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Abstract—Data delivery in a dynamically changing spectrum
environment continues to remain an unsolved problem, with
existing TCP based implementations falling short owing to
their inability to react swiftly to spectrum changes. This paper
proposes the first equation-based transport protocol, based on
the TCP Friendly Rate Control (TFRC) protocol, which uses the
recent FCC mandated spectrum database information instead of
relying on any intermediate node feedback. Not only does this
approach maintain the strict end to end property required at
this layer of the protocol stack, but also allows fine adjustment
of the transmission rate through continuous adaptation. We
explore interesting directions on how to limit repeated queries
to the spectrum database and yet allow the source to control the
rate effectively; when to re-start the transmissions; and how to
interpret possible spectrum changes in the intermediate nodes
correctly without mistaking it for normal network congestion,
among others. Our extension to the ns-2 simulator enables
thorough testing of various aspects of our protocol adapted for
cognitive radio, called as TFRC-CR. We show through simulation
an improvement of over 33% in the end to end throughput when
compared with the classical TFRC.

I. INTRODUCTION

Cognitive radio (CR) networks enable opportunistic use of

available licensed spectrum, and reduce the pressure on the

unlicensed ISM bands in the 2.4GHz and 5GHz range. While

the core functions of spectrum sensing, switching, and sharing

are now being better understood given the rapid strides in this

area, work on higher layers of the protocol stack, such as the

transport layer, is still in a nascent stage.

There has been extensive investigation of window-based

TCP protocols for assuring congestion-free behavior in clas-

sical wireless networks, given its widespread use in the wired

domain. By minor modifications of the information contained

in the feedback acknowledgments (ACKs) sent by the destina-

tion, such as by falsely advertising a receive window of 0 in

Freeze TCP [6] when an impending handoff is detected, the

TCP source can be prevented from transmitting. The single

end-to-end connection can be split into the wired (sender

to base station or BS, when such an infrastructure support

exists) and wireless (BS to the wireless node) planes, as shown

in WTCP [7]. In Addition, some protocols explore tuning

the sender’s transmission rate through explicit notifications

(TCP EFLN) [8] and via selective retransmissions of lost

packets (TCP SACK) [9]. While each of these approaches

have merits, they were not originally designed with the aim of

licensed or primary user (PU) protection, sudden large-scale

bandwidth fluctuations, and periodic interruptions caused by

spectrum sensing and channel switching. A recent approach

called TP-CRAHN addressed these concerns [1], though it

relied on extensive feedback from the underlying layers of the

protocol stack as well as the intermediate nodes that form the

connected chain. This is undesirable as it violates the end-to-

end paradigm typically assumed for transport layer protocols.

This paper is aimed to open up fresh discussion on the

design of CR-specific protocol using an equation-based ap-

proach, wherein the concept of the congestion window in

classical TCP (and the self-clocking via returning ACKs)

is no longer followed. A notable example in this area for

wireless ad hoc networks is ATP [4], which argues that the

short term unfairness of the CSMA/CA MAC results in an

undesirable bursty data flow. This problem is exacerbated in

CR networks because nodes pause the transmission when they

are engaged in sensing or channel switching. This, in turn,

results in varying round-trip time estimates (in the case of

TCP) and higher induced load rendering the self-clocking

nature ineffective. The frequency and reliance on the ACKs

for window based transmissions also lead to reverse path

performance impact on the forward DATA path. In TCP, this

can amount to 10%-20% of the data stream rate [4]. The

bursty nature of TCP is clearly demonestrated in Figure 1.

In this paper, we devise the first equation based transport

protocol using existing approach called as TCP Friendly Rate

Control (TFRC) [2]. We name our modified design as TFRC-

CR, whose main features are as follows:

• It allows the TCP source to integrate with a designated

spectrum databases, as mandated by the FCC in a recent

ruling [5]. There is no feedback from any of the inter-

mediate nodes, and neither is any information from an

underlying layers is utilized.

• It enhances the speed of response by distinguishing be-

tween the effect of spectrum change and true congestion,

by leveraging both the information from the spectrum

database and the periodic information sent by the desti-

nation through the usual ACKs. Hence, the transmission

rate is almost never penalized unless the need is justified

and likewise, the coarse jump in the rate can be much

faster than that possible in traditional transport protocols.



TABLE I: Symbols used by TFRC-CR’s framework

Symbol Description

s Packet size

RTTavg Average round-trip-time

RTTstddev Round trip time standard deviation

In Average ACK inter-arrival during no PU activity

IPU Average ACK inter-arrival during PU activity

t Time now

tn Time last ACK received during no PU activity

tPU Time last ACK received during last PU activity

• It intelligently polls the spectrum database only when

needed, by identifying a possible PU arrival event, i.e., it

does not consume the backend system resources used for

interacting with the database. The database may likely be

a single point of failure and hence, it needs to be protected

from being overwhelmed in a practical situations. The

current regulations require database polling at least in 60
second-intervals, and our aim is to exceed that default

value only when a critical need is detected.

The rest of this paper is organized as follows: The prelim-

inary background of TFRC and the motivation for adapting it

for CRs is described in Section II. In Section III, we describe

the proposed protocol TFRC-CR in detail. Section IV gives

results from our comprehensive simulation study, and finally,

we conclude our paper in Section V with pointers to future

research.
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Fig. 1: Throughput comparison between TCP and TFRC in a

3-hop chain ad-hoc network

II. TFRC BACKGROUND AND MOTIVATION

TFRC is a rate based mechanism for congestion control

in unicast traffic. We use this as the platform to build our

protocol because it aims at providing a stable throughput, as

opposed to the sudden fluctuations caused by Additive Increase

Multiplicative Decrease (AIMD) in TCP, while maintaining

a TCP friendly rate. Given that TFRC is also an end-to-

end protocol, deployment is only necessary at the source and

destination. To achieve reduced fluctuations, it calculates a

parameter called the loss event rate (p) at the receiver by

taking the reciprocal of the average weights in the last (n)

loss event samples where a sample is defined as the number

of consecutive data packets received within a RTT before a

packet loss happens. TFRC, by default, averages the last 8

samples (n = 8) which gives an approximate snapshot of how

the traffic flow looked in the last n RTTs. p is then sent to the

sender to be used in the throughput equation that estimates

TCP’s average sending rate:

Xbps =
s

R ∗
√

2∗b∗p
3

+ (tRTO ∗ (3 ∗
√

3∗b∗p
8

∗ p ∗ (1 + 32 ∗ p2)),

(1)

where Xbps is TCP’s average transmit rate in bytes per

second, s is the packet size in bytes, R is the round-trip time

in seconds, p is the loss event rate between 0 and 1.0, tRTO

is TCP’s retransmission timeout value in seconds, and b is the

maximum number of packets acknowledged by a single TCP

ACK.

The goal of this is to achieve a smoother rate by avoiding

sudden abrupt rate fluctuations as is the case in TCP.

TFRC suffers when deployed in Cognitive Radios owing

to the following reasons: (i) Low rate after PU exit: TFRC

is not able to use the maximum allocated bandwidth after a

PU exits, due to TFRC weighing the last loss rates which are

recorded falsely during PU activity, ii) Slow recovery: After the

PU exits, having mistaken the original interruption purely as a

congestion event, TFRC starts polling the bandwidth connec-

tion over large intervals of time, which can lead to significant

delays in resuming the transmission, and iii) Buffer overload

and interference: TFRC initially sends multiple packets during

the PU activity as part of its regular rate control, causing

additional interference with the PU. These individual issues

are described in further detail in the rest of this section.

• Low rate after PU exit: After a prolonged idle state due

to PU activity, the last n loss event rates should be neglected

because they occurred in that stagnant state. This causes TFRC

to resume the throughput at a false loss event rate p leading to

less than optimal throughput. TFRC will recover after at least

n event loss rates have been recorded. This can take up to n

Round-Trip-Times (RTT).

• Slow recovery: During PU Activity, TFRC’s nofeedback

timer expires several times which leads to reduction in the

effective rate by half each time until the minimum rate of
s

t mbi
where s is the packet size and t mbi is set to 64 seconds

is reached. This means that TFRC will poll the network once

every 64 seconds which can cause a delay of up to 64 seconds

for the network to resume activity after a PU exit.

• Buffer overload and interference: During the PU activity,

TFRC will initially continue the ongoing rate because it is

unaware of the PU activity. This will lead to undesired packets

being sent over the network leading to a bigger buffer queue

at the MAC layer of the node immediately before the affected

area. These packets will retransmit until they timeout which

causes additional undesired interference with the PU.



PU

Resume

Paused

Detected

Normal

Start

Slow

PU
Exit

A
C
K

 T
im

eo
ut

R
ec

ei
ve

d 
a 
pa

ck
et

In average ACK inter−arrival

No ACK Received

ACK Received

No ACK

PU Exit

PU
 E

xits

&
 N

o A
CK

Slow
 start A

CK
 received

Conditions met

Conditions
not met

Fig. 2: TFRC-CR finite state machine

III. TFRC-CR: AN EQUATION BASED TRANSPORT

PROTOCOL

In this section, we describe our proposed TFRC-CR

protocol and the modifications done to the classical TFRC.

Our changes in the protocol operation are aimed at (i) ensuring

that the connection resume the data stream immediately after

the PU leaves the affected traffic zone, (ii) striking a balance

between polling the network too frequently by the source

that may cause interference with the PU, and conversely,

reacting too slowly to spectrum change, and (iii) finding the

available bandwidth as soon as possible, after the PU vacates

the spectrum.

We present an overview of our approach using a finite state

machine diagram, as shown in Figure 2. The remainder of this

paper refers to the symbols listed in Table I.

A. Normal state

This is the default state of TFRC-CR, and the protocol

returns to this state whenever there is no expected spectrum

outage. The response during true congestion events and the

resulting change is the transmission rate is identical to that of

the classical TFRC. The protocol operation diverges, however,

when a timeout event occurs and no ACK is received. To

differentiate congestion from possible PU activity, the TFRC-

CR at the source queries the FCC mandated spectrum database

to check if a PU suddenly appeared on any of the feasible

channels. Note that the source has no knowledge of the

locations or the specific channels used by the nodes in the

end to end connection. However, a sudden arrival event of

the PU (as indicated by the database) and the timeout can be

treated as correlated events, with a high probability. If this

condition is true, the protocol enters into the PU detected

state, and if not, the situation is interpreted as a normal case

of network congestion. Additionally, the protocol continues to

maintain an average ACK inter-arrival time (denoted as In),

and the standard deviation of the round-trip time (denoted as

RTTstddev). These values are used in the subsequent states to

influence the rate control mechanism.

B. PU detected state

This is an intermediate state implemented as an additional

measure to verify that the last ACK timeout in the Normal

state was in fact due to PU activity. On entering this state,

the source waits for a period In for any incoming ACK and

continuously polls the spectrum database. If no subsequent

ACKs are received, and the database reveals that the PU is still

present, then the protocol transitions into the Paused state. On

the other hand, if an ACK does arrive in that time period, then

the protocol returns to the Normal state as this implies that

the intermediate nodes are not affected by the PU activity. In

such a case, the ACK timer expiry was due to random channel

or congestion errors.

C. Paused state

In this state, the PU is determined to be present, and is

assumed to be responsible for disrupting the continuous data

stream as it has occupied the spectrum. The challenge now

is to identify when the transmission rate can revert back to a

higher value, and this is obtained by polling the connection

bandwidth with an occasional packet. When a portion of the

spectrum is occupied by a PU, the link layer algorithms

on the node pair on the affected link may either pause the

transmissions altogether, or immediately try and identify an

alternate spectrum for that link. Note that the source has no

idea of which of these options are actually selected, as no

intermediate node feedback is allowed. Thus, by increasing the

transmission rate too early, the source risks added interference

to the PU before it vacates the spectrum. Also, by delaying the

rate increase after a spectrum change, the source is unable to

efficiently use the available bandwidth of the connection. By

simply monitoring the spectrum database (which can continue

to show the PU as present), the source remains unaware of

a local spectrum change. We have undertaken a substantial

set of simulations and empirically identify the optimal polling

rate as Xbps = s
6∗RTTavg

(Section II), i.e., the source will

poll the connection every 6 average RTT times whether or

not the nodes have switched the channel. In comparison,

TFRC reduces the rate after each ACK timer expiry in half,

until it reaches a rate of s
64

, which sends out a packet every

64 seconds. This leads to slow reaction to both the sudden

reduction in bandwidth when the PU starts affecting the traffic

chain, and to the higher available bandwidth once the PU is

out of the vicinity.

If an ACK is received in the Paused state, the network restores

the rate to the last rate recorded in the Normal state and

enters the Resumed state. TFRC-CR perceives this packet as

an indication that the intermediate nodes have moved to a

vacant spectrum and allows the rate to adapt accordingly. If

no feedback packets are received during this period, indicating

that the nodes have not switched the spectrum, TFRC-CR will

enter the Slow start state immediately after the PU leaves the

spectrum. The PU exit time is known by the aforementioned

spectrum database.



D. Resumed state

TFRC-CR enters this state when an ACK is received while

being in the Paused state. The protocol interprets this ACK

arrival as an indication that the intermediate nodes have

switched to a vacant channel and allows for the rate to adapt

accordingly by restoring it to the last known rate in the Normal

state.

The protocol stays in this state until the PU exits, at which

time it enters the PU Exit state. Notice that TFRC-CR is not

returning to the Normal state yet because the ACK that was

received in the Paused state could be due to an intermediate

node falsely mis-detecting the PU presence.

If the the nodes never mis-detect the PU presence, then the

protocol will never enter this state because it will remain in

the Paused state. The protocol enters the PU Exit state when

the current active PU exits the vicinity. This time is scheduled

based on the query results from the integrated FCC database

which is known at the sender.

The average ACK inter-arrival time IPU is calculated during

this time period for use in the next state.

E. PU Exit state

In the PU Exit state, the goal is to determine whether a

slow-start is required or not. TFRC-CR slow-starts if the rate

at the time of the PU exit is relatively low in comparison to the

rate recorded during the last Normal state. In other words, the

ACK received during the Paused state was a result of a sensing

error and a slow-start to probe for new bandwidth is required.

Otherwise, the protocol quietly returns to the Normal state

because the intermediate nodes have found a vacant spectrum

and resumed transmission. The decision whether to slow-start

is made based on the results obtained in Algorithm 1.

Algorithm 1 : is slow start required

let In be the average inter-arrival of ACKs at the sender in

the Normal state.

let IPU be the the average inter-arrival of ACKS at the sender

during the Paused state.

let t be the time now.

let tPU time last ACK received during Paused state.

1: if IPU > (2 ∗ In) OR t− tPU > (3 ∗ In) then

2: return true

3: else

4: return false

5: end if

In summary, Algorithm 1 checks if one of the following is

true, based on empirical observations:

• Case I: If the average inter-arrival of ACKs during the

Paused state is larger than twice the average inter-arrival

of ACKs during Normal state.

• Case II: If the time elapsed since the last ACK received

during an ongoing PU activity is larger than 3 times the

average inter-arrival of ACKs during Normal state.

F. Slow start state

TFRC-CR enters Slow-start if the rate during Resumed state

was slow according to Algorithm 1 or if the previous state was

the Paused state, i.e., no ACKs were received in Paused state.

Slow-start is used to quickly probe the new vacant spectrum

for the maximum available bandwidth. TFRC-CR slow-starts

by resetting the weights and variables of TFRC. This is done

by having the source flag the next packet as a slow-start request

packet (SSREQ). When the destination receives this packet, it

resets its own loss rate p calculations (see Section II) and

sends back a slow-start acknowledgement packet (SSACK)

immediately. During slow start, the nofeedback timer is set

to RTTavg + 4 ∗ RTTstddev. We use this as a more accurate

result than TFRC’s default static 2∗packetsize
300

.

Once the SSACK packet is received at the source, TFRC-CR

returns back to the Normal state, thus completing the cycle.

IV. PERFORMANCE EVALUATION

We simulate TFRC-CR over a multihop chain in ns2 as

depicted in Figure 5. In our simulation, we use the Cognitive

Radio Ad-Hoc Network (CRAHN) framework built by [3] and

place four nodes in a straight line. In this framework, the

nodes do not send CTS to RTS requests if they sense any

PU activity. This leads to packets being queued at the node

immediately before the PU region and eventually dropped due

to retries or timeouts. We set our sensing period to 0.1 seconds

and transmission period to 3.0 seconds [10]. The bandwidth

of the channel at each hop is set to 2Mbps. The nodes in

this simulation do not switch to another spectrum when PU

is detected; they wait until the PU exits the spectrum to start

transmitting again. All sensor nodes pick from 10 available

spectrum bands at random at the beginning of the simulation.

Each node will have two different interfaces: one for receiving

packets and one for sending. We vary the type of PU activity

from an exponentially distributed on and off times with mean

(2 sec) and (10 sec) respectively, which we name short bursts.

Similarly, a PU on time of 100 secs is designed to simulate

long PU activity events.
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Fig. 5: 3-Hop chain and PU region

The simulations compare TFRC with TFRC-CR regarding

the following metrics: (i) throughput over time, (ii) interfer-

ence percentage with the PU, (iii) total data received by the

receiver over the same period of time, (iv) the goodput of the

data stream, and (v) the queue length of the affected node.

A. Throughput over time

Figure 3 and 4 compare TFRC with TFRC-CR in terms of

throughput at the receiver for long and short activity durations

of the PU, respectively. The simulation was run for for 300
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seconds, and the regions of interest are denoted with letters A,

B and C. The areas in gray represent the PU active regions.

1) Region A: In this region, TFRC-CR is in the Normal

state. We can observe that the protocol’s throughput matches

that of TFRC. Interesting to note that in Figure 4, although

the PU was affecting the traffic stream, TFRC-CR could not

detect it because it did not encounter a nofeedback timer expiry

during these short PU activity periods.

2) Region B: Areas indicated by B indicate that TFRC-CR

goes into slow-start immediately after the PU exits the vicinity.

We notice here that TFRC is unaware of PU activity, and due

to the reduction in rate during the PU activity periods, the data

flow resumes later. The longer the PU activity, the slower the

rate, and hence, the later the protocol resumes. This is clearly

indicated by Figure 3.

3) Region C: In this area, the PU is active but we notice

the spikes in throughput during this period. The spikes occur

more frequently at the beginning of the PU activity region

due to the long time it takes TFRC to reduce the rate (i.e.

with every ACK timer expiry, it reduces the rate by half).

This slow reaction to the link disconnection caused by the

PU causes undesirable interference. In these areas, TFRC-CR

reduces the rate to s
6∗RTTavg

until an ACK is received. This

leads to less interference as will be shown in the next section.



B. Interference with the PU

The immediate reduction in rate when TFRC-CR encounters

the first ACK timer expiry leads to less interference with the

PU. For example, with In of 1.2 sec, a rate of 3000 bps in

the Normal state, and a nofeedback timer set at 2 seconds,

TFRC-CR will reduce the rate to 416.67 bps in 2 sec. In

comparison, the same rate will be reached by TFRC after

5.8 seconds leading to an excess of retransmission attempts

during that time period. We calculate the interference to be

the total time it takes to transmit RTS, CTS, ACK and DATA

packets divided by the total PU on period. 6a shows the lower

interference of TFRC-CR in both the short bursts and the long

PU activity simulation runs.

C. Total data received

Due to the fact that TFRC fails to resume the data stream

immediately after a PU exit or to use slow-start to probe for the

new network bandwidth, TFRC-CR is able to transmit more

data in the 300 seconds of the simulation with both types of

PU activity. This can be seen in Figure 6b. In the short bursts

scenario, the amount of increase is 33%.

D. Goodput

We calculate the goodput as total data packets received
total data packets sent

. We

can infer from Figure 6c that TFRC and TFRC-CR have

very similar goodputs, however, TFRC-CR has slightly higher

percentages due to it being able to slow down faster during

the Paused state (read: when PU is active), and by doing that,

it avoids the excess wasted packets that occur in TFRC.

E. Queue length

When the affected nodes detect PU activity, they halt any

transmission that is scheduled at the MAC layer. This causes

the queue to build up on the node immediately before the PU

active region or node 3 in our topology. Figure 7a shows the

queue lengths at that node. We note that there in no excessive

build up on the queue and the increase in queue lengths are

proportional to the sending rate at that time as shown in

Figure 7b. When the PU enters the vicinity at time 60sec,
TFRC-CR’s queue length are at most 1 packet higher than

TFRC’s even though the throughput is double that of TFRC.

V. CONCLUSION

We presented an equation-driven TCP protocol that is

geared to meet the demands of CR networks, which also

accommodates some of the latest developments in this space,

such as spectrum database access. Our solution TFRC-CR is

demonstrated to perform significantly better than its classi-

cal counter TFRC, with respect to both PU protection and

transmission efficiency in a dynamically changing spectrum

environment. Different from the few existing works at the

transport layer for CR, our protocol does not assume any

cross-layer feedback or other inputs from intermediate nodes.

Our future work is aimed at changing the basic rate control

equation based on different spectrum-related events.
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