
1

On the Exact Solution of the No-Wait Flow Shop Problem with Due
Date Constraints

Hamed Samarghandi

Department of Finance and Management Science, Edwards School of Business,
University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A7

samarghandi@edwards.usask.ca

Mehdi Behroozi
Department of Industrial and Systems Engineering, University of Minnesota

111 Church Street S.E., Minneapolis, MN 55455, United States
behro040@umn.edu

mailto:samarghandi@edwards.usask.ca
mailto:behro040@umn.edu

4

Abstract
This paper deals with the no-wait flow shop scheduling problem with due date constraints. In the

no-wait flow shop problem, waiting time is not allowed between successive operations of jobs. Moreover,

the jobs should be completed before their respective due dates; due date constraints are dealt with as hard

constraints. The considered performance criterion is makespan. The problem is strongly NP-hard. This

paper develops a number of distinct mathematical models for the problem based on different decision

variables. Namely, a mixed integer programming model, three quadratic mixed integer programming

models, and two constraint programming models are developed. Moreover, a novel modelling approach is

developed for the problem. This new modeling technique facilitates the investigation of some of the

important characteristics of the problem; this results in a number of propositions to rule out a large number

of infeasible solutions from the set of all possible permutations. Afterward, the new modelling technique

and the resulting propositions are incorporated into a new exact algorithm to solve the problem to

optimality. To investigate the performance of the mathematical models and to compare them with the

developed exact algorithm, a number of test problems are solved and the results are reported. Computational

results demonstrate that the developed algorithm is significantly faster than the mathematical models.

Keywords: No-Wait Flow Shop; Due Date Constraints; Mixed Integer Programming; Constraint

Programming; Enumeration Algorithm

1. Introduction
In the no-wait flow shop problem, a special case of the classical flow shop problem, no waiting

time is allowed between successive operations of jobs. In other words, once processing of a certain job is

started, no interruption is permitted between operations of the job. In this paper, completion of each job is

associated with a due date, i.e., jobs must be completed before their due dates. Due date side-constraints

are among the most applicable constraints in scheduling and sequencing literature because real-world jobs

are usually accompanied by a deadline for completion (Hunsucker and Shah 1992). In this paper, it is

assumed that all the jobs are ready at time zero (all release dates are zero) and the considered performance

measure is makespan. According to the three-field notation of the scheduling problems (Graham et al.

1979), the problem can be designated as max| , |jF nwt d C .

King and Spachis (1980) proved that the no-wait flow shop problem with makespan performance

measure (max| |F nwt C) can be transformed to the Asymmetric Travelling Salesperson Problem (ATSP).

Röck (1984) proved that (max| |F nwt C) is NP-hard. Since max| , |jF nwt d C is a harder problem than

max| |F nwt C , it can be inferred that max| , |jF nwt d C is also NP-hard.

5

Industrial applications mentioned in the literature for max| , |jF nwt d C include chemical industries

(Rajendran 1994), food industries (Hall and Sriskandarajah 1996), steel production (Wismer 1972),

pharmaceutical industries (Raaymakers and Hoogeveen 2000), and production of concrete products

(Grabowski and Pempera 2000). Hall and Sriskandarajah (1996) provide a comprehensive review of the

applications of the problem.

The reputation of a company as a reliable firm will tremendously damage if it frequently delivers

jobs after their due dates are passed (even if the number of late days is relatively small). Moreover, trust

between companies will be damaged if late jobs are not frequent, but a few jobs are delivered considerably

past their due dates. Note that on-time delivery of the jobs can be only one of the goals of a company.

Companies can be interested in optimizing other criteria such as makespan, while avoiding late days or

tardy jobs. Hence, max| , |jF nwt d C is not only an applicable problem with many real-world applications,

but it is proved to be NP-hard.

The literature is rich with studies that develop heuristic or metaheuristic methods in order to deal

with no-wait flow shop problems with or without due dates constraints. For the case of | , |jF nwt d J , due

date constraints have been traditionally considered as soft constraints. In other words, violating due date

constraints has been permitted with the objective function of minimizing a measure of the tardiness (e.g.,

number of tardy jobs or number of late days). Tardiness measures have frequently been combined with

other performance measures such as makespan, total flow time, etc.; however, due date constraints have

rarely been studied as hard constraints. This is mainly due to the fact that generating a feasible solution for

the problem, or proving that a feasible solution does not exist, turns into a very challenging task, especially

when due dates are not too loose or too tight. Since no-wait flow shop problem with due date constraints is

strongly NP-hard, several algorithms have been devised to deal with the problem (Rajasekera et al. 1991,

Hunsucker and Shah 1992, Sarper 1995, Brah 1996, Gupta et al. 2000, Gowrishankar et al. 2001, Kaminsky

and Lee 2002, Błażewicz et al. 2005, Błażewicz et al. 2008, Hasanzadeh et al. 2009, Dhingra and Chandna

2010, Tang et al. 2011, Panwalkar and Koulamas 2012, Ebrahimi et al. 2013, Tari and Olfat 2013,

Samarghandi Article in Press). All of these methods first relax the due date constraints and then solve the

no-wait scheduling problem with a variant of lateness measure in the objective function by means of a

metaheuristic or a heuristic algorithm.

On the other hand, mathematical programming techniques have long been employed to solve

sequencing and scheduling problems. Selen and Hott (1986) developed a mixed integer programming for a

flow shop system with more than one machine. Stafford (1988) developed a mixed integer linear

6

programming (MILP) based on the all-integer model of Wagner (1959). Tseng et al. (2004) performed an

empirical study to evaluate the performance of the different mixed integer programming (MIP) models for

permutation flow shop problems; results of this study were in line with the results of Pan (1997) for the

case of regular job shop and flow shop problems. Pan (1997) reported the models of Manne (1960), Wagner

(1959), and Wilson (1989) as the first, second, and third best MILP formulations respectively; models

developed by Bowman (1959), Gupta (1971), Morton and Pentico (2010), Baker and Baker (1974), and

Stafford (1988) come next. It should be noted that these models are not reported in any special order.

Pan and Chen (2005) developed a mixed binary integer programming (MBIP) model for reentrant

job shop scheduling problem. Ziaee and Sadjadi (2007) developed seven MBIP formulations for the flow

shop sequencing problem and considered different constraints such as due dates, ready times, etc., and

studied makespan, weighted mean flow time, and weighted mean tardiness as their performance measures.

Javadi et al. (2008) developed a linear programming model for the no-wait flow shop problem with fuzzy

objective functions. Ramezanian et al. (2010) developed a mathematical programming model to minimize

the earliness and tardiness costs in a flow shop context, where processing times can be zero.

This study develops a number of mathematical programming formulations for max| , |jF nwt d C .

More specifically, an MIP, three quadratic MIPs, and two constraint programming (CP) models are

developed. Due date constraints are dealt with as hard constraints. Baker and Keller (2010) report that for

the case of single machine sequencing problems mathematical programming models can be employed to

optimally solve instances with as many as 50 jobs. However, computational experiments in this paper reveal

that the number of jobs in max| , |jF nwt d C instances should be significantly smaller so that the problem

can be solved to optimality using mathematical models.

In addition, this paper considers a new modelling approach for the no-wait flow shop problem and

proves a number of theorems based on the characteristics of the max| , |jF nwt d C . Afterward, an

enumeration algorithm is proposed to solve max| , |jF nwt d C to optimality; this algorithm employs the

results of the proven propositions to restrict the feasible region of the problem and accelerate the search

speed. Computational results reveal that the proposed algorithm is significantly faster than the discussed

mathematical models.

The rest of the paper is organized as follows. Section 2 describes the notations used. Section 3

formulates the mathematical programming models. Section 4 describes the novel modelling approach and

the enumeration algorithm. Computational experiments are reported in section 5. Section 0 gives

concluding remarks and discusses future research directions.

7

2. Problem Description
In the considered max| , |jF nwt d C it is assumed that: 1) all jobs follow the same predefined order

of operations; 2) no preemption or interruption is allowed; 3) no job can be processed by more than one

machine at the same time, and no machine can process more than one operation at the same time; 4) all jobs

must visit all machines, possibly with zero processing time on some of the machines; and 5) there should

be no waiting time between consecutive operations of a job. The following notation is used throughout the

rest of this paper:

m Number of machines
n Number of jobs

jJ Job j

ijp Processing time of i th operation of jJ

jkc Contribution of kJ to the objective function when placed immediately after jJ

ijS Starting time of i th operation of jJ

jF Finish time of jJ

jd Due date of jJ

A solution of max| |F nwt C can be described with a sequence 1 2(, ,...,)nS S S S of n jobs. It

should be noted that max| |F nwt C is a permutation scheduling, i.e. the sequence of the jobs on all machines

is the same. Hence, the contribution of job k when placed immediately after job j (jkc) is not dependent

to the machines. Contribution of jJ to maxC when jJ is the first scheduled job in a sequence is calculated

as follows:

0
1

; 1,2,...,
m

j ij
i

c p j n

 ¦ (1)

The algorithm of Samarghandi (Article in Press) can be employed with small modifications to

calculate ; , 1,2,..., ;jkc j k n k j z . Note that 0; 1,2,...,jjc j n .

Step 1: Define a counter for the operations of jS and a counter for operations of 1k jS S � ; call

the former counter t and the latter w .

Step 2: Set 2; 1t w .

8

Step 3: If tj wkp pt , set 1t tm � and 1w wm � . If 1t m � , proceed to step 8; otherwise go

back to the beginning of step 3. If tj wkp p� , proceed to step 4.

Step 4: Set min | 0
h

lj wk
l t

z h p p

 ½§ · � t® ¾¨ ¸
© ¹¯ ¿
¦ and proceed to step 5. If the value of z cannot be

determined, go to step 7.

Step 5: Set
z

zj lj wk
l t

p p p

§ ·m �¨ ¸
© ¹
¦ . Proceed to the next step.

Step 6: Set 1w wm � and t zm . If 1t m � , go to step 8; otherwise, go back to step 3.

Step 7: Set
m m

jk lk lj
l w l t

c p p

§ · § ·m �¨ ¸ ¨ ¸
© ¹ © ¹
¦ ¦ . Stop.

Step 8: Set jk mkc p . Stop.

The contribution matrix C is an (1)n n� u matrix that lists the contribution of each job to the

makespan if placed after a certain job in the sequence.

01 0

1

[; 0,1,..., ; 1,2,...,]
n

jk

n nn

c c
C c j n k n

c c

ª º
« » « »
« »¬ ¼

 (2)

The first row of C can be computed using (1). To calculate the rest of this matrix, the above

algorithm should be used. Moreover, 0; 1,2,...,jjc j n .

3. The Developed Models
This section presents the developed mathematical models.

3.1 Model I
The first model is based on the developed model of Samarghandi (Article in Press) and employs

the decision variable defined by (3). This model works directly with the problem data and does not require

the algorithm of section 2 to calculate the contribution matrix.

9

, 1,2,...,

1 if isplaced immediatelyafter in thesequence
0 Otherwise

k j
jk

j k n

J J
x

 ®
¯

 (3)

The model, which is a mixed integer programming, is as follows:

maxminimize C (4)

max ; 1,2,...,mj mjC S p j nt � (5)

(1) ; 1,2,..., ; , 1,2,...,ik jk ij ijS M x S p i m j k n� � t � (6)

(1) ; 1,2,..., 1; 1,2,...,i j ij ijS S p i m j n� � � (7)

; 1,2,...,mj mj jS p d j n� d (8)

1

1; 1,2,...,
n

jk
j

x k n

d ¦ (9)

1

1; 1,2,...,
n

jk
k

x j n

d ¦ (10)

1; , 1,2,...,jk kjx x j k n� d (11)

1 1

1
n n

jk
j k

x n

 �¦¦ (12)

0; 1,2,..., ; 1,2,...,ijS i m j nt (13)

{0,1}; , 1,2,...,jkx j k n� (14)

In this model, the objective function is to minimize the makespan; M is a sufficiently large

number. (5) defines that makespan equals the finish time of the last operation of the last job. (6) assures

that the operations do not overlap; this constraint is binding if kJ is scheduled immediately after jJ in the

sequence. (7) imposes the no-wait constraints. (8) represents the due date constraint; according to (8), the

last operation of each job should finish before its associated due date. Constraints (9), (10), (11), and (12)

guarantee that all the jobs will appear exactly once in the sequence.

3.2 Model II
The sequence S is modified to include two dummy jobs, 0S and 1nS � with zero processing times.

Contribution matrix C of equation (2) is modified to Cc to confirm that 0S and 1nS � will be located in

the first and the last positions in the sequence accordingly. In this matrix, 0; 1,2,...,jjc j n .

10

01 0

(2) (2)
1

0 0
0 0

[; , 0,1,..., 1]
0 0

0 0 0

n

n n jk
n nn

c c

C c j k n
c c

M

� u �

ª º
« »
« »c �
« »
« »
¬ ¼

 (15)

; , 0,1,..., 1jkx j k n � is the binary decision variable of the model; 1jkx indicates that kJ is

placed immediately after jJ . If 0 1kx , then kJ is the first job in the sequence. Accordingly, the following

model is formulated.

1 1

0 0

minimize
n n

jk jk
j k

c x
� �

¦¦ (16)

0

1; 1,2,..., 1
n

jk
j

x k n

 �¦ (17)

1

1

1; 0,1,...,
n

jk
k

x j n
�

 ¦ (18)

0 0; 0,1,..., 1jx j n � (19)

(1) 0; 0,1,2,..., 1n kx k n� � (20)

0 1u (21)

2 2; 1,2,..., 1ju n j nd d � � (22)

� �� �1 1 1 ; , 1,2,..., 1;j k jku u n x j k n j k� � d � � � z (23)

0; 0,1,2,..., 1jjx j n � (24)

0 0F (25)

� �
1

0

; 1,2,..., 1
n

k jk j jk
j

F c F x k n
�

 � �¦ (26)

; 0,1,2,..., 1j jF d j nd � (27)

^ `0,1 ; , 0,1,..., 1jkx j k n� � (28)

where (19) and (20) force the model to place the dummy jobs in their intended locations in the

sequence. Equations (21), (22) and (23) are similar to the Miller-Tucker-Zemlin (MTZ) equations

(Desrochers and Laporte 1991) and are used to avoid sub-tours when scheduling jobs in the sequence.

11

According to (24) no job can be placed after itself. The recursive quadratic equation (26) calculates the

finish time of kJ based on its predecessors. Due date constraints are enforced by (27). The following

equations can be used to extract the sequence from the decision variables once the model is solved:

1 0
1

n

k
k

kxS

 ¦

(1) ,
1

; 2,3,...,
j

n

j k
k

kx j nSS
�

 ¦

3.3 Model III
Although this model employs the same contribution matrix as Model I and Model II, the decision

variable of this model, is defined as follows (as there are n jobs and n possible locations in the sequence):

, 1,2,...,

1 if
0 otherwise

l j
lj

l j n

J
x

S

 ®
¯

 (29)

Based on this definition for the decision variable, the model can be formulated as:

minimize nL (30)

1

1; 1,2,...,
n

lj
l

x j n

 ¦ (31)

1

1; 1,2,...,
n

lj
j

x l n

 ¦ (32)

1 1

n n

lj
l j

x n

 ¦¦ (33)

1 0 1
1

n

j j
j

L c x

 ¦ (34)

(1) 1
1 1

; 2,3,...,
n n

l l j lk jk l
j k

k j

L x x c L l n� �

z

 � ¦¦ (35)

1

; 1,2,...,
n

l j lj
j

L d x l n

d ¦ (36)

0; 1,2,...,lL l nt (37)

12

^ `0,1 ; , 1,2,...,ljx l j n� (38)

where lL is an intermediary variable, used to calculate the finish time of lS . Thus, (30) minimizes

the makespan by minimizing the finish time of nS . (34) calculates the finish time of 1S ; the first term of

(35) calculates the contribution of kJ to the makespan when it is located after jJ . (36) is the due date

constraint.

3.4 Model IV
Model III is formulated based on the finish time of the jobs in different positions; finish times were

calculated by equations that were independent from the job that is located in each position. However, it is

possible to modify Model III to calculate the finish times of the jobs rather than the finish times of the

positions. In Model III, lL is calculated by searching the rows of the Cc matrix. In the modified model,

finish time calculations are performed by exploring both the rows and the columns of Cc . Assume that jF

is the finish time of jJ . Therefore, in Model IV equations (34) and (35) should be replaced with the

following:

1 0 1 0

(1) (1)1,2,...,
2 1 2 1

if 0

otherwise

j j j j
n n n n

k
l j lk jk l j lk jk n

l k l k
k j k j

x c x c

F x x c x x F� �

z z

!
°

 ® �
°
¯
¦¦ ¦¦ (39)

The first condition of (39) is true only for 1S . All the other jobs will utilize the second condition.

Finish time of kJ dependents on the finish time of its immediate predecessor jJ . Once the finish times are

defined by (39), the objective function of Model III and the due date constraints will be modified

accordingly:

minimize max jj
F

; 1,2,...,j jF d j nd

In the modified model equations (34) and (35) should be replaced with (39), which is a quadratic

non-convex equation. This makes the model complicated and difficult to solve. Therefore, although the

model is of theoretical interest, it will not be further investigated for the computational experiments.

13

3.5 Model V
Unlike previous models, Model V and Model VI are formulated based on the special characteristics

and properties of constraint programming (CP). The decision variable that will be used for Model V and

Model VI is defined as lx j if jJ is placed in location l ; one should define 0 0x . The contribution

of the jobs to the makespan is defined the same way as in the previous models, which is based on placing a

certain job after another job; however, for Model V and Model VI it is assumed that ; 1,2,...,jjc M j n

(M is a sufficiently large number). This will prevent the CP model from placing a certain job after itself.

Accordingly, the first CP model will be as follows:

1 10, ,
2

minimize
l l

n

x x x
l

c c
�

�¦ (40)

1 2All Different(, ,...,)nx x x (41)

(1) ,
1

; 1,2,...,
l l j

j

x x x
l

c d j n
�

d ¦ (42)

^ `1,2,..., ; 1,2,...,lx n l n� (43)

The objective function is defined based on the contribution of the jobs once the sequence is

determined. The combination of (41) and (43) guarantees that all the jobs will be placed in the sequence,

and each job will appear in the sequence only once. (42) is the due date constraint; finish times of the jobs

are calculated based on the contribution of the previous jobs in the sequence.

3.6 Model VI
This model is based on the same decision variable as Model V. However, Model VI unlike Model

V, works directly with the problem data and therefore, does not require the contribution matrix.

, ,minimize
n nm x m xS p� (44)

1 2All Different(, ,...,)nx x x (45)

(1), , , ; 1,2,..., ; 1,2,..., 1
j j ji x i x i xS S p i m j n
�
t � � (46)

(1), , , ; 1,2,..., 1; 1,2,...,
j j ji x i x i xS S p i m j n� � � (47)

, , ; 1,2,...,
j j jm x m x xS p d j n� d (48)

0; 1,2,..., ; 1,2,...,ijS i m j nt (49)

^ `1,2,..., ; 1,2,...,jx n j n� (50)

14

In this model, (46) means that the jobs should not overlap. (47) represents the no-wait constraints

and (48) belongs to the due date constraints. The enumeration algorithm will be presented in the next

section.

4. Search Graph and the Enumeration Algorithm
Figure 1 describes a search graph that represents the max| , |jF nwt d C :

S

1

2

n

1

2

n

1

2

n

T

Figure 1 - The search graph respresenting max| , |jF nwt d C

In this graph 2{ , };| | 2G V E V n � ; node which is located in the intersection of row

;1j j nd d and column ;1l l nd d represents job j if located in position l of permutation S ; S and

T are dummy jobs with zero processing times, which represent the start and the finish of the flow shop

system. G contains | |n N rows and columns. An arc exists between two nodes if and only if these nodes

belong to two adjacent columns and they do not represent the same job; as a result, the number of arcs

between two adjacent columns are (1)n n � and the total number of arcs are 2(1)n n � . Arcs that start from

node S or end at node T are exceptions and are not included in the above calculations. Figure 2 describes

an instance of max| , |jF nwt d C with three jobs.

15

S

1

2

3

1

2

3

1

2

3

T

Figure 2 - An instance of max| , |jF nwt d C

4.1 Definition of a Feasible Solution of max| |F nwt C Based on the Graph
Modelling

A feasible solution of max| |F nwt C starts with S and ends with T ; it includes one and only one

node in each row and in each column. As a result, Figure 3 characterizes the permutation (2,1,3)S and

represents a feasible solution of max| |F nwt C with three jobs.

S

1

2

3

1

2

3

1

2

3

T

Figure 3 – A feasible solution of max| |F nwt C with three jobs and three machines

Each arc ;1 ,jka j k nd d , when jka exists, can be labeled with jkc as defined by (2). Sja

represents the arc that connects S to jJ in column 1S and is labeled with 0 jc defined by (1). As a result,

for Figure 3, the makespan is as follows:

max 02 21 13C c c c � � (51)

It can be noted that the permutation (2,1,3)S in Figure 3 is a feasible solution of

max| , |jF nwt d C if:

16

02 2

02 21 1

02 21 13 3

c d
c c d
c c c d

d
� d
� � d

 (52)

Moreover, if (2,1,3)S is the shortest path from S to T , S is the optimum solution of the

max| , |jF nwt d C instance which is described in Figure 3. It can be verified that the number of permutations

for an instance of max| , |jF nwt d C with n jobs and m machines, as described by Figure 1, is !n .

Observation 1: suppose that , ljLP S represents the longest path from S to the node in the

intersection of column lS and row j . If , ; {1,2,..., }, {1,2,..., }
lj jLP d j n l nS d � � � � , then the due date

constraints can be removed and the problem reduces to max| |F nwt C .

Observation 2: if , ; {1,2,..., }
nj jLP d j nS d � � , then the due date constraints can be removed and

the problem reduces to max| |F nwt C .

Observation 3: if ,{1,2,..., } |
nj jj n LP dS� � d , then the due date constraints for jJ can be removed

from the problem.

Observation 4: suppose that , ljSP S represents the shortest path from S to the node in the

intersection of column lS and row j . If ,{1,2,..., } | , {1,2,..., }
lj jj n SP d l nS� � ! � � , then the problem

is infeasible. If ,{1,2,..., } | , {1,2,..., }
lj jj n SP d l nS� � ! � � or

,{1,2,..., } | , {1,2,..., }
lj jl n SP d j nS� � ! � � , then the problem is infeasible.

4.2 Eliminating Infeasible Solutions
In order to shrink the size of the set of solutions to enumerate to find the optimal solution, the

following results are useful.

Observation 5: due to the no-wait constraints, any feasible solution of max| |F nwt C with

0, ,ijp i j! � is a permutation schedule, i.e. the order of jobs on all machines remains the same.

Observation 6: for max| |F nwt C , any non-semi-active feasible schedule can be easily transformed

to a semi-active feasible schedule considering the no-wait constraint, with the same or a better objective

17

function value. This can be done by simply removing the non-necessary delays for all operations without

changing the sequence or violating the no-wait constraints.

Observation 7: for any two consecutive jobs in a semi-active feasible solution of max| |F nwt C ,

there exists at least one machine with no idle time between processing of the operations of these two jobs,

otherwise the solution would not be semi-active.

Proposition 1: for max| |F nwt C with 0, ,ijp i j! � with a non-empty feasible set, the set of semi-

active feasible schedules and the set of active feasible schedules are non-empty and equal.

Proof: by Observation 6 it is clear that as long as the set of feasible solutions is not empty, then the

set of all semi-active schedules is non-empty. Since the set of all active schedules is a subset of the set of

all semi-active schedules, it is enough to prove that each semi-active schedule is also active. Due to the no-

wait constraints and Observation 5 and Observation 7, it is impossible to construct a new schedule, through

reordering the sequence, with at least one operation finishing earlier without delaying another operation.

Hence any semi-active schedule is also active.

Corollary 1: there exists for max| |F nwt C an optimal schedule that is active considering the no-

wait constraints.

Proposition 2: for an active feasible solution of max| |F nwt C with the partial permutation

(..., , ,..., ,...)j k q , it can be proved that jk jq qkc c c� � .

Proof: the proof is by contradiction. Assume that this is not true; then jk jq qkc c ct � . Let max
jC be

the objective function of the partial solution (...,)jS ; then max max
j j

jk jq qkC c C c c� t � � . This means

by scheduling job q between job j and job k the finish time of job k (kF) must either remain the same

or be reduced by some positive amount. In either case, none of the operations of job k will be delayed

since there is no waiting time between the operations of a job. This means that one is able to schedule job

q between job j and job k without delaying any of the operations of job k . This contradicts the

assumption of the solution being active.

Corollary 2: given a partial permutation S for max| |F nwt C with ,j jF d j Sd � � , if constructing

the partial permutation (,)kS Sc for some k results in k kF d! , then any permutation of the form

(..., ,..., ,...)kS Scc , which places k after S , is infeasible.

18

Proof: finish time of each job is the sum of the contribution of the jobs in the partial sequence

ending to that job. Therefore by Proposition 2, kF will be increased by placing more jobs between S and

job k . Among all permutations that place job k after S , the permutation (, ,...)kS will have the smallest

kF which is still infeasible.

Observation 8: if ,{2,3,..., }, {1,2,..., } |
lj jl n j n SP dS� � � ! , then it is possible to remove this

node as well as all of the arcs that start from or end at this node from G . In other words, by placing this

job in location lS of the permutation, the due date constraints will be violated. Removing a node in column

1S means that the problem is infeasible; removing a node in column ;2 1l l nS d d � results in the removal

of 2(1)n � arcs from G ; removing a node from column n results in the removal of n arcs from G .

4.3 The Enumeration Algorithm
Algorithm 1: the following algorithm represents the enumeration algorithm that solves

max| , |jF nwt d C to optimality.

1. If
1,{1,2,..., } | j jj n SP dS� � ! , stop. The problem is infeasible.

2. If , ; {1,2,..., }
nj jLP d j nS d � � , remove the due date constraints to reduce the problem to

max| |F nwt C .

3. Calculate , ; {2,3,..., }, {1,2,..., }
ljSP l n j nS � � . If ,{1,2,..., } | ; {2,3,..., }

lj jj n SP d l nS� � ! � ,

remove the corresponding node and all of its arcs from the graph G ; call the remaining graph Gc .

4. Find the shortest path between S and T with attention to the definition of the feasible solution of

max| |F nwt C . If the found shortest path does not violate any of the due date constraints, it is optimal;

compute the total contribution values of this path to calculate the makespan. Otherwise, proceed to

step 5.

5. This step describes an enumeration sub-algorithm to solve Gc to optimality. The objective of this sub-

algorithm is to fathom all of the paths of the modified search graph (or Gc) from S to T until the

optimum solution is found. The root node is S .

5.1. Branch from S to all of the nodes in 1S . Define l as the index for the positions in the permutation;

in other words, l represents the current column in Gc . Set 1l m . Objective function value for

node ; {1,2,..., }j j n� is 0
l
j jC c . Fathom all nodes in Gc for 1l ! .

19

5.2. Assume that ^ `max | 1,2,..., ; isnot selectedor fathomed yetl l
q jj

C C j n j ; update the

current node to q ; break the ties by random selection, unfathom all the nodes in column |t t l! ,

and branch from q to all of its adjacent nodes in Gc ; calculate

^ `1 ; 1,2,..., | and areadjacentl l
j q qjC C c j n q j� m � � .

5.3. Fathom the nodes that violate the due date of their respective jobs in column 1l � , and go to

step 5.6 if 1l nz � ; otherwise proceed to step 5.4. Note that if due date constraints are violated

when 1l , according to step 1 the problem is infeasible.

5.4. Compare ^ `1; 1,2,...,l
jC j n� � with max

bestC , the makespan of the best-known feasible solution (if

the list of the complete feasible solutions is not empty); if ^ `1
max ; 1,2,...,l best

jC C j n� ! � , fathom

node j in column 1l � .

5.5. If 1l n � and there is at least one node in column 1l � which is not fathomed yet, then the paths

to such nodes define different feasible solutions each with makespan which is at least as desirable

as max
bestC . Accordingly, compare the makespan of such nodes with each other and update max

bestC

with the best found makespan. Then, fathom all the nodes in column 1l � and proceed to 5.6.

5.6. If all of the nodes in 1l � are fathomed, then fathom the current node and proceed to 5.6.1.

Otherwise, set 1l lm � and go to step 5.2.

5.6.1. If there are nodes in the current column l , which have not yet been selected or fathomed

during the course of the algorithm, do not change the value of l ; go to step 5.2. Otherwise

proceed to 5.6.2.

5.6.2. Set 1l lm � . If 0l , stop. Report max
bestC and its corresponding route as the optimum

solution. If the list of the feasible solutions is empty, the problem is infeasible. Otherwise,

restart step 5.6 from the beginning. ■

Figure 4 illustrates the enumeration sub-algorithm. Note that the above algorithm does not exploit

the results of Corollary 2. In order to integrate Corollary 2 in the algorithm, steps 5.3 and 5.4 of Algorithm

1 should be modified as follows; this results in Algorithm 2. The rest of the steps remain unchanged.

Algorithm 2: modify steps 5.3 and 5.4 of Algorithm 1 as follows:

5.3.c Fathom all the nodes in column 1l � ; if 1l nz � , then go to step 5.6. Otherwise, proceed

to step 5.4c . Note that if due date constraints are violated when 1l , according to step 1 of Algorithm 1

the problem is infeasible.

20

5.4.c Compare ^ `1; 1,2,...,l
jC j n� � with max

bestC , the makespan of the best-known feasible solution

(if the list of the complete feasible solutions is not empty); if ^ `1
max ; 1,2,...,l best

jC C j n� ! � , fathom all the

nodes in column 1l � . ■

Numerical results will be presented in the next section.

5. Computational Experiments
Conducting numerical experiments is an effective approach to compare the performance of the

developed models. IBM ILOG CPLEX V12.6 was used to solve the developed mathematical models.

Algorithms of Section 4 were coded by Microsoft Visual C++ 2013. All the numerical experiments were

performed on a PC equipped with a 2GHz Intel Pentium IV CPU and 2 GB of RAM. To perform the

computational analysis, a number of test problems generated by Samarghandi (Article in Press) were

selected; namely, eight test problems for max| |F nwt C accompanied with four different due date settings

for each test problem. Moreover, six other test problems with larger instances for max| |F nwt C were

generated. Each test problem was then accompanied by four different due date settings. All the test problems

were generated based on the same approach described by Samarghandi (Article in Press). Accordingly, a

total of 56 test problems for max| , |jF nwt d C and 14 test problems for max| |F nwt C were investigated

in this paper; each distinct due date setting will be called a tightness factor and will be abbreviated as TF

hereinafter. Sam01 through Sam08 are test problems for max| |F nwt C from Samarghandi (Article in Press)

and Sam01+DD through Sam08+DD are test problems with due date constraints from Samarghandi

(Article in Press); problems generated in this study are Sam09 through Sam14 and Sam09+DD through

Sam14+DD.

Best solutions of the models for the test problems will be reported at 60T , 300T , 600T

and 7200T seconds. Before the results are presented, some of the complications when solving the

problems will be discussed.

21

Branch from S
to all of the

adjacent nodes

Calculate the
partial objective

functions

Set l←1

Select the node
with the greatest

objective
function value

Branch from the
selected node to

all of its
adjacent nodes

Calculate the
partial objective

functions

Can the node
be fathomed
according to
steps 5.3, 5.4

or 5.5?

Fathom the
node

Yes

No

Stop. Report the
final solution
according to
step 5.6.2.

Yes

Are all the
nodes in l+1
fathomed?

Are there
unfathomed
nodes in the
current level

l?

Yes

Yes

Set l← l-1

No

l← l+1

No

Start

Is l=0?

No

Figure 4 - Algorithm 1

5.1 Implementation Complications
Formulation of Model I is based on a very large number (M) in (6) that replicates either-or

constraints. Although this is an effective method to prototype either-or constraints, the numerical value of

M may result in complication in implementation of the model in any software package designed for

solving mathematical modelling problems; IBM CPLEX is not an exception. If the value of M is not

carefully chosen, CPLEX may eliminate M in the pre-solve phase. It is therefore recommended1 that

either-or constraints should be modelled by indicator constraints in order to eradicate the need for the

numerical value of M . However, employing indicator constraints results in a reduction in the effectiveness

1 http://www-01.ibm.com/support/docview.wss?uid=swg21400084

22

of the branching algorithm; this can result in an increase in the solution time. Numerical results of both of

these approaches to implement Model I will be presented in section 5.2.

5.2 Numerical Results of the Developed Models
The equality (26) in Model II is a quadratic equation, which makes it a non-convex constraint. The

same argument holds for equation (35) in Model III. Hence solving these two models even after relaxing

the integrality constraint is not easy. There is a bulk of research on finding approximate solutions for non-

convex binary integer programming using convex optimization techniques like SDP relaxation (see e.g. the

pioneering paper of Goemans and Williamson (1995) on MAX-CUT Problem). However, this paper does

not seek approximate solutions so the authors have taken this problem as an interesting future research

direction. For this reason, in this paper Model II and Model III will not be included in the numerical

experiments for max| , |jF nwt d C .

On the other hand, in order to review the performance of Model II, the due date constraints of this

model will be relaxed and computational experiments will be conducted for max| |F nwt C and compared

with the relaxed version of Model I. Afterwards, Model I, Model V and Model VI will be considered for

further numerical experiments of max| , |jF nwt d C .

Table 1 presents the numerical results of the following models: original formulation of Model I

when due date constraints are relaxed, Model I when equation (6) is replaced with indicator constraints and

due date constraints are relaxed, and Model II when due date constraints are relaxed. In all of the following

tables, OFV represents objective function value and all of the CPU times are reported in seconds. The time

when the optimal solution was found is reported as well. For instance, according to Table 1 the optimal

solution of Sam04 is 9159; this solution has been found by the original formulation of Model I after 200

seconds. Moreover, numbers in boldface indicate that the reported solution is optimal. Therefore, NFS in

boldface means that the problem has no feasible solutions; however, non-bold NFS means that although the

algorithm has not been able find a feasible solution in the given time, the problem may or may not have

feasible solutions.

23

Table 1 - Numerical results of max| |F nwt C

 Model I - original formulation Model I - indicator constraints Model II

Problem Size n*m T=60 T=300 T=600 T=60 T=300 T=600 T=60 T=300 T=600

Sam01 7*7 7705, 1 7705, 1 7705, 1 7705, 39 7705, 39 7705, 39 7705, 1 7705, 1 7705, 1
Sam02 8*8 9372, 2 9372, 2 9372, 2 9372 9372 9372 9372, 1 9372, 1 9372, 1
Sam03 8*9 9690, 2 9690, 2 9690, 2 9690 9690 9690 9690, 1 9690, 1 9690, 1
Sam04 10*6 9159 9159, 200 9159, 200 9496 9159 9159 9159, 1 9159, 1 9159, 1
Sam05 11*5 8142 8142 8142 8246 8142 8142 8142, 2 8142, 2 8142, 2
Sam06 12*5 8923 8866 8866 9134 8884 8866 8866, 6 8866, 6 8866, 6
Sam07 13*4 8393 8242 8242 8728 8534 8299 8242, 1 8242, 1 8242, 1
Sam08 14*4 9412 9259 9195 9898 9562 9467 9195, 5 9195, 5 9195, 5
Sam09 15*6 13905 13704 13704 NFS NFS NFS 13330 13330 13330

Sam10 16*7 9057 9057 9057 NFS 9177 9129 8869 8869 8869

Sam11 17*5 11679 11467 11359 NFS 12365 11903 10950 10950 10950

Sam12 18*9 9546 9541 9541 NFS NFS NFS 8824 8824 8824

Sam13 19*8 18676 18574 18143 NFS NFS NFS 17428 17428 17428

Sam14 20*10 34015 33449 31370 37575 37575 37575 29318 29318 29318

Optimality proved 21.43% 28.57% 28.57% 7.14% 7.14% 7.14% 57.14% 57.14% 57.14%

It can be noted that the CPU times of Model II were under 10 seconds for problems Sam01 through

Sam08; the CPU time jumps to 808 seconds to solve Sam09 to optimality. Accordingly, computational

results for problems Sam01 through Sam08 and Sam09 through Sam14 will be presented in separate tables

hereinafter. Note that none of the models were able to find an optimal solution for the problems with more

than 16 jobs. On the other hand, the original formulation of Model I did not fathom all the nodes to prove

the optimality of the proposed solutions in less than 300 seconds once the problem instance consisted of

more than 10 jobs. As mentioned before, employing indicator constraints reduces the branching efficiency

of CPLEX. Table 1 shows that Model I with indicator constraints is the least competitive model and is able

to prove the optimality of only one of the test cases. This table is another pointer for the competitiveness of

Model II; as mentioned before, solving max| , |jF nwt d C using Model II can be considered as an interesting

future research.

Table 2 summarizes the numerical results of Model I with the original formulation of section 3.1

as well as when equation (6) is replaced with indicator constraints. Superiority of the original formulation

of Model I over the indicator constraints formulation is evident from this table. Therefore, only the results

of the original formulation of Model I will be reported for 7200T . Both of these formulations proved

to be most effective for the test problems with less than 12 jobs. Moreover, the original formulation of

Model I has found the optimal solution of 44.64% of the test problems in 7200T in Table 2.

24

Table 2 – Computational results of Model I
 Original formulation - OFV Indicator constraints - OFV

Problem Size n*m Due date TF T=60 T=300 T=600 T=7200 T=60 T=300 T=600

Sam01+DD 7*7

TF=1 7705, 2 7705, 2 7705, 2 7705, 2 7705, 20 7705, 20 7705, 20
TF=2 7705, 2 7705, 2 7705, 2 7705, 2 7705, 9 7705, 9 7705, 9
TF=3 7705, 2 7705, 2 7705, 2 7705, 2 7705, 2 7705, 2 7705, 2
TF=4 NFS, 14 NFS, 14 NFS, 14 NFS, 14 NFS, 54 NFS, 54 NFS, 54

Sam02+DD 8*8

TF=1 9372, 11 9372, 11 9372, 11 9372, 11 9485 9448 9372
TF=2 9372, 11 9372, 11 9372, 11 9372, 11 9372 9372, 205 9372, 205
TF=3 9573, 11 9573, 11 9573, 11 9573, 11 9573, 51 9573, 51 9573, 51
TF=4 NFS, 12 NFS, 12 NFS, 12 NFS, 12 NFS, 48 NFS, 48 NFS, 48

Sam03+DD 8*9

TF=1 9690, 10 9690, 10 9690, 10 9690, 10 9690 9690 9690
TF=2 9690, 10 9690, 10 9690, 10 9690, 10 9874 9690, 183 9690, 183
TF=3 9690, 10 9690, 10 9690, 10 9690, 10 9690, 50 9690, 50 9690, 50
TF=4 NFS NFS, 290 NFS, 290 NFS, 290 NFS NFS NFS

Sam04+DD 10*6

TF=1 9159 9159 9159, 334 9159, 334 9188 9159 9159
TF=2 9483 9454, 224 9454, 224 9454, 224 9817 9454 9454
TF=3 NFS 11537, 174 11537, 174 11537, 174 NFS 11537, 254 11537, 254
TF=4 NFS, 25 NFS, 25 NFS, 25 NFS, 25 NFS NFS, 132 NFS, 132

Sam05+DD 11*5

TF=1 8152 8152 8152 8152, 3966 8164 8164 8164
TF=2 8381 8381 8168 8164, 3402 8284 8284 8164
TF=3 NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS, 4 NFS, 4 NFS, 4 NFS, 4 NFS NFS, 62 NFS, 62

Sam06+DD 12*5

TF=1 9273 9170 9102 9084 9219 9219 9219
TF=2 9339 9148 9120 9120 9980 9236 9226
TF=3 NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS NFS NFS, 305 NFS, 305 NFS NFS NFS

Sam07+DD 13*4

TF=1 8496 8496 8476 8465 9297 8895 8476
TF=2 NFS NFS 9139 9002 NFS NFS NFS
TF=3 NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS NFS, 298 NFS, 298 NFS, 298 NFS NFS NFS, 330

Sam08+DD 14*4

TF=1 9802 9721 9674 9674 10845 10856 10266
TF=2 NFS NFS NFS NFS NFS NFS NFS
TF=3 NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS, 4 NFS, 4 NFS, 4 NFS, 4 NFS NFS NFS

Sam09+DD 15*6

TF=1 14260 14260 14260 13472 NFS NFS NFS
TF=2 NFS NFS NFS 14666 NFS NFS NFS
TF=3 NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS, 3 NFS, 3 NFS, 3 NFS, 3 NFS NFS NFS

Sam10+DD 16*7

TF=1 9201 9192 9192 9017 9678 9544 9420
TF=2 9188 9113 9113 8977 9163 9136 9136
TF=3 NFS NFS NFS 9262 NFS NFS NFS
TF=4 NFS NFS NFS NFS NFS NFS NFS

Sam11+DD 17*5

TF=1 12246 12246 12162 11371 NFS NFS NFS
TF=2 NFS NFS NFS NFS NFS NFS NFS
TF=3 NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS, 2 NFS, 2 NFS, 2 NFS, 2 NFS NFS NFS

Sam12+DD 18*9

TF=1 9360 9360 9360 8904 10441 9736 9736
TF=2 10172 9680 9600 9232 NFS 10338 10215
TF=3 NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS, 54 NFS, 54 NFS, 54 NFS, 54 NFS NFS NFS

Sam13+DD 19*8

TF=1 19361 19006 19006 17970 NFS NFS NFS
TF=2 NFS NFS NFS NFS NFS NFS NFS
TF=3 NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS NFS NFS NFS NFS NFS NFS

Sam14+DD 20*10

TF=1 33602 33602 32626 31199 NFS NFS NFS
TF=2 NFS NFS NFS 34399 NFS NFS NFS
TF=3 NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS NFS NFS NFS NFS NFS NFS

Percent of efforts with optimum solution 32.14% 37.50% 41.07% 44.64% 12.50% 21.43% 23.21%

25

Table 3 – Computational results of Model V and Model VI
 Model V - OFV Model VI

Problem Size n*m Due date TF Best solution
from Table 2 T=60 T=300 T=600 T=7200 T=60 T=300 T=600

Sam01+DD 7*7

TF=1 7705, 2 7705, 1 7705, 1 7705, 1 7705, 1 7705, 42 7705, 42 7705, 42
TF=2 7705, 2 7705, 1 7705, 1 7705, 1 7705, 1 7705, 40 7705, 40 7705, 40
TF=3 7705, 2 7705, 1 7705, 1 7705, 1 7705, 1 7705, 19 7705, 19 7705, 19
TF=4 NFS, 14 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1

Sam02+DD 8*8

TF=1 9372, 11 9372, 22 9372, 22 9372, 22 9372, 22 9372 9372 9372
TF=2 9372, 11 9372, 16 9372, 16 9372, 16 9372, 16 9372 9372 9372
TF=3 9573, 11 9573, 25 9573, 25 9573, 25 9573, 25 9573 9573 9573
TF=4 NFS, 12 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 8 NFS, 8 NFS, 8

Sam03+DD 8*9

TF=1 9690, 10 9690, 9 9690, 9 9690, 9 9690, 9 9690 9690 9690
TF=2 9690, 10 9690, 10 9690, 10 9690, 10 9690, 10 10399 9690 9690
TF=3 9690, 10 9690, 5 9690, 5 9690, 5 9690, 5 10229 9874 9690
TF=4 NFS, 290 NFS, 4 NFS, 4 NFS, 4 NFS, 4 NFS, 15 NFS, 15 NFS, 15

Sam04+DD 10*6

TF=1 9159, 334 9332 9159 9159 9159, 1264 9959 9623 9423
TF=2 9454, 224 9454 9454 9454 9454, 682 10251 10251 9558
TF=3 11537, 174 11537 11537 11537 11537, 504 NFS NFS NFS
TF=4 NFS, 25 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 4 NFS, 4 NFS, 4

Sam05+DD 11*5

TF=1 8152, 3966 8211 8211 8152 8152 8723 8652 8336
TF=2 8164, 3402 8164 8164 8164 8164 9287 9261 8284
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS, 4 NFS, 2 NFS, 2 NFS, 2 NFS, 2 NFS, 2 NFS, 2 NFS, 2

Sam06+DD 12*5

TF=1 9084 9091 9091 9091 9084 9972 9972 9733
TF=2 9120 9148 9148 9120 9120 10197 9877 9662
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS, 305 NFS, 9 NFS, 9 NFS, 9 NFS, 9 NFS, 13 NFS, 13 NFS, 13

Sam07+DD 13*4

TF=1 8465 8471 8471 8465 8465 10488 9829 8818
TF=2 9002 9175 9002 9002 9002 NFS NFS NFS
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS, 298 NFS NFS, 210 NFS, 210 NFS, 210 NFS, 24 NFS, 24 NFS, 24

Sam08+DD 14*4

TF=1 9674 10494 10290 9798 9746 12219 12114 11309
TF=2 NFS NFS NFS NFS NFS NFS NFS NFS
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS, 4 NFS NFS NFS, 570 NFS, 570 NFS NFS NFS

Sam09+DD 15*6

TF=1 13472 14226 14001 14001 13491 17033 16324 16324
TF=2 14666 13706 13583 13583 13330 NFS NFS NFS
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS, 3 NFS NFS NFS NFS NFS NFS NFS

Sam10+DD 16*7

TF=1 9017 9013 9011 9011 8912 9740 9552 9509
TF=2 8977 9210 9030 9030 8975 10104 9566 9489
TF=3 9262 9334 9223 9221 9116 NFS NFS NFS
TF=4 NFS NFS NFS NFS NFS NFS NFS NFS

Sam11+DD 17*5

TF=1 11371 11639 11530 11530 11268 14127 12641 12641
TF=2 NFS NFS NFS 12243 11576 NFS NFS NFS
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS, 2 NFS NFS NFS NFS NFS NFS NFS

Sam12+DD 18*9

TF=1 8904 9174 9036 9036 8902 10883 10463 10463
TF=2 9232 9695 9568 9485 9304 NFS NFS NFS
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS, 54 NFS NFS NFS NFS NFS NFS NFS

Sam13+DD 19*8

TF=1 17970 18621 18621 18621 17996 NFS NFS NFS
TF=2 NFS NFS 19954 19373 18453 NFS NFS NFS
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS NFS NFS NFS NFS NFS NFS NFS

Sam14+DD 20*10

TF=1 31199 32949 32949 32635 30822 NFS 38299 38299
TF=2 34399 NFS 32511 32511 30715 NFS NFS NFS
TF=3 NFS NFS NFS NFS NFS NFS NFS NFS
TF=4 NFS NFS NFS NFS NFS NFS NFS NFS

Percent of efforts with optimum solution 44.64% 26.79% 28.57% 30.36% 35.71% 17.86% 17.86% 17.86%

26

Table 4 – Computational results of The Enumeration Algorithms
 Algorithm 2 - OFV Algorithm 1 - OFV

Problem Size n*m Due date TF T=60 T=300 T=600 T=7200 T=60 T=300 T=600

Sam01+DD 7*7

TF=1 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0
TF=2 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0
TF=3 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0 7705, 0
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam02+DD 8*8

TF=1 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0
TF=2 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0 9372, 0
TF=3 9573, 0 9573, 0 9573, 0 9573, 0 9573, 0 9573, 0 9573, 0
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam03+DD 8*9

TF=1 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0
TF=2 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0
TF=3 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0 9690, 0
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam04+DD 10*6

TF=1 9159, 0 9159, 0 9159, 0 9159, 0 9159, 2 9159, 2 9159, 2
TF=2 9454, 0 9454, 0 9454, 0 9454, 0 9454, 0 9454, 0 9454, 0
TF=3 11537, 0 11537, 0 11537, 0 11537, 0 11537, 0 11537, 0 11537, 0
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam05+DD 11*5

TF=1 8152, 2 8152, 2 8152, 2 8152, 2 8152, 17 8152, 17 8152, 17
TF=2 8164, 1 8164, 1 8164, 1 8164, 1 8164, 9 8164, 9 8164, 9
TF=3 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam06+DD 12*5

TF=1 9084, 9 9084, 9 9084, 9 9084, 9 9084, 54 9084, 54 9084, 54
TF=2 9120, 2 9120, 2 9120, 2 9120, 2 9120, 25 9120, 25 9120, 25
TF=3 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam07+DD 13*4

TF=1 8465, 11 8465, 11 8465, 11 8465, 11 9002 8465, 226 8465, 226
TF=2 9002, 1 9002, 1 9002, 1 9002, 1 9002, 11 9002, 11 9002, 11
TF=3 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam08+DD 14*4

TF=1 9674, 59 9674, 59 9674, 59 9674, 59 10613 9699 9699
TF=2 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 24 NFS, 24 NFS, 24
TF=3 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 6 NFS, 6 NFS, 6
TF=4 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0 NFS, 0

Sam09+DD 15*6

TF=1 14976 14386 14136 14136 15999 14991 14976
TF=2 13636 13330, 103 13330, 103 13330, 103 15809 15014 14031
TF=3 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 59 NFS, 59 NFS, 59
TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1

Sam10+DD 16*7

TF=1 9419 9419 9402 9364 9419 9419 9402
TF=2 9445 9402 9402 9402 9451 9432 9402
TF=3 9265 9142 9057 9057, 716 NFS 9374 9374
TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 11 NFS, 11 NFS, 11

Sam11+DD 17*5

TF=1 12077 11829 11829 11829 12680 12627 12625
TF=2 12503 11571 11534 11534, 860 NFS NFS NFS
TF=3 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS NFS, 137 NFS, 137
TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 1

Sam12+DD 18*9

TF=1 10913 10813 10432 10432 10980 10886 10813
TF=2 10615 10363 10363 10349 11199 10943 10943
TF=3 NFS NFS 9663 9663 NFS NFS NFS
TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 2 NFS, 2 NFS, 2

Sam13+DD 19*8

TF=1 20699 20589 20497 20321 21204 21108 21023
TF=2 20243 20119 19944 19849 NFS NFS NFS
TF=3 NFS, 42 NFS, 42 NFS, 42 NFS, 42 NFS NFS NFS
TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 2 NFS, 2 NFS, 2

Sam14+DD 20*10

TF=1 35847 35847 35847 35847 37045 36754 36754
TF=2 34575 34430 33349 33065 NFS NFS NFS
TF=3 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS NFS NFS
TF=4 NFS, 1 NFS, 1 NFS, 1 NFS, 1 NFS, 17 NFS, 17 NFS, 17

Percent of efforts with optimum solution 75.00% 76.79% 76.79% 80.36% 66.07% 69.64% 69.64%

27

Table 5 – Overall comparison of the computational results at 7200T
Problem Size n*m Due date TF Model I – original

Formulation Model V Algorithm 2

Sam01+DD 7*7

TF=1 7705, 2 7705, 1 7705, 0
TF=2 7705, 2 7705, 1 7705, 0
TF=3 7705, 2 7705, 1 7705, 0
TF=4 NFS, 14 NFS, 1 NFS, 0

Sam02+DD 8*8

TF=1 9372, 11 9372, 22 9372, 0
TF=2 9372, 11 9372, 16 9372, 0
TF=3 9573, 11 9573, 25 9573, 0
TF=4 NFS, 12 NFS, 1 NFS, 0

Sam03+DD 8*9

TF=1 9690, 10 9690, 9 9690, 0
TF=2 9690, 10 9690, 10 9690, 0
TF=3 9690, 10 9690, 5 9690, 0
TF=4 NFS, 290 NFS, 4 NFS, 0

Sam04+DD 10*6

TF=1 9159, 334 9159, 1264 9159, 0
TF=2 9454, 224 9454, 682 9454, 0
TF=3 11537, 174 11537, 504 11537, 0
TF=4 NFS, 25 NFS, 1 NFS, 0

Sam05+DD 11*5

TF=1 8152, 3966 8152 8152, 2
TF=2 8164, 3402 8164 8164, 1
TF=3 NFS NFS NFS, 0
TF=4 NFS, 4 NFS, 2 NFS, 0

Sam06+DD 12*5

TF=1 9084 9084 9084, 9
TF=2 9120 9120 9120, 2
TF=3 NFS NFS NFS, 0
TF=4 NFS, 305 NFS, 9 NFS, 0

Sam07+DD 13*4

TF=1 8465 8465 8465, 11
TF=2 9002 9002 9002, 1
TF=3 NFS NFS NFS, 0
TF=4 NFS, 298 NFS, 210 NFS, 0

Sam08+DD 14*4

TF=1 9674 9746 9674, 59
TF=2 NFS NFS NFS, 1
TF=3 NFS NFS NFS, 0
TF=4 NFS, 4 NFS, 570 NFS, 0

Sam09+DD 15*6

TF=1 13472 13491 14136
TF=2 14666 13330 13330, 103
TF=3 NFS NFS NFS, 1
TF=4 NFS, 3 NFS NFS, 1

Sam10+DD 16*7

TF=1 9017 8912 9364
TF=2 8977 8975 9402
TF=3 9262 9116 9057, 716
TF=4 NFS NFS NFS, 1

Sam11+DD 17*5

TF=1 11371 11268 11829
TF=2 NFS 11576 11534, 860
TF=3 NFS NFS NFS, 1
TF=4 NFS, 2 NFS NFS, 1

Sam12+DD 18*9

TF=1 8904 8902 10432
TF=2 9232 9304 10349
TF=3 NFS NFS 9663
TF=4 NFS, 54 NFS NFS, 1

Sam13+DD 19*8

TF=1 17970 17996 20321
TF=2 NFS 18453 19849
TF=3 NFS NFS NFS, 42
TF=4 NFS NFS NFS, 1

Sam14+DD 20*10

TF=1 31199 30822 35847
TF=2 34399 30715 33065
TF=3 NFS NFS NFS, 1
TF=4 NFS NFS NFS, 1

Percent of efforts with optimum solution 44.64% 35.71% 80.36%

28

Table 3 summarizes the results of Model V and Model VI. In this table only the results of Model

V will be reported for 7200T due to its numerical supremacy over Model VI. A comparison between

Table 2, and Table 3 reveals the superiority of the original formulation of Model I over the rest of the

formulations. Computational results of the enumeration algorithms are presented in Table 4. In this table

only the results of Algorithm 2 will be reported for 7200T due to its numerical supremacy over

Algorithm 1. According to Table 4, Algorithm 2 finds the optimal solution of the test problems Sam01+DD

through Sam08+DD in under 60 seconds. Overall, this algorithm finds the optimal solution of 80.36% of

the test problems at 7200T , which is superior to all of the mathematical and constraint programming

models studied in this paper.

A closer comparison between Algorithm 2, Model V, and Model I with the original formulation is

presented in Table 5. All of results in this table are for 7200T . Computational supremacy of Algorithm

2 over the competitive methods is evident from this table. Algorithm 2 not only finds the optimal solution

of 80.36% of the test problems, it is also able to find at least one feasible solution for one of the test problems

(Sam12+DD with tightness factor 3) for which Model I and Model V have returned no feasible solutions

in 7200T .

6. Conclusions
The no-wait flow shop problem with due date constraints and makespan criterion has been

considered in this paper. The problem is strongly NP-hard. Six mathematical models have been developed

for the problem; namely, a mixed integer programming model, three quadratic mixed integer programming

formulations, and two constraint programming models. Some of these models work based on the definition

of contribution of a job to the makespan; an efficient algorithm has been proposed to calculate such

contributions. Furthermore, a graph modelling of the problem as well as an exact enumeration algorithm

that employed such modelling have been presented based on the definition of the contributions. A number

of propositions have been proved to efficiently rule out infeasible solutions from the set of all possible

permutations of max| , |jF nwt d C . The results of these propositions were integrated into the enumeration

algorithm. Moreover, solving complications as well as implementation difficulties have been discussed.

Finally, a thorough computational experiment has been conducted to compare the performance of

the developed models and the enumeration algorithm. Computational results illustrate that as the problem

size grows, finding a feasible solution for max| , |jF nwt d C is not an easy task. Numerical results reveal

that the enumeration algorithm outperforms the other formulations when implemented by IBM ILOG

CPLEX.

29

Finally, developing tight lower and upper bounds for max| , |jF nwt d C is an interesting future

research direction. Moreover, solving quadratic programming models using semi-definite programming

techniques, if possible, is very promising.

7. References
Baker, K. R. and K. R. Baker (1974). Introduction to sequencing and scheduling, Wiley New

York.

Baker, K. R. and B. Keller (2010). "Solving the single-machine sequencing problem using integer
programming." Computers & Industrial Engineering 59(4): 730-735.

Błażewicz, J., E. Pesch, M. Sterna and F. Werner (2005). "The two-machine flow-shop problem
with weighted late work criterion and common due date." European Journal of Operational Research
165(2): 408-415.

Błażewicz, J., E. Pesch, M. Sterna and F. Werner (2008). "Metaheuristic approaches for the two-
machine flow-shop problem with weighted late work criterion and common due date." Computers &
Operations Research 35(2): 574-599.

Bowman, E. H. (1959). "The schedule-sequencing problem." Operations Research 7(5): 621-624.

Brah, S. (1996). "A comparative analysis of due date based job sequencing rules in a flow shop
with multiple processors." Production Planning & Control 7(4): 362-373.

Desrochers, M. and G. Laporte (1991). "Improvements and extensions to the Miller-Tucker-
Zemlin subtour elimination constraints." Operations Research Letters 10(1): 27-36.

Dhingra, A. and P. Chandna (2010). "Hybrid genetic algorithm for SDST flow shop scheduling
with due dates: a case study." International Journal of Advanced Operations Management 2(3): 141-161.

Ebrahimi, M., S. Fatemi Ghomi and B. Karimi (2013). "Hybrid flow shop scheduling with
sequence dependent family setup time and uncertain due dates." Applied Mathematical Modelling.

Goemans, M. X. and D. P. Williamson (1995). "Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming." Journal of the ACM (JACM)
42(6): 1115-1145.

Gowrishankar, K., C. Rajendran and G. Srinivasan (2001). "Flow shop scheduling algorithms for
minimizing the completion time variance and the sum of squares of completion time deviations from a
common due date." European Journal of Operational Research 132(3): 643-665.

Grabowski, J. and J. Pempera (2000). "Sequencing of jobs in some production systems."
European Journal of Operational Research 125: 535-550.

Graham, R. L., E. L. Lawler, J. K. Lenstra and A. R. Kan (1979). "Optimization and
approximation in deterministic sequencing and scheduling: a survey." Annals of discrete mathematics 5:
287-326.

Gupta, J. (1971). "The generalized n-job, m-machine scheduling problem." Opsearch 8(3): 173-
185.

Gupta, J. N., V. Lauff and F. Werner (2000). On the solution of 2-machine flow shop problems
with a common due date. Operations Research Proceedings 1999, Springer.

Hall, N. and C. Sriskandarajah (1996). "A survey of machine scheduling problems with blocking
and no-wait in process." Operations Research 44: 510-525.

30

Hasanzadeh, A., H. Afshari, K. Kianfar, M. Fathi and A. O. Jadid (2009). A GRASP algorithm
for the two-machine flow-shop problem with weighted late work criterion and common due date. IEEE
International Conference on Industrial Engineering and Engineering Management.

Hunsucker, J. and J. Shah (1992). "Performance of Priority Rules in a Due Date Flow Shop."
Omega 20(1): 73-89.

Javadi, B., M. Saidi-Mehrabad, A. Haji, I. Mahdavi, F. Jolai and N. Mahdavi-Amiri (2008). "No-
wait flow shop scheduling using fuzzy multi-objective linear programming." Journal of the Franklin
Institute 345(5): 452-467.

Kaminsky, P. and Z.-H. Lee (2002). "On-line algorithms for flow shop due date quotation."
University of California, Berkeley(California, USA).
http://www.ieor.berkeley.edu/~kaminsky/papers/ddq_flowshop.pdf.

King, J. and A. Spachis (1980). "Heuristics for flowshop scheduling." International Journal of
Production Research 18: 343-357.

Manne, A. S. (1960). "On the job-shop scheduling problem." Operations Research 8(2): 219-223.

Morton, T. and D. Pentico (2010). Heuristic scheduling systems. 1993, Wiley, New York.

Pan, C.-H. (1997). "A study of integer programming formulations for scheduling problems."
International Journal of Systems Science 28(1): 33-41.

Pan, J. C.-H. and J.-S. Chen (2005). "Mixed binary integer programming formulations for the
reentrant job shop scheduling problem." Computers & Operations Research 32(5): 1197-1212.

Panwalkar, S. and C. Koulamas (2012). "An O(n^2) algorithm for the variable common due date,
minimal tardy jobs bicriteria two-machine flow shop problem with ordered machines." European Journal
of Operational Research 221(1): 7-13.

Raaymakers, W. and J. Hoogeveen (2000). "Scheduling multipurpose batch process industries
with no-wait restrictions by simulated annealing." European Journal of Operational Research 126: 131-
151.

Rajasekera, J., M. Murr and K. So (1991). "A due-date assignment model for a flow shop with
application in a lightguide cable shop." Journal of Manufacturing Systems 10(1): 1-7.

Rajendran, C. (1994). "A no-wait flowshop scheduling heuristic to minimize makespan." Journal
of the Operational Research Society 45: 472-478.

Ramezanian, R., M. Aryanezhad and M. Heydari (2010). "A Mathematical Programming Model
for Flow Shop Scheduling Problems for Considering Just in Time Production." International Journal of
Industrial Engineering 21(2).

Röck, H. (1984). "Some new results in flow shop scheduling." Zeitschrift für Operations
Research 28: 1-16.

Samarghandi, H. (Article in Press). "A particle swarm optimisation for the no-wait flow shop
problem with due date constraints." International Journal of Production Research: 1-18.

Sarper, H. (1995). "Minimizing the sum of absolute deviations about a common due date for the
two-machine flow shop problem." Applied mathematical modelling 19(3): 153-161.

Selen, W. J. and D. D. Hott (1986). "A mixed-integer goal-programming formulation of the
standard flow-shop scheduling problem." Journal of the Operational Research Society: 1121-1128.

Stafford, E. F. (1988). "On the development of a mixed-integer linear programming model for the
flowshop sequencing problem." Journal of the Operational Research Society: 1163-1174.

31

Tang, H. B., C. M. Ye and L. F. Jiang (2011). "A New Hybrid Particle Swarm Optimization for
Solving Flow Shop Scheduling Problem with Fuzzy Due Date." Advanced Materials Research 189: 2746-
2753.

Tari, F. G. and L. Olfat (2013). "Heuristic rules for tardiness problem in flow shop with
intermediate due dates." The International Journal of Advanced Manufacturing Technology: 1-13.

Tseng, F. T., E. F. Stafford Jr and J. N. Gupta (2004). "An empirical analysis of integer
programming formulations for the permutation flowshop." Omega 32(4): 285-293.

Wagner, H. M. (1959). "An integer linear‐programming model for machine scheduling." Naval
Research Logistics Quarterly 6(2): 131-140.

Wilson, J. (1989). "Alternative formulations of a flow-shop scheduling problem." Journal of the
Operational Research Society: 395-399.

Wismer, D. (1972). "Solution of the flowshop scheduling with no intermediate queues."
Operations Research 20: 689-697.

Ziaee, M. and S. J. Sadjadi (2007). "Mixed binary integer programming formulations for the flow
shop scheduling problems. A case study: ISD projects scheduling." Applied mathematics and
computation 185(1): 218-228.

