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Abstract

A new efficient algorithm for the computation of the stalilthart of
linear time delay systems is proposed and tested on sevenalptes. The
stability chart is obtained by investigating thd-parameter space by a first
coarse square grid which is then adaptively refined by trikaigpn to match
the desired tolerance. This leads to a considerable resuirticomputa-
tional cost with respect to investigate a uniform fine squaié. Stability
of each point is determined by approximating the rightmdstracteristic
root real part via a numerical scheme recently developethdwtithors and
based on pseudospectral differencing methods. A Matlak tothcluded
in appendix.

1 Introduction

Many real phenomena in physics, engineering, chemistolpgy, economics,
etc. are better modeled and/or simulated if time delaysakent into account.
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All delay systems are characterized by the common featubeioiy influenced,
in their present evolution, by information on their pasttig. The effects of the
presence of delays in the system properties and behauidesti a wide interest
both in research and applications fields. Much of this irsigseconcerned with the
stability analysis of théinear case. The lack of good estimates of the parameter
values (e.g. delays) involved in system models leads toldewpportune criteria
to determine not only whether a nominal system is stable ¢rimd an entire
stability region of parameters due to this uncertainty. Whe deal with two
varying parameters, we talk abaittbility charts

In this work we focus on the systemwf-dimensional linear delay differential
equations (DDEs) with multiple discrete and distributetage

—Ti—-1

y'(t) = Loy(t +Z Liy(t — ) + /Ml(Q)y(t—i-@)dH L t>0, (1)

-7

whereLy, Ly,..., Ly e C™"™ 0 =19 <7 < --- <71, =7andM,; : [-7,0] —
Cmxm [ = 1,...,k, are smooth functions. Delay systems such as (1) are par-
ticularly important in control theory, where the stabil#jfects of delays are a
crucial problem [Ric03], [Nic0O0]. Important applicatioman be found also in
machining tool such as milling, turning and drilling whehetrole of parameters
such as spindle speed and feed are stability determinifdg[1$hese are second
order systems with time dependent coefficients and theasittés in the stability
of periodic solutions.

It is well known [HVL93] that the zero solution of (1) is asytofically stable
if and only if all the characteristic roots, i.e. the (infelg many) roots of

det(A(N) =0, (2)

where

—Ti-1

k
AN =M =Ly =3 [ Le + / M) | rec, @)

I=1 -

have strictly negative real part. Since in every verticapshere is only a finite
number of characteristic roots, the asymptotic stabiligpehds on the sign of
the real part of the rightmost characteristic root and wethisefact to determine
stability. Numerical methods to compute the rightmost miofl) are discussed
in Section2.

Once we have a tool to determine the stability of (1) for evelnpice of
its parameters (e.g. coefficients and/or delays), we cacepbto scan thed-
parameter plane in the following efficient way. First we sebarse square grid
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and for each square we determine the stability of its vesticé they all have
the same property, e.g. all “stable” (“unstable”), thendheare is set to be stable
(unstable) and no refinement is required. Rather, if somexes stable and some
is not, this means that a portion of stability boundary passeugh the square,
hence a refinement is required. This further analysis isezhout by evaluating
the stability of the center point of the square and dividinmio four triangles.
The stability test is then repeated for each of these treenghd if further refine-
ment is needed, then the mid point of the hypotenuse is agdigrd the triangle
is divided into two smaller ones. Moreover, a second stgli#ist is done in order
to avoid that all the vertices of a cell (square or trianglayenthe same stability
property but the stability boundary cross an edge of theteatle. Also in this
case arefinement is required. The algorithm goes on untiengize of the cells
with different stability property at the vertices is readhe

2 Numerical computation of characteristic roots

In the last few years, numerical approaches for charatiter@ots computation
have been proposed, which are based on the discretizatieithef the solution
operator associated to (1) or the infinitesimal generatah@fsolution operator
semigroup. We briefly recall that the solution operdfot), t > 0, associated to
(1) is defined by

T(t)y =y, ¢ € X,
whereX = C'([—7,0],C™) endowed with the maximum norm, is the function

ye(0) = y(t+0), 6 € [-7,0],
andy is the solution of (1) with initial datgp € X. The family{T'(¢)},., is a
Cy-semigroup with infinitesimal generatgtr: D(A) C X — X given by
Ap =4’ € D(A), (4)

with domain

k
D(A) = {w € X | ¢ € X andy/(0) = Loto(0) + ) _ <Lz¢ (5)
=

1

+ / Ml(e)¢(e)de>}.

-7

So (1) can be restated as the abstract Cauchy problem [DGBLW9

{ dyt Ayt, t> O
Yo =@



The two following important results [DGVLW95], [HVL93]
1. det(A(N)) =0& A= tInp, peo(T(t)\{0};
2. det(A(N)) =0 A eo(A);

whereos () denotes the spectrum, suggest the idea to turn the chastctevots
approximation problem into a corresponding eigenvaluélera for suitable ma-
trix discretization of eithef’(¢) (i.e. solution operatomapproach) ot4 (i.e. infin-
itesimal generatoapproach).

Engelborghs and Roose propose in [ER02] and [ER99] theisnloperator
approach via linear multistep (LMS) time integration fossgm (1) without dis-
tributed delay term. Their method computes approximattorthe roots from a
large, standard and sparse eigenvalue problem and it iemggited in the MAT-
LAB package DDE-BIFTOOL for DDEs bifurcation analysis [EQR], [ELS01].
The distributed delay case is considered in [LERO3] by usM& methods and in
[Bre04] by using Runge-Kutta (RK) methods. The completesttgyment of the
infinitesimal generator approach first appears in [BMVO{Bie02], [BMV04a]
where a matrix approximation td is obtained discretizing the derivative in (4) by
RK, LMS and pseudospectral differencing methods, resgalgti The last tech-
nique involves the exact differentiation of interpolantselected sets of points.
The resulting differentiation matrix is nonsparse, but ae take advantage of
the well-known “spectral accuracy” to obtain very accurapgroximation with
small matrix dimension. This behavior represents in famt,sufficiently small
tolerance, the outstanding advantage of this method caedgarthe previously
cited discretization schemes. Therefore we choose thigstiee core algorithm
for determining the stability of each point of tBd-parameter space and we refer
the interested readers to [BMV04a] for further details onvewgence and imple-
mentation.

Pseudospectral differentiation can be applied even to meneral classes of
linear functional differential systems in order to numalig compute the (stabil-
ity determining) eigenvalues of related derivative opangtvith nonlocal bound-
ary conditions [BMV04Db] such as the infinitesimal generdtorthe DDESs case.
Examples are neutral DDES, age-structured populationrdigsagoverned by in-
tegral equations, mixed-type (advanced and retardedjitunat differential equa-
tions and patrtial differential equations with delay. Sli&pof periodic solutions
of second order DDEs with time dependent coefficients careberghined by ap-
proximating the dominant characteristic multipliers.(tlee eigenvalues of the so-
lution operator semigroup) and pseudospectral technigpigly as well. No mat-
ter what the system type is, when we have a numerical tecanvyich provide us
with some stability information about a certain choice af #ystem parameters,
the algorithm for the computation of the stability chart eens unchanged.
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3 Stability charts computation

In this section we present the algorithm for computing tlabidity charts. In
particular we start in Section 3.1 describing the condgitivat requires a deeper
stability analysis of a “cell”, i.e. a portion of th&d-parameter plane. Then we
follow in Section 3.2 analyzing how these cells are refinea.Séction 3.3 we
talk about the initial coarse grid from which the algorithegins the automatic
detection of the stability boundaries. Finally we end int®ec3.4 discussing
about how representing the output.

3.1 Refinement tests

Consider a triangular or square cell in tbek-parameter plane with shortest edge
[ and suppose that the core algorithm for the numerical coatiputof the right-
most root provide us with the real parof the rightmost root of (1) for the choices
of parameters corresponding to all the vertices of the Elelhce we know if each
vertex is either “stable”, i.ex < 0, or “unstable”, i.er > 0.

Three tests are carried out in order to decide if a furthdrilfiganalysis inside
this cell is necessary or not. This analysis is what we calftkll refinement” and
it means that the cell is divided into smaller ones which ai@yzed in the same
way until the conditions for no further refinement are matchEhese conditions
depend either on the cell size and/or on the stability intram about its vertices.

The first test concerns the size of the cell: only if

TEST1: [ > TOL,

whereTOL is the desired tolerance on the resolution of the stabilityriglary,
then the cell might be possibly refined according to the doorl described be-
low.

The second test concerns the stability of thevertices of the cell. If the
stability property (i.e. sigir) = r/|r|) is the same among all the vertices:

TEST2 : sign(r;) = sign(r;) foralld,j =1,...,n,,

then the cell might be possibly refined only according to thedttest described
below. Rather, if there is at least one change among thecesrtihis ensures that
a portion of stability boundary is crossing the cell on astéao edges (Figure 1
left) and the cell is refined. This is a sort of two dimensidmakction strategy.
The previous test does not exclude the following situatiomight have the
same sign in all the vertices of the cell, but a portion of itgllboundary can cross
it at only one edge (Figure 1 right). Also in this case a cdihement is necessary,
but the question is how to detect this possibility. In oradedo this consider an
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Figure 1. Example of stability boundary (dashed line) arugs square cell at
two edges (leftr changes sign at the vertices) and at one edge (rigtities not
change sign at the vertices).

edgez 7, with valuesr; andr, of the same sign at the vertices (Figure 2). We
check the possibility that a stability boundary crossingisxi.e. there exists a
pointx € Tyx3 with » = 0, measuring the minimum slope at whichs reached
both fromr; andr,. This slope is given by

|1 4 7o

[

wherel is the length of the edge. Then we set a tolerance parameétey and if

s=tana =

TEST3: s> TOL,

for all the edges of the cell, then there is no need of refineétnecause the values
of r at the vertices of the edge are “too far” from zero with respeche length
of the edge. Of course this is not a sufficient condition tduke the refinement,
but at least it is a good indicatorifOL; is chosen correctly.

r10\\

Figure 2. Slope test on a cell edge.

The tests work as follows. If



e TEST2 and TESTS3 are true and< 0 for each vertex: the cell is “stable™;
e TEST2 and TEST3 are true and> 0 for each vertex: the cell is “unstable”;
e either TEST2 or TEST3 are false then if

— TESTL1 is false, i.e. the cell size is smaller tHBOL, then the cell is
“boundary”, i.e. it might contains a portion of stability inadary;

— TEST1 is true, i.e. the cell size is larger th&®L, then the cell is
refined.

Among all the tests above, the first is the dominant one, irsémse that if a cell
refinement is required according to either the second oring tiest, but the cell
size is smaller thaitOL, then no refinement is done.

3.2 Cell refinement

We start from a square cell of sizewhich has to be refined according to the tests
discussed in the previous section. This square cell is fivedet by its diagonals
into four (isosceles) triangular cells with cathetysand the stability of the center
point is evaluated. Then, if one of these four new trianguaklls satisfies the
refinement tests, it is divided by its height relevant to tlypdienuse into two
(isosceles) triangular cells and the stability of the nevieseis evaluated. The
algorithm proceeds in the same way until all the cells matelconditions for no
refinement given in the previous section.

The maximum number of possible subdivision is the minimutegern such

that
L

b r0 = [, (157

where[p]| denotes the smallest integesuch that; > p.
Observe (Figure 3) that each possible new vertex belongg/te d uniform
grid of equi-spaced points with separatigwhere

d=2"+1, l,=—

{n + 1J
m =
2
where|p| denotes the largest integesuch thayy < p. We use dd x d)-matrix
S in such a way that if the vertex has coordinategy) in the2d-parameter plane

and




and rightmost root real part the corresponding matrix entry 45; = r with

mazr ~ . T — Tmin

lg lg " 17
where(z,.in, Yma:) @re the coordinates of the left-top vertex of the square trell
this way, when a vertex is introduced by a further subdivigiba triangular cell,
its stability information can be recovered from the maffiwhenever this vertex
is already used in a neighboring cell previously analyzeat.ifistance in Figure
3, the subdivision of the cell; does not require the evaluation of the stability of
the subdivision vertexo| since this is already computed for the céllsand7s.
Moreover, since not all the nodes of the square grid are sadgsvertices of
triangular cells, i.e. there is no need to know their stgbproperty, the matrixs
is usually sparse and therefore its storing is cheap.

Figure 3: Example of square cell subdivision (left) and i&tmx representation
(right).

The refinement of a square cell is implemented in a subrowtimeh starts
from the matrixS, where the stability of the four corners is known, by evahat
the stability of the center point of the square. With this nvenrtex, four triangular
cells are created. Every triangular cell is stored ifBa< 2)-matrix containing
the coordinates$z, y) of each vertex. These four matrices initialize a vector of
matricesl’ of length4. Then the refinement analysis starts from the last matrix of
T and the following two cases are possible.

Case 1 (Refinement)lf the cell has to be refined, then
¢ the matrix corresponding to the originating cell is delefesin 7';
¢ the subdivision vertex is calculated,;

e its stability is evaluated by filling the relevant entry iretmatrixs;



e two new triangular cells are created and stored in two newrioas added
at the end off".

Case 2 (No refinement)If no refinement is required the cell is deleted frém

The refinement analysis always resume from the last matfixasfd it stops when
this vector is empty, that means that the whole region oRthearameter plane
included in the input square cell representedhig analyzed.

3.3 Starting square grid

The algorithm starts by defining a first coarse square gricherwthole2d-para-
meter plane. The whole plane is identified by its minimum amimum (zx, y)
coordinatesX,.in, Xmaz» Ymin @NdY,,... The size of the grid square is set to
be a multiple of the tolerance paramefe®L by an integerp given in input:

ls = p- TOL. To cover all the plane with an integer number of squares \a&@a
Xpnaz @AY 0, 10 X 0w = Xonin + 1l andY o = Yonin + 0yl respectively

where
Xma:v - szn
L

n,e =

and

Ymaa} - Ymm
e
Son, andn, are the number of squares along the horizontal and verticgseof

the plane, respectively. The stability analysis startmftbe left-top square cell
and goes on towards the right and bottom directions, i.eushal reading/writing
ones (Figure 4).

max

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

min s Xmax
Figure 4. Example of starting square grid on the whHileparameter plane.

Once a square cell has to be refined (the “current” ¢ellin Figure 5), its
information are stored into the matrixwhich is passed in input to the refinement



subroutine as explained in Section 3.2. As for the triangeadls, also the square
ones share some vertices. Surely the right, respectivetprnp vertices of the
current square cell are the same as the left, respectivplyottes of the “next”
square §,, in Figure 5), respectively “bottom”S, in Figure 5). But there might
be more vertices in common originated by the refinement. Eletacavoid any
kind of possible multiple stability evaluation, every timsquare cell is refined, all
the new vertices created along the right, respectivelyobotedge of the refined
square cell are stored indavectorle ft and in a(n, x d)-matrixtop, respectively.
The reason of this is the following. Since the square gridcenstowards the
bottom row by row, and each row is scan towards the right, igte edge ofS.
is passed directly to the left one 6§, which is the next to be refined. Hence
a d-vector is enough as auxiliary vector to be passed to the gedkt Opposite,
the bottom edge of. is the top one ofS, which will be possibly refined after
n, steps. Hence the bottom edges of all the square cells of aewbal must be
stored for the next row and(a, x d)-matrix is necessary. Theth,i = 1,...,n,,
row of this matrix is filled with the bottom edge of tlhieh square cell according
to its position along the row of the grid. The refinement subire provides to
update the vectole ft and the row of the matrixop which are used next. This
applies with some attention when the current cell is thedastof a row or even
the right-bottom one.

| left

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

top(1,:) | top(3,:) | top(5,:)
top(2,:) top(4.:)

Figure 5: Example of starting square grid on the whialgparameter plane.

3.4 Output representation

There are several ways to represent the output af a stabliayt computed as
previously described. They depend either on what the usetasested into and
on how accurate the representation is asked to be.

For instance, if one is interested in the qualitative betvawf the real part of
the rightmost characteristic roots the two concerned parametgrandp, vary,

10



then we can interpret the stability chart as Rre— R surfacer = r(py, p2) and
represent its evolution over thig, , p,)-plane by using a suitable colour mapping
varying according to the values of In order to get this surface representation
it is enough to plot every triangular or square cell by intéaging the colours of
its vertices. This is readily obtained by using Matlab’sdtion fill3 as reported

in the code given in Appendix A. Clearly this representaimiess accurate far
away from the surface zero level.

Opposite, if one is interested only in knowing the stabitipundaries, i.e. the
curvesr(pi, p2) = 0 in the (py, p2)-plane, then these are to be computed from the
information stored in the vertices of each triangular bargcell. Many strate-
gies can be adopted, the simplest one being linear interpolaf the values of
at the vertices of each cell edge which exhibits a changeeisitin ofr itself. This
is for instance the method used in Matlab’s functommtourfor plotting the level
curves of a surface. Matlab&ontourplot is not efficient since it works on a uni-
form square grid, hence a considerable amount of stabidjuations is required
uniformly all over the region. In the following we give a (nidétailed) description
of a new strategy which leads to accurate stability bouedarquiring a minor
number of cells, i.e. a very coarse (and cheap) triangulafibe key idea is to use
the secant method on each edge in order to accurately cotgutero of- along
that edge. Few iterations are needed for each edge. Thimefdothe two cell
edges which show sign changerimt its vertices. Moreover, a new intermediate
edge is computed and its zero is found. This gives an extradsoy point in-
side the cell. If the three zero points are not sufficientigradd, it means that the
boundary curvature is large. In this case further edgeswn@duced accordingly,
their zeros computed and the boundary line can be drawn idaptige way with
respect to its curvature.

Results presented in the next section are obtained withrbethods described
above.

4 Numerical examples

In the following we present the stability charts of the DDiEtdd below computed
as described in this paper with the Matlab code given in AdpeA. For each test
we give both the output representations as discussed il88c4, i.e. the surface
corresponding to the real part of the rightmost charadtensot as a function

of the two varying parameters (left figures) and the stabbibundaries in the
2d-parameter plane computed with the secant method and tipghaglaurvature

determination (right figures).
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Example 3 Single delay equation with varying parameterandb:

y'(t) = ay(t) + by(t — 1)
Example 4 2d-system with two discrete delaysand, as parameters [SO04]:

s —645 —12.1 —6 0 B 0 4 B
v = (75 2ok Jue (00 )ste-me (L) ste-n
Example 5 2d-system with one discrete delay, two distributed delaysvamnging
parameters; and, [FSDOO]:

~0.1 -0.5
y'(t) = Loy(t) + Liy(t — 1) + / Myy(t + 6)do + / Myy(t + 0)do
—T1 -T2

with coefficients matrices

o -3 1 P 0
07\ —24.646 —35.430 ) © 7' T \ 2.35553 2.00365 ) °

2 25 -1 0
Ml_(o-os)’ MQ_( 0 —1)

Example 6 8d-system with five discrete delays depending on only two peters
71 and, (JAEB99] and courtesy of Prof. N. Olgac and Dr. R. Sipahi, ibrsity
of Connecticut, Mechanical Engineering Departement):

y'(t) = Loy(t) + Li(y(t — 7)) +y(t — 72)) + La(y(t — 2m) +y(t — 27))+
+ Lgy(t — 711 — TQ)

Example 7 Delayed damped Mathieu equation with= 0,0.1,0.2, e = 0 and
varying parameters andb [ISO4]:

y"(t) + ky'(t) + (0 + e cos 2t /T)y(t) = by(t — 27)

Table 1 list the input used for the computation of each testpdrticularN
is the size of the matrix discretizing the infinitesimal gexter to approximate
the rightmost characteristic root whileO L, T, T;, p, Xmin,» Xmazs Ymin @and
Y.« @re explained in Appendix AS;,, is the tolerance for the secant method and
corresponds to a maximum err8y,; - TOL in the 2d-parameter planeS;;., is
the maximum number of secant method iterations alloweddohedge. Finally
T. is the tolerance for the adaptive curvature determinatiwhibapproximately
measures the error in the alignment of three consecutivguated points on the
stability boundary. In the same table we report also thd tateber of stabil-
ity evaluationseval and the total computational timg(on a 550Mhz Pentium 3
processor).
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Example 3 Example 4 | Example 5 Example 6 Example 7
s | b s | b s | b s | b s | b
N 10 15 15 30 15 | 15 40 40 15 15
TOL [ 005] 05| 0.05] 005 [ 05| 1 [5x10°[5x10"%] 0.05] 0.1
Ts 12 | 15 1 1 0.2 | 0.2 10 1 1 1
T; 12 | 15 1 2 0.2 0.2 1.2 1 0.5 1
P 8 2 10 20 25| 25 4 1 20 5
Xmin -2 15 0 0 0 -1
Xmaz 2 3.5 5 10 6x 1073 5
Yinin -2 3 0 0 0 -1.5
Ymaz 2 5 5 10 6 x 1073 1.5
Stol - 0.05| - 0.05 - 0.1 - 0.025 - 0.05
Siter - 10 - 10 - 10 - 10 - 10
T. - 0.01| - 0.01 - 0.1 - 5x107° - 0.01
eval | 1060| 262 | 2910 | 38513| 624 | 312 4465 4806 2758 | 3268
t(sec)| 14 3 79 | 2093 | 128 | 61 13185 14502 58 56

Table 1. Computation input and output (s=surface, b=boryda

Figure 6: Rightmost root real part surface (left) and sitgtdloundaries (right) on
the 2d-parameter plane for example 3.
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Figure 7: Rightmost root real part surface (left) and stghiloundaries (right) on
the 2d-parameter plane for example 4.

Figure 8: Rightmost root real part surface (left) and stghiloundaries (right) on
the 2d-parameter plane for example 5.

Figure 9: Rightmost root real part surface (left) and stghiloundaries (right) on
the2d-parameter plane for example 6.
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Figure 10: Rightmost root real part surface (left) and ditgtdboundaries (right)
on the2d-parameter plane for example 7.

APPENDIX A: MATLAB code

function [sv,tv]=schart(TOL,Ts,Tt,p,Xmin,Xmax,Ymin,Y max)

%sv=nr of square cell vertices stability evaluations

%tv=nr of triangular cell vertices stability evaluations
%TOL=tolerance parameter on stability boundary thickness
%Ts=tolerance parameter for test3 on square cells
%Tt=tolerance parameter for test3 on triangular cells
%p=integer ratio between TOL and square cell edge length
%Xmin,Xmax,Ymin,Ymax vertices of the 2d-parameter plane

%uses external function 'r=sval(x,y)’ to evaluate the
%rightmost root real part 'r' of the given DDE for the
%parameters 'x’ and 'y’

hold on %figure setting:
%axis equal %optional depending on
%axis([Xmin Xmax,Xmin Xmax]) %output style (2d,3d,etc.)

Is=p *TOL,; %square cell edge length
x=Xmin:ls:Xmax; %starting grid x-coordinates
y=Ymax:-Is:Ymin; %starting grid y-coordinates
nx=length(x)-1; %nr of horizontal square cells
ny=length(y)-1; %nr of vertical square cells
m=ceil(log2(sqrt(2) *|s/TOL));  %subdivision parameter
d=2"m+1; %size of matrix 'S’
lg=Is/(d-1); %square subdivision edge

15



top=sparse(nx,d); %initialization of the

top(1,1)=sval(Xmin,Ymax); Y%auxiliary matrix 'top’
top(nx,d)=sval(Xmax,Ymax); %on the first row of the
for i=1:nx-1 %starting square grid

top(i,d)=sval(x(i+1),Ymax);
top(i+1,1)=top(i,d);
end

left=sparse(d-1,1); %initialization of the
left(d-1,1)=sval(Xmin,y(2)); %auxiliary vector ’left’

S=sparse(d,d); %initialization of the
S(1,)=top(1,:); %matrix 'S’ representing
S(2:d,1)=left; %the first square cell

S(d,d)=sval(x(2),y(2));

sv=nx+3; %initialize

tv=0; %initialize

for j=1:ny %scan starting square grid top to bottom
for i=1:nx %scan starting square grid left to right

%test square cell for refinement
[left,trow,v]=ref(TOL,Ts,Tt,S,m,d,lg,Is,x(i),y(j));

tv=tv+v; %update

top(i,:)=trow;  %update row of matrix 'top’

S=sparse(d,d); %update matrix 'S’

if i<nx %check if the next
S(1,:)=top(i+1,:); %square cell is at
S(:,1)=left; %the beginning of a
S(d,d)=sval(x(i+2),y(j+1)); %new row of the
SV=sv+1; %starting grid

elseif j<ny %or if the next
S(1,:)=top(1,:); %square cell is the

S(d,1)=sval(Xmin,y(j+2));  %right-bottom one
S(d,d)=sval(x(2),y(j+2)); %of the starting

SV=Sv+2; %grid
end
end

end
e %
% refinement subroutine %
e %
function [right,btm,v]=ref(TOL,Ts,Tt,S,m,d,lg,Is,xmi n,ymax)
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X=xmin:lg:xmin+ls; %x-coordinates of the square cell

y=ymax:-lg:ymax-Is; %y-coordinates of the square cell
v=0; %initialize stability evaluations
if (sign(S(1,1))==sign(S(1,d)))&(sign(S(1,d))==... %t
sign(S(d,d)))&(sign(S(d,d))==sign(S(d,1)))&...
(min(abs([S(1,1)+S(1,d),S(1,d)+S(d,d),... %test3
S(d,d)+S(d,1),S(d,1)+S(1,1)])>Is *TS)

%square cell output: optional (2d,3d,etc.)
fill3([x(1),x(d),x(d),x(1)].[y(1),y(1),y(d).y(d)]..
[S(1,1),S(1,d),S(d,d),S(d,1)]....
[S(1,1),S(1,d),S(d,d),S(d,1)]);

else c=d/2+.5; %square center coordinate
S(c,c)=sval(x(c),y(c)); %center stability evaluation
v=v+1; %update
T=zeros(3,2,2 *m+2); %initialize vector 'T’

T(¢,:,1)=[1,1;1,d;c,c]; %of (3x3)-matrices
T(:,:,2)=[1,d;d,d;c,c]; %representing the first
T(:,:,3)=[d,d;d,1;c,c]; %four triangular
T(;,:,4)=[d,1;1,1;c,c]; %cells

lenT=4; %initialize length of 'T
while lenT>0 %check if 'T" is empty
Tc=T(:,:,lenT); %set current triangular cell

%compute lenght of triangular cell edges
IT=sqrt([(Tc(1,1)-Tc(2,1))2+(Tc(1,2)-Tc(2,2))°2,..
(Tc(2,1)-Tc(3,1))"2+(Tc(2,2)-Tc(3,2))°2, ...
(Tc(3,1)-Te(1,1))2+(Te(3,2)-Te(1,2))°2)])
[maxIT,il=max(IT); %compute largest edge
a=S(Tc(1,1),Tc(1,2)); %recover stability
b=S(Tc(2,1),Tc(2,2)); %information of the
c=S(Tc(3,1),Tc(3,2)); %vertices

if maxIT>TOL Optestl

if (sign(a)==sign(b))&... %test2
(sign(b)==sign(c))&...
(min(abs([(a+b)/IT(1),... %test3
(b+c)/IT(2),...
(c+a)/IT(3)]))>Tt)
%triangular cell output: opt. (2d,3d,etc.)
fill3(x(Tc(:,2)),y(Tc(:,1)),[a;b;c],[a;b;c])
T(;,:,lenT)=[]; %update tail of 'T’
lenT=lenT-1, %update length of T’

else T1=Tc; %triangular cell subdiv'n
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T2=Tc;

j=mod(i,3)+1;

xs=(Tc(j,2)+Tc(i,2))/2; %x subdiv’n vertex
ys=(Tc(j,1)+Tc(i,1))/2; %y subdiv'’n vertex
%subdiv'n vertex stability evaluation only
%if not previously computed for other cells

if S(ys,xs)==0
S(ys.xs)=sval(x(xs).y(ys));
v=v+1; %update
end

T1(,:)=[ys,xs];

T2(j,))=[ys,xs];

T(G,:,lenT)=T1; %update tail of 'T’
lenT=lenT+1; %update length of T’
T(¢,:lenT)=T2; %update tail of 'T’

end
%triangular cell output
else fill3(x(Tc(:,2)),y(Tc(;,1)),[a;b;c],[a;b;c])

TG, lenT)=[]; %update tail of 'T’
lenT=lenT-1, %update length of T’
end
Te=[]; %empty current cell
end
end
right=S(;,d); %update right vector for ’left’
btm=S(d,:); %update bottom vector for 'top’ row
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