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Abstract 
This paper deals with the no-wait flow shop scheduling problem with due date constraints. In the 

no-wait flow shop problem, waiting time is not allowed between successive operations of jobs. Moreover, 

the jobs should be completed before their respective due dates; due date constraints are dealt with as hard 

constraints. The considered performance criterion is makespan. The problem is strongly NP-hard. This 

paper develops a number of distinct mathematical models for the problem based on different decision 

variables. Namely, a mixed integer programming model, three quadratic mixed integer programming 

models, and two constraint programming models are developed. Moreover, a novel modelling approach is 

developed for the problem. This new modeling technique facilitates the investigation of some of the 

important characteristics of the problem; this results in a number of propositions to rule out a large number 

of infeasible solutions from the set of all possible permutations. Afterward, the new modelling technique 

and the resulting propositions are incorporated into a new exact algorithm to solve the problem to 

optimality. To investigate the performance of the mathematical models and to compare them with the 

developed exact algorithm, a number of test problems are solved and the results are reported. Computational 

results demonstrate that the developed algorithm is significantly faster than the mathematical models.  

Keywords: No-Wait Flow Shop; Due Date Constraints; Mixed Integer Programming; Constraint 

Programming; Enumeration Algorithm 

1. Introduction 
In the no-wait flow shop problem, a special case of the classical flow shop problem, no waiting 

time is allowed between successive operations of jobs. In other words, once processing of a certain job is 

started, no interruption is permitted between operations of the job. In this paper, completion of each job is 

associated with a due date, i.e., jobs must be completed before their due dates. Due date side-constraints 

are among the most applicable constraints in scheduling and sequencing literature because real-world jobs 

are usually accompanied by a deadline for completion (Hunsucker and Shah 1992). In this paper, it is 

assumed that all the jobs are ready at time zero (all release dates are zero) and the considered performance 

measure is makespan. According to the three-field notation of the scheduling problems (Graham et al. 

1979), the problem can be designated as max| , |jF nwt d C . 

King and Spachis (1980) proved that the no-wait flow shop problem with makespan performance 

measure ( max| |F nwt C ) can be transformed to the Asymmetric Travelling Salesperson Problem (ATSP). 

Röck (1984) proved that ( max| |F nwt C ) is NP-hard. Since max| , |jF nwt d C  is a harder problem than 

max| |F nwt C , it can be inferred that max| , |jF nwt d C  is also NP-hard.  
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Industrial applications mentioned in the literature for max| , |jF nwt d C  include chemical industries 

(Rajendran 1994), food industries (Hall and Sriskandarajah 1996), steel production (Wismer 1972), 

pharmaceutical industries (Raaymakers and Hoogeveen 2000), and production of concrete products 

(Grabowski and Pempera 2000). Hall and Sriskandarajah (1996) provide a comprehensive review of the 

applications of the problem. 

The reputation of a company as a reliable firm will tremendously damage if it frequently delivers 

jobs after their due dates are passed (even if the number of late days is relatively small). Moreover, trust 

between companies will be damaged if late jobs are not frequent, but a few jobs are delivered considerably 

past their due dates. Note that on-time delivery of the jobs can be only one of the goals of a company. 

Companies can be interested in optimizing other criteria such as makespan, while avoiding late days or 

tardy jobs. Hence, max| , |jF nwt d C  is not only an applicable problem with many real-world applications, 

but it is proved to be NP-hard. 

The literature is rich with studies that develop heuristic or metaheuristic methods in order to deal 

with no-wait flow shop problems with or without due dates constraints. For the case of | , |jF nwt d J , due 

date constraints have been traditionally considered as soft constraints. In other words, violating due date 

constraints has been permitted with the objective function of minimizing a measure of the tardiness (e.g., 

number of tardy jobs or number of late days). Tardiness measures have frequently been combined with 

other performance measures such as makespan, total flow time, etc.; however, due date constraints have 

rarely been studied as hard constraints. This is mainly due to the fact that generating a feasible solution for 

the problem, or proving that a feasible solution does not exist, turns into a very challenging task, especially 

when due dates are not too loose or too tight. Since no-wait flow shop problem with due date constraints is 

strongly NP-hard, several algorithms have been devised to deal with the problem (Rajasekera et al. 1991, 

Hunsucker and Shah 1992, Sarper 1995, Brah 1996, Gupta et al. 2000, Gowrishankar et al. 2001, Kaminsky 

and Lee 2002, Błażewicz et al. 2005, Błażewicz et al. 2008, Hasanzadeh et al. 2009, Dhingra and Chandna 

2010, Tang et al. 2011, Panwalkar and Koulamas 2012, Ebrahimi et al. 2013, Tari and Olfat 2013, 

Samarghandi Article in Press). All of these methods first relax the due date constraints and then solve the 

no-wait scheduling problem with a variant of lateness measure in the objective function by means of a 

metaheuristic or a heuristic algorithm. 

On the other hand, mathematical programming techniques have long been employed to solve 

sequencing and scheduling problems. Selen and Hott (1986) developed a mixed integer programming for a 

flow shop system with more than one machine. Stafford (1988) developed a mixed integer linear 
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programming (MILP) based on the all-integer model of Wagner (1959). Tseng et al. (2004) performed an 

empirical study to evaluate the performance of the different mixed integer programming (MIP) models for 

permutation flow shop problems; results of this study were in line with the results of Pan (1997) for the 

case of regular job shop and flow shop problems. Pan (1997) reported the models of Manne (1960), Wagner 

(1959), and Wilson (1989) as the first, second, and third best MILP formulations respectively; models 

developed by Bowman (1959), Gupta (1971), Morton and Pentico (2010), Baker and Baker (1974), and 

Stafford (1988) come next. It should be noted that these models are not reported in any special order. 

Pan and Chen (2005) developed a mixed binary integer programming (MBIP) model for reentrant 

job shop scheduling problem. Ziaee and Sadjadi (2007) developed seven MBIP formulations for the flow 

shop sequencing problem and considered different constraints such as due dates, ready times, etc., and 

studied makespan, weighted mean flow time, and weighted mean tardiness as their performance measures. 

Javadi et al. (2008) developed a linear programming model for the no-wait flow shop problem with fuzzy 

objective functions. Ramezanian et al. (2010) developed a mathematical programming model to minimize 

the earliness and tardiness costs in a flow shop context, where processing times can be zero.  

This study develops a number of mathematical programming formulations for max| , |jF nwt d C . 

More specifically, an MIP, three quadratic MIPs, and two constraint programming (CP) models are 

developed. Due date constraints are dealt with as hard constraints. Baker and Keller (2010) report that for 

the case of single machine sequencing problems mathematical programming models can be employed to 

optimally solve instances with as many as 50 jobs. However, computational experiments in this paper reveal 

that the number of jobs in max| , |jF nwt d C  instances should be significantly smaller so that the problem 

can be solved to optimality using mathematical models.  

In addition, this paper considers a new modelling approach for the no-wait flow shop problem and 

proves a number of theorems based on the characteristics of the max| , |jF nwt d C . Afterward, an 

enumeration algorithm is proposed to solve max| , |jF nwt d C  to optimality; this algorithm employs the 

results of the proven propositions to restrict the feasible region of the problem and accelerate the search 

speed. Computational results reveal that the proposed algorithm is significantly faster than the discussed 

mathematical models.  

The rest of the paper is organized as follows. Section 2 describes the notations used. Section 3 

formulates the mathematical programming models. Section 4 describes the novel modelling approach and 

the enumeration algorithm. Computational experiments are reported in section 5. Section 0 gives 

concluding remarks and discusses future research directions. 
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2. Problem Description 
In the considered max| , |jF nwt d C  it is assumed that: 1) all jobs follow the same predefined order 

of operations; 2) no preemption or interruption is allowed; 3) no job can be processed by more than one 

machine at the same time, and no machine can process more than one operation at the same time; 4) all jobs 

must visit all machines, possibly with zero processing time on some of the machines; and 5) there should 

be no waiting time between consecutive operations of a job. The following notation is used throughout the 

rest of this paper: 

m  Number of machines 
n  Number of jobs 

jJ  Job j  

ijp  Processing time of i th operation of jJ   

jkc  Contribution of kJ  to the objective function when placed immediately after jJ  

ijS  Starting time of i th operation of jJ  

jF   Finish time of jJ   

jd   Due date of jJ  
 

A solution of max| |F nwt C  can be described with a sequence 1 2( , ,..., )nS S S S  of n  jobs. It 

should be noted that max| |F nwt C  is a permutation scheduling, i.e. the sequence of the jobs on all machines 

is the same. Hence, the contribution of job k  when placed immediately after job j  ( jkc ) is not dependent 

to the machines. Contribution of jJ  to maxC  when jJ  is the first scheduled job in a sequence is calculated 

as follows: 

0
1

; 1,2,...,
m

j ij
i

c p j n
 

  ¦    (1) 

The algorithm of Samarghandi (Article in Press) can be employed with small modifications to 

calculate ; , 1,2,..., ;jkc j k n k j z . Note that 0; 1,2,...,jjc j n  . 

Step 1: Define a counter for the operations of jS  and a counter for operations of 1k jS S � ; call 

the former counter t  and the latter w .  

Step 2: Set 2; 1t w  . 
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Step 3: If tj wkp pt , set 1t tm �  and 1w wm � . If 1t m � , proceed to step 8; otherwise go 

back to the beginning of step 3. If tj wkp p� , proceed to step 4. 

Step 4: Set min | 0
h

lj wk
l t

z h p p
 

 ½§ · � t® ¾¨ ¸
© ¹¯ ¿
¦  and proceed to step 5. If the value of z  cannot be 

determined, go to step 7. 

Step 5: Set 
z

zj lj wk
l t

p p p
 

§ ·m �¨ ¸
© ¹
¦ . Proceed to the next step. 

Step 6: Set 1w wm �  and t zm . If 1t m � , go to step 8; otherwise, go back to step 3. 

Step 7: Set 
m m

jk lk lj
l w l t

c p p
  

§ · § ·m �¨ ¸ ¨ ¸
© ¹ © ¹
¦ ¦ . Stop. 

Step 8: Set jk mkc p . Stop. 

The contribution matrix C  is an ( 1)n n� u  matrix that lists the contribution of each job to the 

makespan if placed after a certain job in the sequence.  

01 0

1

[ ; 0,1,..., ; 1,2,..., ]
n

jk

n nn

c c
C c j n k n

c c

ª º
« »    « »
« »¬ ¼

  (2) 

The first row of C  can be computed using (1). To calculate the rest of this matrix, the above 

algorithm should be used. Moreover, 0; 1,2,...,jjc j n  . 

3. The Developed Models 
This section presents the developed mathematical models.  

3.1 Model I 
The first model is based on the developed model of Samarghandi (Article in Press) and employs 

the decision variable defined by (3). This model works directly with the problem data and does not require 

the algorithm of section 2 to calculate the contribution matrix. 
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, 1,2,...,

1 if isplaced immediatelyafter in thesequence
0 Otherwise

k j
jk

j k n

J J
x
 


 ®
¯

  (3) 

The model, which is a mixed integer programming, is as follows: 

maxminimize C   (4) 

max ; 1,2,...,mj mjC S p j nt �    (5) 

(1 ) ; 1,2,..., ; , 1,2,...,ik jk ij ijS M x S p i m j k n� � t �     (6) 

( 1) ; 1,2,..., 1; 1,2,...,i j ij ijS S p i m j n�  �  �   (7) 

; 1,2,...,mj mj jS p d j n� d     (8) 

1

1; 1,2,...,
n

jk
j

x k n
 

d  ¦    (9) 

1

1; 1,2,...,
n

jk
k

x j n
 

d  ¦    (10) 

1; , 1,2,...,jk kjx x j k n� d     (11) 

1 1

1
n n

jk
j k

x n
  

 �¦¦    (12) 

0; 1,2,..., ; 1,2,...,ijS i m j nt     (13) 

{0,1}; , 1,2,...,jkx j k n�     (14) 

In this model, the objective function is to minimize the makespan; M  is a sufficiently large 

number. (5) defines that makespan equals the finish time of the last operation of the last job. (6) assures 

that the operations do not overlap; this constraint is binding if kJ  is scheduled immediately after jJ  in the 

sequence. (7) imposes the no-wait constraints. (8) represents the due date constraint; according to (8), the 

last operation of each job should finish before its associated due date. Constraints (9), (10), (11), and (12) 

guarantee that all the jobs will appear exactly once in the sequence. 

3.2 Model II 
The sequence S  is modified to include two dummy jobs, 0S  and 1nS �  with zero processing times. 

Contribution matrix C  of equation (2) is modified to Cc  to confirm that 0S  and 1nS �  will be located in 

the first and the last positions in the sequence accordingly. In this matrix, 0; 1,2,...,jjc j n  . 
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01 0

( 2) ( 2)
1

0 0
0 0

[ ; , 0,1,..., 1]
0 0

0 0 0

n

n n jk
n nn

c c

C c j k n
c c

M

� u �

ª º
« »
« »c   �  
« »
« »
¬ ¼

  (15) 

; , 0,1,..., 1jkx j k n �  is the binary decision variable of the model; 1jkx   indicates that kJ  is 

placed immediately after jJ . If 0 1kx  , then kJ  is the first job in the sequence. Accordingly, the following 

model is formulated. 

1 1

0 0

minimize
n n

jk jk
j k

c x
� �

  
¦¦    (16) 

0

1; 1,2,..., 1
n

jk
j

x k n
 

  �¦    (17) 

1

1

1; 0,1,...,
n

jk
k

x j n
�

 

  ¦    (18) 

0 0; 0,1,..., 1jx j n  �    (19) 

( 1) 0; 0,1,2,..., 1n kx k n�   �    (20) 

0 1u     (21) 

2 2; 1,2,..., 1ju n j nd d �  �    (22) 

� �� �1 1 1 ; , 1,2,..., 1;j k jku u n x j k n j k� � d � �  � z   (23) 

0; 0,1,2,..., 1jjx j n  �    (24) 

0 0F     (25) 

� �
1

0

; 1,2,..., 1
n

k jk j jk
j

F c F x k n
�

 

 �  �¦    (26) 

; 0,1,2,..., 1j jF d j nd  �    (27) 

^ `0,1 ; , 0,1,..., 1jkx j k n�  �    (28) 

where (19) and (20) force the model to place the dummy jobs in their intended locations in the 

sequence. Equations (21), (22) and (23) are similar to the Miller-Tucker-Zemlin (MTZ) equations 

(Desrochers and Laporte 1991) and are used to avoid sub-tours when scheduling jobs in the sequence. 
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According to (24) no job can be placed after itself. The recursive quadratic equation (26) calculates the 

finish time of kJ  based on its predecessors. Due date constraints are enforced by (27). The following 

equations can be used to extract the sequence from the decision variables once the model is solved: 

1 0
1

n

k
k

kxS
 

 ¦   

( 1) ,
1

; 2,3,...,
j

n

j k
k

kx j nSS
�

 

  ¦   

3.3 Model III 
Although this model employs the same contribution matrix as Model I and Model II, the decision 

variable of this model, is defined as follows (as there are n  jobs and n  possible locations in the sequence): 

, 1,2,...,

1 if
0 otherwise

l j
lj

l j n

J
x

S

 

 
 ®
¯

   (29) 

Based on this definition for the decision variable, the model can be formulated as: 

minimize nL    (30) 

1

1; 1,2,...,
n

lj
l

x j n
 

  ¦    (31) 

1

1; 1,2,...,
n

lj
j

x l n
 

  ¦    (32) 

1 1

n n

lj
l j

x n
  

 ¦¦    (33) 

1 0 1
1

n

j j
j

L c x
 

 ¦    (34) 

( 1) 1
1 1

; 2,3,...,
n n

l l j lk jk l
j k

k j

L x x c L l n� �
  

z

 �  ¦¦  (35) 

1

; 1,2,...,
n

l j lj
j

L d x l n
 

d  ¦    (36) 

0; 1,2,...,lL l nt     (37) 
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^ `0,1 ; , 1,2,...,ljx l j n�     (38) 

where lL  is an intermediary variable, used to calculate the finish time of lS . Thus, (30) minimizes 

the makespan by minimizing the finish time of nS . (34) calculates the finish time of 1S ; the first term of 

(35) calculates the contribution of kJ  to the makespan when it is located after jJ . (36) is the due date 

constraint. 

3.4 Model IV 
Model III is formulated based on the finish time of the jobs in different positions; finish times were 

calculated by equations that were independent from the job that is located in each position. However, it is 

possible to modify Model III to calculate the finish times of the jobs rather than the finish times of the 

positions. In Model III, lL  is calculated by searching the rows of the Cc  matrix. In the modified model, 

finish time calculations are performed by exploring both the rows and the columns of Cc . Assume that jF  

is the finish time of jJ . Therefore, in Model IV equations (34) and (35) should be replaced with the 

following: 

1 0 1 0

( 1) ( 1)1,2,...,
2 1 2 1

if 0

otherwise

j j j j
n n n n

k
l j lk jk l j lk jk n

l k l k
k j k j

x c x c

F x x c x x F� � 
    

z z

!
°

 ® �
°
¯
¦¦ ¦¦   (39) 

The first condition of (39) is true only for 1S . All the other jobs will utilize the second condition. 

Finish time of kJ  dependents on the finish time of its immediate predecessor jJ . Once the finish times are 

defined by (39), the objective function of Model III and the due date constraints will be modified 

accordingly: 

minimize max jj
F   

; 1,2,...,j jF d j nd    

In the modified model equations (34) and (35) should be replaced with (39), which is a quadratic 

non-convex equation. This makes the model complicated and difficult to solve. Therefore, although the 

model is of theoretical interest, it will not be further investigated for the computational experiments.  
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3.5 Model V 
Unlike previous models, Model V and Model VI are formulated based on the special characteristics 

and properties of constraint programming (CP). The decision variable that will be used for Model V and 

Model VI is defined as lx j  if jJ   is placed in location l ; one should define 0 0x  . The contribution 

of the jobs to the makespan is defined the same way as in the previous models, which is based on placing a 

certain job after another job; however, for Model V and Model VI it is assumed that ; 1,2,...,jjc M j n   

( M  is a sufficiently large number). This will prevent the CP model from placing a certain job after itself. 

Accordingly, the first CP model will be as follows: 

1 10, ,
2

minimize
l l

n

x x x
l

c c
�

 

�¦    (40) 

1 2All Different( , ,..., )nx x x    (41) 

( 1) ,
1

; 1,2,...,
l l j

j

x x x
l

c d j n
�

 

d  ¦    (42) 

^ `1,2,..., ; 1,2,...,lx n l n�     (43) 

The objective function is defined based on the contribution of the jobs once the sequence is 

determined. The combination of (41) and (43) guarantees that all the jobs will be placed in the sequence, 

and each job will appear in the sequence only once. (42) is the due date constraint; finish times of the jobs 

are calculated based on the contribution of the previous jobs in the sequence. 

3.6 Model VI 
This model is based on the same decision variable as Model V. However, Model VI unlike Model 

V, works directly with the problem data and therefore, does not require the contribution matrix.  

, ,minimize
n nm x m xS p�    (44) 

1 2All Different( , ,..., )nx x x    (45) 

( 1), , , ; 1,2,..., ; 1,2,..., 1
j j ji x i x i xS S p i m j n
�
t �   �   (46) 

( 1), , , ; 1,2,..., 1; 1,2,...,
j j ji x i x i xS S p i m j n�  �  �    (47) 

, , ; 1,2,...,
j j jm x m x xS p d j n� d     (48) 

0; 1,2,..., ; 1,2,...,ijS i m j nt      (49) 

^ `1,2,..., ; 1,2,...,jx n j n�     (50) 
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In this model, (46) means that the jobs should not overlap. (47) represents the no-wait constraints 

and (48) belongs to the due date constraints. The enumeration algorithm will be presented in the next 

section. 

4. Search Graph and the Enumeration Algorithm 
Figure 1 describes a search graph that represents the max| , |jF nwt d C : 

S

1

2

n

1

2

n

1

2

n

T

 
Figure 1 - The search graph respresenting max| , |jF nwt d C  

In this graph 2{ , };| | 2G V E V n  � ; node which is located in the intersection of row 

;1j j nd d  and column ;1l l nd d  represents job j  if located in position l  of permutation S ; S  and 

T  are dummy jobs with zero processing times, which represent the start and the finish of the flow shop 

system. G  contains | |n N  rows and columns. An arc exists between two nodes if and only if these nodes 

belong to two adjacent columns and they do not represent the same job; as a result, the number of arcs 

between two adjacent columns are ( 1)n n �  and the total number of arcs are 2( 1)n n � . Arcs that start from 

node S  or end at node T  are exceptions and are not included in the above calculations. Figure 2 describes 

an instance of max| , |jF nwt d C  with three jobs. 
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S

1

2

3

1

2

3

1

2

3

T

 
Figure 2 - An instance of max| , |jF nwt d C  

4.1 Definition of a Feasible Solution of max| |F nwt C  Based on the Graph 
Modelling 

A feasible solution of max| |F nwt C  starts with S  and ends with T ; it includes one and only one 

node in each row and in each column. As a result, Figure 3 characterizes the permutation (2,1,3)S   and 

represents a feasible solution of max| |F nwt C  with three jobs. 

S

1

2

3

1

2

3

1

2

3

T

 
Figure 3 – A feasible solution of max| |F nwt C  with three jobs and three machines 

Each arc ;1 ,jka j k nd d , when jka  exists, can be labeled with jkc  as defined by (2). Sja  

represents the arc that connects S  to jJ  in column 1S  and is labeled with 0 jc  defined by (1). As a result, 

for Figure 3, the makespan is as follows: 

max 02 21 13C c c c � �    (51) 

It can be noted that the permutation (2,1,3)S   in Figure 3 is a feasible solution of 

max| , |jF nwt d C  if: 
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02 2

02 21 1

02 21 13 3

c d
c c d
c c c d

d
� d
� � d

   (52) 

Moreover, if (2,1,3)S   is the shortest path from S  to T , S  is the optimum solution of the 

max| , |jF nwt d C  instance which is described in Figure 3. It can be verified that the number of permutations 

for an instance of max| , |jF nwt d C  with n  jobs and m  machines, as described by Figure 1, is !n .  

Observation 1: suppose that , ljLP S  represents the longest path from S  to the node in the 

intersection of column lS  and row j . If , ; {1,2,..., }, {1,2,..., }
lj jLP d j n l nS d � � � � , then the due date 

constraints can be removed and the problem reduces to max| |F nwt C . 

Observation 2: if , ; {1,2,..., }
nj jLP d j nS d � � , then the due date constraints can be removed and 

the problem reduces to max| |F nwt C . 

Observation 3: if ,{1,2,..., } |
nj jj n LP dS� � d , then the due date constraints for jJ  can be removed 

from the problem. 

Observation 4: suppose that , ljSP S  represents the shortest path from S  to the node in the 

intersection of column lS  and row j . If ,{1,2,..., } | , {1,2,..., }
lj jj n SP d l nS� � ! � � , then the problem 

is infeasible. If ,{1,2,..., } | , {1,2,..., }
lj jj n SP d l nS� � ! � �  or 

,{1,2,..., } | , {1,2,..., }
lj jl n SP d j nS� � ! � � , then the problem is infeasible. 

4.2 Eliminating Infeasible Solutions 
In order to shrink the size of the set of solutions to enumerate to find the optimal solution, the 

following results are useful. 

Observation 5: due to the no-wait constraints, any feasible solution of max| |F nwt C  with 

0, ,ijp i j! �  is a permutation schedule, i.e. the order of jobs on all machines remains the same. 

Observation 6: for max| |F nwt C , any non-semi-active feasible schedule can be easily transformed 

to a semi-active feasible schedule considering the no-wait constraint, with the same or a better objective 



17 
 

function value. This can be done by simply removing the non-necessary delays for all operations without 

changing the sequence or violating the no-wait constraints.  

Observation 7: for any two consecutive jobs in a semi-active feasible solution of max| |F nwt C , 

there exists at least one machine with no idle time between processing of the operations of these two jobs, 

otherwise the solution would not be semi-active. 

Proposition 1: for max| |F nwt C  with 0, ,ijp i j! �  with a non-empty feasible set, the set of semi-

active feasible schedules and the set of active feasible schedules are non-empty and equal. 

Proof: by Observation 6 it is clear that as long as the set of feasible solutions is not empty, then the 

set of all semi-active schedules is non-empty. Since the set of all active schedules is a subset of the set of 

all semi-active schedules, it is enough to prove that each semi-active schedule is also active. Due to the no-

wait constraints and Observation 5 and Observation 7, it is impossible to construct a new schedule, through 

reordering the sequence, with at least one operation finishing earlier without delaying another operation. 

Hence any semi-active schedule is also active. 

Corollary 1: there exists for max| |F nwt C  an optimal schedule that is active considering the no-

wait constraints. 

Proposition 2: for an active feasible solution of max| |F nwt C  with the partial permutation 

(..., , ,..., ,...)j k q , it can be proved that jk jq qkc c c� � . 

Proof: the proof is by contradiction. Assume that this is not true; then jk jq qkc c ct � . Let max
jC be 

the objective function of the partial solution (..., )jS  ; then max max
j j

jk jq qkC c C c c� t � � . This means 

by scheduling job q  between job j  and job k  the finish time of job k  ( kF ) must either remain the same 

or be reduced by some positive amount. In either case, none of the operations of job k  will be delayed 

since there is no waiting time between the operations of a job. This means that one is able to schedule job 

q  between job j  and job k  without delaying any of the operations of job k . This contradicts the 

assumption of the solution being active. 

Corollary 2: given a partial permutation S  for max| |F nwt C  with ,j jF d j Sd � � , if constructing 

the partial permutation ( , )kS Sc   for some k  results in k kF d! , then any permutation of the form 

(..., ,..., ,...)kS Scc  , which places k  after S , is infeasible. 



18 
 

Proof: finish time of each job is the sum of the contribution of the jobs in the partial sequence 

ending to that job. Therefore by Proposition 2, kF  will be increased by placing more jobs between S  and 

job k . Among all permutations that place job k  after S , the permutation ( , ,...)kS  will have the smallest 

kF  which is still infeasible. 

Observation 8: if ,{2,3,..., }, {1,2,..., } |
lj jl n j n SP dS� � � ! , then it is possible to remove this 

node as well as all of the arcs that start from or end at this node from G . In other words, by placing this 

job in location lS  of the permutation, the due date constraints will be violated. Removing a node in column 

1S  means that the problem is infeasible; removing a node in column ;2 1l l nS d d �  results in the removal 

of 2( 1)n �  arcs from G ; removing a node from column n  results in the removal of n  arcs from G .  

4.3 The Enumeration Algorithm 
Algorithm 1: the following algorithm represents the enumeration algorithm that solves 

max| , |jF nwt d C  to optimality. 

1. If 
1,{1,2,..., } | j jj n SP dS� � ! , stop. The problem is infeasible. 

2. If , ; {1,2,..., }
nj jLP d j nS d � � , remove the due date constraints to reduce the problem to 

max| |F nwt C . 

3. Calculate , ; {2,3,..., }, {1,2,..., }
ljSP l n j nS � � . If ,{1,2,..., } | ; {2,3,..., }

lj jj n SP d l nS� � ! � , 

remove the corresponding node and all of its arcs from the graph G ; call the remaining graph Gc . 

4. Find the shortest path between S  and T  with attention to the definition of the feasible solution of 

max| |F nwt C . If the found shortest path does not violate any of the due date constraints, it is optimal; 

compute the total contribution values of this path to calculate the makespan. Otherwise, proceed to 

step 5. 

5. This step describes an enumeration sub-algorithm to solve Gc  to optimality. The objective of this sub-

algorithm is to fathom all of the paths of the modified search graph (or Gc ) from S  to T  until the 

optimum solution is found. The root node is S . 

5.1. Branch from S  to all of the nodes in 1S . Define l  as the index for the positions in the permutation; 

in other words, l  represents the current column in Gc . Set 1l m . Objective function value for 

node ; {1,2,..., }j j n�  is 0
l
j jC c . Fathom all nodes in Gc  for 1l ! . 
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5.2. Assume that ^ `max | 1,2,..., ; isnot selectedor fathomed yetl l
q jj

C C j n j  ; update the 

current node to q ; break the ties by random selection, unfathom all the nodes in column |t t l! , 

and branch from q  to all of its adjacent nodes in Gc ; calculate 

^ `1 ; 1,2,..., | and areadjacentl l
j q qjC C c j n q j� m � � .  

5.3. Fathom the nodes that violate the due date of their respective jobs in column 1l � , and go to 

step 5.6 if 1l nz � ; otherwise proceed to step 5.4. Note that if due date constraints are violated 

when 1l  , according to step 1 the problem is infeasible.  

5.4. Compare ^ `1; 1,2,...,l
jC j n� �  with max

bestC , the makespan of the best-known feasible solution (if 

the list of the complete feasible solutions is not empty); if ^ `1
max ; 1,2,...,l best

jC C j n� ! � , fathom 

node j  in column 1l � . 

5.5. If 1l n �  and there is at least one node in column 1l �  which is not fathomed yet, then the paths 

to such nodes define different feasible solutions each with makespan which is at least as desirable 

as max
bestC . Accordingly, compare the makespan of such nodes with each other and update max

bestC  

with the best found makespan. Then, fathom all the nodes in column 1l �  and proceed to 5.6. 

5.6. If all of the nodes in 1l �  are fathomed, then fathom the current node and proceed to 5.6.1. 

Otherwise, set 1l lm �  and go to step 5.2. 

5.6.1. If there are nodes in the current column l , which have not yet been selected or fathomed 

during the course of the algorithm, do not change the value of l ; go to step 5.2. Otherwise 

proceed to 5.6.2. 

5.6.2. Set 1l lm � . If 0l  , stop. Report max
bestC  and its corresponding route as the optimum 

solution. If the list of the feasible solutions is empty, the problem is infeasible. Otherwise, 

restart step 5.6 from the beginning. ■ 

Figure 4 illustrates the enumeration sub-algorithm. Note that the above algorithm does not exploit 

the results of Corollary 2. In order to integrate Corollary 2 in the algorithm, steps 5.3 and 5.4 of Algorithm 

1 should be modified as follows; this results in Algorithm 2. The rest of the steps remain unchanged. 

Algorithm 2: modify steps 5.3 and 5.4 of Algorithm 1 as follows: 

5.3.c  Fathom all the nodes in column 1l � ; if 1l nz � , then go to step 5.6. Otherwise, proceed 

to step 5.4c . Note that if due date constraints are violated when 1l  , according to step 1 of Algorithm 1 

the problem is infeasible.  
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5.4.c  Compare ^ `1; 1,2,...,l
jC j n� �  with max

bestC , the makespan of the best-known feasible solution 

(if the list of the complete feasible solutions is not empty); if ^ `1
max ; 1,2,...,l best

jC C j n� ! � , fathom all the 

nodes in column 1l � . ■  

Numerical results will be presented in the next section. 

5. Computational Experiments 
Conducting numerical experiments is an effective approach to compare the performance of the 

developed models. IBM ILOG CPLEX V12.6 was used to solve the developed mathematical models. 

Algorithms of Section 4 were coded by Microsoft Visual C++ 2013. All the numerical experiments were 

performed on a PC equipped with a 2GHz Intel Pentium IV CPU and 2 GB of RAM. To perform the 

computational analysis, a number of test problems generated by Samarghandi (Article in Press) were 

selected; namely, eight test problems for max| |F nwt C  accompanied with four different due date settings 

for each test problem. Moreover, six other test problems with larger instances for max| |F nwt C were 

generated. Each test problem was then accompanied by four different due date settings. All the test problems 

were generated based on the same approach described by Samarghandi (Article in Press). Accordingly, a 

total of 56 test problems for max| , |jF nwt d C  and 14 test problems for max| |F nwt C  were investigated 

in this paper; each distinct due date setting will be called a tightness factor and will be abbreviated as TF  

hereinafter. Sam01 through Sam08 are test problems for max| |F nwt C  from Samarghandi (Article in Press) 

and Sam01+DD through Sam08+DD are test problems with due date constraints from Samarghandi 

(Article in Press); problems generated in this study are Sam09 through Sam14 and Sam09+DD through 

Sam14+DD. 

Best solutions of the models for the test problems will be reported at 60T   , 300T  , 600T   

and 7200T   seconds. Before the results are presented, some of the complications when solving the 

problems will be discussed. 
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Figure 4 - Algorithm 1 

5.1 Implementation Complications 
Formulation of Model I is based on a very large number ( M ) in (6) that replicates either-or 

constraints. Although this is an effective method to prototype either-or constraints, the numerical value of 

M  may result in complication in implementation of the model in any software package designed for 

solving mathematical modelling problems; IBM CPLEX is not an exception. If the value of M  is not 

carefully chosen, CPLEX may eliminate M  in the pre-solve phase. It is therefore recommended1 that 

either-or constraints should be modelled by indicator constraints in order to eradicate the need for the 

numerical value of M . However, employing indicator constraints results in a reduction in the effectiveness 

                                                           
1 http://www-01.ibm.com/support/docview.wss?uid=swg21400084 
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of the branching algorithm; this can result in an increase in the solution time. Numerical results of both of 

these approaches to implement Model I will be presented in section 5.2. 

5.2 Numerical Results of the Developed Models  
The equality (26) in Model II is a quadratic equation, which makes it a non-convex constraint. The 

same argument holds for equation (35) in Model III. Hence solving these two models even after relaxing 

the integrality constraint is not easy. There is a bulk of research on finding approximate solutions for non-

convex binary integer programming using convex optimization techniques like SDP relaxation (see e.g. the 

pioneering paper of Goemans and Williamson (1995) on MAX-CUT Problem). However, this paper does 

not seek approximate solutions so the authors have taken this problem as an interesting future research 

direction. For this reason, in this paper Model II and Model III will not be included in the numerical 

experiments for max| , |jF nwt d C .  

On the other hand, in order to review the performance of Model II, the due date constraints of this 

model will be relaxed and computational experiments will be conducted for max| |F nwt C  and compared 

with the relaxed version of Model I. Afterwards, Model I, Model V and Model VI will be considered for 

further numerical experiments of max| , |jF nwt d C . 

Table 1 presents the numerical results of the following models: original formulation of Model I 

when due date constraints are relaxed, Model I when equation (6) is replaced with indicator constraints and 

due date constraints are relaxed, and Model II when due date constraints are relaxed. In all of the following 

tables, OFV represents objective function value and all of the CPU times are reported in seconds. The time 

when the optimal solution was found is reported as well. For instance, according to Table 1 the optimal 

solution of Sam04 is 9159; this solution has been found by the original formulation of Model I after 200 

seconds. Moreover, numbers in boldface indicate that the reported solution is optimal. Therefore, NFS in 

boldface means that the problem has no feasible solutions; however, non-bold NFS means that although the 

algorithm has not been able find a feasible solution in the given time, the problem may or may not have 

feasible solutions. 
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Table 1 - Numerical results of max| |F nwt C  

  Model I - original formulation Model I - indicator constraints Model II 

Problem Size n*m T=60 T=300 T=600 T=60 T=300 T=600 T=60 T=300 T=600 

Sam01 7*7 7705, 1 7705, 1 7705, 1 7705, 39 7705, 39 7705, 39 7705, 1 7705, 1 7705, 1 
Sam02 8*8 9372, 2 9372, 2 9372, 2 9372 9372 9372 9372, 1 9372, 1 9372, 1 
Sam03 8*9 9690, 2 9690, 2 9690, 2 9690 9690 9690 9690, 1 9690, 1 9690, 1 
Sam04 10*6 9159 9159, 200 9159, 200 9496 9159 9159 9159, 1 9159, 1 9159, 1 
Sam05 11*5 8142 8142 8142 8246 8142 8142 8142, 2 8142, 2 8142, 2 
Sam06 12*5 8923 8866 8866 9134 8884 8866 8866, 6 8866, 6 8866, 6 
Sam07 13*4 8393 8242 8242 8728 8534 8299 8242, 1 8242, 1 8242, 1 
Sam08 14*4 9412 9259 9195 9898 9562 9467 9195, 5 9195, 5 9195, 5 
Sam09 15*6 13905 13704 13704 NFS NFS NFS 13330 13330 13330 

Sam10 16*7 9057 9057 9057 NFS 9177 9129 8869 8869 8869 

Sam11 17*5 11679 11467 11359 NFS 12365 11903 10950 10950 10950 

Sam12 18*9 9546 9541 9541 NFS NFS NFS 8824 8824 8824 

Sam13 19*8 18676 18574 18143 NFS NFS NFS 17428 17428 17428 

Sam14 20*10 34015 33449 31370 37575 37575 37575 29318 29318 29318 

Optimality proved 21.43% 28.57% 28.57% 7.14% 7.14% 7.14% 57.14% 57.14% 57.14% 

 

It can be noted that the CPU times of Model II were under 10 seconds for problems Sam01 through 

Sam08; the CPU time jumps to 808 seconds to solve Sam09 to optimality. Accordingly, computational 

results for problems Sam01 through Sam08 and Sam09 through Sam14 will be presented in separate tables 

hereinafter. Note that none of the models were able to find an optimal solution for the problems with more 

than 16 jobs. On the other hand, the original formulation of Model I did not fathom all the nodes to prove 

the optimality of the proposed solutions in less than 300 seconds once the problem instance consisted of 

more than 10 jobs. As mentioned before, employing indicator constraints reduces the branching efficiency 

of CPLEX. Table 1 shows that Model I with indicator constraints is the least competitive model and is able 

to prove the optimality of only one of the test cases. This table is another pointer for the competitiveness of 

Model II; as mentioned before, solving max| , |jF nwt d C  using Model II can be considered as an interesting 

future research. 

Table 2 summarizes the numerical results of Model I with the original formulation of section 3.1 

as well as when equation (6) is replaced with indicator constraints. Superiority of the original formulation 

of Model I over the indicator constraints formulation is evident from this table. Therefore, only the results 

of the original formulation of Model I will be reported for 7200T  . Both of these formulations proved 

to be most effective for the test problems with less than 12 jobs. Moreover, the original formulation of 

Model I has found the optimal solution of 44.64% of the test problems in 7200T   in Table 2. 
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Table 2 – Computational results of Model I 
   Original formulation - OFV Indicator constraints - OFV 

Problem Size n*m Due date TF T=60 T=300 T=600 T=7200 T=60 T=300 T=600 

Sam01+DD 7*7 

TF=1 7705, 2 7705, 2 7705, 2 7705, 2 7705, 20 7705, 20 7705, 20 
TF=2 7705, 2 7705, 2 7705, 2 7705, 2 7705, 9 7705, 9 7705, 9 
TF=3 7705, 2 7705, 2 7705, 2 7705, 2 7705, 2 7705, 2 7705, 2 
TF=4 NFS, 14 NFS, 14 NFS, 14 NFS, 14 NFS, 54 NFS, 54 NFS, 54 

Sam02+DD 8*8 

TF=1 9372, 11 9372, 11 9372, 11 9372, 11 9485 9448 9372 
TF=2 9372, 11 9372, 11 9372, 11 9372, 11 9372 9372, 205 9372, 205 
TF=3 9573, 11 9573, 11 9573, 11 9573, 11 9573, 51 9573, 51 9573, 51 
TF=4 NFS, 12 NFS, 12 NFS, 12 NFS, 12 NFS, 48 NFS, 48 NFS, 48 

Sam03+DD 8*9 

TF=1 9690, 10 9690, 10 9690, 10 9690, 10 9690 9690 9690 
TF=2 9690, 10 9690, 10 9690, 10 9690, 10 9874 9690, 183 9690, 183 
TF=3 9690, 10 9690, 10 9690, 10 9690, 10 9690, 50 9690, 50 9690, 50 
TF=4 NFS NFS, 290 NFS, 290 NFS, 290 NFS NFS NFS 

Sam04+DD 10*6 

TF=1 9159 9159 9159, 334 9159, 334 9188 9159 9159 
TF=2 9483 9454, 224 9454, 224 9454, 224 9817 9454 9454 
TF=3 NFS 11537, 174 11537, 174 11537, 174 NFS 11537, 254 11537, 254 
TF=4 NFS, 25 NFS, 25 NFS, 25 NFS, 25 NFS NFS, 132 NFS, 132 

Sam05+DD 11*5 

TF=1 8152 8152 8152 8152, 3966 8164 8164 8164 
TF=2 8381 8381 8168 8164, 3402 8284 8284 8164 
TF=3 NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS, 4 NFS, 4 NFS, 4 NFS, 4 NFS NFS, 62 NFS, 62 

Sam06+DD 12*5 

TF=1 9273 9170 9102 9084 9219 9219 9219 
TF=2 9339 9148 9120 9120 9980 9236 9226 
TF=3 NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS NFS NFS, 305 NFS, 305 NFS NFS NFS 

Sam07+DD 13*4 

TF=1 8496 8496 8476 8465 9297 8895 8476 
TF=2 NFS NFS 9139 9002 NFS NFS NFS 
TF=3 NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS NFS, 298 NFS, 298 NFS, 298 NFS NFS NFS, 330 

Sam08+DD 14*4 

TF=1 9802 9721 9674 9674 10845 10856 10266 
TF=2 NFS NFS NFS NFS NFS NFS NFS 
TF=3 NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS, 4 NFS, 4 NFS, 4 NFS, 4 NFS NFS NFS 

Sam09+DD 15*6 

TF=1 14260 14260 14260 13472 NFS NFS NFS 
TF=2 NFS NFS NFS 14666 NFS NFS NFS 
TF=3 NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS, 3 NFS, 3 NFS, 3 NFS, 3 NFS NFS NFS 

Sam10+DD 16*7 

TF=1 9201 9192 9192 9017 9678 9544 9420 
TF=2 9188 9113 9113 8977 9163 9136 9136 
TF=3 NFS NFS NFS 9262 NFS NFS NFS 
TF=4 NFS NFS NFS NFS NFS NFS NFS 

Sam11+DD 17*5 

TF=1 12246 12246 12162 11371 NFS NFS NFS 
TF=2 NFS NFS NFS NFS NFS NFS NFS 
TF=3 NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS, 2 NFS, 2 NFS, 2 NFS, 2 NFS NFS NFS 

Sam12+DD 18*9 

TF=1 9360 9360 9360 8904 10441 9736 9736 
TF=2 10172 9680 9600 9232 NFS 10338 10215 
TF=3 NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS, 54 NFS, 54 NFS, 54 NFS, 54 NFS NFS NFS 

Sam13+DD 19*8 

TF=1 19361 19006 19006 17970 NFS NFS NFS 
TF=2 NFS NFS NFS NFS NFS NFS NFS 
TF=3 NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS NFS NFS NFS NFS NFS NFS 

Sam14+DD 20*10 

TF=1 33602 33602 32626 31199 NFS NFS NFS 
TF=2 NFS NFS NFS 34399 NFS NFS NFS 
TF=3 NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS NFS NFS NFS NFS NFS NFS 

Percent of efforts with optimum solution 32.14% 37.50% 41.07% 44.64% 12.50% 21.43% 23.21% 
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Table 3 – Computational results of Model V and Model VI  
    Model V - OFV Model VI 

Problem Size n*m Due date TF Best solution 
from Table 2 T=60 T=300 T=600 T=7200 T=60 T=300 T=600 

Sam01+DD 7*7 

TF=1 7705, 2 7705, 1 7705, 1 7705, 1 7705, 1 7705, 42 7705, 42 7705, 42 
TF=2 7705, 2 7705, 1 7705, 1 7705, 1 7705, 1 7705, 40 7705, 40 7705, 40 
TF=3 7705, 2 7705, 1 7705, 1 7705, 1 7705, 1 7705, 19 7705, 19 7705, 19 
TF=4 NFS, 14 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 

Sam02+DD 8*8 

TF=1 9372, 11 9372, 22 9372, 22 9372, 22 9372, 22 9372 9372 9372 
TF=2 9372, 11 9372, 16 9372, 16 9372, 16 9372, 16 9372 9372 9372 
TF=3 9573, 11 9573, 25 9573, 25 9573, 25 9573, 25 9573 9573 9573 
TF=4 NFS, 12 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 8 NFS, 8 NFS, 8 

Sam03+DD 8*9 

TF=1 9690, 10 9690, 9 9690, 9 9690, 9 9690, 9 9690 9690 9690 
TF=2 9690, 10 9690, 10 9690, 10 9690, 10 9690, 10 10399 9690 9690 
TF=3 9690, 10 9690, 5 9690, 5 9690, 5 9690, 5 10229 9874 9690 
TF=4 NFS, 290 NFS, 4 NFS, 4 NFS, 4 NFS, 4 NFS, 15 NFS, 15 NFS, 15 

Sam04+DD 10*6 

TF=1 9159, 334 9332 9159 9159 9159, 1264 9959 9623 9423 
TF=2 9454, 224 9454 9454 9454 9454, 682 10251 10251 9558 
TF=3 11537, 174 11537 11537 11537 11537, 504 NFS NFS NFS 
TF=4 NFS, 25 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 4 NFS, 4 NFS, 4 

Sam05+DD 11*5 

TF=1 8152, 3966 8211 8211 8152 8152 8723 8652 8336 
TF=2 8164, 3402 8164 8164 8164 8164 9287 9261 8284 
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS, 4 NFS, 2 NFS, 2 NFS, 2 NFS, 2 NFS, 2 NFS, 2 NFS, 2 

Sam06+DD 12*5 

TF=1 9084 9091 9091 9091 9084 9972 9972 9733 
TF=2 9120 9148 9148 9120 9120 10197 9877 9662 
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS, 305 NFS, 9 NFS, 9 NFS, 9 NFS, 9 NFS, 13 NFS, 13 NFS, 13 

Sam07+DD 13*4 

TF=1 8465 8471 8471 8465 8465 10488 9829 8818 
TF=2 9002 9175 9002 9002 9002 NFS NFS NFS 
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS, 298 NFS NFS, 210 NFS, 210 NFS, 210 NFS, 24 NFS, 24 NFS, 24 

Sam08+DD 14*4 

TF=1 9674 10494 10290 9798 9746 12219 12114 11309 
TF=2 NFS NFS NFS NFS NFS NFS NFS NFS 
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS, 4 NFS NFS NFS, 570 NFS, 570 NFS NFS NFS 

Sam09+DD 15*6 

TF=1 13472 14226 14001 14001 13491 17033 16324 16324 
TF=2 14666 13706 13583 13583 13330 NFS NFS NFS 
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS, 3 NFS NFS NFS NFS NFS NFS NFS 

Sam10+DD 16*7 

TF=1 9017 9013 9011 9011 8912 9740 9552 9509 
TF=2 8977 9210 9030 9030 8975 10104 9566 9489 
TF=3 9262 9334 9223 9221 9116 NFS NFS NFS 
TF=4 NFS NFS NFS NFS NFS NFS NFS NFS 

Sam11+DD 17*5 

TF=1 11371 11639 11530 11530 11268 14127 12641 12641 
TF=2 NFS NFS NFS 12243 11576 NFS NFS NFS 
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS, 2 NFS NFS NFS NFS NFS NFS NFS 

Sam12+DD 18*9 

TF=1 8904 9174 9036 9036 8902 10883 10463 10463 
TF=2 9232 9695 9568 9485 9304 NFS NFS NFS 
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS, 54 NFS NFS NFS NFS NFS NFS NFS 

Sam13+DD 19*8 

TF=1 17970 18621 18621 18621 17996 NFS NFS NFS 
TF=2 NFS NFS 19954 19373 18453 NFS NFS NFS 
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS NFS NFS NFS NFS NFS NFS NFS 

Sam14+DD 20*10 

TF=1 31199 32949 32949 32635 30822 NFS 38299 38299 
TF=2 34399 NFS 32511 32511 30715 NFS NFS NFS 
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS 
TF=4 NFS NFS NFS NFS NFS NFS NFS NFS 

Percent of efforts with optimum solution 44.64% 26.79% 28.57% 30.36% 35.71% 17.86% 17.86% 17.86% 
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Table 4 – Computational results of The Enumeration Algorithms  
   Algorithm 2 - OFV Algorithm 1 - OFV 

Problem Size n*m Due date TF T=60 T=300 T=600 T=7200 T=60 T=300 T=600 

Sam01+DD 7*7 

TF=1 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 
TF=2 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 
TF=3 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 

Sam02+DD 8*8 

TF=1 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 
TF=2 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 
TF=3 9573, 0 9573, 0 9573, 0 9573, 0 9573, 0 9573, 0 9573, 0 
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 

Sam03+DD 8*9 

TF=1 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 
TF=2 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 
TF=3 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 

Sam04+DD 10*6 

TF=1 9159, 0 9159, 0 9159, 0 9159, 0 9159, 2 9159, 2 9159, 2 
TF=2 9454, 0 9454, 0 9454, 0 9454, 0 9454, 0 9454, 0 9454, 0 
TF=3 11537, 0 11537, 0 11537, 0 11537, 0 11537, 0 11537, 0 11537, 0 
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 

Sam05+DD 11*5 

TF=1 8152, 2 8152, 2 8152, 2 8152, 2 8152, 17 8152, 17 8152, 17 
TF=2 8164, 1 8164, 1 8164, 1 8164, 1 8164, 9 8164, 9 8164, 9 
TF=3 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 

Sam06+DD 12*5 

TF=1 9084, 9 9084, 9 9084, 9 9084, 9 9084, 54 9084, 54 9084, 54 
TF=2 9120, 2 9120, 2 9120, 2 9120, 2 9120, 25 9120, 25 9120, 25 
TF=3 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 

Sam07+DD 13*4 

TF=1 8465, 11 8465, 11 8465, 11 8465, 11 9002 8465, 226 8465, 226 
TF=2 9002, 1 9002, 1 9002, 1 9002, 1 9002, 11 9002, 11 9002, 11 
TF=3 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 

Sam08+DD 14*4 

TF=1 9674, 59 9674, 59 9674, 59 9674, 59 10613 9699 9699 
TF=2 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 24 NFS, 24 NFS, 24 
TF=3 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 6 NFS, 6 NFS, 6 
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 

Sam09+DD 15*6 

TF=1 14976 14386 14136 14136 15999 14991 14976 
TF=2 13636 13330, 103 13330, 103 13330, 103 15809 15014 14031 
TF=3 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 59 NFS, 59 NFS, 59 
TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 

Sam10+DD 16*7 

TF=1 9419 9419 9402 9364 9419 9419 9402 
TF=2 9445 9402 9402 9402 9451 9432 9402 
TF=3 9265 9142 9057 9057, 716 NFS 9374 9374 
TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 11 NFS, 11 NFS, 11 

Sam11+DD 17*5 

TF=1 12077 11829 11829 11829 12680 12627 12625 
TF=2 12503 11571 11534 11534, 860 NFS NFS NFS 
TF=3 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS NFS, 137 NFS, 137 
TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 

Sam12+DD 18*9 

TF=1 10913 10813 10432 10432 10980 10886 10813 
TF=2 10615 10363 10363 10349 11199 10943 10943 
TF=3 NFS NFS 9663 9663 NFS NFS NFS 
TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 2 NFS, 2 NFS, 2 

Sam13+DD 19*8 

TF=1 20699 20589 20497 20321 21204 21108 21023 
TF=2 20243 20119 19944 19849 NFS NFS NFS 
TF=3 NFS, 42 NFS, 42 NFS, 42 NFS, 42 NFS NFS NFS 
TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 2 NFS, 2 NFS, 2 

Sam14+DD 20*10 

TF=1 35847 35847 35847 35847 37045 36754 36754 
TF=2 34575 34430 33349 33065 NFS NFS NFS 
TF=3 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS NFS NFS 
TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 17 NFS, 17 NFS, 17 

Percent of efforts with optimum solution 75.00% 76.79% 76.79% 80.36% 66.07% 69.64% 69.64% 
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Table 5 – Overall comparison of the computational results at 7200T    
Problem Size n*m Due date TF Model I – original 

Formulation Model V Algorithm 2 

Sam01+DD 7*7 

TF=1 7705, 2 7705, 1 7705, 0 
TF=2 7705, 2 7705, 1 7705, 0 
TF=3 7705, 2 7705, 1 7705, 0 
TF=4 NFS, 14 NFS, 1 NFS, 0 

Sam02+DD 8*8 

TF=1 9372, 11 9372, 22 9372, 0 
TF=2 9372, 11 9372, 16 9372, 0 
TF=3 9573, 11 9573, 25 9573, 0 
TF=4 NFS, 12 NFS, 1 NFS, 0 

Sam03+DD 8*9 

TF=1 9690, 10 9690, 9 9690, 0 
TF=2 9690, 10 9690, 10 9690, 0 
TF=3 9690, 10 9690, 5 9690, 0 
TF=4 NFS, 290 NFS, 4 NFS, 0 

Sam04+DD 10*6 

TF=1 9159, 334 9159, 1264 9159, 0 
TF=2 9454, 224 9454, 682 9454, 0 
TF=3 11537, 174 11537, 504 11537, 0 
TF=4 NFS, 25 NFS, 1 NFS, 0 

Sam05+DD 11*5 

TF=1 8152, 3966 8152 8152, 2 
TF=2 8164, 3402 8164 8164, 1 
TF=3 NFS NFS NFS, 0 
TF=4 NFS, 4 NFS, 2 NFS, 0 

Sam06+DD 12*5 

TF=1 9084 9084 9084, 9 
TF=2 9120 9120 9120, 2 
TF=3 NFS NFS NFS, 0 
TF=4 NFS, 305 NFS, 9 NFS, 0 

Sam07+DD 13*4 

TF=1 8465 8465 8465, 11 
TF=2 9002 9002 9002, 1 
TF=3 NFS NFS NFS, 0 
TF=4 NFS, 298 NFS, 210 NFS, 0 

Sam08+DD 14*4 

TF=1 9674 9746 9674, 59 
TF=2 NFS NFS NFS, 1 
TF=3 NFS NFS NFS, 0 
TF=4 NFS, 4 NFS, 570 NFS, 0 

Sam09+DD 15*6 

TF=1 13472 13491 14136 
TF=2 14666 13330 13330, 103 
TF=3 NFS NFS NFS, 1 
TF=4 NFS, 3 NFS NFS, 1 

Sam10+DD 16*7 

TF=1 9017 8912 9364 
TF=2 8977 8975 9402 
TF=3 9262 9116 9057, 716 
TF=4 NFS NFS NFS, 1 

Sam11+DD 17*5 

TF=1 11371 11268 11829 
TF=2 NFS 11576 11534, 860 
TF=3 NFS NFS NFS, 1 
TF=4 NFS, 2 NFS NFS, 1 

Sam12+DD 18*9 

TF=1 8904 8902 10432 
TF=2 9232 9304 10349 
TF=3 NFS NFS 9663 
TF=4 NFS, 54 NFS NFS, 1 

Sam13+DD 19*8 

TF=1 17970 17996 20321 
TF=2 NFS 18453 19849 
TF=3 NFS NFS NFS, 42 
TF=4 NFS NFS NFS, 1 

Sam14+DD 20*10 

TF=1 31199 30822 35847 
TF=2 34399 30715 33065 
TF=3 NFS NFS NFS, 1 
TF=4 NFS NFS NFS, 1 

Percent of efforts with optimum solution 44.64% 35.71% 80.36% 
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Table 3 summarizes the results of Model V and Model VI. In this table only the results of Model 

V will be reported for 7200T   due to its numerical supremacy over Model VI. A comparison between 

Table 2, and Table 3 reveals the superiority of the original formulation of Model I over the rest of the 

formulations. Computational results of the enumeration algorithms are presented in Table 4. In this table 

only the results of Algorithm 2 will be reported for 7200T   due to its numerical supremacy over 

Algorithm 1. According to Table 4, Algorithm 2 finds the optimal solution of the test problems Sam01+DD 

through Sam08+DD in under 60 seconds. Overall, this algorithm finds the optimal solution of 80.36% of 

the test problems at 7200T  , which is superior to all of the mathematical and constraint programming 

models studied in this paper.  

A closer comparison between Algorithm 2, Model V, and Model I with the original formulation is 

presented in Table 5. All of results in this table are for 7200T  . Computational supremacy of Algorithm 

2 over the competitive methods is evident from this table. Algorithm 2 not only finds the optimal solution 

of 80.36% of the test problems, it is also able to find at least one feasible solution for one of the test problems 

(Sam12+DD with tightness factor 3) for which Model I and Model V have returned no feasible solutions 

in 7200T  .  

6. Conclusions 
The no-wait flow shop problem with due date constraints and makespan criterion has been 

considered in this paper. The problem is strongly NP-hard. Six mathematical models have been developed 

for the problem; namely, a mixed integer programming model, three quadratic mixed integer programming 

formulations, and two constraint programming models. Some of these models work based on the definition 

of contribution of a job to the makespan; an efficient algorithm has been proposed to calculate such 

contributions. Furthermore, a graph modelling of the problem as well as an exact enumeration algorithm 

that employed such modelling have been presented based on the definition of the contributions. A number 

of propositions have been proved to efficiently rule out infeasible solutions from the set of all possible 

permutations of max| , |jF nwt d C . The results of these propositions were integrated into the enumeration 

algorithm. Moreover, solving complications as well as implementation difficulties have been discussed.  

Finally, a thorough computational experiment has been conducted to compare the performance of 

the developed models and the enumeration algorithm. Computational results illustrate that as the problem 

size grows, finding a feasible solution for max| , |jF nwt d C  is not an easy task. Numerical results reveal 

that the enumeration algorithm outperforms the other formulations when implemented by IBM ILOG 

CPLEX.  
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Finally, developing tight lower and upper bounds for max| , |jF nwt d C  is an interesting future 

research direction. Moreover, solving quadratic programming models using semi-definite programming 

techniques, if possible, is very promising.  
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