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SUMMARY:  A technique to localize damage in structures that can be treated as linear in the
pre and post-damage state is presented. Central to the approach is the computation of a set of
vectors, designated as Damage Locating Vectors (DLVs) that have the property of inducing
stress fields whose magnitude is zero in the damaged elements (small in the presence of
truncations and approximations). The DLVs are associated with sensor coordinates and are
computed systematically as the null space of the change in measured flexibility. The
approach is not structure-type dependent and can be applied to single or multiple element
damage scenarios. Knowledge about the system is restricted to that needed for a static
analysis in the undamaged state, namely, the undamaged topology and, if the structure is
indeterminate, the relative stiffness characteristics. Results from numerical simulations
suggest that the method can operate successfully under realistic conditions.
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INTRODUCTION

Research on the various aspects associated with the use of vibration data to detect locate and
quantify damage in structures has increased notably in the past two decades. The situation
most often contemplated is that where the system can be treated as linear in the pre and post
damaged states, making damage tantamount to a shifting of values in a set of system
parameters. Reduction in the effective area of a steel member from corrosion or the fracture
of a weld in a moment-resistant connection are examples of situations for which the
assumption of linearity in the pre and post-damage states may not be unreasonable. Linear
damage characterization falls in the realm of model updating but, in contrast with the typical
update problem where one searches for small adjustments to fit a base line model to
measured data, in the damage detection case the adjustments need not be small.

Model update algorithms typically utilize identified modal parameters, instead of the
physically measured response, as the targets to be matched in fitting a model to the data. In
this regard, it is worth noting that much of the progress in the linear damage detection
problem has been made possible by the development of robust and efficient algorithms that
provide minimum order state-space realizations from measured input/output data (Juang and
Papa, 1984). A fundamental difficulty in damage identification through a model update
strategy, however, is found in the fact that the inverse problem posed, unless the number of
free parameters can be made sufficiently small, is usually ill-conditioned and non-unique
(Beck and Katafygiotis, 1998).

Since the likelihood of arriving at an accurate characterization of damage is intimately
associated with the number parameters that need to be treated as free (potentially damaged) in
the model update algorithm, methods that can narrow the parameter space are of outmost
practical importance. Various techniques that attempt to extract information on the spatial



distribution of damage without a detailed model of the structure have been examined
(Doebling et.al., 1996). An examination shows, however, that very few are general and can
operate consistently under the conditions anticipated in practical applications. Namely: a) in
structures with many members, b) where the number of sensors is small in comparison to the
number of significant DOF, c) where only a truncated modal basis is available and d) in an
environment where the measured data is ‘noisy’. Difficulties also arise due to dependence of
the results on assumed knowledge about the system; i.e., on the need for the mass matrix or
the stiffness matrix of the undamaged system.

An approach of general applicability that provides information on the localization of stiffness
related damage is presented in this paper. The method uses changes in the computed
flexibility as the basic source of information. Yet, in contrast with existing flexibility-based
techniques [Pandey and Biswas (1994,1995); Toksoy and Aktan (1994)] it does not attempt
to locate damage using pattern recognition or other system-dependent strategies. Instead, the
method operates with results obtained from a singular value decomposition of the change in
flexibility and computes a set of vectors that, when treated as load distributions at the sensor
points, induce stress fields that by-pass the damaged elements. In other words, the technique
identifies the elements of the structure that have suffered damage as belonging to the set of
elements that have negligible internal forces under the action of the prescribed load vectors.
These vectors, herein designated as Damage Locating Vectors (DLVs), are computed as the
null space of the change in flexibility from the pre to the post-damage state. As will be
illustrated, the technique is capable of considering single or multiple damage scenarios and
can operate with a truncated modal basis and partial sensor data.

Implicit in the previous description is the fact that the DLV’s are computed strictly from the
measured data without introducing assumptions with respect to where damage is likely or on
how many damaged locations there might be. Strict model independence, however, ends once
the DLV’s are computed since a structural analysis is required to evaluate the effect of these
loads on the structure. Two observations in regards to this issue are appropriate. First, the fact
that the model needed is only to be used for a static analysis implies that the uncertainties
associated with inertial and damping characteristics (which in general may have changed
without invalidating the approach) are de-coupled from the search for stiffness related
damage. Second, dependence of the damage localization on knowledge of the undamaged
stiffness properties is generally small, given that only the distribution of internal forces is
relevant in the computations. We note, for clarity, that the model used to compute the effect
of the DLVs need only describe the topology of the undamaged structure and that the loss of
load paths due to complete member failures are accounted for automatically.

The remainder of the paper is organized as follows: the connection between the DLVs and
the null space of the matrix given by the change in flexibility is presented first. The next
section discusses how modal truncation and approximation in the identified eigenproperties
affect the computation of the DLVs. An index to identify load vectors that belong to the null
space but which, as a consequence of modal truncation, are not strong members of the DLV
set is introduced. The theoretical section is followed by two examples where the DLV
approach is tested using simulated data.

THEORETICAL FORMULATION

Consider a system that can be treated as linear in the pre and post damage states, but which is
otherwise arbitrary, having damaged and undamaged flexibility matrices FD and FU at m



sensor locations. Assume there are a number of load distributions (defined in sensor
coordinates) that produce identical deformations when applied to the undamaged and
damaged systems. If all the distributions that satisfy this requirement are collected in the
matrix L it is evident that one can write;

                                  0)( =− LFF UD                 (1)

Inspection of eq.1 shows that the relationship can be satisfied in two ways, either (FD – FU) =
0, in which case the damage can not be spatially located by changes in flexibility, or the
matrix (FD – FU) is not full rank and L contains the vectors that define the null space. To
avoid the case of distributions that induce zero displacements in both FU and FD we assume,
temporarily, that they are both full rank (or less restrictively, that the intersection of their null
spaces is empty). The influence of modal truncation and potential rank deficiency in FU and
FD is considered in a later section. Performing a Singular Value Decomposition one can
write;

                                               [ ] 
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where the ≈ 0 is introduced to emphasize that in actual applications the singular values
associated with the ‘null space’ will not be exactly zero due to approximations in the
identified eigenproperties and possible modal truncation. A discussion on the selection of the
threshold used in separating the row space from the null space is presented later.

From a physical perspective one appreciates that the load distributions that induce no stress in
the damaged elements are vectors that belong to L, these vectors are designated here as
Damage Locating Vectors (DLV). While it is evident that all load vectors that bypass the
damaged elements belong to L, whether or not all the vectors in L bypass the damaged
elements is not immediately apparent. A proof asserting that, indeed, all vectors in L bypass
the damage elements may be found in a paper to appear in the Journal of the Engineering
Mechanics Division of ASCE.

Number of Modes in the Flexibility Matrices
One way to satisfy eq.1, previously obviated by the assumption that the flexibility matrices
are full rank is;

      0== LFLF DU        (3)

For the situation in eq.3 to be satisfied exactly the flexibility matrices FU and FD need to be
rank deficient and their null spaces must have a non-zero intersection. A sufficient condition
for the flexibility matrices to be rank deficient is that the number of identified modes be less
than the number of sensors. This situation is unusual in damage identification problems.
Note, however, that having more modes than sensors is a necessary condition but not a
sufficient one for ensuring full rank because some of the identified modes may prove linearly
related over the limited number of coordinates associated with sensor locations.

In any event, the relevant issue when the modal basis is truncated is the need to discriminate
between vectors in L that are DLVs and those that have a strong projection in the common
null space of the individual flexibility matrices. An index that is useful for this purpose is



derived next. We begin by noting that the singular values sn are related to the null space and
the change in flexibility by;

      LFFLs UD
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or;
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therefore, the relative size of the terms being subtracted, in comparison to their difference, is
characterized by the ‘normalized singular value’ lv, where;
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Vectors with relatively large values of lv should not be treated as DLVs, even if they are
associated with small singular values. A value of lv from 0.08 to 0.10 appears to be a
reasonable cutoff. We note that while sn and lv provide guidance on selecting the DLVs, they
do not eliminate all heuristics because the gap between sr and sn is not always evident by
inspection.

On the Number of DLVs and Other Implementation Issues
Before discussing the implementation of the DLV approach it is convenient to introduce a
result that points to a limit on the number of independent damage locations that can be
contemplated by a given sensor set. Namely, it can be shown that in the case of discrete
systems the size of the null space of (FD-FU) is equal to the number of sensors minus the rank
of a stress influence matrix, Q, whose entries are a function of the number and location of the
damaged elements.  In particular, if z is the vector of internal stress resultants that need to be
zero for the undamaged and damaged systems to be indistinguishable, then, the jth column of
Q lists the values z due to a unit load at sensor coordinate j.  The previous result shows that
there is a theoretical limit to the maximum number of independent damage locations that can
be considered. Specifically, if the number of independent columns in Q is equal to or larger
than the number of sensors then there is no null space in the change in flexibility and,
therefore, no DLVs.

One concludes, therefore, that there are (at least) two conditions for which the DLV
technique is not useful. The first is when the damage does not induce changes in the
flexibility at the measured coordinates, and the second is when the number of independent
damaged locations is too large for the number of sensors. Note that in the first case the
damage is not “observable” and in case two the number of sensors is not sufficient to ensure
“controlability”.

Damage Localization using DLVs
Central to the procedure outlined in this section is the fact that the information contained in
the various DLVs is complementary and, therefore, identification of a ‘precise’ set of vectors
is unnecessary. The basic approach is to compute the stress distribution using the DLV
associated with the lowest singular value (assuming the lv index is acceptable) and from the
results identify the set of elements that are stressed below a certain threshold. Additional
DLVs (if available) can then be used to reduce the size of the identified set. To decide on



what constitutes a low stress one can proceed in a number of ways. The one that we have
explored is through the definition of a normalized stress index, nsi, which we define as the
value of the stress resultant in an element divided by the largest value of that stress resultant
over all the elements of its class. In the case of trusses, for example, axial force is the relevant
stress resultant and all the elements belong to the same class. The same is true for beams or
slender frames with axial force replaced by bending moment. A situation where there is more
than one class is that of a moment-resisting frame where some bays are braced. In this
instance the braces are treated in a set and the flexural elements in another.

To describe the approach for computing the normalized stress index assume the apparent size
for the near null space, L, is w > 1. Designate the vector associated with kth singular value as
DLV-k and the associated stress distribution in the elements of class j as qj(k), where k = m,
m-1, m-2 … m-w+1 (recall m is the number of sensors). The (cumulative) normalized stress
index for class j, after adding the information from i DLVs, is defined as;
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Although the number of load vectors selected from an initial inspection of the singular values
may be w, one can always opt to select the ‘potentially damaged elements’ at any stage
before the last vector is added in eq.7. In fact, a good approach is to stop the process if an
element that is not below the nsi threshold in step i shows up below the threshold in step i+1.
The selection of an appropriate nsi cutoff depends on the accuracy with which the flexibility
matrices have been obtained. Numerical results appear to indicate that values ranging from
0.05 to 0.1 may be realistic. Localization of damage using the DLV technique is illustrated in
the numerical examples presented next.

NUMERICAL EXAMPLES

Example #1
The first example is a fixed-fixed beam with 8 lumped masses. Independent white noise
signals applied at masses 5 and 7 (see Fig.1) are used as excitation and sensors measuring
acceleration in the vertical direction are assumed present at each of the lumped mass
locations. Sensor noise is contemplated in the excitation and the computed response. The
output noise is prescribed to have an RMS equal to 10 % of the RMS of the response
measured on the sensor located at the first mass and the input noise RMS is 5% of the
excitation level. Viscous dissipation is included in the form of Rayleigh damping with a
magnitude of 5% of critical in the first two modes. Damage is simulated as a reduction of
25% in the flexural stiffness of segment 3-4 and 50 % in segment 7-8.
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Fig.1 Structure of example #1 (EI and l such that f1 = 1 Hz).

As noted previously, the capacity of the DLV technique to identify damage hinges on the
quality of the identified flexibility matrices. Extraction of the flexibility matrices from the
recorded data depends, in turn, on the quality of the data, on the sophistication of the modal
identification algorithm employed and the technique used to normalize the mode shapes with
respect to mass. In this example we use the ERA-OKID algorithm to perform the modal
identification (Juang and Papa, 1994) and normalize the modes with respect to mass, without
introducing assumptions about the inertial characteristics, using an approach reported in
Bernal (2000).

Modal Identification
Application of the ERA-OKID algorithm to the data identified 7 modes having MAC values
in excess of 0.9 in the undamaged state and all 8 modes in the damaged condition. A
comparison of the identified results with the exact values, as depicted in Table 1, shows that
the accuracy of the identification is excellent.

Table 1. Frequencies for Structure of Example #1 (in Hz)
Undamaged DamagedMode

Exact Identified Exact Identified
1 1.000 1.000 0.938 0.938
2 2.755 2.757 2.244 2.244
3 5.389 5.386 4.878 4.872
4 8.847 8.848 7.730 7.738
5 12.983 13.022 11.350 11.340
6 17.425 17.582 15.773 16.077
7 21.446 21.657 18.026 17.918
8 24.161 ** 21.329 22.125

** not identified

Flexibility Matrices
Fig.2 shows the percent error in the identified flexibility coefficients for the damaged and
undamaged case. The errors are computed as the deviation between the computed flexibility
coefficient and the exact value, normalized by the largest value in the associated column of
the exact matrix. In this figure, the relationship between the index and the location of the
coefficient in the matrix is given by counting from the main diagonal downward, from
column to column, sequentially. As can be seen from the figure, the identified flexibility is
very accurate (the RMS of the error in flexibility coefficients is less than 1%). We note that
the relatively larger error associated with the first and the last coefficient arises from the fact
that the deformations associated with loads at nodes 2 and 9 are very small.
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Fig.2 Error in the Coefficients of the Identified Flexibility Matrices
Computation of DLVs
The singular values and the lv indices are listed in Table2:

Table 2. Singular values and lv indices for the structure of example #1
1 2 3 4 5 6 7 8

sv 3.434E-03 1.838E-03 1.681E-04 6.187E-05 1.962E-05 1.275E-05 4.625E-06 2.574E-06
lv 1.179E+00 9.891E-01 1.511E-02 1.391E-02 6.029E-03 2.067E-02 4.885E-03 5.606E-04

Inspecting the values in Table2 one concludes that there may be as many as 5 DLVs.

Normalized Stress Indices and Localization
The governing stress resultant in this problem is bending moment. The plot of the
accumulated, normalized bending moment (nsi) from eq.7 is depicted in Fig.3. An inspection
of the figure shows that the damage in segments 3-4 and 6-7 is clearly identified. Note that in
this case the first DLV already contains all the localization information.

Fig.3. Normalized stress index for the beam of example #1.

Example #2
The structure is a 10-story shear building with an irregular distribution of mass and stiffness
as shown in Fig.4. Damage is simulated as a loss of stiffness of 25 % in level-2 and 50% in
level-6. Five accelerometers are used to record the output (one every other floor starting in
level-2). The system is excited with white noise acting at the roof and at level-7 (note there is
only one co-located input/output sensor pair). Noise in the input and the output is considered
as described in example#1 (with the sensor at level-2 as the reference for the output noise
RMS). The natural frequencies for the undamaged and damaged systems are listed in Table3.
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Fig.4 Shear building of example #2

Table 3. Frequencies for Structure of Example #2 (in Hz)
Undamaged DamagedMode

Exact Identified Exact Identified
1 0.388 0.387 0.348 0.349
2 1.002 1.002 0.912 0.912
3 1.623 1.623 1.572 1.572
4 2.196 2.198 2.139 2.140
5 2.694 2.677 2.677 2.703
6 3.196 3.358 2.931 3.271
7 3.538 3.748 3.342 3.732
8 3.848 3.984 3.723 3.998
9 4.023 4.326 3.922 4.223

The singular values and the lv indices are depicted in Table 4. An inspection of this table
indicates two or three DLVs.

Table 4. Singular values and lv indices for the structure of example #2
1 2 3 4 5

sv 5.772E-03 4.489E-04 1.070E-04 9.189E-05 3.058E-05
lv 7.844E-01 1.217E-01 5.045E-02 6.001E-03 1.243E-02

The relevant stress resultant in this example is the inter-story shear. Fig.5 plots the
normalized inter-story shear (nsi) corresponding to DLV-5+4. A cursory inspection shows
that the damage is clearly identified within the spatial resolution of the available sensors. It is
opportune to note that since the relevant stress resultant is a statically determinate quantity,
the localization of the damage is done in this case without any reference to the stiffness
characteristics of the undamaged structure.

Fig.5 (a) Shear building of example#2 (b) nsi (for interstory shear).
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CONCLUSIONS

Methods for damage localization have traditionally focused on finding differences between
the undamaged and the damaged structure, i.e., differences between mode shapes, differences
in deformed shapes due to an applied load, etc. The Damage Locating Vector technique
presented here, however, identifies load distributions where the static response of the
structure is the same in the undamaged and the damaged systems. The approach, therefore,
represents the complement of the traditional strategy. Implicit in this complementary
perspective is the fact that the DLV based technique does not actually search for damaged
elements but rather identifies undamaged elements as those that have significant stresses
when the structure is loaded with the DLVs. The set of elements which are dormant under the
action of the DLVs include the damaged elements but may also include some elements that
are undamaged. This result, however, is entirely consistent with the theoretical basis of the
approach and must not, therefore, be interpreted as false detection.

An attractive feature of the approach is the fact that the DLVs are computed systematically in
a structure-type independent fashion and strictly from the measured data. Furthermore, model
dependence is typically small since only the undamaged topology - in statically determinate
structures, plus the relative values of the stiffness characteristics, in indeterminate systems,
enter into the computations. The fact that the method operates with all the available sensors
and with all the identified modes without recourse to DOF expansion or reduction strategies
is worth restating.

As with any other damage identification approach, the real test is whether or not the DLV
technique can operate successfully under realistic conditions. Although the method has been
found to perform well with noise-contaminated simulated data, further examination using
experimentally measured data is required to gain an understanding of its true capabilities.

REFERENCES
Bernal, D. (2000). ‘Extracting flexibility matrices from state-space realizations’, COST F3
Conference, Madrid.

Beck, J. L., and Katafygiotis, L S. (1998). "Updating models and their uncertainties I:
Bayesian Statistical Framework”, Journal of Eng. Mechanics, Vol.124 No.4, pp. 455-461.

Doebling, S. W., Farrar, C. R., Prime, M. B., and Shevitz, D. W., (1996). "Damage
identification and health monitoring of structural and mechanical systems from changes in
their vibration characteristics: A literature review." Los Alamos Laboratory Report LA-
13070-MS.

Pandey, A. K. and  Biswas, M., (1994). "Damage detection in structures using changes in
flexibility," J. Sound Vib. 169(1). pp.3-17.

Pandey, A. K. and Biswas, M.,(1995). "Damage diagnosis os truss structures by estimation of
flexibility change," The International Journal of Analytical and Experimental Modal
Analysis, 10(2), pp.104-117.



Toksoy, T. and Aktan, A. E.,(1994). "Bridge-condition assessment by modal flexibility."
Exp. Mech. 34, pp.271-278.


	INTRODUCTION
	THEORETICAL FORMULATION
	Number of Modes in the Flexibility Matrices

	On the Number of DLVs and Other Implementation Issues
	
	Damage Localization using DLVs

	NUMERICAL EXAMPLES
	Example #1
	Modal Identification
	Flexibility Matrices
	Computation of DLVs
	
	Table 2. Singular values and lv indices for the structure of example #1


	Normalized Stress Indices and Localization


	Example #2
	
	
	
	Table 4. Singular values and lv indices for the structure of example #2



	CONCLUSIONS
	REFERENCES


