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Abstract

Recent research on the robust and stochastic travelling salesman problem and the vehicle routing problem

has seen many different approaches for describing the region of ambiguity, such as taking convex combinations

of observed demand vectors or imposing constraints on the moments of the spatial demand distribution. One

approach that has been used outside the transportation sector is the use of statistical metrics that describe a

distance function between two probability distributions. Motivated by a districting problem in multi-vehicle

routing, we consider a distributionally robust version of the Euclidean travelling salesman problem in which

we compute the worst-case spatial distribution of demand against all distributions whose Wasserstein distance

to an observed demand distribution is bounded from above. This constraint allows us to circumvent common

overestimation that arises when other procedures are used, such as fixing the center of mass and the covariance

matrix of the distribution. Numerical experiments confirm that our new approach is useful when used in a

decision support tool for dividing a territory into service districts for a fleet of vehicles when limited data is

available.

1 Introduction

One of the most common tools for addressing uncertainty in vehicle routing problems (VRPs) is the use of districting

strategies, in which one divides one’s service region into smaller pieces, and then assigns one (or more) vehicle(s)

to each piece. Such strategies are desirable for many practical reasons: for example, they provide a simple rule

for assigning destination points to vehicles, they decompose the original problem into independent sub-problems,

and they enable one to make high-level strategic decisions in the absence of complete information. In fact, for
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many problems, it can be shown that there exist simple districting strategies that are asymptotically optimal as

the number of demand points becomes large [38, 48].

This paper describes a districting strategy developed for an industrial affiliate, a major North American mapping

company, whose objective is to route a fleet of vehicles throughout a region to collect sensor data that is ultimately

used to assemble full 3-dimensional point clouds of buildings and other city structures. The vehicles must visit

specific locations within the region that correspond to anomalies that arise when “scrubbing” an existing city map

across many CPUs. We will go into more detail on this in Section 4.2, but for now, the salient features that comprise

this problem are as follows:

1. The service region is a compact Euclidean domain R, and distances between points are Euclidean, or close to

some “natural” metric such as the `1 or `∞ norm.

2. During each service period, a fleet of vehicles must use travelling salesman (TSP) tours to visit a collection

of destination points in R that are sampled from a probability distribution f .

3. The goal is to partition R into districts, with one district per vehicle, in a way that is “optimal” as the number

of destination points becomes large.

These problem attributes form the premises of a sizeable body of literature, with a particularly high concentration

in sensor data collection, surveillance, and information retrieval. In this context, it is often the case that points

are actually sampled over a long time horizon from a heterogeneous Poisson process whose underlying spatial

distribution is f ; it turns out that, in the heavy-traffic limit, this “online” routing problem has essentially the

same characteristics as the static TSP, as can be seen in (for example) [13]. This heavy-traffic assumption is the

basis for the second attribute above. It is worth noting that [13] also establishes that the low-traffic case of the

“online” problem is more closely related to the k-median problem; this is an equally useful perspective, although it

is not relevant in our particular application described in Section 4.2. A few examples of papers that use the three

assumptions above include [37] and [15] (which use power diagrams and ham sandwich cuts respectively to design

districts) as well as [41] (which uses Voronoi partitions to design districts).

One of the drawbacks to these preceding schemes is that one must have full knowledge of the demand distribution

f in order to design districts (in particular, as will be explained in Section 2.1, the function
√
f(x) turns out to have

particular importance). In reality, one rarely has this luxury; the purpose of this paper is to describe a districting

strategy when a fourth problem attribute is present, namely that:

4. The distribution f is unknown at the time that the districting decision is to be made, and there is only a set

of independent samples from f available to make the districting decision.
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There are many ways to handle this last attribute; one could, for example, fix a parametric form for f and perform

a maximum likelihood estimation, or build an artificial density non-parametrically using kernel density estimation.

In our particular application, described in Section 4.2, the number of samples available may be too small to reliably

approximate f in such a way. In addition, distances throughout our region are usually not homogeneous due to

traffic or poor road network topology, and thus there may be certain areas in R in which travel is expensive that

are not reflected in our (small) set of samples (in other words, we may suspect that the vehicles will need to enter

these expensive areas, even if none of our samples lies in them). Therefore, in this paper, we tackle this lack of

knowledge using distributionally robust optimization, as has been done earlier for the VRP in [16].

With the above attributes in mind, the focus of this paper is the following problem: our inputs consist of an

empirical distribution consisting of some sampled demand points in the service region R, and our objective is to

divide R into sub-regions in a way that balances the anticipated workloads in each sub-region. In order to estimate

these workloads, we use distributionally robust optimization; that is, we construct probability distributions on the

sub-regions that are “close” to this empirical distribution and are as “badly behaved” as possible, in the sense that

the asymptotic length of a TSP tour of points drawn from that distribution should be as large as possible. In

order to characterize our ambiguity set of distributions (i.e. what we mean by “close”), we use a statistical metric

called the Wasserstein distance, which is also known as the earth mover’s or Kantorovich metric. On the practical

side, we give an algorithm for partitioning R that significantly out-performs other approaches when applied to the

dataset provided by our industrial affiliate. On the theoretical side, we use Lagrange duality to derive a closed-form

expression for these “badly behaved” distributions within each sub-region, and show how to compute them quickly

using cutting planes.

Conceptually speaking, the Wasserstein distance is very simple and intuitive: if we visualize two probability

distributions µ1 and µ2 as being two piles of equal amounts of sand, then the Wasserstein distance between them

is simply the minimum amount of work needed to move one pile to take the shape of the other, as suggested in

Figure 1a. The Wasserstein distance can also be thought of as an infinite-dimensional generalization of a bipartite

matching, as suggested in Figures 1b-1d. A particularly attractive feature of the Wasserstein distance that is not

present in many other statistical metrics is the ability to directly compare a discrete distribution and a continuous

distribution, as illustrated in Figures 1e-1g. In addition, because the Wasserstein distance is a true metric, the set

of all distributions within a certain distance of a reference distribution is a convex set that turns out to admit a

simple representation.

This paper is structured as follows: Section 2 describes the structure of the worst-case spatial distribution

for the TSP under a Wasserstein distance constraint and gives a primal-dual algorithm that finds this worst-case
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Figure 1: Figure 1a shows a Wasserstein distance problem between two univariate distributions µ1 and µ2. Figures
1b-1d show how a Wasserstein mapping can be thought of as an infinite-dimensional generalization of a bipartite
matching. Figures 1e-1g show a Wasserstein distance problem when µ1 is a smooth density and µ2 is atomic. The
two distributions are shown in 1e, and 1f shows the solution to an assignment problem between a large number of
samples from µ1 and the atomic distribution µ2. Figure 1g shows the optimal mapping between the two distributions:
each cell (indicated by the dashed lines) contains 1/n of the mass of the density, which is to be transported to the
point contained within it.

distribution efficiently. After going over some practical details in Section 3, this algorithm is then implemented in

two computational experiments involving both the single-vehicle and multi-vehicle TSP in Section 4.

1.1 Overview of the proposed scheme

This section is a “roadmap” of the scheme that we propose in this paper for partitioning a service region in a

distributionally robust fashion. For a distribution f defined on a region R, we let Φ(f) be a functional that

characterizes the expected length of a TSP tour of a collection of independent samples of f . Obviously, the

functional Φ depends on the number N of samples drawn, but we will suppress that in the interest of brevity and

to emphasize the dependency on the distribution itself. The most obvious form for Φ for a given value of N would

be to use Φ(f) = Ef TSP(X1, . . . , XN ), where Ef denotes the usual expectation operator with respect to f and
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TSP(X1, . . . , XN ) denotes the length of a TSP tour of the points Xi. In fact, as we will see in Section 2.2, it turns

out that there exists a sensible Φ that does not depend on N (since the scaling of the TSP tour can be described

explicitly as N becomes large) and does not require an expectation operator (since we can actually establish almost

sure convergence of the length of the TSP tour, rather than mere convergence in expectation).

The focus of this paper is on partitioning R into m districts, D1, . . . , Dm, in such a way as to minimize the

maximum tour length in each of the districts. In other words, we seek to minimize

max
i∈{1,...,m}

Φ(f |Di
) ,

where f |Di
denotes the restriction of f to district Di. Thus, when f is given, the districting problem is written as

minimize
D1,...,Dm⊂R

max
i∈{1,...,m}

Φ(f |Di
) s.t. (1)

m⋃
i=1

Di = R

Di ∩Dj = ∅ ∀i 6= j

where the two constraints require D1, . . . , Dm to be a partition of R. It is natural to impose a “shape condition”

on the districts as well, such as convexity or contiguity. Problem (1) has been addressed previously in numerous

studies, such as [37] and [15], both of which add an additional constraint that the Di’s must be convex (provided

that R is convex to start with).

In this paper, we assume that f is not given, but is merely known to lie in an ambiguity set P. Thus, our

problem now takes the form

minimize
D1,...,Dm⊂R

max
i∈{1,...,m}

sup
f∈P

Φ(f |Di
) s.t.

m⋃
i=1

Di = R

Di ∩Dj = ∅ ∀i 6= j .

This problem was addressed in [16] for the case where P is characterized by first and second moment inequalities.

In this paper, we address the problem above for the case where P is defined by the Wasserstein distance to a set

of given samples (which we will define in Section 2.1): if we let D(f, f̂) denote this distance, where f̂ denotes an
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empirical distribution on samples x1, . . . , xn, then our problem takes the form

minimize
D1,...,Dm⊂R

max
i∈{1,...,m}

sup
f :D(f,f̂)≤t

Φ(f |Di
) s.t.

m⋃
i=1

Di = R

Di ∩Dj = ∅ ∀i 6= j

where t is a fixed distance threshold.

We are initially concerned with the “inner” problem of the above, that is, determining the worst-case distributions

f∗ that result in large values of Φ. After describing the structure of these distributions in Section 2, we then turn

to the matter of determining districts that minimize the worst-case workloads effectively.

1.2 Related work

This paper describes a continuous approximation model that uses robust optimization to describe the worst-case

demand distribution for the travelling salesman problem; this model is then applied to solve a districting problem

that assigns vehicles to pre-specified zones in a region. As such, there are essentially three bodies of literature from

which it stems.

1.2.1 Continuous approximation models

This paper is concerned with a continuous approximation model for a transportation problem. The basic premise of

the continuous approximation paradigm is that one replaces combinatorial quantities that are difficult to compute

with simpler mathematical formulas, which (under certain conditions) provide accurate estimations of the desired

quantity [19]. Such approximations exist for many combinatorial problems, such as the travelling salesman problem

[7], facility location [30, 36], and any subadditive Euclidean functional such as a minimum spanning tree, Steiner

tree, or matching [42]. In our computational districting experiment, an approximation of this kind is used as the

first level of an optimization problem in which we design service zones that are associated with different vehicles.

In a nutshell, we apply the famous square-root law from [7] to estimate the length of a TSP tour of some points in

a region.

1.2.2 Districting problems in vehicle routing

The primary application of the theory derived in this paper is in the design of districts for allocating a fleet of

vehicles to visit a collection of customers when demand is uncertain. The problem of designing such districts is a
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foundational one in the continuous approximation literature, as can be seen in Chapter 4 of the seminal book [19],

for example. Our problem is motivated by an industrial affiliate, a major North American mapping company, that

uses a districting strategy to assign vehicles to scan metropolitan regions. This kind of geographic localization –

as opposed to explicitly computing turn-by-turn directions for vehicles – is a common strategy that is also used by

Google Street View, for example [28]:

[Google spokesman Larry] Yu initially stated drivers were given specific routes to follow. But a

Street View driver, who asked to remain anonymous for employment reasons, said he was simply told to

drive around Sonoma County and collect images. Yu retracted his assertion after learning of the driver’s

statement.

Rather than collecting street-level photographs, our affiliate assembles full 3-dimensional point clouds of buildings

and other city structures (among many other data sources, e.g. temperature, radio signals, and sunlight), which

necessitates more control over driver behavior than that described by the quote above. As mentioned in the

introduction, the most common way that uncertainty is represented is by assuming that demand follows a known

probability density function (which is often further assumed to be uniform); this density then informs the districting

decision in some way.

An alternative method to the preceding continuous models is to instead assume that demand is present on a

known graph, and that vertices on the graph have probability weights. This is the approach taken by [29], which

models the districting problem as a two-stage stochastic optimization program with recourse, and by [6], which uses

a three-phase procedure that aggregates data points into compact districts using a mixed-integer goal program. It

is also possible to apply principles from continuous approximation theory to design districts in graph-based models,

provided some basic geometric information is available; this is the case in [32, 33], which use the square-root

approximation of [7] in conjunction with a graph-based model, and which show good performance when the inputs

are known to be uniformly distributed over a geometric domain. Section 4.2 of this paper also shows how to apply

a continuous approximation scheme to a heterogeneous road network to a set of inputs that are non-uniformly

distributed.

As stated earlier, the specific contribution of this paper is a method that designs districts in a data-driven

fashion; rather than having full distribution information, we assume that we are given only a collection of data

samples that inform our districting decision. The problem of designing districts in such a way (i.e. when one has

an ambiguous distribution setting) is considerably less understood, although the paper [16] describes one approach

for doing so when one knows the mean and covariance of the demand distribution. A major deficiency of this

approach, which motivates our present work, is its inability to respond to clustering or even mere multi-modality in
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Figure 2: The above point sets in the unit square are extremely clustered and one would expect that their TSP tour
should be short. However, because their sample mean and covariance matrix are the same as that of the uniform
distribution, any robust methodology that uses only mean and covariance information will fail to recognize the
clustering, thereby incurring significant overestimation.

data points. For example, Figure 2 shows a data set that is very clustered, and whose TSP tour should therefore

be short relative to (for example) a uniform distribution. However, this clustered data set actually has precisely

the same mean and covariance matrix as the uniform distribution; such an approach therefore frequently leads

to an over-conservative solution (or more generally, a solution that is not faithful to the true unknown demand

distribution), even when a large number of samples is available. This over-conservatism is actually noted in Figure

10 of [16].

1.2.3 Robust optimization and vehicle routing

In most models of the robust VRP, one has a pre-defined ambiguity region and seeks a set of routes that is as

good as possible with respect to all of the outcomes; this ambiguity region is usually described as a polyhedral

set [1, 26, 43], although the recent paper [2] adopts a “robust mean-variance” approach that minimizes a weighted

sum of the average cost and the variance of a route when sampled over many scenarios. In our problem, we are

concerned with robustness in the distributional sense: we seek the spatial distribution of demand for which the

expected cost of a tour is as high as possible, while remaining consistent with some observed data samples or some

parameters derived thereof.

By far, the most common parameters used in distributionally robust problems (in general domains, not just

those arising in transportation) are the support and the first and second moments of the sample distribution [20, 39].

We have previously made use of first and second moment information for the distributionally robust VRP in the

paper [16]; one major drawback of this method is an inability to detect clustering, as we have already noted in the

preceding section. In order to remedy this, we propose the use of the Wasserstein distance as a means of defining

8



the uncertainty region of demand distributions. To our knowledge, the first direct applications of the Wasserstein

distance to optimization problems have occurred very recently in [46, 47]; the former uses Carathéodory-type

results to reduce the support set of an infinite-dimensional optimization problem to a finite set and the latter uses

the Wasserstein distance as one of several statistical metrics to define risk measures for portfolios. Even more

recently, the papers [22, 24] shows how to apply complementary slackness principles to solve a very large family

of distributionally robust optimization problems subject to Wasserstein distance constraints; their use of convex

duality theory is closely related to our own derivation in Section 2.2. For general problems (i.e. not those related

specifically to vehicle routing), a variety of other statistical metrics (or pseudo-metrics) have been used previously

for solving distributionally robust optimization problems; such metrics include the Kullback-Leibler divergence,

Hellinger distance, χ2-distance, total variation distance, or Kolmogorov-Smirnov statistic [8].

There are three reasons why the Wasserstein distance is a particularly appropriate choice for our problem of

interest: first, the Wasserstein distance allows one to directly make comparisons between a discrete distribution

(such as the empirical distribution consisting of a collection of data points) and a continuous distribution, as

we have previously noted in Figure 1; this it not possible in (for example) the Kullback-Leibler divergence, the

Hellinger distance, or the total variation distance. Secondly, the Wasserstein distance is in a sense “inherited” from

the Euclidean distance, inasmuch as the distance between two distributions is defined as an integral of Euclidean

distances. Since we are concerned with obtaining a probability distribution whose induced TSP tour is as long as

possible (in an asymptotic limit as many samples are taken), and a TSP tour is also measured using Euclidean

distances, the Wasserstein distance is a particularly appropriate choice. The third reason is purely practical: it

turns out that the ambiguity set of distributions characterized by a Wasserstein distance threshold gives a very

concise, closed-form expression for the worst-case distribution for our problem. As we will later show in Section 3.2,

a fourth a posteriori justification for the use of the Wasserstein metric is that the worst-case distribution that one

obtains for this problem is closely related to that of the classical geographical gravity model, which arises in many

models of spatial interaction.

1.3 Notational conventions

Our notational conventions throughout this paper are as follows: integrals over regions in R2 are denoted with the

double integral sign
s
dA. The diameter of a region R, denoted diam(R), is the largest possible distance between

two points in R, supx,y∈R ‖x − y‖. The vector consisting of all 1’s is written e, whose dimension will always be

clear from context, and the indicator function of a particular condition and the Dirac delta function are written as

1(·) and δ(·) respectively. The Wasserstein distance between two distributions is written D(·, ·) and is defined in
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the next section. We will commit a slight abuse of notation and use the expression TSP(x1, . . . , xn) to represent

both the shortest tour that goes through a set of points as well as the length of that shortest tour. Finally, for any

univariate function f(x), we say that f(x) ∈ o(g(x)) as x→∞ if limx→∞ f(x)/g(x) = 0.

2 Analysis

Having established our problem of interest and our plan of attack, we now establish some preliminary results in

order to solve our problem concretely.

2.1 Preliminaries

In order to retain mathematical rigor, we find the following results useful:

Definition 1 (Wasserstein distance). Let µ1 and µ2 denote two probability measures defined on a compact planar

region R. The Wasserstein distance between µ1 and µ2, written D(µ1, µ2), is defined as

D(µ1, µ2) := inf
π∈Π(µ1,µ2)

∫∫∫∫
R×R

‖x− y‖ dπ(x, y) , (2)

where Π(µ1, µ2) 3 π(x, y) is defined as the set of all probability measures on R×R whose marginals are µ1 and µ2,

that is, the set of all probability measures that satisfy π(A×R) = µ1(A) and π(R×B) = µ2(B) for all measurable

subsets A,B ⊂ R.

The Wasserstein distance can be thought of as a generalization of an assignment problem: for example, when

µ1 and µ2 are discrete distributions consisting of n points each with equal mass, the Wasserstein distance between

the two is simply computed as the cost of a bipartite matching (multiplied by a normalization term of 1/n). This

interpretation is suggested in Figure 1.

Our notion of distributional robustness relies on the following famous theorem, originally stated in [7] and further

developed in [42], which relates the length of a TSP tour of some points with the distribution from which they were

sampled:

Theorem 2 (Beardwood-Halton-Hammersley (BHH) Theorem). Suppose that X = {X1, X2, . . . } is a sequence of

random points i.i.d. according to a probability density function f(·) defined on a compact planar region R. Then

with probability one, the length TSP(X) of the optimal travelling salesman tour through X satisfies

lim
N→∞

TSP(X)√
N

= β
x

R

√
fc(x) dA
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where β is a constant and fc(·) represents the absolutely continuous part of f(·).

Note in particular that β does not depend on f(·). It is additionally known that 0.6250 ≤ β ≤ 0.9204 and

estimated that β ≈ 0.7124; see [4, 7].

The following classical result from [35] will be useful in confirming the existence of an optimal solution of the

problem that we will construct:

Theorem 3 (Lagrange Duality). Let φ be a real-valued convex functional defined on a convex subset Ω of a vector

space X , and let G be a convex mapping of X into a normed space Z. Suppose there exists an x1 such that G(x1) < θ,

where θ is the zero element, and that inf{φ(x ) : x ∈ Ω, G(x ) ≤ θ} is finite. Then

inf
x∈Ω, G(x )≤θ

φ(x ) = max
z∗≥θ

inf
x∈Ω

φ(x ) + 〈G(x ), z∗〉

and the maximum on the right is achieved by some z∗0 ∈ Z∗ such that z∗0 ≥ θ, where Z∗ denotes the dual space of Z

and 〈·, ·〉 denotes the evaluation of a linear functional, i.e. z∗(G(x )). If the infimum on the left is achieved by some

x0 ∈ Ω, then 〈G(x0), z∗0 〉 = 0, and x0 minimizes φ(x ) + 〈G(x ), z∗0 〉 over all x ∈ Ω.

Finally, the Wasserstein distance between a discrete distribution consisting of points {x1, . . . , xn} with uniform

probabilities 1/n and a continuous probability density function f defined on a compact planar region R can be

obtained by solving the following infinite-dimensional optimization problem:

minimize
I1(·),...,In(·)

n∑
i=1

x

R

‖x− xi‖f(x)Ii(x) dA s.t.

x

R

f(x)Ii(x) dA = 1/n ∀i

n∑
i=1

Ii(x) = 1 ∀x ∈ R

Ii(x) ≥ 0 ∀i, ∀x ∈ R ;

here the value Ii(x) simply describes the amount of the distribution at point x ∈ R that should be moved to point

xi. The lemma below summarizes some basic results on the Wasserstein distance between a probability density and

an empirical distribution:

Lemma 4. Let f denote a probability density function on a compact planar region R and let f̂ denote an atomic

distribution consisting of distinct points x1, . . . , xn ∈ R each having probability mass 1/n. Then the following

statements are true:
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1. The Wasserstein distance D(f, f̂) is the optimal objective value to the concave maximization problem

maximize
λ∈Rn

x

R

f(x) min
i
{‖x− xi‖ − λi} dA s.t. (3)

eTλ = 0 ,

where e ∈ Rn denotes a vector whose entries are all 1’s.

2. For any λ, a valid supergradient for the objective function of (3) is the vector g ∈ Rn defined by setting

gi = −
x

Ri

f(x) dA ,

where each Ri is a connected piecewise hyperbolic region characterized by

Ri = {x ∈ R : ‖x− xi‖ − λi ≤ ‖x− xj‖ − λj ∀j 6= i} ;

that is, for any other λ
′
, we have

x

R

f(x) min
i
{‖x− xi‖ − λ

′

i} dA ≤
x

R

f(x) min
i
{‖x− xi‖ − λi} dA+ gT (λ

′
− λ) .

3. If λ∗ is a maximizer of (3), then an optimal Wasserstein mapping between f and f̂ is obtained by defining

R∗i =
{
x ∈ R : ‖x− xi‖ − λ∗i ≤ ‖x− xj‖ − λ∗j ∀j 6= i

}
for each i and transporting all of the mass of each R∗i to its associated point xi.

4. If f(x) > 0 for all x ∈ R, then there exists a unique maximizer λ∗.

Proof. Statement 1 is a well-known special case of the Kantorovich duality theorem; see for example Theorem 1.3

of [44] for specific details. Proofs of statements 2-4 are routine and can be found in Section A of the Online

Supplement.

The key insight that the above theorem yields is the reduction of an infinite-dimensional problem to a finite-

dimensional problem by way of Lagrange duality. Statement 3, for example, is a direct consequence of complemen-

tary slackness; it says that if ‖x− xi‖ − λ∗i < ‖x− xj‖ − λ∗j , then the optimal Wasserstein mapping from f and f̂

must not transport any mass near x to point xj . The economic interpretation of the regions R∗i relative to the dual
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variables λ∗i can be found in [18]; in a nutshell, the sub-regions R∗i that characterize the mapping are equivalent to

market regions induced by a mill pricing scheme at each of the points xi.

2.2 Worst-case distributions with Wasserstein distance constraints

The input to our problem is a set of distinct demand points x1, . . . , xn in a compact planar region R, which we

assume are sampled from some (unknown) distribution function f . By rearranging the terms of Theorem 2, we can

write

TSP(x1, . . . , xn) = β
√
n

x

R

√
f(x) dA+ o(

√
n)

with probability one as n → ∞. Since β is a constant and
√
n is independent of the distribution f by definition,

we therefore conclude that the “worst” distribution whose induced TSP workload is as large as possible (subject to

whatever other constraints might be present) is precisely that distribution that maximizes
s
R

√
f(x) dA. In the

terminology of Section 1.1, this means that we can use Φ(f) =
s
R

√
f(x) dA and that Φ(f |Di

) =
s
Di

√
f(x) dA

for a district Di ⊂ R.

We now let f̂ denote the empirical distribution on these n points xi. We will search through all distributions f

whose Wasserstein distance to f̂ is sufficiently small, i.e. where D(f, f̂) ≤ t; here D(·, ·) is the Wasserstein distance

from Definition 1 and t is a parameter that will be discussed in Section 3.1. The problem of finding the worst-case

TSP distribution, subject to the Wasserstein distance constraint, is then written as the infinite-dimensional convex

optimization problem

maximize
f

x

R

√
f(x) dA s.t. (4)

D(f, f̂) ≤ t
x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

This is our problem of interest throughout this paper. We will embed f in the Banach space L1(R), which consists

of all functions that are absolutely Lebesgue integrable on R.
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2.2.1 Structure of the worst-case distribution

Here we describe the solution to (4). To begin, we apply Lemma 4 to express the distance constraint D(f, f̂) ≤ t

in (4) differently, obtaining the equivalent formulation

maximize
f∈L1(R)

x

R

√
f(x) dA s.t. (5)

x

R

f(x) min
i
{‖x− xi‖ − λi} dA ≤ t ∀λ : eTλ = 0

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

This is an infinite-dimensional problem with an infinite-dimensional constraint space and is therefore best addressed

using Theorem 3; before doing so, we find the following result useful:

Lemma 5. There exists a unique optimal solution f∗ to problem (5), and f∗(x) > 0 for all x ∈ R.

Proof. The fact that the optimal solution is unique (provided one exists) is an immediate consequence of the fact

that the square root function in the integrand of (5) is strictly concave. To prove existence, let {f j} denote a

sequence of feasible inputs to (5) whose objective values converge to a supremum. For each f j , let λj denote a

value of λ that induces the optimal Wasserstein mapping between f j and f̂ as described in Lemma 4, i.e. that

solves problem (3). It is easy to verify that the iterates λj lie in the compact set Λ, defined by

Λ :=
{

λ ∈ Rn : eTλ = 0, λi ≤ diam(R)∀i
}
,

because any λ lying outside Λ would force some sub-regions to be empty. Therefore, the sequence {λj} must have a

convergent subsequence with a limit λ∗, inducing a partition R∗1, . . . , R∗n as in statement 2 of Lemma 4 that satisfies
s
R∗

i
f(x) dA = 1/n for all i. Standard arguments then show that the true worst-case distribution f∗ is precisely

the solution to the problem
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maximize
f∈L1(R)

x

R

√
f(x) dA s.t. (6)

n∑
i=1

x

R∗
i

‖x− xi‖f(x) dA ≤ t

x

R∗
i

f(x) dA = 1
n
∀i

f(x) ≥ 0 ∀x ∈ R

(this is an immediate consequence of the fact that the optimal objective cost to (6) varies continuously as the vector

λ∗, which defines the partition R∗1, . . . , R∗n, is perturbed). This problem has a finite-dimensional constraint space,

and it is routine to apply Theorem 3 to (6) to derive the dual problem

minimize
ν≥0

1
4

n∑
i=1

x

R∗
i

1
ν0‖x− xi‖+ νi

dA+ ν0t+ 1
n

(ν1 + · · ·+ νn) s.t. (7)

ν0‖x− xi‖+ νi ≥ 0 ∀x ∈ R∗i ∀i

whereby we conclude that the optimal solution f∗ to (6) must take the form

f∗(x) = 1
4(ν∗0‖x− xi‖+ ν∗i )2 (8)

on each sub-region R∗i . This satisfies f(x) > 0 for all x ∈ R and completes the proof.

The functional form for the optimal f∗ can in fact be simplified further:

Theorem 6. The worst-case distribution that solves problem (5), and therefore (4), takes the form

f∗(x) = 1
4(ν∗0 mini{‖x− xi‖ − λ∗i }+ ν∗1 )2 (9)

with ν∗0 , ν∗1 ≥ 0 and eTλ∗ = 0.

Proof. The major difference between the form of f∗ as written above and the form described in (8) is the fact

that the expression in (8) is not guaranteed to vary continuously as we move from one region R∗i to another; the
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expression (9) is continuous by inspection. We first note that the constraint

x

R

f(x) min
i
{‖x− xi‖ − λi} dA ≤ t ∀λ : eTλ = 0

can be restricted to merely the compact set

Λ :=
{

λ ∈ Rn : eTλ = 0, λi ≤ diam(R)∀i
}

because, if λi > diam(R) for some i, then ‖x− xi‖ − λi < 0 for all x and the constraint is obviously satisfied. We

will apply Theorem 3 where X = L1(R), Ω is the subset of the non-negative orthant in L1(R) that integrates to 1,

and Z consists of all continuous functions on Λ, i.e. Z = C (Λ) (note that Z satisfies the interior point requirement

of Theorem 3 because inequalities are simply taken elementwise in Λ). We define φ(x ) : X → R and G(x ) : X → Z

as the maps sending

f 7→
x

R

√
f(x) dA

and

f 7→
x

R

f(x) min
i
{‖x− xi‖ − λi} dA− t

respectively, where the right-hand side of the second expression is regarded as a continuous function of λ. The dual

space Z∗ consists of all regular signed Borel measures on Λ (this is the Riesz representation theorem; see e.g. [40]).

However, Lemma 5 shows that f∗(x) > 0 on R, and therefore the optimal λ∗ that solves problem (3) is unique by

statement 4 of Lemma 4. This implies that G(x ) =
s
R f(x) mini{‖x− xi‖ − λi} dA− t < 0 whenever λ 6= λ∗, and

therefore, since 〈G(x ), z∗〉 = 0 at optimality, it must be the case that z∗ is zero everywhere except for (possibly at)

λ∗. Thus, we conclude that z∗ is an evaluation functional at λ∗ (multiplied by a scalar), so that

〈G(x ), z∗〉 = q∗

(
x

R

f(x) min
i
{‖x− xi‖ − λ∗i } dA− t

)

for all feasible f , where q∗ ≥ 0 is some scalar. Theorem 3 then says that f∗ must also be the solution to the problem
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maximize
f∈L1(R)

x

R

√
f(x) dA+ q∗

(
x

R

f(x) min
i
{‖x− xi‖ − λ∗i } dA− t

)
s.t.

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R

or equivalently, the problem

maximize
f∈L1(R)

x

R

√
f(x) dA s.t.

x

R

f(x) min
i
{‖x− xi‖ − λ∗i } dA ≤ t

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

It is routine to verify that the constraint
s
R f(x) dA = 1 can be replaced with an inequality (in a nutshell, this is

because we are allowed to make f(x) as large as we like when ‖x − xi‖ − λ∗i ≤ 0 for some index i). Thus, we can

apply Theorem 3 again to the problem

maximize
f∈L1(R)

x

R

√
f(x) dA s.t.

x

R

f(x) min
i
{‖x− xi‖ − λ∗i } dA ≤ t

x

R

f(x) dA ≤ 1

f(x) ≥ 0 ∀x ∈ R

to derive the 2-dimensional dual problem

minimize
ν0,ν1

x

R

1
4(ν0 mini{‖x− xi‖ − λ∗i }+ ν1) dA+ ν0t+ ν1 s.t. (10)

ν0 min
i
{‖x− xi‖ − λ∗i }+ ν1 ≥ 0 ∀x ∈ R

ν0, ν1 ≥ 0 ;

the optimality conditions of (10) describe precisely the desired form of f∗, which completes the proof.
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Figure 3: Two views of an example of f∗(x) as described in Theorem 6, where there are n = 10 points. In 3a,
the shading represents f∗(x) and the dashed lines indicate the optimal Wasserstein map between f∗ and f̂ . By
construction, the vector λ∗ induces those dashed lines, as described in Lemma 4.

Figure 3 shows a surface plot of a worst-case distribution f∗.

Remark 7. Many problems in distributionally robust optimization have objective functions and constraints that

are linear in terms of the unknown distribution f (for example, the expectation operator). For such problems,

Carathéodory-type theorems imply that the worst-case distribution will consist of a finite number of points, even

when one uses ambiguity sets defined by the Wasserstein distance; see for example [46]. As a consequence of this

fact, it is sometimes the case that one can determine the worst-case distribution using only one iteration of a

finite-dimensional optimization problem; this turns out to hold (for the Wasserstein metric) in [22, 47], for example.

Because of the non-linearity in the objective, our worst-case distribution f∗ is smooth; we will describe an iterative

scheme for finding it in Section 2.3.

Remark 8. One of the salient attributes of the worst-case distribution f∗ is that the presence of the square root

in the objective of (4) establishes an inverse proportionality between the optimal solution f∗(x) and the square of

the distance to one of the data points xi (with some additional additive and multiplicative weights from the dual

variables ν∗ and λ∗). This same inverse proportionality is shared by the classical geographic gravity model [3],

which is “the most common formulation of the spatial interaction method” and has historically been used to model

a wide variety of demographic phenomena such as population migration, spatial utility for retail stores, and trip

distributions between cities. This would appear to lend credibility to our solution f∗, inasmuch as it takes a form

that closely matches that of distributions for related problems.

Remark 9. The earlier paper [16] considers a problem closely related to (4) in which one has constraints on the
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mean and covariance of f instead of the constraint on D(f, f̂); that problem is written as

maximize
f∈L1(R)

x

R

√
f(x) dA s.t. (11)

x

R

xf(x) dA = µ

x

R

xxT f(x) dA � Σ + µµT

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

As we have noted in Figure 2, mean and covariance information may not be sufficient to give any useful information

on the ambiguity set of distributions. It is more desirable to describe this ambiguity set in a way that is guaranteed

to make better use of sample points as they become available. It is well-known (e.g. Section 2 of [14]) that

the Wasserstein distance between the empirical distribution f̂ and the true distribution f converges to zero with

probability one as n → ∞. This, coupled with some routine analysis, guarantees that the objective cost of our

proposed formulation (4) will eventually be the same as that of the ground truth distribution:

Theorem 10. Let X = {X1, X2, . . . } be a sequence of random points i.i.d. according to an absolutely continuous

probability density function f̄(·) defined on a compact planar region R. For any positive integer n, let f̂n denote

the empirical distribution on points {X1, . . . , Xn}. Then with probability one there exists a sequence {t1, t2, . . . },

converging to 0, such that the optimal objective value of the problem

maximize
f∈L1(R)

x

R

√
f(x) dA s.t. (12)

D(f, f̂n) ≤ tn
x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R

approaches the ground truth (i.e.
s
R

√
f̄(x) dA) as n→∞.

Proof. See Section B of the Online Supplement.
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2.3 Finding the worst-case distribution efficiently

The preceding section established that the worst-case distribution that solves (4) can be expressed in terms of

optimal vectors λ∗ ∈ Rn and ν∗ ∈ R2. This section describes a simple method for calculating λ∗ and ν∗ efficiently

by way of an analytic center cutting plane method [11]. Recall that our problem of interest, as written in (5), is

maximize
f∈L1(R)

x

R

√
f(x) dA s.t.

x

R

f(x) min
i
{‖x− xi‖ − λi} dA ≤ t ∀λ : eTλ = 0

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R ;

thus, it is certainly true that if we fix any specific value λ̄ such that eT λ̄ = 0, then the following problem is a

relaxation of (5) and hence has an objective value that is at least as large as that of (5):

maximize
f∈L1(R)

x

R

√
f(x) dA s.t.

x

R

f(x) min
i
{‖x− xi‖ − λ̄i} dA ≤ t

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

It is natural to consider the problem of selecting the particular value of λ̄ that makes the above relaxation as tight

as possible. In fact, our proof of Theorem 6 says that there exists a particular value of λ̄, namely λ∗, such that the

above relaxation is actually tight; in other words, the optimal distribution f∗ is the solution to the problem

maximize
f∈L1(R)

x

R

√
f(x) dA s.t.

x

R

f(x) min
i
{‖x− xi‖ − λ∗i } dA ≤ t

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R
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for an appropriately chosen vector λ∗. Thus, the problem of finding λ∗ actually reduces to the optimization problem

minimize
λ∈Rn

max
f∈Ω(λ)

x

R

√
f(x) dA s.t. (13)

eTλ = 0

λi ≤ diam(R) ∀i

where Ω(λ) is the subset of L1(R) consisting of all functions f such that

x

R

f(x) min
i
{‖x− xi‖ − λi} dA ≤ t

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

Of course, the inner problem of maximizing f given λ is easily solved because the gradient vector for the dual

problem

minimize
ν0,ν1

x

R

1
4(ν0 mini{‖x− xi‖ − λi}+ ν1) dA+ ν0t+ ν1 s.t. (14)

ν0 min
i
{‖x− xi‖ − λi}+ ν1 ≥ 0 ∀x ∈ R

ν0, ν1 ≥ 0 ,

as derived in the proof of Theorem 6, can be computed explicitly. Thus, we simply require a better understanding

of problem (13):

Lemma 11. The (outer) objective function of problem (13) is quasiconvex, i.e. its sub-level sets are convex.

Proof. For notational compactness, let G(λ) denote the objective function of (13). Recall [12] that G(λ) is quasi-

convex if and only if, for any λ1,λ2 and any θ ∈ [0, 1], we have

G(θλ1 + (1− θ)λ2) ≤ max{G(λ1), G(λ2)} .

Let λ̄ = θλ1 + (1− θ)λ2 and let f̄ denote the distribution that maximizes
s
R

√
f(x) dA over all f ∈ Ω(λ̄); it will
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suffice to prove that either f̄ ∈ Ω(λ1) or f̄ ∈ Ω(λ2). By definition, we have

x

R

f̄(x) min
i
{‖x− xi‖ − λ̄i} dA ≤ t ,

and the left-hand side of the above inequality is a concave function in λ̄ (if we fix the function f̄). Thus, if we let

S denote the line segment joining λ1 and λ2 (which, of course, contains λ̄), we see that the problem

minimize
λ∈S

x

R

f̄(x) min
i
{‖x− xi‖ − λi} dA

must realize its minimizer on the boundary of S (since we are minimizing a concave function), i.e. the point λ1 or

λ2. Therefore, it must be the case that
s
R f̄(x) mini{‖x−xi‖−λ1

i } dA ≤ t or
s
R f̄(x) mini{‖x−xi‖−λ2

i } dA ≤ t,

which completes the proof.

The following theorem describes a cutting plane oracle for the outer problem (13):

Theorem 12. Let λ̄ satisfy eT λ̄ = 0 and let f̄ be the solution to the inner problem of (13) (i.e. f̄ maximizes
s
R

√
f(x) dA over all f ∈ Ω(λ̄)). Then the vector ḡ ∈ Rn defined by setting

ḡi = −
x

R̄i

f̄(x) dA

for all i, where R̄i is defined as

R̄i =
{
x ∈ R : ‖x− xi‖ − λ̄i ≤ ‖x− xj‖ − λ̄j ∀j 6= i

}
,

defines a valid cutting plane for problem (13); that is, if ḡT (λ
′
−λ̄) ≤ 0 for some λ

′
satisfying eTλ

′
= 0, and f ′ is the

solution to the inner problem of (13) associated with λ
′
, then maxf∈Ω(λ

′ )
s
R

√
f(x) dA ≥ maxf∈Ω(λ̄)

s
R

√
f(x) dA.

Proof. Statement 2 of Lemma 4 says that, for any other λ
′
, the assumption that ḡT (λ

′
− λ̄) ≤ 0 yields

x

R

f̄(x) min
i
{‖x−xi‖−λ

′

i} dA ≤
x

R

f̄(x) min
i
{‖x−xi‖− λ̄i} dA+ ḡT (λ

′
− λ̄) ≤

x

R

f̄(x) min
i
{‖x−xi‖− λ̄i} dA ≤ t

which implies that f̄ ∈ Ω(λ
′
) and therefore that maxf∈Ω(λ

′ )
s
R

√
f(x) dA ≥ maxf∈Ω(λ̄)

s
R

√
f(x) dA as desired.

We now have a fast method for generating cutting planes associated with problem (13) and thereby recovering
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the distribution f∗ that solves problem (4); see Algorithm 1 for a formal description.

Input: A compact, planar region R containing a set of distinct points x1, . . . , xn which are interpreted as an
empirical distribution f̂ , a distance parameter t, and a tolerance ε.

Output: An ε-approximation of the distribution f∗ that maximizes
s
R

√
f(x) dA subject to the constraint

that D(f, f̂) ≤ t.
/* This is a standard analytic center cutting plane method applied to problem (13), which

has an n-dimensional variable space. */
Set UB =∞ and LB = −∞;
Set Λ = {λ ∈ Rn : eTλ = 0, λi ≤ diam(R)∀i};
while UB− LB > ε do

Let λ̄ be the analytic center of Λ;
/* Build an upper bounding f̄ for the original problem (4). */
Let ν̄0, ν̄1 be the solution to problem (14) with λ̄ as an input;
Let f̄(x) = 1

4 (ν̄0 mini{‖x− xi‖ − λ̄i}+ ν̄1)−2;
Let UB =

s
R

√
f̄(x) dA;

/* Build a lower bounding f̃ that is feasible for (4) by construction. */
Let R̄i = {x ∈ R : ‖x− xi‖ − λ̄i ≤ ‖x− xj‖ − λ̄j ∀j 6= i} for i = {1, . . . , n};
Let ν̃ ∈ Rn+1 be the solution to problem (7) with inputs R̄1, . . . , R̄n;
Let f̃ be defined by setting f̃(x) = 1

4 (ν̃0‖x− xi‖+ ν̃i)−2 on each R̄i;
Let LB =

s
R

√
f̃(x) dA;

Let gi = −
s
R̄i
f̄(x) dA for i = {1, . . . , n};

Let H = {λ ∈ Rn : gTλ ≥ gT λ̄} and set Λ = Λ ∩H;
end
return f̃ ;

Algorithm 1: Algorithm WorstTSPDensity takes as input a compact planar region containing a set of n
distinct points, a distance threshold t, and a tolerance ε.

3 Practical considerations

In solving a distributionally robust districting problem, there are a number of practical considerations that arise;

we describe some of them here.

3.1 Selecting the distance parameter t

From the preceding discussion, it is clear that the parameter t in the Wasserstein distance constraint D(f, f̂) ≤ t

from our original problem (4) has a significant impact on the problem solution. Of course, in practice, we do not

have any way of a priori calculating an exact value of t. However, in order to estimate t in a data-driven fashion,

the following result is helpful:
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Theorem 13. Let f̂1 and f̂2 denote empirical distributions associated with two sets of independent samples of n

points from a distribution f . Then

1
2ED(f̂1, f̂2) ≤ ED(f, f̂1) ≤ ED(f̂1, f̂2) .

Proof. This is due to [14], and follows from Jensen’s inequality and the triangle inequality.

The above result is useful because the distance between the two empirical distributions D(f̂1, f̂2) is simply the

cost of a minimum-weight bipartite matching between the elements of f̂1 and f̂2, multiplied by a factor of 1/n.

Thus, one simple, “back-of-the-envelope” procedure to select the distance parameter t would be to sample two sets

of n points each, let c be equal to the cost of the minimum-weight bipartite matching between them, and set t = αc

with α ∈ [1/2, 1].

If we desire rigorous probabilistic bounds on t, more sophisticated machinery is required. Although there exist

a number of results of this kind (e.g. Theorem 2 of [23]), nearly all of them depend on additional distributional

information such as exponential tail bounds; this was previously noted (in the context of robust optimization) in

Section 7.2.B of [22]. One positive example is Theorem 6.15 of [45], which gives a useful bound on the Wasserstein

distance between two probability density functions f1 and f2 by

D(f1, f2) ≤
x

R

‖x0 − x‖ · |f1(x)− f2(x)| dA

for any x0 ∈ R. Theorem 1(i) of [10] relates the right-hand side of the above to the relative entropy H(f1|f2)

between f1 and f2 by the expression

x

R

‖x0 − x‖ · |f1(x)− f2(x)| dA ≤
(

3
2 + log

x

R

e2‖x−x0‖f2(x) dA
)(√

H(f1|f2) + 1
2H(f1|f2)

)
,

where we define

H(f1|f2) =
x

R

f1(x) log f1(x)
f2(x) dA .

Let r = minx0∈Rmaxx∈R ‖x−x0‖ denote the “radius” of R, whence log
s
R e

2‖x−x0‖f2(x) dA ≤ log e2r = 2r. Thus,
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if D(f1, f2) ≥ t, we have

t ≤ D(f1, f2) ≤
x

R

‖x0 − x‖ · |f1(x)− f2(x)| dA

≤
(

3
2 + 2r

)(√
H(f1|f2) + 1

2H(f1|f2)
)

=⇒ H(f1|f2) ≥ 8r − 2
√

16r2 + 16rt+ 24r + 12t+ 9 + 4t+ 6
3 + 4r . (15)

Next, the paper [9] shows that, for any distribution f with empirical distribution f̂ , we have

lim sup
n→∞

1
n

log Pr(D(f, f̂) ≥ t) ≤ −α(t) ,

where the function α(t) is defined as

α(t) = inf
g:D(f,g)≥t

H(f |g) .

The result (15) establishes that α(t) ≥ (8r − 2
√

16r2 + 16rt+ 24r + 12t+ 9 + 4t + 6)/(3 + 4r), and therefore we

find that

lim sup
n→∞

1
n

log Pr(D(f, f̂) ≥ t) ≤ −8r − 2
√

16r2 + 16rt+ 24r + 12t+ 9 + 4t+ 6
3 + 4r

=⇒ Pr(D(f, f̂) ≥ t) > exp
(
−n8r − 2

√
16r2 + 16rt+ 24r + 12t+ 9 + 4t+ 6

3 + 4r

)
, (16)

where the notation “>” reflects the approximate inequality that results from dropping the “lim sup” term. Thus,

given a desired significance level 1 − θ, we can construct a threshold distance t by equating the right-hand side of

(16) to 1− θ and solving for t.

3.2 Variations and extensions

The analysis of Section 2.3 motivates three possible extensions of the existing framework:

Uneven data weights: By definition, the empirical distribution f̂ of the points x1, . . . , xn consists of a collection

of n atomic masses at each point, each having mass of 1/n. It is easy to envision scenarios in which one

desires uneven weights: for example, one might use an exponential weighting scheme to emphasize more

recent measurements, or one might use different weights to distinguish between activities on weekends versus

weekdays (or other seasonal effects). If we require point xi to have a mass qi associated with it, then we can

find the worst-case distribution f∗ by solving problem (5), with the one change that we replace the restriction
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that eTλ = 0 with a restriction that qTλ = 0 instead; the form of f∗ is otherwise unchanged.

Capacitated vehicles: Our approach can also be adapted to solve problems when vehicles have capacities and

originate from a central depot located at the origin. To do so, suppose that each vehicle can visit c destinations

before returning to the depot. The following theorem from [27] provides useful upper and lower bounds for

the cost of a capacitated vehicle routing tour:

Theorem 14. Let X = {x1, . . . , xn} be a set of demand points in the plane serviced by a fleet of vehicles with

capacity κ that originate from a single depot located at the origin. The length of the optimal set of capacitated

VRP tours of X, written VRP(X), satisfies

max
{

2
κ

n∑
i=1
‖xi‖,TSP(X)

}
≤ VRP(X) ≤ 2

⌈
|X|
κ

⌉
·
∑n
i=1 ‖xi‖
|X|

+ (1− 1/κ) TSP(X) . (17)

The probabilistic version of this, as derived in Section C of the online supplement, uses the BHH Theorem

(Theorem 2 of this paper) to characterize the length of the TSP term:

√
n ·max

{
2
s

x

R

‖x‖f(x) dA, β
x

R

√
fc(x) dA

}
> VRP(X) >

√
n ·

(
2
s

x

R

‖x‖f(x) dA+ β
x

R

√
fc(x) dA

)
,

(18)

where we set s = κ/
√
n and we have adopted the notation “>” to denote an “approximate” inequality, both of

which are also explained in Section C. It is immediately obvious that the upper and lower bounds are within

a factor of 2 of one another. Applying the same analysis as in Section 2.2, the worst-case distribution that

maximizes the right-hand side of (18) subject to a Wasserstein distance constraint takes the form

f∗(x) = 1
4(ν∗0 mini{‖x− xi‖ − λ∗i }+ ν∗1 − 2

s‖x‖)2 ;

its level sets, i.e. those curves for which ν∗0 (‖x − xi‖ − λ∗i ) + ν∗1 − 2
s‖x‖ is constant, consist of piecewise

components of so-called Cartesian ovals [34].

Higher dimensions: The BHH Theorem (Theorem 2) is also applicable in higher dimensions; the general form

says that, when the service region R belongs to Rd, we have

lim
N→∞

TSP(X)
N (d−1)/d = βd

y

R

fc(x)(d−1)/d dV ,

for dimension-dependent constants βd. Applying the same analysis as in Section 2.2, the worst-case distribu-
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tion that maximizes the right-hand side of the above, subject to a Wasserstein distance constraint, takes the

form

f∗(x) = (d− 1)d−1

dd
· 1

(ν∗0 mini{‖x− xi‖ − λ∗i }+ ν∗1 )d .

4 Computational experiments

In this section, we apply our theoretical results to two computational experiments: the first experiment shows the

impact of increasing the number of samples n, and the second is a districting strategy in which we divide a map

into pieces so as to to minimize the worst-case workload of any vehicle.

4.1 Varying values of n

In our first experiment, we let R be the unit square, and as a ground truth distribution f̄ we use an even mixture

of two truncated Gaussian distributions with means µ1, µ2 = (0.400, 0.187), (0.795, 0.490) and covariance matrices

Σ1 = Σ2 = ( 0.070 0
0 0.070 ). This mixture was chosen because it satisfies

s
R

√
f̄(x) dA = 0.55 and therefore represents

a compromise between extreme clustering (which would have
s
R

√
f̄(x) dA close to zero) and a perfect uniform

distribution (which would have
s
R

√
f̄(x) dA equal to one). For n ∈ {2, . . . , 100}, we performed 10 independent

experiments where we drew n samples from f̄ and then obtained the worst-case TSP distribution f∗ by solving

problem (4) via Algorithm 1 (hence, 99 × 10 experiments in total). For each experiment, we defined our distance

constraint using Theorem 13 by setting t to be the cost of a minimum-weight bipartite matching between two

independent collections of samples of size n from f̄ (multiplied by a factor of 1/n); this corresponds to setting

α = 1. Figure 4a shows a plot of the worst-case TSP costs
s
R

√
f∗(x) dA as n varies, and Figure 4b shows the

same data, only using the Wasserstein distance threshold t as the independent variable. Not surprisingly, it is clear

that the worst-case cost decreases as n increases and as t decreases. Figure 4b suggests that the worst-case cost,

measured as a function of t, decreases in a concave fashion as t→ 0. For purposes of comparison, Figure 4d shows

the estimates of
s
R

√
f̄(x) dA obtained when one uses a uniform kernel density estimator; that is, if we draw n

samples x1, . . . , xn from f̄ , then we define an estimator f̃ by setting f̃(x) = 1
C

∑
i 1(‖x − xi‖ ≤ r), where r is a

“bandwidth” parameter and C is a normalization constant. We used 5 different values of r between 0.03 and 0.3;

note that the estimate
s
R

√
f̃(x) dA is highly sensitive to the choice of the bandwidth parameter r.
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Figure 4: Figure 4a shows the worst-case costs that are computed during the 99× 10 executions of our algorithm;
the gray plots indicate the results obtained from individual samples and the thick line indicates the sample averages
of the 10 trials for fixed n. There are two sets of experiments being represented; the upper plot (indicated with the
dotted black line and the light gray lines) corresponds to the worst-case costs when using the upper bound of t from
(16), and the lower plot (indicated with the solid black line and the dark gray lines) corresponds to the worst-case
costs when using the upper bound of t from Theorem 13. Figure 4b shows the same data set (using only the upper
bound of t from Theorem 13), only we plot the worst-case costs as a function of the Wasserstein distance threshold
t rather than a function of n; the gray points indicate individual experiments and the dark points again indicate the
sample averages of the 10 trials for fixed n. For reference, the actual Wasserstein distance between the samples and
the distribution, D(f, f̂), is shown in Figure 4c; we computed this using the algorithm from [17]. Finally, Figure 4d
shows the estimates of

s
R

√
f̄(x) dA obtained when one uses a uniform kernel density estimator.
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(a) (b)

Figure 5: A 3-dimensional LIDAR scan taken from a vehicle travelling along a city street (5a); these measurements
are aggregated together to form point cloud representations of entire cities, as shown in 5b.

4.2 A districting experiment with road network data

In this section, we describe an experiment in which we divide a service region into districts so as to allocate the

workloads of a fleet of vehicles. This experiment is much more elaborate than that of the preceding section because

we compute our TSP tours using data from an actual road network, rather than simply make an assumption that

distances are Euclidean. Our dataset comes from an industrial affiliate, a major North American mapping company,

that is currently using the algorithm described in this section as part of a routing suite that manages a fleet of

100 vehicles on 3 continents. In a nutshell, the problem faced by the affiliate is to collect map data using vehicles

that are equipped with rotating LIDAR, positioning sensors, and high-resolution panoramic cameras. Scans of this

kind usually consist of two stages: the first stage, called a rough scan, is essentially a large-scale, multi-vehicle

Chinese Postman Problem in which the goal is to traverse every street (or a large collection of streets) in a region.

The second stage, which turns out to be equally time-consuming and is the subject of this experiment, is called a

targeted scan, and consists of visiting those points in the region for which the measurements in the first stage were

not adequate; this might be because the driver missed a street, the sensor’s view was obstructed, or because an

alternate vantage point of a particular location is needed. It is often the case that, when performing a 3-dimensional

scan of a structure (see Figure 5 for an example), multiple trips to that structure are needed to accurately recover

the original shape from the measurements.

We describe here an algorithm for designing vehicle districts to minimize the time to completion (i.e. the

makespan) of the targeted scan, or equivalently, the driving duration of the longest route. This problem satisfies

the four attributes identified in the introduction for the following reasons:

1. “The service region is a compact Euclidean domain R, and distances between points are Eu-
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clidean, or close to some “natural” metric such as the `1 or `∞ norm.” Each service region is the

metropolitan region surrounding a major city; although distances are measured with respect to a road network

and are thus not Euclidean, we will demonstrate that this discrepancy can easily be taken into account.

2. “During each service period, a fleet of vehicles must use travelling salesman (TSP) tours to visit

a collection of destination points in R that are sampled from a probability distribution f .” Here

each “service period” consists of a day, during which time the vehicles drive for 6-8 hours. The destination

points are determined as follows: once the rough scan (the first stage) has been completed, the raw data from

all vehicles are dumped to an in-house cloud computing service, where they are “scrubbed” to identify those

locations that must be re-scanned. Since this scrubbing process is performed in parallel across many CPUs,

and because certain errors take longer to find than others (in fact, many errors are explicitly found only by

human analysts), these locations can essentially be thought of as occurring randomly; the total time horizon

for scrubbing is variable but typically ranges between 2 and 7 days.

3. “The goal is to partition R into districts, with one district per vehicle, in a way that is “optimal”

as the number of destination points becomes large.” We seek a districting strategy because it is much

simpler to implement than explicitly computing vehicle tours, and also because additional destination points

may arrive in an online fashion as they are identified by the cloud computing service. Districting strategies

(as opposed to explicit routing strategies) are very common in the mapping industry because of the ease of

operation that is afforded. In addition, since the number of vehicles is fixed, and driver wages are relatively

cheap, the primary goal is to minimize the amount of time until the scan is completed. Since the actual

vehicle tours are traversed over a period of several days (in practice, usually between 5 and 10 days), we have

the opportunity to re-optimize the districts as additional data is collected. For simplicity’s sake, we do not

use any re-optimization because (i) we found that it was only helpful in practice for the most complex cities

such as Istanbul or Paris, and (ii) we do not have any information about when each data point was detected

in the scrubbing process.

4. “The distribution f is unknown at the time that the districting decision is to be made, and

there is only a set of independent samples from f available to make the districting decision.” The

districting decision must be made soon after the rough scan is completed, at which point there are a limited

number of sample points available that are obtained from scrubbing the initial dataset. The sample points

are generated overnight, after the rough scans are completed. Their distribution is non-uniform throughout

the region because of spatial clustering: for example, erroneous data points often arise due to a complex

30



3-dimensional object (e.g. a sculpture or some elaborate architecture) or if the sun is shining at an unusual

angle, so that many of the measurements in a localized area are affected.

The assumption of independence is a strong one and requires some care. Simply put, it arises due to the

fact that scrubbing takes place across many CPUs simultaneously. As an extreme example, if one were to

use a single CPU to process the dataset, it would scan through the measurements and detect errors in the

same order that the vehicle visited them. Thus, the samples would appear in an extremely dependent way.

Conversely, if we distribute the scanning process across many CPUs, then each CPU is responsible for only

a small leg of the vehicle’s tour, and two CPUs might detect errors in two entirely separate locations at the

same time. As more CPUs are used, we see less dependence between (temporally) consecutive samples.

The purpose of this experiment is two-fold: first, we aim to demonstrate that the proposed continuous approximation

techniques are actually useful for solving practical problems, and second, we then seek to show that our proposed

methodology is superior to that of existing approaches. There are 13 different service regions R that will be studied,

all of which are metropolitan regions in Western Europe.

4.2.1 Validation of continuous approximation methods

In order to apply our results to solve a practical problem, it is necessary to first confirm that the continuous

approximation method remains valid and useful even when point-to-point distances are not Euclidean and are

instead measured according to a heterogeneous road network. In order to take this factor into account, we should

first note that Theorem 2 actually holds under much more general conditions than the Euclidean TSP, and remains

valid when one considers the TSP under many “natural” norms or even other combinatorial structures such as

the minimum spanning tree or Steiner tree (more precisely, Theorem 2 holds whenever the underlying structure is

a subadditive Euclidean functional; see [42] for an extensive study thereof). Obviously, the coefficient β depends

on the choice of structure. The following example is useful in designing an appropriate framework to handle this

disparateness:

Example 15 (Varying metrics in a region). Consider a set of n points sampled according to a distribution f in

the unit square, with distances d(x1, x2) between pairs of points x1 = (x1
1, x

2
1) and x2 = (x1

2, x
2
2) defined as follows:

• If x1 and x2 are in the lower left quadrant, then d(x1, x2) is the Euclidean distance between x1 and x2.

• If x1 and x2 are in the lower right quadrant, then d(x1, x2) is the `1 distance between x1 and x2.

• If x1 and x2 are in the upper left quadrant, then d(x1, x2) is the `∞ distance between x1 and x2.
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Figure 6: The TSP tour of a collection of points uniformly sampled in the unit square, with varying metrics
depending on quadrants. The dashed lines in the paths in the upper left quadrant correspond to the smaller of the
two directions (horizontal or vertical) between points, which is relevant because the `∞ distance is used.

• If x1 and x2 are in the upper right quadrant, then d(x1, x2) =
√

(x1 − x2)TA(x1 − x2), where A is a symmetric

positive definite matrix.

• If x1 and x2 are in different quadrants, then d(x1, x2) is determined by a tie-breaking rule of some sort (the

details of which are not relevant).

The TSP tour of a set of points under these assumptions is shown in Figure 6. If we let Q1, . . . , Q4 denote the four

quadrants of the square, then it is routine to verify that we in fact have

lim
N→∞

TSP(X1, . . . , XN )√
N

=
4∑
i=1

βi
x

Qi

√
fc(x) dA

where each βi is associated with the metric on quadrant Qi (e.g. β1 is the Euclidean TSP coefficient); one can

verify this by proceeding through the proof of the BHH theorem in (for example) Chapter 2.4 of [42].

Example 15 suggests a general approach that is useful when the service region R has a heterogeneous road

network: if we decompose R into a collection of “patches” Q1, . . . , QK , then we adopt the approximation

TSP(X1, . . . , Xn) ≈
√
n ·

K∑
i=1

βi
x

Qi

√
fc(x) dA .

One can estimate the values βi as follows: if we sample a set of k points uniformly in Qi and compute the duration

of their TSP tour `i (using the road network), we would expect to see that `i ≈ βi
√

Area(Qi) · k; this is simply

the uniform case of the BHH theorem applied to points constrained to lie in Qi. Thus, a sensible estimate of βi is

given by setting βi = `i/
√

Area(Qi) · k. In this experiment, we discretize the region R into a collection of patches

Qi of size 2 km× 2 km, and estimate each coefficient βi using k = 10 samples (a larger number would be preferable,

32



(a)
0 1 2 3 4 5 6

0

5

10

15

20

25

30

35

40

(b)

Figure 7: The shading in Figure 7a, which shows the Copenhagen metropolitan region, indicates the values of
βi associated with each of the square patches (darker patches correspond to higher values of βi). Figure 7b is a
histogram of these same values. Those values of βi that are extremely small correspond to regions in which multiple
distinct locations are geocoded to the same point (e.g. a large shopping mall, or a square that just barely overlaps
with the coastline of the region).

but the mapping API that we use [21] imposes a limit of at most 100, 000 queries per day); Figure 7 shows the

resulting values when R is the Copenhagen metropolitan region. We emphasize that these values βi are computed

with respect to the driving duration (not the length) of the TSP tour in each path Qi, measured in minutes; for

example, if we sample k = 10 points in a cell Qi that has βi = 3, then we estimate that the duration of the TSP

tour of these 10 points will be βi
√

Area(Qi) · k = 3
√

4 · 10 ≈ 19 minutes.

4.2.2 Worst-case distributions for districts

When dividing R into districts D1, . . . , Dm that minimize the worst-case vehicle workloads, the problem of interest

becomes

maximize
f∈L1(R)

x

Dj

√
f(x) dA s.t. (19)

x

R

f(x) min
i
{‖x− xi‖ − λi} dA ≤ t ∀λ : eTλ = 0

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

for each sub-region Dj (this is identical to (5) except for the domain of integration in the objective). The worst-case

distribution associated with each district Dj is characterized as follows:
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Theorem 16. The worst-case distribution that solves problem (19) takes the form

f∗(x) =
[

1
4(ν∗0 mini{‖x− xi‖ − λ∗i }+ ν∗1 )2

]
1(x ∈ Dj) +

n∑
i=1

p∗i δ(x− xi)

with ν∗0 , ν∗1 ≥ 0, eTλ∗ = 0, and 0 ≤ p∗i ≤ 1. Moreover, we have p∗i = 0 whenever xi ∈ Dj.

Proof. This is almost identical to the proof of Theorem 6 and we omit it here for brevity. The intuition behind the

Dirac delta components is not difficult: if any mass of f∗ is located outside district Dj , then it does not contribute

to the objective and therefore should contribute as little as possible towards the Wasserstein distance constraint.

4.2.3 Districting criteria

In order to divide each service region R into districts, we use a computational geometric structure called a power

diagram [5], which has frequently been applied to districting problems in existing literature on vehicle routing

[31, 37]. Given a set of “depot points” p1, . . . , pm in R and any vector w ∈ Rm, the Euclidean power diagram of R

with respect to p1, . . . , pm and w is a partition of R into districts D1, . . . , Dm defined by

Di =
{
x ∈ R : ‖x− pi‖2 − wi ≤ ‖x− pj‖2 − wj ∀j

}
. (20)

In our experiments, the depot points are given to us by the drivers (typically their hotel rooms or apartments), and

we substitute road network distances in place of the Euclidean norm. Since the depot points are fixed and given to

us, we control the shapes and sizes of the districts Di by varying the weight vector w; note that if we increase wi

while fixing the other terms wj , the district Di expands. In our experiment, we compare four different partitioning

criteria:

Wasserstein robust partitioning Problem (19) in Section 4.2.2 of this paper describes the structure of the worst-

case distribution that maximizes the asymptotic workload in a particular district, subject to a Wasserstein

distance constraint. Thus, it is sensible to seek a weight vector w∗ that results in districts D1, . . . , Dm such

that the solution to (19) is equal for each district (in other words, the worst-case workloads are the same for

all districts). Section 5 of our previous paper [16] describes a branch-and-bound scheme for finding w∗ that

is based on a simple set of monotonicity properties that can be directly applied to this problem.

Kernel-based partitioning: Given a set of samples x1, . . . , xn ∈ R, another natural approach is to build an

artificial distribution f̄ with a kernel density estimator, as we have seen in Section 4.1. For example, if we use
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a uniform kernel function with bandwidth parameter r, then we have

f̄(x) = 1
πr2n

n∑
i=1

1(‖x− xi‖ ≤ r) .

It would then follow that the TSP tour of the additional points should be related to
√
f̄(x), by the BHH

theorem. In order to take the heterogeneous road network into account, the βi terms are needed. Committing

a slight abuse of notation, let β(x) be a step function representing the βi’s and their associated Qi’s, that is,

β(x) :=
∑K
i=1 βi1(x ∈ Qi). The TSP workload in a district Di would then be estimated as

s
Di
β(x)

√
f̄(x) dA,

and a natural districting criterion would be to construct districts such that this value is equal for all districts.

It turns out that this is very simple because the optimal weight vector w∗ is the Lagrange multiplier vector

of a semi-infinite assignment problem which is well studied; see for example [17].

Mean-covariance robust partitioning: Section 5 of our earlier paper [16] describes a branch-and-bound method

for partitioning a region R into a power diagram partition in which the worst-case workloads for all districts

Di are equal. Here, the “worst-case workloads” are defined via robust optimization, specifically the solution

to (11). In other words, we construct a power diagram partition against all distributions whose mean and

covariance matrix are equal to the fixed values obtained from the sampled points x1, . . . , xn.

TSP-based partitioning: A very natural, common-sense strategy is to simply construct districts based on the

TSP tours of the sample points. In other words, we select weights so as to minimize the maximum TSP tour

of each of the districts, that is, to minimize maxi TSP({x1, . . . , xn} ∩ Di). We can do this using the same

monotonicity property as in our algorithm from [16].

4.2.4 Results

We applied the four aforementioned districting criteria to problem instances defined on 13 different metropolitan

regions using data provided by our industrial affiliate, where the goal is to partition each region into m = 3 districts.

When using the Wasserstein partitioning criterion, we set the distance threshold t using the result from Theorem 13

with α = 1. Specifically, we split the sample points into two equally-sized (random) sets f̂1 and f̂2, and computed

a minimum-weight bipartite matching between the two; this process was repeated over 100 independent trials. We

found this bound preferable to the rigorous result from (16) because, even for very low significance levels 1− θ, the

distance threshold becomes unrealistically high (more specifically, the uniform distribution lies in the distributional

ambiguity region, which is plainly not the case as the plots make clear). When using the kernel density estimator,

we used bandwidth values of r ∈ {3 km, 9 km, 18 km}. Six of these regions are shown in Figure 8, and Figure 9 shows
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the output of our method (as well as the other districting criteria) when applied to a map of the metropolitan region

surrounding Copenhagen. In each of these experiments, the sample points (i.e. the larger markers in Figures 8 and

9) were provided by our industrial affiliate, and were identified during the overnight scrubbing process that occurred

after the vehicles’ rough scans were finished. These sample points were identified automatically by software; most

of the remaining destinations were detected by human analysts. The complete results of all 13 metropolitan regions

are shown in Table 1, in which the “costs” are determined by computing the duration of the longest of the m = 3

TSP tours. Table 1 also shows two additional pieces of information: one is the column labelled “Best possible cost”,

which is obtained by computing the duration of the TSP tour of all of the points, and dividing that by 3 (the

number of districts); this represents the best cost that could be realized if the workloads were distributed perfectly

evenly. The other is the column labelled “Worst-case cost”, which is the worst-case cost obtained when partitioning

according to the Wasserstein criterion.

Note that the Wasserstein partitioning method out-performs the other five criteria in a plurality of instances (6

out of 13), as compared to 3 out of 13 regions for which the TSP-based partitioning is the most desirable. Moreover,

the total makespan for all 13 regions, as shown in the last row of the table, is more than 50 hours less when using

the Wasserstein criterion than the next best method (363.6 hours compared to 418.6). Since a typical workday

for drivers does not exceed 8 hours, this would suggest that the total time needed to complete the scans of all 13

regions is reduced by a week. Note also that the Wasserstein partitioning criterion (among others) makes better

use of data as it becomes available; this is apparent by comparing the result from (for example) Bergen, which has

only 19 samples, with the result from Malmö, which has 60 samples (note that both the worst-case cost and the

Wasserstein cost are closer to the ground truth cost and the best possible cost respectively when there are more

samples available).
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(a) Amsterdam (b) Geneva

(c) Göteborg (d) Malmö

(e) Oslo (f) Zürich

Figure 8: Six of the metropolitan regions surveyed in the computational study; the larger markers indicate data
samples xi and the smaller markers indicate additional locations that were realized later.
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(a) Input

(b) Wasserstein partition (c) TSP tour (d) TSP tour (e) TSP tour

(f) Kernel partition 1, r =
3 km

(g) Kernel partition 2, r =
9 km

(h) Kernel partition 3 (i) Mean-covariance parti-
tion

(j) Tour partition

Figure 9: The result of various partitioning schemes applied to a map of Copenhagen and its surrounding metropoli-
tan area. Figure 9a shows the input region, discretized into squares of 2 km× 2 km, with larger markers indicating
data samples. Figure 9b shows the optimal robust partition with respect to the Wasserstein metric, and Figures 9c
through 9e show the three TSP tours of the points within each district. Figures 9f through 9j show the partitions
that result using the remaining criteria. The disconnected sub-region in 9j is somewhat surprising, although not
unreasonable: if one substitutes the `1 norm in (20), then it is easy to construct examples that result in disconnected
sub-regions (recall that we are in fact building sub-regions using road network distances).
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Region # points # samples Area (km2) t (km) Actual Wass. dist. (km) Best possible cost (hours) Worst-case cost (hours) Partition costs (hours)
Wasserstein Kernel 1 Kernel 2 Kernel 3 Mean-covariance TSP

Aarhus 1358 36 5904 22.6 21.2 25.4 55.1 29.5 40.4 43.8 43.5 40.1 28.9
Amsterdam 808 26 2528 11.1 7.8 17.1 40.0 18.7 24.7 22.9 21.2 23.9 25.5

Bergen 972 19 2880 23.1 15.7 29.2 60.2 33.9 51.9 51.7 42.7 42.6 34.8
Copenhagen 860 26 1680 30.0 12.0 14.4 24.3 15.6 26.8 19.9 16.7 25.2 20.3

Flanders & Brussels 2181 32 12052 9.7 7.2 37.3 112.3 48.7 59.8 62.2 58.6 55.8 46.1
Geneva 1194 41 5428 17.7 11.2 33.3 76.3 36.0 55.1 49.3 44.5 53.3 33.5
Göteborg 1543 51 9052 22.8 13.1 44.3 74.6 45.3 53.1 54.2 51.5 50.0 45.9
Helsinki 867 41 4372 5.9 5.0 15.7 32.9 19.7 19.1 19.1 21.4 19.5 39.0
Malmö 1391 60 5164 16.0 10.3 28.0 51.6 29.3 34.6 32.7 32.5 30.3 31.7
Oslo 952 29 3460 9.5 5.5 20.4 50.3 24.8 26.9 27.4 24.7 34.3 31.2

Rotterdam 881 21 2652 11.5 6.4 15.8 40.3 20.8 27.3 23.9 19.3 25.6 29.1
Stockholm 1003 31 4660 12.1 11.3 19.5 69.4 24.9 27.8 28.7 24.8 33.1 33.1
Zürich 965 30 1616 7.7 4.2 13.5 30.5 16.4 18.4 16.2 17.1 16.9 20.0
Total 14975 443 61448 200.1 131.0 314.2 707.0 363.6 465.9 452.0 418.6 450.7 419.1

Table 1: Tour lengths for 13 regions and 6 partitioning criteria; for each region, the optimal criterion is highlighted and underlined. All costs
are defined as the maximum duration of the m = 3 TSP tours of the destination points.

39



5 Conclusions

By using the Wasserstein distance to define our region of ambiguity, we have developed a new tool for estimating

the worst-case workload that one might face in visiting a sequence of points with a TSP tour. An advantage of this

estimate is that it is not affected by problems that would arise if we used only mean and covariance information,

as has been previously attempted. Our use of the square root functional
s
R

√
f(x) dA to approximate lengths of

TSP tours is just one possibility; one might also extend our analysis to handle more elaborate routing problems

by adopting more sophisticated objective functionals as in [27]. To the best of our knowledge, our use of the

Wasserstein distance in such an application is the first of its kind, and may have further applications outside the

transportation domain, such as entropy or quantile maximization.
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Online supplement to “Wasserstein distance and

the distributionally robust TSP”

A Proof of Lemma 4

Proofs of statements 2 through 4 follow below:

Proof of statement 2 We seek to show that

x

R

f(x) min
i
{‖x− xi‖ − λ

′

i} dA ≤
x

R

f(x) min
i
{‖x− xi‖ − λi} dA+ gT (λ

′
− λ) ,

which is equivalent to showing that

x

R

f(x) min
i
{‖x− xi‖ − λ

′

i} dA ≤
n∑
i=1

x

Ri

f(x)(‖x− xi‖ − λi) dA+ gi(λ
′

i − λi) .

Consider the right-hand side of the above; for each i, we have

x

Ri

f(x)(‖x− xi‖ − λi) dA+ gi(λ
′

i − λi) =
x

Ri

f(x)(‖x− xi‖ − λi) dA− (λ
′

i − λi)
x

Ri

f(x) dA

=
x

Ri

f(x)(‖x− xi‖ − λ
′

i) dA

and therefore, if we define regions R′1, . . . , R
′

n in the obvious way by

R
′

i =
{
x ∈ R : ‖x− xi‖ − λ

′

i ≤ ‖x− xj‖ − λ
′

j ∀j 6= i
}
,

we see that

x

R

f(x) min
i
{‖x− xi‖ − λ

′

i} dA =
n∑
i=1

x

R
′
i

f(x)(‖x− xi‖ − λ
′

i) dA ≤
n∑
i=1

x

Ri

f(x)(‖x− xi‖ − λ
′

i) dA

is obvious because the partition R′1, . . . , R
′

n is obtained by taking the minimal value of ‖x−xi‖−λ
′

i, and is therefore

minimal over all partitions of R. This completes the proof.
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Proof of statement 3 We observe that the vector − 1
ne ∈ Rn must be a supergradient at λ∗; this simply follows

from the KKT conditions of (3), which is a finite-dimensional problem. Therefore, it follows that
s
R∗

i
f(x) dA = 1/n

for all i, and therefore the objective value of problem (3) is

x

R

f(x) min
i
{‖x− xi‖ − λ∗i } dA =

n∑
i=1

x

R∗
i

f(x)(‖x− xi‖ − λ∗i ) dA

=
n∑
i=1

x

R∗
i

f(x)‖x− xi‖ dA− λ∗i
x

R∗
i

f(x) dA

=
n∑
i=1

x

R∗
i

f(x)‖x− xi‖ dA−
1
n

eTλ∗︸ ︷︷ ︸
=0

=
n∑
i=1

x

R∗
i

f(x)‖x− xi‖ dA

and therefore the Wasserstein distance between f and f̂ as induced by the partition R∗1, . . . , R∗n is the same as that

of the optimal objective value of (3), which completes the proof.

Proof of statement 4 We simply note that if f(x) > 0 then the supergradient inequality in the proof of statement

2 is actually strict:
n∑
i=1

x

R
′
i

f(x)(‖x− xi‖ − λ
′

i) dA <
n∑
i=1

x

Ri

f(x)(‖x− xi‖ − λ
′

i) dA .

The objective function of problem (3) is therefore strictly concave, thus guaranteeing uniqueness of λ∗. The fact

that λ∗ exists follows from the boundedness of R, because if we were ever to have λi − λj > diam(R), it would

imply that ‖x− xi‖ − λi < ‖x− xj‖ − λj for all x ∈ R, thus rendering Rj to be empty.

B Proof of Theorem 10

Purely for ease of exposition, we assume that R is the unit square. Section 2.1 of [14] says that D(f̂n, f̄)→ 0 with

probability one because the Wasserstein distance metrizes weak convergence whenever R is compact. Thus, setting

tn = D(f̂n, f̄) for all n ≥ 1 gives us a sequence that converges to 0 with probability one, with the added feature

that f̄ is feasible for problem (12) by construction. Next, for each n, the triangle inequality says that the set of

distributions f on R such that D(f, f̄) ≤ 2tn must contain the set of distributions where D(f, f̂n) ≤ tn. Thus, an

upper bound for problem (12) – which is itself always an upper bound for the ground truth cost
s
R

√
f̄(x) dA by
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our construction of tn – is given by the problem

maximize
f∈L1(R)

x

R

√
f(x) dA s.t. (21)

D(f, f̄) ≤ 2tn
x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R ;

it will therefore suffice to verify that the optimal objective value to this problem approaches the ground truth cost

as tn → 0.

We will relax problem (21) one step further by using an alternate metric to the Wasserstein distance, namely

the Prokhorov metric DP (·, ·), defined by

DP (µ1, µ2) = inf{ε > 0 : µ1(B) ≤ µ2(Bε) + ε for all Borel sets B on R}

where Bε = {x : infy∈B d(x, y) ≤ ε}. Theorem 2 of [25] says that for any two distributions f and g on R, we have

(DP (f, g))2 ≤ D(f, g), and therefore we can study the relaxation of (21) given by

maximize
f∈L1(R)

x

R

√
f(x) dA s.t. (22)

DP (f, f̄) ≤
√

2tn
x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

as n→∞, whence tn → 0 with probability one. For ease of notation, we will define ε =
√

2tn.

Let N be a positive integer and suppose that ε = 1/N3. We then divide R into N2 square grid cells si with

side length 1/N . The distance constraint DP (f, f̄) ≤ ε implies that for each B = si, we have
s
si
f(x) dA ≤

s
Si
f̄(x) dA + ε, where Si is the square of side length 1/N + 2/N3 that contains si (see Figure 10). Define

mi = N2 s
Si
f̄(x) dA for each mi and consider the relaxation of (22) given by
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Figure 10: A division of the unit square R into N2 = 16 grid cells. The larger square S10 has side length
1/N + 2/N3and contains s10.

maximize
f∈L1(R)

x

R

√
f(x) dA s.t. (23)

x

si

f(x) dA ≤ mi

N2 + ε ∀i

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

If we ignore the constraint that
s
R
f(x) dA = 1, then clearly, our optimal solution f∗ would simply have

s
si
f∗(x) dA =

mi/N
2 + ε for each i. This problem has a finite-dimensional constraint space and it is straightforward to see that

its optimal solution f∗ must be piecewise constant on each piece si, so that f∗ = q∗i on each si, defined by

q∗i
N2 = mi

N2 + ε

or equivalently

q∗i = mi + 1/N .

Thus, the optimal objective value of (23) is at most

1
N2

N2∑
i=1

√
q∗i = 1

N2

N2∑
i=1

√
mi + 1/N ≤ 1

N2

N2∑
i=1

√
mi + 1

N2

N2∑
i=1

√
1/N = 1

N2

N2∑
i=1

√
mi +

√
1/N ;

it is routine to verify that 1
N2

∑N2

i=1
√
mi →

s
R

√
f̄(x) dA (the only reason that this is not simply the definition of

an integral is because the squares Si that characterize the mi’s have an area of (1/N + 2/N3)2 rather than 1/N2),

which thereby completes the proof.
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C Probabilistic analysis of the capacitated VRP

We first note that, if n samples are drawn from a distribution f , then E(
∑n
i=1 ‖xi‖) = n

s
R ‖x‖f(x) dA. The

representation of capacity constraints via the substitution κ = s
√
n is a standard and useful technique that can be

seen in Section 4.2 of [19]. By exchanging the expectation and max{·, ·} operators, we can express the bound (17)

as

max
{

2
√
n

s

x

R

‖x‖f(x) dA, β
√
n

x

R

√
fc(x) dA

}
+ o(
√
n)

≤ E VRP(X)

≤ 2
⌈√

n

s

⌉x

R

‖x‖f(x) dA+
(

1− 1
s
√
n

)
β
√
n

x

R

√
fc(x) dA+ o(

√
n) .

Note that d
√
n/se is simply the number of vehicles needed to provide service. Since we are interested in the limiting

behavior as n→∞, we have d
√
n/se ∼

√
n/s and 1/(s

√
n)→ 0, so that we can write

√
n ·max

{
2
s

x

R

‖x‖f(x) dA, β
x

R

√
fc(x) dA

}
> VRP(X) >

√
n ·

(
2
s

x

R

‖x‖f(x) dA+ β
x

R

√
fc(x) dA

)

as desired, where the approximate inequality implied by the “>” terms simply reflects the fact that we have

disregarded the o(
√
n) terms.
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