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Introduction
Research on vibration based damage identification has been expanding rapidly over the
last decade. Much of the focus of this research has been placed on damage detection
based on comparison of system properties 'before' and 'after' damage under the premise
that the system can be treated as linear in both states. It is worth noting that in this
approach the type of ‘damage’ that can be identified is restricted to that which has an
influence in the small amplitude vibration characteristics of the system. Severe inelastic
response during an extreme event in a system idealized as elasto-plastic, for example, is
not detectable in this approach to the problem. Furthermore, even for the type of damage
that can be handled by the before and after strategy, separation of structural from non-
structural damage may be very difficult from examination of the small amplitude signals
that can be obtained for Civil Engineering Structures in service.

An alternative for damage detection associated with response to extreme events is to use
signals measured during the event. An attractive feature of this alternative is that the
influence of non-structural elements, at the large amplitudes, is likely to be much less
than at the ambient vibration level. Of lesser importance, but also worth noting as a
positive feature, is the fact that the signal-to-noise ratio is much larger for the response to
the damaging event than for ambient vibration signals. On the negative side, however,
detection and localization of damage by the examination of signals recorded during a
damaging event require consideration of nonlinear behavior, a condition that restricts the
number of available analysis techniques severely.

In this paper we examine the concept of Instantaneous Frequency (IF) as a potential
candidate for damage detection purposes. The IF of a signal is, loosely speaking, the
frequency of a sine curve that locally fits the signal. Since inelastic behavior and other
types of damage can be expected to affect the frequency composition of the response, the
IF may prove useful in damage characterization.

Instantaneous Frequency and Empirical Mode Decomposition Method
As a generalization of the definition of frequency, IF is defined as the rate of change of
the phase angle at time t of the analytic version of the signal (Ville, 1948). Given a real
signal s(t), the analytic signal z(t) is a complex signal having the actual signal as the real
part and the Hilbert transform of the signal as the imaginary component, namely;
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where the amplitude a(t) and the phase φ(t) are clearly given by:
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and the Hilbert transform is given by the principal value of the integral in eq.3
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The instantaneous frequency is, by definition;
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One can easily confirm from the previous definitions that the IF of a harmonic function is
constant and coincides with the frequency of the function. One can gain intuitive
appreciation for the concept of IF by examining a chirp signal. A linear chirp is defined
as y(t) = cos(at)t from where the interpretation of a frequency varying linearly with time
is evident. A plot of a linear chirp is shown in fig.1(a) with the phase angle of the analytic
signal and the instantaneous frequency computed from eq.4 plotted in fig.1(b). As one
can see, the IF definition captures the time variation of the frequency accurately. Note
that when the chirp is represented in the Fourier domain the result contains a large
number of components with different frequencies and the simple nature of the signal is
lost.

Figure 1  (a) Linear chirp, (b) Phase angle and  Instantaneous Frequency
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The definition of IF presented in eq.4 is the most basic but is by no means unique. Ville
(1948) formulated a distribution in time and frequency known as the Wigner-Ville
Distribution, WVD, and defined another estimator for the instantaneous frequency as the
first moment of the distribution with respect to frequency. Cohen (1988) developed a
generalized formulation for the distribution of energy in time and in frequency and
defined the instantaneous frequency to be the average of the frequencies that exist in the
time-frequency plane at a given time. A comprehensive discussion on the various
proposed formulations may be found in Boashash (1992).

The search for alternative definitions of IF has been motivated by the fact that in many
cases the variability of the phase angle is large and, as a consequence, there are large
fluctuations of the IF about the mean value. In any case, there has long been consensus
on the fact that the concept of IF is physically meaningful only when applied to mono-
component signals, which have been loosely defined as narrow band. To apply the
concept of IF to arbitrary signals (with any hope of extracting physically meaningful
information) it is necessary to first decompose the signal into a series of mono-
component contributions. A recent approach to carry out this decomposition in a
systematic manner has been presented by Huang et al. (1996) and is designated as the
Empirical Mode Decomposition (EMD) technique. The EMD technique decomposes the
signal, f(t), into a series of mono-component contributions designated as intrinsic mode
function (IMF), namely;
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where rn is the residue after the n IMFs have been extracted. An IMF is a function that
satisfies two conditions: (1) in the data set the number of extrema and the number of zero
crossings must either equal zero or differ at most by one; and (2) at any point, the mean
value of the envelope defined by the local maxima and the envelope defined by the local
minima is zero (Huang 1998). In this study we use the basic definition of instantaneous
frequency which is given in eq.4. To reduce the variance associated with differentiation
of the phase one can either filter the signal outside the expected bandwidth or smooth the
phase difference estimator (Boashash et al., 1990). In this study we have provided simple
piece-wise linear fits to the computed phase variations.

Example#1
A 4-story shear building is considered. The mass, the initial stiffness corresponding to
each floor and the system frequencies prior to any damage are shown in fig.2. The
structure has 5% damping in all modes. In the first case considered the system is
subjected to El Centro (1940) ground motion and at t = 10 secs the first floor is assumed
to suffer a sudden 80% loss in stiffness. The system frequencies after the damage are
5.47, 21.70, 38.83 and 48.83 Hz. Once the empirical mode decomposition is carried out
and the IMF components are obtained, the Hilbert transform of the first IMF component
is calculated and used to evaluate the analytic signal (using the roof acceleration as the
output).



Figure 2  Structural model for numerical study

The phase angle and the instantaneous frequency plots are shown in Figure 3. One can
easily see the indication of damage as the change in the slope of the phase angle and the
drop of the instantaneous frequency around t=10 sec.

Figure 3  (a) Phase angle and (b) Instantaneous frequency of IMF 1

Example #2
We consider the same structure of example#1 but in this case the focus is placed on the
effect of hysteretic action. In particular, the restoring force relationship for the first floor
is assumed to be of the Bouc-Wen (1967, 1976) type with parameters that result in a
smooth transition from elastic to plastic behavior. To examine the influence of the extent
of inelastic response on the IF two levels of excitation are contemplated, the first floor
shear vs. drift for both excitation levels are shown in Figure 4. Other floors are assumed
to remain linearly elastic during the entire monitoring period. In both cases the intensity
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Figure 4  (a, b) Force-drift relations for the 1st floor, (c, d) Phase angle plots

of the excitation is small in the first two and the last two seconds. The phase angle plots
for the first two IMFs are also depicted in fig.4 for the moderate and the strong excitation
cases. The following observations can be made:

1) In the case of mild nonlinearity the two IMFs display IFs that approximate those of
the second and the first mode of the elastic structure (the 3rd and 4th modes are not
captured). Although some reduction in the average slope of the phase can be detected
in the region when the response is inelastic, the indication is not sufficiently strong
(given the variability of the parameters) to be of practical value as an indicator of
inelasticity.

2) In the strongly nonlinear case the first IMF displays the frequency of the first mode
for the first two seconds (when the response is elastic) and then increases sharply.
This behavior is interesting since at first glance one may expect the frequency to
decrease as inelasticity ensues. This result, however, may be rationalized by noting
that when the first floor yields extensively the first mode associated with the tangent
stiffness properties has a very low frequency and is unlikely to contribute
significantly to the measured response. What happens, it seems, is that the second
mode of the structure with a yielded first level becomes dominant and the frequency
of this mode (one can easily confirm) is larger than the first mode of the elastic
structure (and close to the computed value of the second slope). We conclude,
therefore, that while modest inelasticity may be reflected in reductions of the IF,



extensive inelastic behavior can lead to increases in the IF by elimination of the
initially dominant mode.

Concluding Remarks
This paper represents an initial effort to examine the potential merits of instantaneous
frequency as a damage indicator. The empirical mode decomposition method was
utilized to decompose the signal into several monocomponent signals to improve the
likelihood that the IF concept will prove physical meaningful. In the case of a sudden
severe damage in which the structure remains linear after the damage, the technique was
capable of identifying the time and extent of the damage. Nevertheless, the computations
here were carried out for noiseless conditions and it remains to be seen if the approach
can give useful information under realistic conditions (large systems with noisy
measurements). For the case of hysteretic response the instantaneous frequency was
found inadequate as a robust indicator of modest nonlinearity. For the case of severe
nonlinear behavior the IF showed some clear trends although these were opposite to what
one would have perhaps anticipated since the onset of inelasticity was reflected in an
increase in the IF. It was argued, however, that this trend is consistent with an
interpretation where the inelastic behavior shifts the effective frequency of the first mode
to such a low value that this mode is no longer an important contributor. The second
tangent mode, having a higher frequency that the first elastic mode becomes dominant
and is the one responsible for the increase in the IF. While additional work is needed
before the potential of IF is fully appreciated, the results of this preliminary investigation
do suggest that the technique is unlikely to prove robust in practical cases.
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