

An Enumeration Algorithm for the No-Wait Flow Shop Problem with Due Date

Constraints

Hamed Samarghandi*, Mehdi Behroozi**

*Department of Finance and Management Science, Edwards School of Business,

University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A7

(e-mail: samarghandi@edwards.usask.ca)

**Department of Industrial and Systems Engineering, University of Minnesota

111 Church Street S.E., Minneapolis, MN 55455, United States

(e-mail: behro040@umn.edu)

Abstract: This paper develops an enumeration algorithm for the no-wait flow shop scheduling problem

with due date constraints. In this problem, waiting time is not allowed between successive operations of

jobs. Plus, each job is accompanied by a due date which is dealt with as a hard constraint. The considered

performance criterion is makespan. The problem is strongly NP-hard. In this research, a new modelling

approach is developed for the problem. This new modelling technique and the resulting observations are

incorporated into a new exact algorithm to solve the problem to optimality. To investigate the

performance of the algorithm, a number of test problems are solved and the results are reported.

Computational results demonstrate that the developed algorithm is significantly faster than the

mathematical models.

Keywords: Scheduling; No-Wait Flow Shop; Due Date Constraints; Enumeration Algorithm; Optimality

1. INTRODUCTION

In the no-wait flow shop problem, a special case of the

classical flow shop problem, no waiting time is allowed

between successive operations of jobs. In other words, once

processing of a certain job is started, no interruption is

permitted between operations of the job. In this paper,

completion of each job is associated with a due date, i.e., jobs

must be completed before their due dates. Due date side-

constraints are among the most applicable constraints in

scheduling and sequencing literature because real-world jobs

are usually accompanied by a deadline for completion

(Hunsucker and Shah 1992). It is assumed that all the jobs are

ready at time zero and the considered performance measure is

makespan. According to the three-field notation of the

scheduling problems (Graham et al. 1979), the problem can

be designated as max| , |jF nwt d C . Samarghandi (2015)

proves that max| , |jF nwt d C is NP-hard. Hall and

Sriskandarajah (1996) provide a comprehensive review of the

applications of the problem. The literature is rich with studies

that develop heuristic or metaheuristic methods in order to

deal with no-wait flow shop problems with or without due

dates constraints. For the case of | , |jF nwt d , due date

constraints have been traditionally considered as soft

constraints. In other words, violating due date constraints has

been permitted with the objective function of minimizing a

measure of the tardiness (e.g., number of tardy jobs or

number of late days). Tardiness measures have frequently

been combined with other performance measures such as

makespan, total flow time, etc.; however, due date constraints

have rarely been studied as hard constraints. This is mainly

due to the fact that generating a feasible solution for the

problem, or proving that a feasible solution does not exist,

turns into a very challenging task, especially when due dates

are not too loose or too tight. Since no-wait flow shop

problem with due date constraints is strongly NP-hard,

several algorithms have been devised to deal with the

problem (Rajasekera et al. 1991, Hunsucker and Shah 1992,

Sarper 1995, Brah 1996, Gupta et al. 2000, Gowrishankar et

al. 2001, Kaminsky and Lee 2002, Błażewicz et al. 2005,

Błażewicz et al. 2008, Hasanzadeh et al. 2009, Dhingra and

Chandna 2010, Tang et al. 2011, Panwalkar and Koulamas

2012, Ebrahimi et al. 2014, Tari and Olfat 2014,

Samarghandi 2015). All of these methods first relax the due

date constraints and then solve the no-wait scheduling

problem with a variant of lateness measure in the objective

function by means of a metaheuristic or a heuristic algorithm.

This paper introduces a new modelling approach for the no-

wait flow shop problem and proves a number of theorems

based on the characteristics of the max| , |jF nwt d C .

Afterward, an enumeration algorithm is proposed to solve

max| , |jF nwt d C to optimality. Computational results

reveal that the proposed algorithm is significantly faster than

the competitive methods.

2. Problem Description

In the considered max| , |jF nwt d C it is assumed that: 1)

all jobs follow the same predefined order of operations; 2) no

pre-emption or interruption is allowed; 3) no job can be

mailto:samarghandi@edwards.usask.ca
mailto:behro040@umn.edu

processed by more than one machine at the same time, and no

machine can process more than one operation at the same

time; 4) all jobs must visit all machines, possibly with zero

processing time on some of the machines; and 5) there should

be no waiting time between consecutive operations of a job.

The following notation is used throughout the rest of this

paper:

m

Number of machines

n Number of jobs

jJ Job j

ijp

Processing time of i th operation of jJ

jkc

Contribution of kJ to the objective function

when placed immediately after jJ

ijS

Starting time of i th operation of jJ

jF Finish time of jJ

jd Due date of jJ

A solution of max| |F nwt C can be described with a

sequence
1 2(, ,...,)n of n jobs. It should be noted

that max| |F nwt C is a permutation scheduling, i.e. the

sequence of the jobs on all machines is the same. Hence, the

contribution of job k when placed immediately after job j

(
jkc) is not dependent to the machines. The algorithm of

Samarghandi (2015) can be employed with small

modifications to calculate ; , 1,2,..., ;jkc j k n k j . Note

that 0; 1,2,...,jjc j n . Once all the contributions are

extracted by the mentioned algorithm, the contribution matrix

C can be formed. This matrix is a (1)n n matrix that

lists the contribution of each job to the makespan if placed

after a certain job in the sequence.

01 0

1

[; 0,1,..., ; 1,2,...,]jk

n

n nn

C c j n k n

c c

c c

 (1)

3. Search Graph

Figure 1 describes a search graph that represents the

max| , |jF nwt d C :

S

1

2

n

1

2

n

1

2

n

T

Figure 1 – The search graph respresenting

max| , |jF nwt d C

In this graph, the node which is located in the intersection of

row ;1j j n and column ;1l l n represents job j

if located in position l of permutation ; S and T are

dummy jobs with zero processing times, which represent the

start and the finish of the flow shop system. An arc exists

between two nodes if and only if these nodes belong to two

adjacent columns and they do not represent the same job.

A feasible solution of max| |F nwt C starts with S and

ends with T ; it includes one and only one node in each row

and in each column. As a result, Figure 2 characterizes the

permutation (2,1,3) and represents a feasible solution

of max| |F nwt C with three jobs.

S

1

2

3

1

2

3

1

2

3

T

Figure 2 – A feasible solution of max| |F nwt C with three

jobs and three machines

Each arc ;1 ,jka j k n , when jka exists, can be labeled

with jkc as defined by (1). Sja represents the arc that

connects S to jJ in column 1 and is labeled with 0 jc .

Observation 1: suppose that , ljLP represents the longest

path from S to the node in the intersection of column l

and row j .

If , ; {1,2,..., }, {1,2,..., }
lj jLP d j n l n , then the

due date constraints can be removed and the problem reduces

to max| |F nwt C .

Observation 2: if
, ; {1,2,..., }

nj jLP d j n , then the

due date constraints can be removed and the problem reduces

to max| |F nwt C .

Observation 3: if
,{1,2,..., } |

nj jj n LP d , then the

due date constraints for
jJ can be removed from the

problem.

Observation 4: suppose that
, ljSP represents the shortest

path from S to the node in the intersection of column l

and row j .

If
,{1,2,..., } | , {1,2,..., }

lj jj n SP d l n , then the

problem is infeasible.

If ,{1,2,..., } | , {1,2,..., }
lj jj n SP d l n or

,{1,2,..., } | , {1,2,..., }
lj jl n SP d j n , then the

problem is infeasible.

4. The Enumeration Algorithm

The following algorithm represents the enumeration

algorithm that solves
max| , |jF nwt d C to optimality.

1. If
1,{1,2,..., } | j jj n SP d , stop. The problem is

infeasible.

2. If , ; {1,2,..., }
nj jLP d j n , remove the due date

constraints to reduce the problem to max| |F nwt C .

3. Calculate , ; {2,3,..., }, {1,2,..., }
ljSP l n j n . If

,{1,2,..., } | ; {2,3,..., }
lj jj n SP d l n , remove

the corresponding node and all of its arcs from the graph

G ; call the remaining graph G .

4. Find the shortest path between S and T with attention

to the definition of the feasible solution of

max| |F nwt C . If the found shortest path does not

violate any of the due date constraints, it is optimal;

compute the total contribution values of this path to

calculate the makespan. Otherwise, proceed to step 5.

5. This step describes an enumeration sub-algorithm to

solve G to optimality. The objective of this sub-

algorithm is to fathom all of the paths of the modified

search graph (or G) from S to T until the optimum

solution is found. The root node is S .

5.1. Branch from S to all of the nodes in 1 . Define l

as the index for the positions in the permutation; in

other words, l represents the current column in

G . Set 1l . Objective function value for node

; {1,2,..., }j j n is
0

l

j jC c . Fathom all nodes

in G for 1l .

5.2. Assume that max | 1,2,...,l l

q j
j

C C j n such

that j is not selected yet; update the current node

to q ; break the ties by random selection, unfathom

all the nodes in column |t t l , and branch from

q to all of its adjacent nodes in G ; calculate

1l l

j q qjC C c , 1,2,...,j n and

and areadjacentq j .

5.3. Fathom the nodes that violate the due date of their

respective jobs in column 1l , and go to step 5.6

if 1l n ; otherwise proceed to step 5.4. Note

that if due date constraints are violated when 1l ,

according to step 1 the problem is infeasible.

5.4. Compare 1; 1,2,...,l

jC j n with
max

bestC , the

makespan of the best-known feasible solution (if

the list of the complete feasible solutions is not

empty); if 1

max ; 1,2,...,l best

jC C j n , fathom

node j in column 1l .

5.5. If 1l n and there is at least one node in column

1l which is not fathomed yet, then the paths to

such nodes define different feasible solutions each

with makespan which is at least as desirable as

max

bestC . Accordingly, compare the makespan of such

nodes with each other and update
max

bestC with the

best found makespan. Then, fathom all the nodes in

column 1l and proceed to 5.6.

5.6. If all of the nodes in 1l are fathomed, then

fathom the current node and proceed to 5.6.1.

Otherwise, set 1l l and go to step 5.2.

5.6.1. If there are nodes in the current column l ,

which have not yet been selected or fathomed

during the course of the algorithm, do not

change the value of l ; go to step 5.2.

Otherwise proceed to 5.6.2.

5.6.2. Set 1l l . If 0l , stop. Report max

bestC

and its corresponding route as the optimum

solution. If the list of the feasible solutions is

empty, the problem is infeasible. Otherwise,

restart step 5.6 from the beginning. ■

Numerical results will be presented in the next section.

Table 1 –Computational Results

Problem Size n*m
Due date

Tightness Factor

Model of

Samarghandi

(2015) (T=600)

Enumeration Algorithm

T=60 T=300 T=600

Sam01+DD 7*7

TF=1 7705, 2 7705, 0 7705, 0 7705, 0

TF=2 7705, 2 7705, 0 7705, 0 7705, 0

TF=3 7705, 2 7705, 0 7705, 0 7705, 0

TF=4 NFS, 14 NFS, 0 NFS, 0 NFS, 0

Sam02+DD 8*8

TF=1 9372, 11 9372, 0 9372, 0 9372, 0

TF=2 9372, 11 9372, 0 9372, 0 9372, 0

TF=3 9573, 11 9573, 0 9573, 0 9573, 0

TF=4 NFS, 12 NFS, 0 NFS, 0 NFS, 0

Sam03+DD 8*9

TF=1 9690, 10 9690, 0 9690, 0 9690, 0

TF=2 9690, 10 9690, 0 9690, 0 9690, 0

TF=3 9690, 10 9690, 0 9690, 0 9690, 0

TF=4 NFS, 290 NFS, 0 NFS, 0 NFS, 0

Sam04+DD 10*6

TF=1 9159, 334 9159, 2 9159, 2 9159, 2

TF=2 9454, 224 9454, 0 9454, 0 9454, 0

TF=3 11537, 174 11537, 0 11537, 0 11537, 0

TF=4 NFS, 25 NFS, 0 NFS, 0 NFS, 0

Sam05+DD 11*5

TF=1 8152, 3966 8152, 17 8152, 17 8152, 17

TF=2 8164, 3402 8164, 9 8164, 9 8164, 9

TF=3 NFS NFS, 0 NFS, 0 NFS, 0

TF=4 NFS, 4 NFS, 0 NFS, 0 NFS, 0

Sam06+DD 12*5

TF=1 9084 9084, 54 9084, 54 9084, 54

TF=2 9120 9120, 25 9120, 25 9120, 25

TF=3 NFS NFS, 0 NFS, 0 NFS, 0

TF=4 NFS, 305 NFS, 0 NFS, 0 NFS, 0

Sam07+DD 13*4

TF=1 8465 9002 8465, 226 8465, 226

TF=2 9002 9002, 11 9002, 11 9002, 11

TF=3 NFS NFS, 0 NFS, 0 NFS, 0

TF=4 NFS, 298 NFS, 0 NFS, 0 NFS, 0

Sam08+DD 14*4

TF=1 9674 10613 9699 9699

TF=2 NFS NFS, 24 NFS, 24 NFS, 24

TF=3 NFS NFS, 6 NFS, 6 NFS, 6

TF=4 NFS, 4 NFS, 0 NFS, 0 NFS, 0

Sam09+DD 15*6

TF=1 13472 15999 14991 14976

TF=2 14666 15809 15014 14031

TF=3 NFS NFS, 59 NFS, 59 NFS, 59

TF=4 NFS, 3 NFS, 1 NFS, 1 NFS, 1

Sam10+DD 16*7

TF=1 9017 9419 9419 9402

TF=2 8977 9451 9432 9402

TF=3 9262 NFS 9374 9374

TF=4 NFS NFS, 11 NFS, 11 NFS, 11

Sam11+DD 17*5

TF=1 11371 12680 12627 12625

TF=2 NFS NFS NFS NFS

TF=3 NFS NFS NFS, 137 NFS, 137

TF=4 NFS, 2 NFS, 1 NFS, 1 NFS, 1

Sam12+DD 18*9

TF=1 8904 10980 10886 10813

TF=2 9232 11199 10943 10943

TF=3 NFS NFS NFS NFS

TF=4 NFS, 54 NFS, 2 NFS, 2 NFS, 2

Sam13+DD 19*8

TF=1 17970 21204 21108 21023

TF=2 NFS NFS NFS NFS

TF=3 NFS NFS NFS NFS

TF=4 NFS NFS, 2 NFS, 2 NFS, 2

Sam14+DD 20*10

TF=1 31199 37045 36754 36754

TF=2 34399 NFS NFS NFS

TF=3 NFS NFS NFS NFS

TF=4 NFS NFS, 17 NFS, 17 NFS, 17

Percent of efforts with optimum solution 44.64% 66.07% 69.64% 69.64%

5. Computational Experiments

The enumeration algorithm was coded by Microsoft Visual

C++ 2013. All the numerical experiments were performed on

a PC equipped with a 2GHz Intel Pentium IV CPU and 2 GB

of RAM. To perform the computational analysis, a number of

test problems generated by Samarghandi (2015) were

selected. Numerical results of the enumeration algorithm

were compared to the results of the developed mathematical

model of Samarghandi (2015).

Best solutions of the enumeration algorithm for the test

problems is reported at 60T , 300T and 600T

seconds; for the case of the mathematical model of

Samarghandi (2015), the best solution is reported only for

600T seconds.

In the following tables, OFV represents objective function

value and all of the CPU times are reported in seconds. The

time when the optimal solution was found is reported as well.

For instance, according to Table 1, the optimal solution of

Sam01 with due date tightness factor 1 is 7705; this solution

has been found by the mathematical model of Samarghandi

(2015) after 2 seconds. Numbers in boldface indicate that the

reported solution is optimal. Therefore, NFS in boldface

means that the problem has no feasible solutions; however,

non-bold NFS means that although the algorithm has not

been able find a feasible solution in the given time, the

problem may or may not have feasible solutions.

Computational supremacy of the developed algorithm over

the mathematical model of Samarghandi (2015) is evident

from Table 1.

6. Conclusions

The no-wait flow shop problem with due date constraints and

makespan criterion has been considered in this paper. The

problem is strongly NP-hard. A graph modelling of the

problem as well as an exact enumeration algorithm that

employs this modelling have been presented based on the

definition of the job contributions. Computational experiment

has been conducted to compare the performance of the

developed enumeration algorithm with mathematical models

from the literature. Computational results illustrate that as the

problem size grows, finding a feasible solution for

max| , |jF nwt d C is not an easy task. Numerical results

reveals that the enumeration algorithm outperforms the other

formulations. Finally, developing tight lower and upper

bounds for
max| , |jF nwt d C is an interesting future

research direction.

7. References

Błażewicz, J., E. Pesch, M. Sterna and F. Werner

(2005). "The two-machine flow-shop problem with weighted

late work criterion and common due date." European Journal

of Operational Research 165(2): 408-415.

Błażewicz, J., E. Pesch, M. Sterna and F. Werner

(2008). "Metaheuristic approaches for the two-machine flow-

shop problem with weighted late work criterion and common

due date." Computers & Operations Research 35(2): 574-599.

Brah, S. (1996). "A comparative analysis of due date

based job sequencing rules in a flow shop with multiple

processors." Production Planning & Control 7(4): 362-373.

Dhingra, A. and P. Chandna (2010). "Hybrid genetic

algorithm for SDST flow shop scheduling with due dates: a

case study." International Journal of Advanced Operations

Management 2(3): 141-161.

Ebrahimi, M., S. Fatemi Ghomi and B. Karimi

(2014). "Hybrid flow shop scheduling with sequence

dependent family setup time and uncertain due dates."

Applied Mathematical Modelling 38(9-10): 2490-2504.

Gowrishankar, K., C. Rajendran and G. Srinivasan

(2001). "Flow shop scheduling algorithms for minimizing the

completion time variance and the sum of squares of

completion time deviations from a common due date."

European Journal of Operational Research 132(3): 643-665.

Graham, R. L., E. L. Lawler, J. K. Lenstra and A. R.

Kan (1979). "Optimization and approximation in

deterministic sequencing and scheduling: a survey." Annals

of discrete mathematics 5: 287-326.

Gupta, J. N., V. Lauff and F. Werner (2000). On the

solution of 2-machine flow shop problems with a common

due date. Operations Research Proceedings 1999, Springer.

Hall, N. and C. Sriskandarajah (1996). "A survey of

machine scheduling problems with blocking and no-wait in

process." Operations Research 44: 510-525.

Hasanzadeh, A., H. Afshari, K. Kianfar, M. Fathi

and A. O. Jadid (2009). A GRASP algorithm for the two-

machine flow-shop problem with weighted late work

criterion and common due date. Industrial Engineering and

Engineering Management, 2009. IEEM 2009. IEEE

International Conference on, Hong Kong, IEEE.

Hunsucker, J. and J. Shah (1992). "Performance of

Priority Rules in a Due Date Flow Shop." Omega 20(1): 73-

89.

Kaminsky, P. and Z.-H. Lee (2002). "On-line

algorithms for flow shop due date quotation." University of

California, Berkeley (California, USA). http://www.ieor.

berkeley.edu/~kaminsky/papers/ddq_flowshop. pdf.

Panwalkar, S. and C. Koulamas (2012). "An O(n^2)

algorithm for the variable common due date, minimal tardy

jobs bicriteria two-machine flow shop problem with ordered

machines." European Journal of Operational Research

221(1): 7-13.

Rajasekera, J., M. Murr and K. So (1991). "A due-

date assignment model for a flow shop with application in a

lightguide cable shop." Journal of Manufacturing Systems

10(1): 1-7.

Samarghandi, H. (2015). "A particle swarm

optimisation for the no-wait flow shop problem with due date

constraints." International Journal of Production Research

53(9): 2853-2870.

http://www/

Sarper, H. (1995). "Minimizing the sum of absolute

deviations about a common due date for the two-machine

flow shop problem." Applied mathematical modelling 19(3):

153-161.

Tang, H. B., C. M. Ye and L. F. Jiang (2011). "A

New Hybrid Particle Swarm Optimization for Solving Flow

Shop Scheduling Problem with Fuzzy Due Date." Advanced

Materials Research 189: 2746-2753.

Tari, F. G. and L. Olfat (2014). "Heuristic rules for

tardiness problem in flow shop with intermediate due dates."

The International Journal of Advanced Manufacturing

Technology 71(1-4): 381-393.

