layer97 abstract

Dynamic Instabilities in the Sliding of Two Layered Elastic Half-Spaces

G.G. Adams


Two flat layered elastic half-spaces, of different material properties, are pressed together and slide against each other with a constant coefficient of friction. Although a nominally steady-state solution exists, an analysis of the dynamic motion yields complex eigenvalues with positive real parts, i.e. a flutter instability. These results demonstrate that self-excited (unstable) motion occurs for a wide range of material combinations. The physical mechanism responsible for this instability is that of slip-wave destabilization. The influence of the properties of the layers on the destabilization of sliding motion is investigated. These dynamic instabilities lead either to regions of stick-slip or to areas of loss-of-contact. Finally the dynamic stresses at the interfaces between the layers and the semi-infinite bodies are determined and compared to the nominally steady-state stresses. These dynamic stresses are expected to play an important role in delamination.

Related Publications

Journal Publications