vertex stability evaluation only
%if not previously computed for other cells
if S(ys,xs)==0

S(ys,xs)=sval(x(xs),y(ys));
v=v+1; %update

end
T1(i,:)=[ys,xs];
T2(j,:)=[ys,xs];
T(:,:,lenT)=T1; %update tail of ’T’
lenT=lenT+1; %update length of ’T’
T(:,:,lenT)=T2; %update tail of ’T’

end
%triangular cell output

else fill3(x(Tc(:,2)),y(Tc(:,1)),[a;b;c],[a;b;c])
T(:,:,lenT)=[]; %update tail of ’T’
lenT=lenT-1; %update length of ’T’

end
Tc=[]; %empty current cell

end
end
right=S(:,d); %update right vector for ’left’
btm=S(d,:); %update bottom vector for ’top’ row
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