Development of a combined immunomagnetic separation and quantitative reverse transcription-PCR assay for sensitive detection of infectious rotavirus in water samples

Wan Yang, April Z. Gu, Si-yu Zeng, Dan Li, Miao He, Han-chang Shi

A State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China

A Civil and Environmental Engineering Department, Northeastern University, Boston, MA, USA

A R T I C L E I N F O

Article history:
Received 27 October 2010
Received in revised form 6 January 2011
Accepted 6 January 2011
Available online 21 January 2011

Keywords:
Immunomagnetic separation
Quantitative polymerase chain reaction
Rotavirus
Water quality monitoring

A B S T R A C T

A quantitative and rapid detection method for rotavirus in water samples was developed using immunomagnetic separation combined with quantitative reverse transcription-polymerase chain reaction (IMS-RT-qPCR). Magnetic beads coated with antibodies against representative group A rotavirus were used to capture and purify intact rotavirus particles in both artificial and real environmental water sample matrix. Compared to extracting RNA using commercial kits and RT-qPCR assay, the developed IMS-RT-qPCR method increased the detection sensitivity by about one order of magnitude when applied in clean water, with a detection limit of 3.16 50% tissue culture infectious dose (TCID₅₀)/mL within 5 h. This method was compatible with various commonly used virus eluants, including beef extract (BE), beef extract with 0.05 M glycine (BEG) and urea arginine phosphate buffer (UAPB). The recovery efficiencies from various eluants using IMS-RT-qPCR are higher than that using direct RT-qPCR method, demonstrating the effectiveness of the IMS step for eliminating inhibitors in the eluant matrix. This method was also successfully applied to purify and detect rotavirus particles seeded in 10³-fold concentrated wastewater influent samples. It seemed to reduce the interference from complex sample background and increase the qPCR product reliability comparing to RT-qPCR method without the IMS step. The results indicated that IMS-RT-qPCR is a rapid, sensitive and reliable tool for detecting rotaviruses in complex water environments.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Outbreaks associated with waterborne viruses have been reported worldwide (Faustini et al., 2006; Karmarkar et al., 2008; Maila et al., 2004; Maunula et al., 2005). It has been noted that more than 140 types of viruses have been found in environmental waters (Gutiérrez et al., 2007). Rotavirus is the most common cause for severe diarrhea in children worldwide, causing 74.9–208.5 million infections and about 600,000 deaths in children aged 5 years old and below (Glass et al., 2006; Stebbins, 2007). In China, rotavirus infections have been reported in many cities, including Beijing, Shanghai, Guangzhou and Hong Kong (Orenstein et al., 2002). The virus has been detected in various types of waters, including sewage, river water, ground water and drinking water (Kitigul et al., 2005; Kocwa-Haluch, and Zalewska, 2002). Hence, a rapid and reliable detection method is needed to monitor the presence of rotavirus in environmental waters and it is the prerequisite for water quality control and public health protection.

Conventional methods for virus detection, such as the cell culture-based assay, have been used for risk assessment analysis. However, these methods are technically difficult, time-consuming and expensive. Moreover, they rely on animal cell cultures, rendering them only effective on culturable viruses and ineffective on viruses such as hepatitis A virus (HAV) and norovirus, which are difficult or not amenable to culture in vitro. Newly developed molecular methods, such as the polymerase chain reaction (PCR), have emerged recently as useful tools for the detection of viruses, due to their high rate and sensitivity. However, PCR methods are susceptible to inhibitors widely existing in water samples and may consequently yield false negative results (Flekna et al., 2007). In addition, the results of PCR only demonstrate the existence of viral DNA or RNA rather than infective viruses (Espinosa et al., 2008; Moore, 1993).

Another problem with virus detection is the low level of viruses present in most environmental waters, which requires pre-concentration of water samples, typically by 10⁴–10⁶ times, before they can be analyzed. Unwanted contaminating materials present in water samples are consequently concentrated and will interfere with the
104 cells were seeded in 96-well plates (104 cells/well) and incubated in the wells. Serial 10-fold dilutions of SA11 rotavirus prepared in DMEM were added into each 96-well plate with MA-104 cell monolayer. The supernatant containing the virus (virus stock) was aliquoted in 1 mL volumes and stored at −80 °C. For the TCID50 assay, MA-104 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM, HyClone, Beijing, China), supplemented with 10% heat-inactivated fetal bovine serum (FBS), and 1.7 g/L sodium bicarbonate. The SA11 rotavirus was propagated and grown in MA-104 cells as previously described. Brieﬂy, the rotavirus stock was diluted in double distilled water (ddH2O), 103-fold sewage concentrate and 100-fold) at 95 °C for 5 min, and chilled on ice immediately after heating. For the IMS-RT-qPCR assay, viral RNA was released from the IMBs by heating the IMB suspension for RT. The virus solution was used directly for RT. For the IMS-RT-qPCR method, the newly developed IMS-RT-qPCR method was compared with direct RT-qPCR method without IMS, which used a commercial kit to extract RNA from samples (denoted as RNA kit-RT-qPCR for reference), by applying them simultaneously against clean water (performed in double distilled water (ddH2O)).

2. Materials and methods

2.1. Virus strain and cells

The simian rotavirus was chosen as a surrogate for group A rotavirus to test and optimize the protocol. Rotavirus SA11 strain (group A, simian type G3) and MA-104 cells (HTB-37™, ATCC) were generously donated by Professor Hong Meng from the Medicine Academy in Shandong Province, P.R. China. MA-104 cells were grown in Dulbecco’s modiﬁed Eagle’s medium (DMEM, HyClone, Beijing, China), supplemented with 10% heat-inactivated fetal bovine serum (FBS), and 1.7 g/L sodium bicarbonate. The SA11 rotavirus was propagated and grown in MA-104 cells as previously described (Estes et al., 1979). The cell cultures were frozen and thawed three times and centrifuged at 900 × g for 5 min to remove the cell debris. The supernatant containing the virus (virus stock) was aliquoted in 1 mL volumes and stored at −80 °C until use.

2.2. Virus titration

The titration of rotavirus stock and dilutions was determined by both the 50% tissue culture infectious dose (TCID50) assay (Distefano et al., 1995) and a modiﬁed plaque-forming unit (PFU) assay (Hansen et al., 2007), as previously described. Brieﬂy, for the TCID50 assay, MA-104 cells were seeded in 96-well plates (104 cells/well) and incubated for 24 h in an incubator (under 5% CO2 at 37 °C) to form monolayers in the wells. Serial 10-fold dilutions of SA11 rotavirus prepared in DMEM were treated with 20 U trypsin/mL for 1 h in the incubator before they were added (100 μL) into the MA-104 cell monolayer and incubated for 2 h for virus adsorption. The virus solution in each well was then removed and replaced with 200 μL of DMEM containing 2% FBS. The plates were incubated for 5–7 days to observe cytopathic effect (CPE). The Reed–Meunch equation was used to estimate the titer of the viral suspensions (Reed and Meunch, 1938).

For the modiﬁed PFU assay, 100 μL of each serial SA11 dilutions was inoculated into 24-well plates with MA-104 monolayer cells. After 2 h of virus adsorption in the incubator, 2 mL of maintenance medium consisting of DMEM with 2% FBS was added to each well in the plates and they were incubated for 4 days. The maintenance medium was then replaced with 2 mL of 2 × DMEM (ﬁnal concentra- tion) containing 2% agar and 1 μg/mL trypsin, permitted to solidify, and then followed by another 3 days of incubation. To enumerate the plaques, the MA-104 cell monolayers infected with SA11 were ﬁxed overnight with 10% formaldehyde in normal saline and then stained with 0.1% crystal violet solution to determine the number of virus PFUs.

2.3. Preparation of immunomagnetic beads and Immunomagnetic separation (IMS)

Dynabeads® Protein A (1.3 g/mL stock suspension, Dynal Biotech, Oslo, Norway) were coated with antibodies against group A rotavirus (goat anti-rotavirus, Biodesign, Saco, USA) according to the manufacturer’s instructions. Uncoated beads were pre-washed three times with sodium (Na)-phosphate buffer (0.1 M Na-phosphate, 0.01–0.05% Tween-20, pH 8.0). Antibodies with a concentration of ca. 1 mg/mL were added to the washed beads and allowed to bind for 30 min with gentle mixing. The unbound antibodies were removed and the antibody-coated beads were washed three times with Na-phosphate buffer. The coated immunomagnetic beads (IMBs) were then suspended in the phosphate-buffered saline (PBS) containing 0.1% bovine serum albumin (BSA) and stored at 4 °C until use.

For IMS, 10 μL of IMBs (and 2.5 μL of Tween-20 when applied to ddH2O samples) was added into each 1 mL sample and then incubated for 2 h at room temperature with gentle mixing. After the incubation, the IMBs were magnetized and the supernatant was removed, followed by three Na-phosphate buffer washes. The supernatant was completely removed at the last wash. The IMBs were then resuspended in 20 μL of ddH2O and transferred into a 200 μL PCR tube for RT.

2.4. Viral RNA extraction, RT, and qPCR

For quantification of viral genomes of the virus stock, viral RNA was extracted by heating 20 μL of virus stock dilutions (10-fold or 100-fold) at 95 °C for 5 min, and chilled on ice immediately after heating. The virus solution was used directly for RT. For the IMS-RT-qPCR assay, viral RNA was released from the IMBs by heating the IMB suspension at 95 °C for 5 min and chilled on ice immediately after heating. The IMBs were pelleted by centrifugation at 10,000 × g for 2 min, and the supernatant containing viral RNA was used for RT immediately. For the RNA kit-RT-qPCR assay, a commercial kit was used for RNA extraction (QIAamp viral RNA Mini kit, Qiagen, Hilden, Germany) and it was performed with 1 mL sample volume (yielding the RNA extract in a 60 μL ﬁnal volume) by following the manufacturer’s instructions.

The RT reaction was performed in 10 μL volumes using a PrimeScript™ RT Reagent Kit (TaKaRa, Dalian, China), according to the manufacturer’s instructions. Two μL of viral RNA (extracted by the three methods presented above) was used for RT. Reverse transcription was carried out at 37 °C for 15 min and then 85 °C for 5 s to inactivate the enzyme. The cDNA obtained was used for qPCR afterwards or stored at −20 °C until use.
Quantification of viral genome concentrations was conducted by qPCR. The primer pair, rota-sense (5′-CTCCACTTATACACTTGTG-3′) and rota-antisense (5′-TTCCGTTCTGCACTTGTG-3′), was used to amplify a 318 bp region of the rotavirus viral protein (VP) 7 gene segment. The plasmid DNA carrying the same gene region was constructed in our laboratory (Hu et al., 2008). Briefly, qPCR was performed in 20 μL volumes with a SYBR® Premix Ex Taq™ kit (TaKaRa, DaLian, China) in an iQ icycler (Bio-Rad, USA) following the manufacturer’s instructions. The reaction mixture contained 4 μL of either cDNA or known amount of plasmid DNA, 10 μL of 2× SYBR buffer, 0.2 μL of each primer (0.2 μM final concentrations) and 5.6 μL of PCR-grade water. The qPCR amplification was performed with 1 cycle of preheating at 95 °C for 10 s, 40 cycles of melting at 95 °C for 5 s, annealing at 59 °C for 20 s and extension at 72 °C for 30 s. The amplification was followed by a melting curve analysis with 71 cycles of dissociation; from 95 °C to 60 °C with a temperature ramp of 0.5 °C every 30 s. After the melting curve analysis, the products were held at 4 °C. Melting curve analysis showed the specific melting peak at 81.0±0.5 °C. A linear regression equation was obtained for quantification of viral genome: y = −3.3914x + 43.104, where y is the threshold cycle number (Ct) and x is the logarithm of the starting quantity of rotavirus genome copy (GC). The detection range was between 3.6×102 to 3.6×1011 GC per reaction with a correlation coefficient (R²) of 0.9958.

The total number of viral genomes in samples detected by either IMS-RT-qPCR or heat release-RT-qPCR (for quantifying viral genomes in the virus stock) was calculated by multiplying the result yielded by qPCR by a factor of 25 (2^fi) in the virus stock) was calculated by multiplying the result yielded by IMS-RT-qPCR or heat release-RT-qPCR (for quantifying viral genomes). The concentration of the virus in the stock, which was used to prepare dilution series for different tests, was measured by three methods, including the TCID50 assay, the PFU assay, and RT-qPCR assay, in order to establish the correlation between TCID50, PFU, and GC. The titer of the virus stock was determined to be 3.16×10^9 TCID50/mL by TCID50 assay and 1.8×10^6 PFU/mL by plaque assay. The concentration of viral genomes of the virus stock was determined to be 4.49×10^9 GC/mL by direct heating to release viral RNA and then subsequent RT-qPCR. Based on the above results, for the virus stock of rotavirus SA11, equivalent amounts of viruses (approximately 2.5×10^3 TCID50/mL) were seeded into three commonly used organic virus eluants, namely 3% beef extract (BE, pH 9.5), 3% beef extract plus 0.05 M glycine (BGE, pH 9.5) (Zhang et al., 2007) and urea arginine phosphate buffer (UAPB, 1.5 M urea, 0.02 M arginine, 0.008 M phosphate, pH 9.0) (Jothikumar et al., 1993). Ten μL of IMBs was added into each eluant and the amount of viral particles captured was quantified by IMS-RT-qPCR. Double distilled H2O was used as a control. Parallel samples were also tested by the RNA kit-RT-qPCR assay for comparison. Experiments were done in duplicate.

3. Results

3.1. Correlation of TCID50, PFU, and GC

Comparison of results with IMS-RT-qPCR and RNA kit-RT-qPCR by a factor of 25 (2^fi) in the virus stock) was calculated by multiplying the result yielded by IMS-RT-qPCR or heat release-RT-qPCR (for quantifying viral genomes). The concentration of the virus in the stock, which was used to prepare dilution series for different tests, was measured by three methods, including the TCID50 assay, the PFU assay, and RT-qPCR assay, in order to establish the correlation between TCID50, PFU, and GC. The titer of the virus stock was determined to be 3.16×10^9 TCID50/mL by TCID50 assay and 1.8×10^6 PFU/mL by plaque assay. The concentration of viral genomes of the virus stock was determined to be 4.49×10^9 GC/mL by direct heating to release viral RNA and then subsequent RT-qPCR. Based on the above results, for the virus stock of rotavirus SA11 applied in this study, 1 TCID50 was equivalent to ca. 0.57 PFU and ca. 1.4×10^3 GC, and 1 PFU was equivalent to 1.76 TCID50 and ca. 2.5×10^5 GC. Since one rotavirus particle contains only one genome, the number of viral particles is equivalent to the number of viral genomes (GC), i.e., 2.5×10^5 viral particles. According to Grinde et al. (1995), 1 PFU of rotavirus Wa strain equaled 1.2×10^3 viral particles (obtained by electron microscope), therefore, our results are consistent and are in the same order of magnitude as that reported by Grinde et al. (1995).

3.2. Comparison of IMS-RT-qPCR assay and RNA kit-RT-qPCR assay

Comparison of results with IMS-RT-qPCR and those with RNA kit-RT-qPCR showed that both methods preformed equally well for detecting virus concentrations ranging from 2×10^3 to 2×10^5 TCID50/mL (Fig. 1). Statistical data analysis shows that test results by the two assays have no significant difference (paired sample t-test, P = 0.370) at virus concentrations higher than 2×10^5 TCID50/mL. However, at virus concentration of 20 TCID50/mL, the RNA kit-RT-qPCR assay failed to yield positive results, while the IMS-RT-qPCR assay was able to quantify rotavirus at this level. Both assays failed to detect rotavirus with a concentration of 2 TCID50/mL. While previous study in our lab evaluated the correlation between the virus concentration detected with IMS-RT-qPCR and those with the TCID50, the results showed that a linear correlation between results from the two assays with a correlation coefficient (R²) of 0.9816 and the detection limit of IMS-RT-qPCR method is about 3.16 TCID50/mL (Yang et al., 2009). Here the assay failed to detect 2 TCID50/mL, indicating that concentration lower than 3.16 TCID50/mL might be difficult to be detected by IMS-RT-qPCR.
3.3. Elimination of environmental sample matrix interference with IMS-RT-qPCR

As shown in Fig. 2, all seeded sewage concentrate samples yielded specific PCR product with both IMS-RT-qPCR and RNA kit-RT-qPCR methods. The melting curve analysis (Fig. 2a) showed that most of the samples tested by IMS-RT-qPCR yielded only the specific melting peak at 81 ± 0.5 °C, while samples at the lowest concentration of 1.5×10³ TCID₅₀/mL yielded at least one non-specific melting peak and thus cannot be accurately quantified by qPCR. The main non-specific melting peak yielded by the three samples tested by IMS-RT-qPCR was around 74 °C, which also appeared in samples tested by RNA kit-RT-qPCR. It might result from the formation of primer dimmers capable of binding the SYBR Green dye and causing the fluorescence. In comparison, as shown in Fig. 2b, all samples tested by the RNA kit-RT-qPCR assay yielded at least another non-specific melting peak in addition to the non-specific melting peak around 74 °C. These non-specific melting peaks (one around 68 °C and another around 84 °C) might be due to certain materials in the samples that would interfere with PCR and cause non-specific amplifications, or existence of SYBR Green dye associable materials from the samples.

Gel electrophoresis analysis (Fig. 3) showed that five out of eight samples tested by IMS-RT-qPCR (those had only one specific melting peak at 81 ± 0.5 °C) and all samples tested by RNA kit-RT-qPCR yielded the corresponding amplification band at the 318 bp position. The RNA kit-RT-qPCR assay seemed to be more sensitive than the IMS-RT-qPCR assay at lower concentrations (1.5×10³ and 3.9×10³ TCID₅₀/mL) in the gel analysis. However, compared to the bands yielded from RNA kit-RT-qPCR assays that were fraught with non-specific substances and blurred smear, the IMS-RT-qPCR method produced clearer and distinct bands, indicating the effective removal of environmental background interferences as described earlier in the melting curve analysis.

3.4. IMS compatibility with various virus eluants

Three different virus eluants commonly used in IMS-RT-qPCR method were examined and compared. The recovery efficiencies detected by the IMS-RT-qPCR method were also compared with that by the RNA kit-RT-qPCR method, in order to assess the effectiveness of IMS in removing inhibitory substances in the virus eluants. The results indicated that BE, BEG and UAPB showed higher recovery of virus than that performed in ddH₂O by IMS-RT-qPCR (Fig. 4), indicating that the organic matters present in these eluants did not inhibit IMS and that IMS was compatible with these widely used virus eluants. Examined with RNA kit-RT-qPCR without the IMS step showed significant inhibition with BE and BEG eluants due to the failure of the RNA kit to remove organic matters/inhibitors from the eluants. In addition, the recovery efficiency of IMS-RT-qPCR in BE and BEG was higher than that obtained in ddH₂O. It suggests that BE and BEG are more suitable for rotavirus than ddH₂O.

4. Discussion

Immunomagnetic separation (IMS) relies on the specific antibodies coated on the outside of magnetic beads to capture target viruses and form virus-bead combinations, which are then separated out of samples in the presence of a magnetic field. It has proven to be effective in separating various types of viruses in different kinds of environmental waters and removing inhibitory substances in these samples (Abd El Galil et al., 2004; Gilpatrick et al., 2000). In our experiments, IMS exhibited high efficiency in eliminating interferences from environmental samples (Fig. 2) to facilitate less-sample-matrix-sensitive qPCR assay and consequently yield more reliable results. And it greatly reduced the adverse impact of organic matter present in virus eluants on PCR, as shown by the higher virus recovery efficiency of IMS-RT-qPCR than that of the RNA kit-RT-qPCR method (Fig. 4).
Fig. 3. Elimination of environmental sample matrix effects by IMS-qRT-PCR, in comparison to direct RNA kit-qRT-PCR method. One liter of sewage influent was concentrated into 1 mL (10 2-fold), seeded with SA11 rotavirus at 1.5 × 10 2, 3.9 × 10 3, 7.8 × 10 3, or 1.5 × 10 4 TCID 50/mL, and tested by IMS-qRT-PCR and RNA kit-qRT-PCR, respectively. The asterisk at the left indicates the 318-base position of the rotavirus amplicon. Lanes 1, 18, DNA ladder; lanes 2–9, tested by IMS-qRT-PCR, rotavirus at 1.5 × 10 2 (lanes 2, 3), 3.9 × 10 3 (lanes 4, 5), 7.8 × 10 3 (lanes 6, 7), 1.5 × 10 4 (lanes 8, 9) TCID 50/mL; lanes 10–17, tested by RNA kit-qRT-PCR, rotavirus at 1.5 × 10 2 (lanes 10, 11), 3.9 × 10 3 (lanes 4, 5), 7.8 × 10 3 (lanes 6, 7), 1.5 × 10 4 (lanes 8, 9) TCID 50/mL; lanes 19–24, rotavirus quantified plasmid DNA, starting quantity at 3.6 × 10 2, 3.6 × 10 3, 3.6 × 10 4, 3.6 × 10 5 GC, respectively; lane 25, negative control.

The IMBs only capture intact and thus potentially infectious viral particles and rarely adsorb naked viral nucleic acid (Schwab et al., 1996). The IMS combined with PCR (IMS-PCR) for the detection of virus is able to examine viral antigens and viral nucleic acid simultaneously. Therefore, IMS-PCR is expected to be more reliable in the detection of potentially infectious viruses and afford relevant and valuable data for health risk assessment, especially for the viruses that are difficult or not amenable to culture in vitro. The results from our IMS-RT-qPCR assay were comparable with those obtained from accepted commercial RNA kit-RT-qPCR assay and they correlated well with those from the cell culture assay (correlation coefficient of 0.9816), indicating the validity of the method developed (Yang et al., 2009).

The detection limit of the developed IMS-RT-qPCR method is around 3.16 TCID 50/mL or 1.8 PFU/mL according to our measurement (Yang et al., 2009), which is comparable with the previously reported detection limits—10 PFU/mL for HAV through IMS-real time NASBA (Abd El Galil et al., 2005) and 1 PFU/mL for enteroviruses through IMS-real time RT PCR (Hwang et al., 2007). In addition, compared to the RNA kit-RT-qPCR method, IMS-RT-qPCR lowers the detection limit by approximately one order of magnitude when applied in clean water. The improvement of sensitivity might be attributed to the higher efficiency of the IMS step combined with direct heating for recovering targeted viral particles than the commercial RNA extraction kit. There might be a certain amount of loss of viral RNA in the commercial RNA kit extraction procedure due to adsorption of RNA to the silica-membrane applied during RNA purification. The relatively minor loss of viral RNA as mentioned above might not be influential for detecting virus at higher concentrations, but would impact on detection limit when analyzing samples with very low virus concentrations. Furthermore, the IMS-RT-qPCR method we established requires only about 5 h (2–2.5 h for IMS, ca. 20 min for RT, ca. 2 h for qPCR) yielding quantitative results while the cell culture-based assay usually requires several days to weeks to obtain results and often the tests do not work due to bacterium/fungi contamination or cell deterioration. Thus, IMS-RT-qPCR is a more rapid and reliable method than traditional cell culture-based assay for the detection of viruses.

Previous investigations showed that IMS efficiency is affected by sample matrix. For example, Moneyron and Grinde (1993) reported that the detection limit of IMS-RT-qPCR for the detection of HAV varied with the different background matrix of samples, showing 10 2, 10 3, 10 4, and 10 5 TCID 50/mL for PBS/BSA, polluted fresh water, sea water, serum, and 5-fold diluted serum, respectively. Grinde et al. (1999) also observed decrease in sensitivity when applying IMS-RT-qPCR against sea water for the detection of rotavirus, comparing to applying the method against fresh water or IMS buffer. Zhang et al. (2007) also showed that efficiencies of virus recovery using the IMS-RT-qPCR method varied with different kinds of water samples, indicating 0.15–0.72% for sewage samples, 11.15–43.25% for surface water samples, and 12.85% for tap water samples (actually untreated ground water). In this study, we further tested the IMS-RT-qPCR method against sewage concentrate and found that the detection limit of IMS-RT-qPCR for rotavirus increased to around 3.9 × 10 4 TCID 50/mL when performed in 10 2-fold sewage influent concentrate compared to that obtained in ddH 2 O (3.16 TCID 50/mL), indicating reduced virus recovery with IMS due to sample background matrix.

Possible causative factor for the virus recovery reductions in sewage samples was the colloidal and fine particles that were left with the virus in the eluate after the centrifugation step (see the sewage concentration protocol). It was observed in our experiment that the presence of residual particles in virus eluate might affect the separation of virus-IMB combinations in the IMS step, as they tended to enwrap IMBs and consequently diminish the magnetic power of IMBs. The reduced IMBs recovery consequently led to decreased virus recovery efficiency with the IMS step, and it may explain the seemingly higher detection limit of IMS-RT-qPCR method than the RNA kit-RT-qPCR method when applied to virus samples in concentrated sewage influent matrix (Fig. 3). We found that pipetting the sample multiple times to dissociate the particles from the IMBs could alleviate the impact to some extent. Another potential effect of colloidal and fine particles on IMS is competing with virus for the binding sites on the IMBs. However, effect on the affinity of IMBs (mediated by the antibodies coated on the outside of the beads) to the viral particles may be minor in our study, since excessive amount of IMBs were added to a sample so that there are sufficient affinity ligands coated on the outside of the IMBs for binding target virus particles, even though some of the ligands may competed by the colloidal and fine particles. In our experiments, 10 nL of IMBs (containing ca. 1–2 × 10 13 beads) were added into each 1 mL sample (containing 1 × 10 9–1 × 10 10 viral particles), and amounts of ca. 2.06 × 10 3–2.78 × 10 5 viral particles were recovered after IMS-RT-qPCR with similar recovery efficiency at both low and high virus concentrations, indicating that the probability of having colloids and fine particles competing with virus for binding sites and potentially inhibiting and reducing the virus binding efficiency is very small.

Fig. 4. IMS compatibility with three commonly used virus eluents. ddH 2 O, double distilled water; BE, 3% beef extract, pH 9.5; BEG, 3% beef extract with 0.05 M glycine, pH 9.5; UAPB, urea arginine phosphate buffer (1.5 M urea, 0.02 M arginine, 0.008 M phosphate, pH 9.0).

Fig. 4. IMS compatibility with three commonly used virus eluents. ddH 2 O, double distilled water; BE, 3% beef extract, pH 9.5; BEG, 3% beef extract with 0.05 M glycine, pH 9.5; UAPB, urea arginine phosphate buffer (1.5 M urea, 0.02 M arginine, 0.008 M phosphate, pH 9.0).
Previous study by Kuhn et al. (2002) indicated that the IMS efficiency decreased dramatically when the pH was raised to 7.5 or lowered to 6.5 for detecting Cryptosporidium oocysts, hypothetically due to change in antigen-binding affinity. However, Jiskoot et al. (1990) reported that the amount and the antigen-binding capacity of antibodies studied hardly changed when incubated at pH 4.0–10.0 at 4°C for 32 days. In our study, the IMS was performed after the virus concentration process which adjusts the pH to 7.0 (the H2SO4–NaOH eluant), or 9.0 (the UAPB eluant), or 9.5 (the BE and BEG eluant) and the authors found that IMS efficiency was not significantly affected with these three pH values.

We also observed that in samples with very low amount of organic matter (e.g., ddH2O or tap water), a portion of IMBs tended to adhere to the tube wall and hence consequently reduced the IMS virus recovery efficiency. This is probably due to the relatively high hydrophobicity of the IMBs and tube wall in the absence of any organic matters. We found that adding Tween-20, a surfactant, into clean water samples before the IMS process with concentrations ranging from 0.01% to 0.5% can effectively prevent such adherence (e.g. the IMS virus recovery efficiency increased 1.4 times when adding 0.25% of Tween-20 (data not shown)). Thus Tween-20 was added when IMS-RT-qPCR was performed in clean water samples.

Another problem worthy caution when applying the IMS-RT-qPCR assay is the validity of heat release for extracting viral RNA. Heating is effective and convenient to release viral RNA as mentioned earlier, however, our experiments (data not shown) indicated that when the primers used were near the tail region of gene fragment, amplification of the target region may fail sometimes and the results were quite random. Although the reason for this phenomenon is not understood yet, it is possible that heating may cause certain damages to nucleic acid, and the tail of the gene fragment may be more susceptible to such kind of damages. And when these damages happen, it may result in failure of amplification although viral RNA or DNA may actually be present in the sample, rendering the test results false negative. Thus we suggest that primers used to amplify target region should be verified even though they are successfully applied combining with other genome extraction methods.

5. Conclusion

A rapid and sensitive IMS-RT-qPCR method for the detection of group A rotavirus in water samples was developed in present study. This method has higher sensitivity (>10 times) in comparison with other methods that do not have the IMS step when applied to clean water (ddH2O) matrix. It can efficiently remove sample background matrix interference when applied to sewage concentrates, although the presence of large amount of colloidal and fine particles might reduce the virus recovery efficiency with the IMS step. The method is compatible with currently widely used virus eluants and has higher recovery efficiency than direct RT-qPCR methods for all the eluants tested, thus can be employed in detecting virus concentrated in these eluants. Furthermore, IMS-RT-qPCR exhibits comparable results with accepted RT-qPCR methods and showed a good correlation with the results from cell culture assay, indicating that the method is valid for the detection of infective rotavirus.

Acknowledgements

This research is supported by the special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control (Project Number: 10Y04ESPECT) and the Special Water Project of China (Program Number: 2008ZX07313-007). We thank Professor Hong Meng for the generous donation of the SA11 strain and MA-104 cells.

References

