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Abstract

A series of analytical relationships is presented to predict the mechanical properties and response of open three-dimensional Voronoi
tessellation of face-centered cubic structures called rhombic dodecahedrons. The cell edge material was assumed to be elastic–perfectly
plastic, and the effective mechanical properties of the cellular structure were related to the cell edge material properties and the relative
density of the cellular structure. Detailed finite element models were carried out to establish the validity of the analytical models. In the
elastic regime, the monodisperse cellular structure is orthotropic and near-incompressible in all loading directions, and its response is
governed by bending deformation of the cell edges. The yield strength of the cellular structure in all loading directions is equal. We also
studied the role of irregularity in the organization of the cellular structure on its mechanical properties. The irregularity in the cellular
structure organization was introduced by moving the vertices of a regular cellular structure in three orthogonal directions by a random
value within a predefined range called the “irregularity index”. At a constant overall relative density, increasing the level of irregularity
increases the effective elastic modulus and significantly decreases the effective yield strength of the cellular structure. We also studied the
mechanical properties of the cellular structure tied to rigid plates, in view of the application of cellular structure as the core construction
of sandwich panels. In this case, the cellular structure is significantly stiffer and its mechanical response is dominated by cell wall
stretching.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Three-dimensional cellular materials are ubiquitous in
nature and are also used in a variety of engineering appli-
cations, ranging from sandwich structures with low-density
cores for structural protection [1–6], sound and thermal
insulation [7,8], and heat transfer [9–15] to scaffolds for tis-
sue engineering and regenerative medicine [16–18]. In many
of these applications, the mechanical properties and struc-
tural behavior of the cellular materials play key roles in
regulating the overall function of the system. In this con-
text, the mechanics of two-dimensional cellular structures

have been studied extensively using theoretical approaches,
computational models and robust experiments [19–26].
These studies include investigating the role of structural
organization and hierarchy [27–29] and heterogeneity and
defects (e.g. missing cell edges or cell clusters) in the behav-
ior of cellular structures [30–37].

Studying the mechanical behavior of three-dimensional
cellular structures is inherently more challenging. A limited
class of three-dimensional (3-D) base cells (the triangular,
rhombic and hexagonal prisms, the rhombic dodecahe-
dron, and the tetrakaidecahedron) can be packed together
to generate a monodisperse cellular structure [19,38–41].
The available literature on the mechanics and material
properties of 3-D cellular structures is generally focused
on the mechanics of tetrakaidecahedral cellular structures,
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which have a unit cell with six square and eight hexagonal
faces [42–44]. The monodisperse open-cell tetrakaidecahe-
dral structures are incompressible cubic materials, with
an effective elastic modulus of �0.63 � density2 and an
ultimate strength of �0.22 � density1.5 in all basic direc-
tions of loading [43–49].

In this work, we studied the mechanical properties of an
open-cell rhombic dodecahedron cellular structure. We
show that this structure is orthotropic and incompressible,
with its material properties being dominated by the bend-
ing of the cell edges and having an effective elastic modulus
of �density2 in three loading directions. The unit cell of the
structure is a space-filling convex polyhedron called a
rhombic dodecahedron (also called a rhomboidal dodeca-
hedron). The unit cell of the structure is shown in
Fig. 1a, and has 12 identical rhombic faces with 24 edges
and 14 vertices. Each face of a rhombic dodecahedron is
a rhombus, with angles of 2a ¼ 2cot�1

ffiffiffi
2
p
� 70:53� and

2h ¼ tan�1
ffiffiffi
2
p
� 109:47�. The volume of a unit cell is

V ¼ 16L3=3
ffiffiffi
3
p

, where L is the edge length. For a square
cell edge cross-sectional area, b � b, the relative density
(volume fraction) of the rhombic dodecahedron unit cells
is qu ¼ 24b2L=V ¼ 9

ffiffiffi
3
p

b2=2L2. For a 3-D rhombic dodeca-
hedron cellular structure of infinite size, each cell edge is
shared by three adjacent unit cells, so the effective relative
density of a 3-D tessellated cellular structure, denoted by q,
is q ¼ qu=3 ¼ 3

ffiffiffi
3
p

b2=2L2. Fig. 1c shows an example of a
rhombic dodecahedron cellular structure obtained by pack-
ing 66 rhombic dodecahedron unit cells, which has 864
identical cell edges. This monodisperse structure is the
Voronoi tessellation of the face-centered cubic lattice (i.e.
the Voronoi tessellation of a face-centered cubic lattice
gives rhombic dodecahedron cellular structures). In the
coordinate system shown in Fig. 1, axes 2 and 3 are perpen-
dicular and normal to the top and front surfaces of rhom-
bic dodecahedron in the outward direction, respectively.

Fig. 1. Schematic of a regular rhombic dodecahedron structure. (a) A rhombic dodecahedron unit cell comprises 12 identical rhombuses, with edge length
L and constant angles 2a � 70:53

�
and 2h � 109:47

�
. In this figure, the top and bottom surfaces (denoted by AJKE and CHMG) are perpendicular to axis

2. The front and back surfaces (denoted by ABCD and KLMN) are perpendicular to axis 3. The line connecting points I and F is in the direction of axis 1.
(b) A rhombic dodecahedron unit cell in different views. Due to symmetry in directions 2 and 3, the top and front views of the unit cell are identical. (c) A
tessellated rhombic dodecahedron cellular structure with 66 unit cells. The dimensions of the model relative to the cell edge length of one unit cell are
shown in the picture.
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Cellular structures with a similar structural organization
are observed in nature. Honeybees use the geometry of a
rhombic dodecahedron to form a honeycomb from a tessel-
lation of cells, each of which is a hexagonal prism capped
with half a rhombic dodecahedron. Some minerals, such
as garnet, have a rhombic dodecahedral crystal habit.
The rhombic dodecahedron also appears in the unit cells
of diamond and diamondoids [50]. Recently, the formation
of rhombic dodecahedral particles of C70 has been also
observed [51].

In Section 2, we present analytical models to calculate the
effective elastic–plastic properties of a rhombic dodecahe-
dron unit cell and periodic tessellated cellular structure.
The cell edge material behavior was taken as elastic–per-
fectly plastic, and comprised the elastic modulus, Es, yield
strength, rYs, and Poisson’s ratio, m. Our analytical models
give estimates of the effective elastic moduli, Poisson’s
ratios, yield strengths and buckling strengths for loading
along three orthogonal axes, as shown in Fig. 1. In Section
3, we construct finite element models of the cellular struc-
tures. The comparison between the finite element results
and the analytical predictions are presented in Section 4.
In Section 5, we develop finite element models of irregular
rhombic dodecahedron cellular structures, which are subse-
quently used to investigate the role of irregularity in deter-
mining the basic mechanical properties of cellular
structures. The irregularity was induced in the cell edge
organization of the structure by randomly moving the verti-
ces of the regular structure in three directions to create cel-
lular structures with different cell sizes (polydisperse
foams). Finally, in Section 6, we analyze the mechanical
properties of the cellular structures attached to two rigid
plates. This part of the work was carried out in view of
recent interests in developing novel lightweight and multi-
functional sandwich structures with low-density core con-
structions [52,53]. We show that a cellular structure
attached to rigid plates is significantly stiffer compared to
the counterpart structure with a periodic boundary condi-
tion, and its effective elastic modulus � density. Conclu-
sions are drawn in Section 7.

2. Analytical predictions for fundamental mechanical

properties

In this section, we derive analytical relationships for the
effective mechanical properties of an open rhomboidal
dodecahedron unit cell and tessellated cellular structure
with periodic boundary conditions using fundamental con-
cepts of mechanics of materials (assuming small deforma-
tions). Ei and rYi denote the effective elastic modulus and
effective yield strength of the cellular structure in three
orthogonal directions (i = 1, 2, 3). In each loading direc-
tion, we also obtained the Poisson’s ratios in the two direc-
tions normal to loading. The Poisson’s ratio is denoted by
mij, where i is the loading direction and j is the direction nor-
mal to loading (e.g. for loading in i = 1, we calculated m12,
m13). It should be noted that the cellular structure under

study has three orthogonal planes of symmetry and is
orthotropic. Due to symmetry, the mechanical properties
in directions 2 and 3 are identical (i.e. E2 = E3, rY2 = rY3,
m12 = m13, m21 = m31, m23 = m32).

2.1. Elastic modulus and Poisson’s ratio in direction 2 or 3

Fig. 2a shows the deformed configuration of a rhombic
dodecahedron unit cell with 24 cell edges (beams) subjected
to uniaxial compression, F2 in direction 2. To obtain the
effective elastic modulus of the unit cell, we calculated the
relative displacement of the top and bottom rhombic faces,
as the unit cell is subjected to uniaxial compression
imposed by two rigid plates at the top and bottom of the
unit cell. Eight cell edges that construct the top and bottom
rhombic faces are considered to be in contact with the rigid
plates, and thus do not contribute to the mechanical
response of the unit cell. Moreover, the four cell edges
located in the mid-plane cell of the unit cell are neither bent
nor stretched during compression and only undergo trans-
lational rigid body motion in direction 1 (and thus do not
contribute in stiffness). Six linkages, denoted by ABC,
EFG, KLM, KNM, JIH and ADC in Fig. 2a, have equal
contribution in the mechanical response of the unit cell in
direction 2, and thus it is adequate to just analyze the
response of one linkage (e.g. ABC shown in Fig. 2b). This
pair of cell edges is subjected to force P = F2/6 in direction
2 and moment M, which tends to bend the cell edges. The
moment can be calculated using Castiglione’s theorem,
M = PLcosh/2. The deflection of the unit cell in direction
2 can be obtained using Euler–Bernoulli beam theory.
Ignoring the shear strain energy gives d22 = PL3 cos2h/
12EsI + PL sin2h/EsA, where I and A denote the second
moment of inertia and the area of the beam cross-section,
respectively, and h = 54.73�. The strain in direction 2 is
e22 = d22/Lsinh and the applied stress in the same direction
is r2 = F2/4L2 sin2h, where the effective area is assumed at
the mid-height of the unit cell. The effective elastic modulus
of the unit cell parallel to direction 2 is E2u = r2/e22, which
gives

E2u
Es
¼ 27

ffiffiffi
3
p

L4

I þ 24L2

A

¼ 3

3
ffiffiffi
3
p
þ q

q2 � q2=
ffiffiffi
3
p
ffi 0:58 ð1Þ

The cell edges mainly deform in bending, and the contri-
bution of the stretching stiffness of the cell edges in the
overall stiffness is negligible.

For a 3-D rhombic dodecahedron cellular structure,
each cell edge is shared amongst three unit cells and the
effective elastic modulus decreases with increasing number
of unit cells. The lower limit for the elastic modulus of a
tessellated cellular structure, E2, is 2/3 of the elastic modu-
lus of the unit cell, which is achieved for a cellular structure
of infinite size. In this case,

E2

Es
ffi 2

3
ffiffiffi
3
p q2 ffi 0:38q2 ð2Þ
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To calculate m21, we applied the Castiglione’s theorem to
find the displacement in direction 1 as the 3-D tessellated
cellular structure is subjected to compression in direction
2. This gives d21 = PL3 sin2h/48EsI � PL sin2h/4EsA. The
strain in direction 1 due to uniaxial loading in direction 2
is e21 = d21/Lcosh and the Poisson’s ratio is m21 = �e21/
e22. By ignoring the axial deformation terms for d22 and
d21 (i.e. the second terms in the above equations), m21 = 1.
Similar calculation of the Poisson’s ratio in direction 3
under loading in direction 2 yields m23 = 0.

2.2. Elastic modulus and Poisson’s ratio in direction 1

The analytical solution for the elastic properties of a
rhombic dodecahedron unit cell shown in Fig. 2a subjected
to uniaxial compression in direction 1 is presented in the
Appendix A. This geometrical unit cell cannot be used to
obtain the mechanical properties of the tessellated cellular
structure in direction 1, as its deformation does not repre-

sent the response of a 3-D rhombic dodecahedron cellular
structure of infinite size. For a tessellated structure, the
analytical solution will be different from the geometrical
unit cell and is remarkably straightforward. The tessellated
structure shown in Fig. 3a can be divided into segments
shown in Fig. 3b with identical deformation. Thus, the
analysis of the segment shown in Fig. 3b is sufficient. In
Fig. 3b, C = F1/4 = r1A1/4, where A1 = 4L2 sin2h is the
effective cross-section area in direction 1 and r1 is the
applied stress in direction 1. The four cell edges shown in
Fig. 3b have equal values of strain energy, and thus the
total strain energy of the segment is

U 1 ¼ 4

Z L

0

M�2=2EsIdxs þ 4

Z L

0

N �2=2EsAdxs

where M� ¼ �M þ
ffiffiffi
2
p

Cxs=2
ffiffiffi
3
p

and N � ¼ �C=
ffiffiffi
3
p

and
0 6 xs 6 L is the distance from one end of the cell edge,
as shown in Fig. 3b. Analogous to the calculation
presented in the Appendix A for the rhombic dodecahe-

Fig. 2. (a) Schematic of a rhombic dodecahedron unit cell under uniaxial compression in direction 2. The deformed and undeformed shapes are shown by
dashed and solid lines, respectively.d22 is the displacement of the nodes located on the top surface of the unit cell. d21 is the displacement of the nodes
located in the mid-plane of the unit cell in direction 1 due to the uniaxial compression in direction 2. (b) Free body diagram of linkage ABC. (c) Free body
diagram of cell edge AB.
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dron unit cell, minimizing the total strain energy in respect
to M gives M ¼

ffiffiffi
2
p

Cxs=2
ffiffiffi
3
p

and application of the Casti-
glione’s theorem gives d11 = CL3/9EsI. Thus, the effective
elastic modulus of a 3-D rhombic dodecahedron cellular
structure in direction 1 is

E1

Es
¼ 1

3
ffiffiffi
3
p q2 ffi 0:19q2 ð3Þ

which is half of its effective elastic modulus in directions 2
and 3 (i.e. E1 = E2/2). E1 is 29.14% smaller than the effec-
tive elastic modulus of the unit cell in the same direction,
which is obtained in the Appendix A. The Poisson’s ratios,
m12 and m13, for a tessellated rhombic dodecahedron cellular
structure can be obtained using the basic relationship for
an orthotropic material (m12/E1 = m21/E2, m31/E3 = m13/E1),
which gives m13 = m12 = 0.5. It should be noted that m12

and m13 can also be calculated using Castiglione’s theorem,
which gives the same result. The volume change per unit
volume of the cellular structure in this loading condition
is equal to the summation of the strains in three directions,
which is equal to r1(1/E1 + m21/E2 + m31/E3) = 0. This
shows that the cellular structure is incompressible under
this loading condition. A similar conclusion is valid for
loading in directions 2 and 3.

2.3. Yield strength

The proportional limit (elastic limit) stress of a unit cell,
denoted here by rpli, where i is the direction of loading, is
the maximum stress where the relationship between the
stress and strain (or equivalently force and displacement)
is linear. The nonlinear response is initiated when the stress

in one point of the cellular structure reaches the yield stress
of the cell edge material, rYs. For a unit cell shown in Fig. 2b,
the maximum axial stress in the cell edges can be estimated as
rb2 = Mb/21 + p sin h/A, where M = PLcosh/2. The sec-
ond term (contribution of P) is negligible compared to the
first term for a low-density cellular structure. Ignoring the
axial term and equating rb2 = rYs gives rp12=rY s ¼ 3ffiffiffi

6
p

b3=8L3 ¼
ffiffiffi
34
p

=6q
3
2. The yield strength of the unit cell in

direction 2, rY 2u, is approximately reached when the bending
moment reaches the fully plastic moment of the cell edge
cross-section. In our study, the cell edges have a square
cross-section and the yield strength is 1.5 times the propor-
tional limit stress (by ignoring the axial term). Thus,

rY 2u

rY s

¼ 9
ffiffiffi
3
p

8
ffiffiffi
2
p b3

L3
¼

ffiffiffi
34
p

4
q

3
2 ffi 0:33q1:5 ð4Þ

For an infinite size tessellated structure, the yield
strength in direction 2 is denoted by rY 2

and is 2/3 of the
yield strength of the unit cell,

rY 2

rY s

¼ 3
ffiffiffi
6
p

8

b3

L3
¼

ffiffiffi
34
p

6
q

3
2 ffi 0:22q1:5 ð5Þ

For a tessellated rhombic dodecahedron cellular struc-
ture in direction 1, the maximum axial stress occurs at
the two ends of each cell edge (beam), rb1 ¼ Mb=2Iþ
C cos h=A. By ignoring the effect of the axial term, equating
rb1 ¼ rY s gives rpl1=rY s ¼

ffiffiffi
6
p

b3=4L3 ¼
ffiffiffi
34
p

=9q
3
2. Thus, the

yield strength of the tessellated structure in direction 1,
rY1, can be estimated from:

rY 1

rYs
¼ 3

ffiffiffi
6
p

8

b3

L3
¼

ffiffiffi
34
p

6
q

3
2 ffi 0:22q1:5 ð6Þ

Fig. 3. (a) Schematic of a tessellated rhombic dodecahedron cellular structure under uniaxial compression in direction 1. (b) Free body diagram of the
tessellated structure.
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Interestingly, while the cellular structure is orthotropic
in the elastic regime, it has equal yield strength in all load-
ing directions, which is almost equal to the yield strength of
the open-cell tetrakaidecahedral cellular structures.

2.4. Elastic buckling strength

The critical buckling load of the unit cell shown in
Fig. 2a in direction 2 can be obtained by using the classical
Euler’s buckling theory and applying the appropriate
boundary conditions for the pair of cell edges shown in
Fig. 2b. In the analysis, the transverse force P cos h and
the moment PL cos h/2 cause a pre-buckling transverse
deformation of the cell edge and the axial load of the cell
edge is P sin h (see Fig. 2c). The non-trivial solution for
the general equation of the cell edge transverse displace-
ment gives the critical buckling load of the cell edge,
F cr2
¼ 6P cr ¼ n2p2Esb

4=2L2 sin h, and rcr2
=Es ¼ n2p2b4=16

L4 cos h sin2 h. For h ¼ 54:735� and n = 1 (i.e. first buckling
mode), the critical elastic buckling stress of the unit cell,
denoted by rcr2u, can be estimated from:

rcr2u

Es
¼ 3

ffiffiffiffiffiffiffi
3p2
p

32

b4

L4
¼ p2

24
ffiffiffi
3
p q2 ffi 0:24q2 ð7Þ

For a tessellated rhombic dodecahedron structure, the
critical buckling stress, denoted by rcr2

, is 2/3 of the critical
buckling stress of the unit cell (similar to the elastic
modulus):

rcr2

Es
¼

ffiffiffiffiffiffiffi
3p2
p

16

b4

L4
¼ p2

36
ffiffiffi
3
p q2 ffi 0:16q2 ð8Þ

The critical buckling load of the tessellated cellular
structure in direction 1 shown in Fig. 3b is F cr1

¼ p2Es

b4=3L2 cos h and the critical buckling stress, denoted by
rcr1

, can be estimated from:

rcr2

Es
¼

ffiffiffi
6
p

p2

16

b4

L4
¼ p2

18
ffiffiffi
6
p q2 ffi 0:22q2 ð9Þ

3. Finite element modeling of the 3-D cellular structure

In this section, we develop finite element models of both
unit cell and tessellated cellular structures and use them to
establish the validity of the analytical models presented in
Section 2. The simulations were carried out using the finite
element package Abaqus (SIMULIA, Providence, RI). The
boundary condition for the unit cell model is straightfor-
ward and identical to the boundary condition assumed in
the analytical investigations. For loading in each direction,
two rigid plates were attached to the opposite ends of the
cellular structure and displaced towards each other in the
simulations. For a tessellated cellular structure, periodic
boundary conditions were applied in both directions nor-
mal to the loading direction to avoid the influences of the
model boundaries on the simulation results. To generate
the periodic boundary conditions in a 3-D structural

model, the opposite boundary planes of the model must
maintain the same shape during the deformation, as shown
schematically in Fig. 4. For our model (Fig. 1c), the peri-
odic boundary condition was applied in both directions 2
and 3, when investigating the properties of the structure
in direction 1. Similarly, for analyzing the mechanical
properties in the direction 2, the period boundary condi-
tion was applied in directions 1 and 3. To define the above
description mathematically, the following relationships
have to be specified in the finite element models for each
pair of nodes located on the opposite boundary planes:

hmþ

n ¼ hm�

n

umþ

n � um�

n ¼ ðunÞm
þ

ref � ðunÞm
�

ref m ¼ 1; 2; 3 and n ¼ 1; 2; 3

ð10Þ
where m+ and m� are the opposite boundary planes of the
cellular structure (e.g. planes 1+ and 1�, shown in Fig. 4).
hmþ

n and hm�

n are the rotation angles and umþ
n and um�

n are the
displacements of the nodes on the m+ and m� planes in the
n direction. ðunÞm

þ

ref and ðunÞm
�

ref are the displacements of a
pair of arbitrary reference points on the opposite boundary
planes (e.g. r and r0 in planes 1 and 10, shown in Fig. 4). The
second equation implies that the difference in displace-
ments in all three directions must be equal for all pair
nodes located on the opposite boundary planes [42]. Simi-
lar to the simulations for the unit cell, two rigid plates were
attached to the opposite ends of the cellular structure in the
loading direction and displaced towards each other in the
simulations. The cell edges were allowed to move relative
to the flat plates with no friction, and could freely expand
in the lateral directions.

The elastic properties and yield strength of the cellular
structure were calculated from the force–displacement
response of the structure in each basic loading direction.
The effective elastic modulus is the initial slope of the
response; the Poisson’s ratios were calculated by dividing
the negative value of the lateral strain by the axial strain.
The yield strength was obtained by plotting the stress–
strain curve of the structure and finding the point at which

Fig. 4. Schematic of the periodic boundary conditions.

2878 S. Babaee et al. / Acta Materialia 60 (2012) 2873–2885



Author's personal copy

there is an increase in strain with no increase in stress (the
beginning of the plateau region of the curve). The subspace
eigensolver method was employed to estimate the critical
elastic buckling loads of the unit cell in each loading direc-
tion. In all calculations, we assumed the cell edge material
to be linear elastic–perfectly plastic, with elastic modulus
Es = 70Gpa, yield strength rY s ¼ 130 MPa and Poisson’s
ratio m = 0.3. It should be noted that all the results are
expressed in the non-dimensional form and are indepen-
dent of the values of the material properties used in the cal-
culations. The cell edges were meshed using a standard
Timoshenko beam element (element type B31 in Abaqus)
that uses linear interpolation (two-node linear beam) and
allows for transverse shear deformation. A mesh sensitivity
analysis was performed to ensure that the result is not sen-
sitive to the mesh size. The static general solver with gen-
eral (standard) contact condition available in Abaqus was
used in the calculations.

4. Mechanical properties of open-cell rhombic dodecahedron

cellular structures

Fig. 5a shows the finite element model of a cellular
structure subjected to loading in direction 1. Fig. 5b shows
the effective elastic moduli of the tessellated cellular struc-
ture in directions 1 and 2 as a function of the relative den-
sity of the tessellated cellular structure, q. In the finite
element calculations, the relative density of the cellular
structure was varied by changing the size of the square
cross-section of the cell edges, b. In the same figures, we
have also plotted the theoretical estimates of the effective
elastic moduli in two directions from Eqs. (2) and (3).
These analytical estimates are based on considering only
the bending deformation of the cell edges. For cellular
structures with a low relative density, the finite element
and theoretical results are in good agreement, as bending
is the dominant deformation mechanism. By increasing
the relative density of a cellular structure, the contribution
of the axial deformation of the cell edges to its overall stiff-
ness becomes more significant and accounts for the differ-
ence between the finite element and numerical solutions.
A similar comparison is made in Fig. 5c for the three differ-
ent Poisson’s ratios, m13, m23, and m21, of the tessellated cel-
lular structure, which show good agreement between the
analytical predictions and the finite element results. The
results suggest that the cellular structure behaves as a
near-incompressible orthotropic material. Finally, in
Fig. 5d we compare the finite element results and analytical
predictions for the yield strength of the tessellated cellular
structure in directions 1 and 2. The results show good
agreement between the finite element and analytical results.
The yield strength obtained from the finite element analysis
is slightly higher than the analytical predictions.

To examine whether Euler buckling occurs prior to yield,
we compared the critical buckling stress and the yield
strength of the structure under loading in each direction.
For loading in direction 2, the buckling and yield stresses

equations (Eqs. (8) and (5), respectively) give the following
relationship between the cell edge material yield strength
and elastic modulus for the condition where Euler buckling
and plastic collapsing occur simultaneously: rY s=
Es ¼ 0:72q0:5. At each relative density, yield is the dominant
mode for lower values of rY s=Es and buckling is dominant
for higher values of rY s=Es. The same approach for loading
in direction 1 yields rY s=Es ¼ 1:02q0:5. These critical limits
are plotted in Fig. 6, which shows the predicted collapse
mechanism in each region of the plot for each loading direc-
tion. For almost all open-cell tessellated rhombic dodecahe-
dron structures, yielding precedes Euler buckling since
generally rY s=Es < 0:01.

5. Role of irregularity in the structural organization

Numerical simulations of the mechanical properties of
3-D open-cell structures with regular, irregular and ran-
dom structural arrangements have been carried out by sev-
eral groups [32–34]. Roberts and Garboczi [54] used a finite
element method to predict the Young’s modulus and Pois-
son’s ratio of four realistic random models of isotropic
open cellular solids. They proposed different relationships
for low- and high-density open-cell cellular structures,
and compared their results with experimental data. Ese-
where [55,56], the tensile elastic properties of a regular
dodecahedron with pentagonal faces were studied to gain
insight into the mechanical behavior of lungs. Here, we
develop finite element models of irregular 3-D rhombic
dodecahedron cellular structure to study the role of irregu-
larity on the mechanical properties of tessellated cellular
structures. Specifically, we develop models with irregular
cellular organizations by perturbing the locations of the
vertices of a rhombic dodecahedron structure, which leads
to models with various cell sizes (polydisperse foam;
Fig. 1c). In developing the models, the vertices of the cellu-
lar structure located on the boundaries are fixed and the
periodic boundary conditions are applied in two directions
in each model, as described in the previous section. In gen-
erating each model of the irregular structure, the vertices of
a regular structure not located on the boundary are per-
turbed randomly according to:

X j ¼ X j þ cLxj; for j ¼ 1; 2; 3 ð11Þ
where Xj and X j are coordinates of the vertices in the initial
regular and final irregular structures, respectively.
0 6 c 6 1 is a parameter used to quantify the degree of cell
shape irregularity, called the “irregularity index”, and
�1 < xj < 1 is a normally distributed random number.
The geometrical characteristics of the cellular structure,
such as the number of edges, vertices and cells, remain
the same in regular and irregular structures, but the rhom-
buses of the structure become irregular quadrilaterals. We
developed a MATLAB (Mathwork, Inc., Natick, MA)
code to generate models of irregular cellular structure with
different irregularity indexes. The models were imported
into Abaqus, similar to in Section 3, and the mechanical
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properties of the models were studied under loading in dif-
ferent directions. Fig. 7 shows three examples of the devel-
oped models with different irregularity indexes.

In this section, finite element models of irregular cellular
structures with different irregularity indexes, 0 6 c 6 0:5,
were created and analyzed. The comparison between the
mechanical behavior of the regular and irregular cellular
structures was made at a constant overall relative density.
The total length of the cell edges varies from one model
to another, and the thickness was calculated for each model
to keep the overall (average) relative density the same as
the regular cellular structure. For irregular cellular struc-
tures with c = 0.1, 0.2 and 0.3, three different models of
the cellular structures were constructed and analyzed. For
c = 0.4 and 0.5, we analyzed five models, since the scatter
in the calculated mechanical properties is relatively large.

The estimated effective elastic modulus and yield strength
of the irregular structures were normalized with respect
to the effective elastic modulus and yield strength of their
regular cellular structure counterpart (i.e. with the same
relative density). The normalized effective elastic moduli
in directions 1 and 2 are denoted by E1 and E2, respectively,
and the normalized yield strengths are denoted by �ry1

and
�ry1

, respectively. For a regular cellular structure, all these
parameters are equal to 1. The results are summarized in
Fig. 8, where the dashed lines show the average results of
the finite element calculations for cellular structures at each
relative density. The results show a significant decrease in
yield strength and an increase in the effective elastic modu-
lus of the structure with increasing irregularity index, c. In
general, the role of irregularity on the mechanical proper-
ties of the cellular structure is more pronounced for cellular

Fig. 5. Mechanical properties of the rhombic dodecahedron tessellated cellular structure. (a) Schematic of the finite element model of a tessellated
structure under uniaxial compression in direction 1. (b) Normalized elastic modulus of the tessellated cellular structure vs. its relative density in directions
1 and 2. (c) Poisson’s ratios of the cellular structure against its relative density. (d) Normalized yield strength of the tessellated structure vs. the relative
density. The finite element results are presented for loading in both directions. The analytical prediction is identical for loading in each direction.
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structures with a low relative density. Moreover, the
mechanical properties in direction 2 appear to be more sen-
sitive to the irregularity than those in direction 1.

6. Cellular structure tied to rigid plates (sandwich panel

configuration)

We carried out a similar set of analytical and numerical
analysis for a rhombic dodecahedron cellular structure
with rigid plates attached at its two ends (the plates were
normal to the loading direction and the cell edges were tied
to the rigid plates). We assumed that the cellular structure
is infinite in both in-plane directions. In this case, the
mechanical properties of the structure are height depen-
dent. We derived analytical estimates of the elastic modulus
of the cellular structure in two extreme cases: (i) a cellular
structure with a single cell height and (ii) a cellular struc-
ture with infinite height. The analytical model and the finite
element calculations are discussed only briefly, as many of
the details are similar to those in the previous sections.

Fig. 9 shows two segments of the structure (denoted by
S1 and S2 and shown in Fig. 9a and b, respectively) that
were analyzed to obtain the analytical solution for the elas-
tic modulus of a single cell height tessellated cellular struc-
ture. All the nodes of segment S1 can only move in the
loading direction (direction 2) due to symmetry. For seg-
ment S2, nodes A, B, C and D can move only in direction
2 and node E can move in both directions 1 and 2. The
reaction forces and moments for each segment can be cal-
culated by minimizing the total strain energy. For both seg-
ments, minimizing the total strain energy of the segment
shows that the internal bending moment at each cross-sec-
tion of all cell edges is zero. Thus, the cell edges undergo
only stretching under loading in direction 2. Using the
Euler–Bernoulli beam theory and ignoring the shear strain
energy, the deflection of the structure in direction 2 can be
obtained for each. For S1, d22 ¼ 3Q0L=2EsA, and for S2,
d22 ¼ 3QL=2EsA, where Q0 and Q are the compression force
applied to nodes C and D of S1 and S2, respectively, as
shown in Fig. 9.

The single cell height structure consists of two S1 and
two S2 segments. Thus, the total resisting force of the unit
cell is equal to 2Q + 2Q0, and the effective elastic modulus
of the structure is

E2

Es
¼

ffiffiffi
3
p

4

b2

L2
ffi 1

6
q ð12Þ

For the tessellated cellular structure with infinite height,
the response only relates to the deformation of S2, and the
total resisting force of the unit cell is equal to 4Q. The elas-
tic modulus of the structure can be estimated from

E2

Es
¼

ffiffiffi
3
p

6

b2

L2
ffi 1

9
q ð13Þ

Since the structure only deforms in stretching and the
cell edges behave effectively as truss elements, their bending
moments and deformations are mini and the elastic modu-
lus is scaled linearly as a function of relative density. Finite
element calculations were performed for 1, 2, 4 and 12 cells
high structures. The periodic boundary condition was

Fig. 6. Predicted collapse behavior of tessellated cellular structure for
uniaxial loading in directions 1 and 2.

Fig. 7. Irregular cellular structures with different irregularity indexes c.
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applied in both directions normal to the loading direction.
Fig. 10 shows the theoretical and finite element results for
the elastic modulus of the cellular structure in direction 2.
The solid lines represent the analytical estimates for the
elastic moduli of the single cell high and infinite height
structures. The results validate the descending trend of
the elastic modulus with increasing height of the structure.
In general, the cellular structure with tied boundary condi-
tions is much stiffer and stronger compared to the cellular
structure with the boundary condition studied in the previ-
ous sections.

7. Concluding remarks

We have provided analytical estimates for the effective
elastic moduli and yield strength of 3-D Voronoi tessella-
tion of a face-centered cubic structure called a rhombic
dodecahedron in three different normal loading directions.
Detailed finite element calculations were carried out to

establish the validity of the analytical models. The cellular
structure is twice as stiff in directions 2 and 3 as in direction
1, and is near-incompressible in all loading directions. The
yield strength of the cellular structure was identical in all
loading directions, indicating that yielding in direction 1
occurs at a strain that is twice the yield strain in directions
2 and 3. Comparison between the buckling load and the
yielding of the cellular structure showed that for almost
all open-cell tessellated rhombic dodecahedron structures,
yielding precedes Euler buckling. This would suggest that
the cellular structure has a similar energy absorption
capacity under different loading directions if the loading
is applied quasi-statically. However, under dynamic load-
ing, the inertia effect and the contact between the cell edges
could influence the energy absorption capacity of the cellu-
lar structure in different directions [5,31,53]. We also
extended our study to cellular structures with a tied bound-
ary condition (attached to rigid plates) and showed that the
deformation of the cellular structure is dominated by cell

Fig. 8. Mechanical properties of an irregular cellular structure. (a and b) Normalized elastic modulus of irregular cellular structure vs. the irregularity
index c for three different relative densities in loading in directions 1 and 2, respectively. The dashed lines show the average results for each relative density.
(c and d) Normalized yield strength of the irregular structure vs. the irregularity index in loading in directions 1 and 2, respectively. The dashed lines show
the average results for each relative density.
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wall stretching. In this case, the elastic modulus of the cel-
lular structure is a linear function of its relative density and
is height dependent. In general, this cellular structure tied
to rigid plates is much stiffer compared to the counterpart
cellular structure with the periodic boundary condition.

The effect of irregularity in cell arrangements was also
investigated. This showed an increase in the effective elastic
modulus and a considerable decrease in the yield strength
of the cellular structure with increasing level of irregularity

in the structural arrangement of the cell edges of the cellu-
lar structure. Our results are in qualitative agreement with
the results provided by Zhu et al. [57] and Van der Burg
et al. [58] on the effects of cell irregularity on the elastic
properties of 3-D open-cell random Voronoi foams. More-
over, the microstructure irregularities in stochastic Voronoi
structures is shown to slightly elevate the effective elastic
modulus and decrease the compressive strength [59]. Ajdari
et al. [30] also show that two-dimensional low-density
Voronoi structures are stiffer and have lower yield strength
compared to a regular hexagonal honeycomb. Similar
observations for the elastic properties of two-dimensional
irregular honeycombs were also reported by Li et al. [60]
and Silva et al. [35]. Based on the available literature, the
type of irregularity appears to be a critical factor affecting
the mechanical properties of heterogeneous cellular struc-
tures. Further studies are needed to systematically explore
the role of irregularity type on the behavior and function of
cellular structures.
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Fig. 9. Free body diagram of two segments of a rhombic dodecahedron tessellated structure tied to rigid plates under uniaxial loading in direction 2. (a
and b) Free body diagrams of segments S1 and S2, respectively. The reaction forces and moments applied to each node are shown.

Fig. 10. Normalized elastic modulus of a rhombic dodecahedron tessel-
lated cellular structure tied to rigid plates vs. its relative density. The
analytical estimates for structures with a single cell height and an infinite
height are shown by solid lines. The finite element results for structures 1,
2, 4 and 12 cells high are shown with square, rhombus, circle and triangle
markers, respectively.
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Appendix A. Mechanical properties of the geometrical unit

cell in the direction 1

Fig. S1a shows the deformed configuration of a rhombic
dodecahedron unit cell subjected to uniaxial compression,
F1, in direction 1. The following linkages – each consisting
of three cell edges connected at one point to each other –
have identical deformation and response under this load-
ing: AEKF, KJAI, CGMF, CHMI, ABCF, ADCI, KLMF
and KNMI. Thus, we analyzed the deformation of one of
the linkages, as shown in Fig. S1b. The force exerted to this
linkage is R1 = F1/4. The total strain energy stored in this
part of the unit cell is U1 = UA + 2UB, where UA and UB

are the strain energy stored in cell edges EF and AE (or
EK), respectively. U1 = U1(R1, R2, R3, M1, M2, M3, M4),
where R2 and R3 are the reaction forces and M1, M2, M3

and M4 are the reaction moments applied at the boundary
in Fig. S1b. Using the Euler–Bernoulli beam theory and
ignoring the shear strain energy, the strain energy of cell
edge EF can be estimated from

UA ¼
Z L

0

M2
As

2EsI
dxþ

Z L

0

N 2
A

2EsA
dx ðA1Þ

where NA and MAs are the axial force and the internal
moment around axis 3. From equilibrium, N A ¼ �R1=ffiffiffi

3
p
�

ffiffiffi
2
p

R2=
ffiffiffi
3
p

and MAs ¼ M4 �
ffiffiffi
2
p

R1x=
ffiffiffi
3
p
þ R2x=

ffiffiffi
3
p

,
where x is the distance measured from the end of the cell
edge where the external force is applied (0 6 x 6 L). To cal-
culate UB, we used a local coordinate system (10 20 30), where
axis 30 is in the direction of the cell edge (see Fig. S1b). In
this local coordinate, the total strain energy of the cell edge
can be estimated from:

UB¼
Z L

0

M2
B10

2EsI
dxþ

Z L

0

M2
B20

2EsI
dxþ

Z L

0

M2
B30

2GsJ
dxþ

Z L

0

N 2
B

2EsA
dx

ðA2Þ
where NB is the axial force and MB10

, MB20
and MB30

are the
internal moments applied to the cross-section of the cell
edge. From equilibrium, NB ¼ �R1=2

ffiffiffi
3
p
þ

ffiffiffi
2
p

R3=
ffiffiffi
3
p

and
MB10

¼ M2 �
ffiffiffi
2
p

R1y=2
ffiffiffi
3
p
� R3y=

ffiffiffi
3
p

; MB20
¼ �

ffiffiffi
2
p

M1

ffiffiffi
3
p
þ

M3=
ffiffiffi
3
p
þ R2y=2; MB30

¼ M 0
1=

ffiffiffi
3
p
þ

ffiffiffi
2
p

M 0
3

ffiffiffi
3
p

, where y is
measured from the left end of the cell edge as shown in
Fig. S1b (0 6 y 6 L). The reaction forces and moments are
unknowns, which can be calculated by minimizing the total
strain energy in respect to each of them (e.g. @U 1=@R2 ¼ 0).
Solving the corresponding set of equations gives:

R2 ¼
ffiffiffi
2
p

6
R1; R3 ¼

ffiffiffi
2
p

12
R1

M1 ¼
ffiffiffi
3
p

12
R1L; M2 ¼

7
ffiffiffi
6
p

72
R1L

M3 ¼
ffiffiffi
6
p

24
R1L; M4 ¼

5
ffiffiffi
6
p

36
R1L

ðA3Þ

Similar to the calculations presented in Section 2.1, d11

can be obtained using the Castiglione’s theorem. Ignoring
the strain energy associated with shear and axial deforma-

tions, d11 ¼ 17R1L3=216EsI . The strain in direction 1 is
e11 ¼ 2d11=L and the applied stress in the same direction
is r1 ¼ F 1=4L2 sin2 h, where the area is calculated at the
middle of the cellular structure, which is a square with side
length 2L sin h. The effective elastic modulus of the unit cell
parallel to direction 1, E1u ¼ r1=e11, is:

E1u

Es
¼ 22

81
q2 ffi 0:27q2 ðA4Þ

For a unit cell subjected to uniaxial compression in
direction 1 (Fig. S1a), the maximum stress due to bending
occurs at points A, E, F and K and can be estimated from
rb1 ¼ 5LR1=

ffiffiffi
6
p

b3. Equating rb1 ¼ rY s gives rpl1=rYs ¼ 3
ffiffiffi
6
p

b3=10L3 ¼ 2
ffiffiffi
34
p

=15q
3
2. Similar to the previous section, the

yield strength of the unit cell in direction 1, rY 1u, can be
estimated from:

rY 1u

rYs
¼ 9

ffiffiffi
6
p

20

b3

L3
¼

ffiffiffi
34
p

5
ffi 0:26q1:5 ðA5Þ

The comparison between the analytical solution and
finite element results for normalized elastic modulus and
yield strength of the rhombic dodecahedron unit cell in
direction 1 is shown in Fig. S1c.

Appendix B. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.actamat.
2012.01.052.
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