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Abstract: This paper develops an enumeration algorithm for the no-wait flow shop scheduling problem 

with due date constraints. In this problem, waiting time is not allowed between successive operations of 

jobs. Plus, each job is accompanied by a due date which is dealt with as a hard constraint. The considered 

performance criterion is makespan. The problem is strongly NP-hard. In this research, a new modelling 

approach is developed for the problem. This new modelling technique and the resulting observations are 

incorporated into a new exact algorithm to solve the problem to optimality. To investigate the 

performance of the algorithm, a number of test problems are solved and the results are reported. 

Computational results demonstrate that the developed algorithm is significantly faster than the 

mathematical models.  
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1. INTRODUCTION 

In the no-wait flow shop problem, a special case of the 

classical flow shop problem, no waiting time is allowed 

between successive operations of jobs. In other words, once 

processing of a certain job is started, no interruption is 

permitted between operations of the job. In this paper, 

completion of each job is associated with a due date, i.e., jobs 

must be completed before their due dates. Due date side-

constraints are among the most applicable constraints in 

scheduling and sequencing literature because real-world jobs 

are usually accompanied by a deadline for completion 

(Hunsucker and Shah 1992). It is assumed that all the jobs are 

ready at time zero and the considered performance measure is 

makespan. According to the three-field notation of the 

scheduling problems (Graham et al. 1979), the problem can 

be designated as max| , |jF nwt d C . Samarghandi (2015) 

proves that max| , |jF nwt d C  is NP-hard. Hall and 

Sriskandarajah (1996) provide a comprehensive review of the 

applications of the problem. The literature is rich with studies 

that develop heuristic or metaheuristic methods in order to 

deal with no-wait flow shop problems with or without due 

dates constraints. For the case of | , |jF nwt d  , due date 

constraints have been traditionally considered as soft 

constraints. In other words, violating due date constraints has 

been permitted with the objective function of minimizing a 

measure of the tardiness (e.g., number of tardy jobs or 

number of late days). Tardiness measures have frequently 

been combined with other performance measures such as 

makespan, total flow time, etc.; however, due date constraints 

have rarely been studied as hard constraints. This is mainly 

due to the fact that generating a feasible solution for the 

problem, or proving that a feasible solution does not exist, 

turns into a very challenging task, especially when due dates 

are not too loose or too tight. Since no-wait flow shop 

problem with due date constraints is strongly NP-hard, 

several algorithms have been devised to deal with the 

problem (Rajasekera et al. 1991, Hunsucker and Shah 1992, 

Sarper 1995, Brah 1996, Gupta et al. 2000, Gowrishankar et 

al. 2001, Kaminsky and Lee 2002, Błażewicz et al. 2005, 

Błażewicz et al. 2008, Hasanzadeh et al. 2009, Dhingra and 

Chandna 2010, Tang et al. 2011, Panwalkar and Koulamas 

2012, Ebrahimi et al. 2014, Tari and Olfat 2014, 

Samarghandi 2015). All of these methods first relax the due 

date constraints and then solve the no-wait scheduling 

problem with a variant of lateness measure in the objective 

function by means of a metaheuristic or a heuristic algorithm. 

This paper introduces a new modelling approach for the no-

wait flow shop problem and proves a number of theorems 

based on the characteristics of the max| , |jF nwt d C . 

Afterward, an enumeration algorithm is proposed to solve 

max| , |jF nwt d C  to optimality. Computational results 

reveal that the proposed algorithm is significantly faster than 

the competitive methods. 

2. Problem Description 

In the considered max| , |jF nwt d C  it is assumed that: 1) 

all jobs follow the same predefined order of operations; 2) no 

pre-emption or interruption is allowed; 3) no job can be 
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processed by more than one machine at the same time, and no 

machine can process more than one operation at the same 

time; 4) all jobs must visit all machines, possibly with zero 

processing time on some of the machines; and 5) there should 

be no waiting time between consecutive operations of a job. 

The following notation is used throughout the rest of this 

paper: 

m
 

Number of machines 

n  Number of jobs 

jJ  Job j  

ijp
 

Processing time of i th operation of jJ   

jkc
 

Contribution of kJ  to the objective function 

when placed immediately after jJ  

ijS
 

Starting time of i th operation of jJ  

jF   Finish time of jJ   

jd   Due date of jJ  

A solution of max| |F nwt C  can be described with a 

sequence 
1 2( , ,..., )n     of n  jobs. It should be noted 

that max| |F nwt C  is a permutation scheduling, i.e. the 

sequence of the jobs on all machines is the same. Hence, the 

contribution of job k  when placed immediately after job j  

(
jkc ) is not dependent to the machines. The algorithm of 

Samarghandi (2015) can be employed with small 

modifications to calculate ; , 1,2,..., ;jkc j k n k j  . Note 

that 0; 1,2,...,jjc j n  . Once all the contributions are 

extracted by the mentioned algorithm, the contribution matrix 

C  can be formed. This matrix is a ( 1)n n   matrix that 

lists the contribution of each job to the makespan if placed 

after a certain job in the sequence.  
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3. Search Graph  

Figure 1 describes a search graph that represents the 

max| , |jF nwt d C : 
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Figure 1 – The search graph respresenting 

max| , |jF nwt d C  

In this graph, the node which is located in the intersection of 

row ;1j j n   and column ;1l l n   represents job j  

if located in position l  of permutation  ; S  and T  are 

dummy jobs with zero processing times, which represent the 

start and the finish of the flow shop system. An arc exists 

between two nodes if and only if these nodes belong to two 

adjacent columns and they do not represent the same job.  

A feasible solution of max| |F nwt C  starts with S  and 

ends with T ; it includes one and only one node in each row 

and in each column. As a result, Figure 2 characterizes the 

permutation (2,1,3)   and represents a feasible solution 

of max| |F nwt C  with three jobs. 
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Figure 2 – A feasible solution of max| |F nwt C  with three 

jobs and three machines 

Each arc ;1 ,jka j k n  , when jka  exists, can be labeled 

with jkc  as defined by (1). Sja  represents the arc that 

connects S  to jJ  in column 1  and is labeled with 0 jc .  

Observation 1: suppose that , ljLP   represents the longest 

path from S  to the node in the intersection of column l  

and row j .  

If , ; {1,2,..., }, {1,2,..., }
lj jLP d j n l n      , then the 

due date constraints can be removed and the problem reduces 

to max| |F nwt C . 



 

 

     

 

Observation 2: if 
, ; {1,2,..., }

nj jLP d j n    , then the 

due date constraints can be removed and the problem reduces 

to max| |F nwt C . 

Observation 3: if 
,{1,2,..., } |

nj jj n LP d   , then the 

due date constraints for 
jJ  can be removed from the 

problem. 

Observation 4: suppose that 
, ljSP   represents the shortest 

path from S  to the node in the intersection of column l  

and row j . 

If 
,{1,2,..., } | , {1,2,..., }

lj jj n SP d l n     , then the 

problem is infeasible.  

If ,{1,2,..., } | , {1,2,..., }
lj jj n SP d l n      or 

,{1,2,..., } | , {1,2,..., }
lj jl n SP d j n     , then the 

problem is infeasible. 

4. The Enumeration Algorithm 

The following algorithm represents the enumeration 

algorithm that solves 
max| , |jF nwt d C  to optimality. 

1. If 
1,{1,2,..., } | j jj n SP d   , stop. The problem is 

infeasible. 

2. If , ; {1,2,..., }
nj jLP d j n    , remove the due date 

constraints to reduce the problem to max| |F nwt C . 

3. Calculate , ; {2,3,..., }, {1,2,..., }
ljSP l n j n   . If 

,{1,2,..., } | ; {2,3,..., }
lj jj n SP d l n    , remove 

the corresponding node and all of its arcs from the graph 

G ; call the remaining graph G . 

4. Find the shortest path between S  and T  with attention 

to the definition of the feasible solution of 

max| |F nwt C . If the found shortest path does not 

violate any of the due date constraints, it is optimal; 

compute the total contribution values of this path to 

calculate the makespan. Otherwise, proceed to step 5. 

5. This step describes an enumeration sub-algorithm to 

solve G  to optimality. The objective of this sub-

algorithm is to fathom all of the paths of the modified 

search graph (or G ) from S  to T  until the optimum 

solution is found. The root node is S . 

5.1. Branch from S  to all of the nodes in 1 . Define l  

as the index for the positions in the permutation; in 

other words, l  represents the current column in 

G . Set 1l  . Objective function value for node 

; {1,2,..., }j j n  is 
0

l

j jC c . Fathom all nodes 

in G  for 1l  . 

5.2. Assume that  max | 1,2,...,l l

q j
j

C C j n   such 

that j  is not selected yet; update the current node 

to q ; break the ties by random selection, unfathom 

all the nodes in column |t t l , and branch from 

q  to all of its adjacent nodes in G ; calculate 

1l l

j q qjC C c   ,  1,2,...,j n  and 

and areadjacentq j .  

5.3. Fathom the nodes that violate the due date of their 

respective jobs in column 1l  , and go to step 5.6 

if 1l n  ; otherwise proceed to step 5.4. Note 

that if due date constraints are violated when 1l  , 

according to step 1 the problem is infeasible.  

5.4. Compare  1; 1,2,...,l

jC j n   with 
max

bestC , the 

makespan of the best-known feasible solution (if 

the list of the complete feasible solutions is not 

empty); if  1

max ; 1,2,...,l best

jC C j n   , fathom 

node j  in column 1l  . 

5.5. If 1l n   and there is at least one node in column 

1l   which is not fathomed yet, then the paths to 

such nodes define different feasible solutions each 

with makespan which is at least as desirable as 

max

bestC . Accordingly, compare the makespan of such 

nodes with each other and update 
max

bestC  with the 

best found makespan. Then, fathom all the nodes in 

column 1l   and proceed to 5.6. 

5.6. If all of the nodes in 1l   are fathomed, then 

fathom the current node and proceed to 5.6.1. 

Otherwise, set 1l l   and go to step 5.2. 

5.6.1. If there are nodes in the current column l , 

which have not yet been selected or fathomed 

during the course of the algorithm, do not 

change the value of l ; go to step 5.2. 

Otherwise proceed to 5.6.2. 

5.6.2. Set 1l l  . If 0l  , stop. Report max

bestC  

and its corresponding route as the optimum 

solution. If the list of the feasible solutions is 

empty, the problem is infeasible. Otherwise, 

restart step 5.6 from the beginning. ■ 

Numerical results will be presented in the next section. 

 



 

 

     

 

Table 1 –Computational Results  

Problem Size n*m 
Due date 

Tightness Factor 

Model of 

Samarghandi 

(2015) (T=600) 

Enumeration Algorithm 

T=60 T=300 T=600 

Sam01+DD 7*7 

TF=1 7705, 2 7705, 0 7705, 0 7705, 0 

TF=2 7705, 2 7705, 0 7705, 0 7705, 0 

TF=3 7705, 2 7705, 0 7705, 0 7705, 0 

TF=4 NFS, 14 NFS, 0 NFS, 0 NFS, 0 

Sam02+DD 8*8 

TF=1 9372, 11 9372, 0 9372, 0 9372, 0 

TF=2 9372, 11 9372, 0 9372, 0 9372, 0 

TF=3 9573, 11 9573, 0 9573, 0 9573, 0 

TF=4 NFS, 12 NFS, 0 NFS, 0 NFS, 0 

Sam03+DD 8*9 

TF=1 9690, 10 9690, 0 9690, 0 9690, 0 

TF=2 9690, 10 9690, 0 9690, 0 9690, 0 

TF=3 9690, 10 9690, 0 9690, 0 9690, 0 

TF=4 NFS, 290 NFS, 0 NFS, 0 NFS, 0 

Sam04+DD 10*6 

TF=1 9159, 334 9159, 2 9159, 2 9159, 2 

TF=2 9454, 224 9454, 0 9454, 0 9454, 0 

TF=3 11537, 174 11537, 0 11537, 0 11537, 0 

TF=4 NFS, 25 NFS, 0 NFS, 0 NFS, 0 

Sam05+DD 11*5 

TF=1 8152, 3966 8152, 17 8152, 17 8152, 17 

TF=2 8164, 3402 8164, 9 8164, 9 8164, 9 

TF=3 NFS NFS, 0 NFS, 0 NFS, 0 

TF=4 NFS, 4 NFS, 0 NFS, 0 NFS, 0 

Sam06+DD 12*5 

TF=1 9084 9084, 54 9084, 54 9084, 54 

TF=2 9120 9120, 25 9120, 25 9120, 25 

TF=3 NFS NFS, 0 NFS, 0 NFS, 0 

TF=4 NFS, 305 NFS, 0 NFS, 0 NFS, 0 

Sam07+DD 13*4 

TF=1 8465 9002 8465, 226 8465, 226 

TF=2 9002 9002, 11 9002, 11 9002, 11 

TF=3 NFS NFS, 0 NFS, 0 NFS, 0 

TF=4 NFS, 298 NFS, 0 NFS, 0 NFS, 0 

Sam08+DD 14*4 

TF=1 9674 10613 9699 9699 

TF=2 NFS NFS, 24 NFS, 24 NFS, 24 

TF=3 NFS NFS, 6 NFS, 6 NFS, 6 

TF=4 NFS, 4 NFS, 0 NFS, 0 NFS, 0 

Sam09+DD 15*6 

TF=1 13472 15999 14991 14976 

TF=2 14666 15809 15014 14031 

TF=3 NFS NFS, 59 NFS, 59 NFS, 59 

TF=4 NFS, 3 NFS, 1 NFS, 1 NFS, 1 

Sam10+DD 16*7 

TF=1 9017 9419 9419 9402 

TF=2 8977 9451 9432 9402 

TF=3 9262 NFS 9374 9374 

TF=4 NFS NFS, 11 NFS, 11 NFS, 11 

Sam11+DD 17*5 

TF=1 11371 12680 12627 12625 

TF=2 NFS NFS NFS NFS 

TF=3 NFS NFS NFS, 137 NFS, 137 

TF=4 NFS, 2 NFS, 1 NFS, 1 NFS, 1 

Sam12+DD 18*9 

TF=1 8904 10980 10886 10813 

TF=2 9232 11199 10943 10943 

TF=3 NFS NFS NFS NFS 

TF=4 NFS, 54 NFS, 2 NFS, 2 NFS, 2 

Sam13+DD 19*8 

TF=1 17970 21204 21108 21023 

TF=2 NFS NFS NFS NFS 

TF=3 NFS NFS NFS NFS 

TF=4 NFS NFS, 2 NFS, 2 NFS, 2 

Sam14+DD 20*10 

TF=1 31199 37045 36754 36754 

TF=2 34399 NFS NFS NFS 

TF=3 NFS NFS NFS NFS 

TF=4 NFS NFS, 17 NFS, 17 NFS, 17 

Percent of efforts with optimum solution 44.64% 66.07% 69.64% 69.64% 

 

 



 

 

     

 

5. Computational Experiments 

The enumeration algorithm was coded by Microsoft Visual 

C++ 2013. All the numerical experiments were performed on 

a PC equipped with a 2GHz Intel Pentium IV CPU and 2 GB 

of RAM. To perform the computational analysis, a number of 

test problems generated by Samarghandi (2015) were 

selected. Numerical results of the enumeration algorithm 

were compared to the results of the developed mathematical 

model of Samarghandi (2015).  

Best solutions of the enumeration algorithm for the test 

problems is reported at 60T   , 300T   and 600T   

seconds; for the case of the mathematical model of 

Samarghandi (2015), the best solution is reported only for 

600T   seconds.  

In the following tables, OFV represents objective function 

value and all of the CPU times are reported in seconds. The 

time when the optimal solution was found is reported as well. 

For instance, according to Table 1, the optimal solution of 

Sam01 with due date tightness factor 1 is 7705; this solution 

has been found by the mathematical model of Samarghandi 

(2015) after 2 seconds. Numbers in boldface indicate that the 

reported solution is optimal. Therefore, NFS in boldface 

means that the problem has no feasible solutions; however, 

non-bold NFS means that although the algorithm has not 

been able find a feasible solution in the given time, the 

problem may or may not have feasible solutions. 

Computational supremacy of the developed algorithm over 

the mathematical model of Samarghandi (2015) is evident 

from Table 1. 

6. Conclusions 

The no-wait flow shop problem with due date constraints and 

makespan criterion has been considered in this paper. The 

problem is strongly NP-hard. A graph modelling of the 

problem as well as an exact enumeration algorithm that 

employs this modelling have been presented based on the 

definition of the job contributions. Computational experiment 

has been conducted to compare the performance of the 

developed enumeration algorithm with mathematical models 

from the literature. Computational results illustrate that as the 

problem size grows, finding a feasible solution for 

max| , |jF nwt d C  is not an easy task. Numerical results 

reveals that the enumeration algorithm outperforms the other 

formulations. Finally, developing tight lower and upper 

bounds for 
max| , |jF nwt d C  is an interesting future 

research direction.  
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