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Abstract—For unlicensed (secondary) users to opportunisti-
cally access the shared radio spectrum on a non-interfering basis,
it is important that they are able to sense the transmission
activities of the licensed (primary) users. However, spectrum
sensing expend a considerable amount of energy and time,
which can be reduced by reliably predicting the primary user
activities. In this paper, we present recurrent neural network
models which are able to accurately predict the primary users’
activity in dynamic spectrum access (DSA) networks so that
the secondary users can opportunistically access the unused
spectrum. Using Universal Software Radio Peripheral (USRP)
Software Defined Radios (SDRs), we collect over-the-air data
from 8 primary users and train the learning models that we
use in conjunction with a central spectrum sensor. We start
by implementing two machine learning models: (i) traditional
linear regression and (ii) neural network model using Long Short
Term Memory (LSTM). These models are able to predict the
primary users’ activity with 75% and 97% accuracy respectively.
To further improve the prediction accuracy, we exploit the
spatio-temporal correlation in the collected data by implementing
a Convolutional LSTM model– which achieves 99% accuracy
for predicting the long-term activity of primary users. The
experimental results demonstrate that the proposed models are
able to successfully predict the primary users’ activities, thereby
reducing both the under-utilizations and interference violations
in DSA networks.

Keywords: Primary Users, Prediction Models, Long Short
Term Memory, Convolutional LSTM, Spatio-temporal Prop-
erty, DSA networks.

I. INTRODUCTION

The ever-increasing demands for spectrum access from dif-
ferent emerging wireless applications have made it necessary
to better manage and utilize the radio spectrum. The suc-
cessful deployment of such spectrum management approaches
requires intelligent and adaptive systems, in order to accurately
assess the radio environment such that unlicensed (secondary)
users are able to opportunistically access the spectrum of
licensed (primary) users when such spectrum is not in use,
thereby increasing the spectrum utilization. However, such
spectrum management and deployment practices must take
into account the fact that spectrum access policies prohibit
any interference violation by the secondary users (SUs) when
primary users (PUs) use the spectrum. The Citizens Broadband
Radio Service (CBRS) [1] is an example of a DSA implemen-
tation, where variety of commercial users share the 3.5 GHz
band with incumbent federal and non-federal licensed users.

The Federal Communications Commission (FCC) [2] man-
dated that all SUs must release the occupied spectral bands
as soon as any PU starts to transmit on that band, ensuring
uninterrupted availability to the licensed users. To ensure this,
the SUs must have knowledge about the spectrum availability.
This awareness is typically achieved by sensing the trans-
mission activities on the target spectrum bands using various
techniques like: use of beacons, geolocation database, and
local energy sensing at the receivers [3], [4].

In this paper, we focus on spectrum sensing performed at
a central spectrum sensor (SS), as the use of a centralized SS
has broaden applications and lower infrastructure costs [5].

We illustrate the various aspects of spectrum sensing in Fig.
1. The first row represents the PU’s ON-OFF activity and the
remaining rows show the SU’s activities that include sensing
and transmissions when PU is in the OFF state. Note that
the first two strategies do not involve separate SS and we
also assume that the SUs sense the spectrum continuously.
The last two strategies involve the SUs deciding to access
the spectrum based on the information obtained from a local
centralized SS. Thus in the first case, a conservative strategy
is imposed on the SU for use of the channel. The cognitive
SU continuously senses the channel and whenever it finds that
the channel is free, it transmits in the next timestamp, going
back to the sensing state after that. The second strategy is
also conservative but here the SU transmits in bursty mode.
Both these conservative strategies aim to avoid interference
violations; however, under-utilization is high. As for the third
strategy, the spectrum sensors send information to secondary
user whenever it senses the channel to be free. The secondary
user transmits from one timestamp and consults the spectrum
sensor for the next timestamp. Note that here we assume that
the time taken to consult the spectrum sensor is less than
the spectrum sensing time. This assumption coupled with the
strategy minimizes the under-utilization of the previous two
strategies. The fourth strategy is proposed in this paper. In
this case, the spectrum sensor is intelligent and trained over
the historical data of primary user activity. It can predict the
primary use’s activity for the next timestamp. The secondary
user uses that prediction to transmit in bursty mode. It is
evident from all the four strategies that long term prediction
from the SS enables the SU to transmit efficiently over the
shared channel by minimizing both the under-utilization and

2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

978-1-7281-2376-9/19/$31.00 ©2019 IEEE



PU

Spectrum
Sensor

PU Present SU TransmittingSU Sensing

SU transmitting 

SU transmitting in
Bursty mode

SU with SS 

Spectrum
Sensor

SU with SS (Bursty mode)

Consulting SS

SU Transmission = 7

SU Transmission = 12

SU Transmission = 11

SU Transmission = 13

Under Utilization Interference Violation

SS Involvement = 4

SS Involvement = 14

PU Absent

Strategy 1

Strategy 2

Strategy 3

Strategy 4

Time 

Fig. 1. Typical Spectrum Sensing Scenarios

the interference violations.
In this paper, we propose neural network models based on

Long Short Term Memory (LSTM) and convolutional LSTM
(ConvLSTM) to predict the primary user’s future inactive time.
We use both the LSTM and ConvLSTM based neural network
models for exploiting the recurrent structure in historical over-
the-air data from each primary user. To the best of our
knowledge, this paper is the first one to propose a strategy for
long term prediction of the activity of the primary user [6].
The main contributions of this paper are: (1) We propose three
machine learning based models for long-term prediction of
the primary user’s activity. They are: (i) Linear regression;
(ii) Recurrent neural network (RNN) with Long Short Term
Memory (LSTM) cells; and (iii) RNN using Convolutional
LSTM (ConvLSTM) cells. (2) Using a testbed, we record
transmission activities of 8 software defined radios (USRP
B210) [7], which are used as primary users. We collect over-
the-air I/Q data from these radios using a RTL-SDR [8].
I/Q values are the Inphase (I) and Quadrature (Q) phase
components of the signal. (3) A central spectrum sensing
module is trained using the proposed models on the collected
dataset for multiple epochs by minimizing the mean squared
error over the training data. The trained models are then used
by the spectrum sensor and used for long-term prediction of
the activities of the primary user, to be used by the secondary
users during the deployment phase. (4) We deployed the
trained version of all the models in a spectrum sensor and
predicted the shared channel availability for the secondary
users with 75%, 97%, and 99% accuracy respectively for linear
regression, LSTM, and ConvLSTM. Note that intuitively the
ConvLSTM based model is able to achieve this high accuracy
by exploiting the spatio-temporal correlation present within

the recurrent structure of the collected I/Q data. (5) We also
show through testbed evaluation that the proposed models can
decrease interference violations by 0.2%, 99.3%, and 100% for
linear regression, LSTM and ConvLSTM models, respectively.
Under-utilizations are decreased by 98.9%, 99.5%, and 100%
respectively, for the aforementioned models.

In the next section, we present a survey of the existing
primary user prediction models followed by system model
and problem formulation in section III and different prediction
models in section IV. The testbed setup and experimental
results are presented in section V. Conclusions are drawn in
the last section.

II. RELATED WORKS

In this section, we discuss the main premise for using
learning techniques for the primary user’s activity prediction
modeling. We also present some previous important work in
this area that have used machine learning techniques.

Various traditional methods of spectrum sensing and their
applications have been presented in [5]. The idea of coop-
erative spectrum sensing was presented as the solution to
security related problems in the spectrum sensing domain.
Though the concept of estimating spectrum usage in multiple
dimensions such as time, frequency and space, was introduced,
no prediction attempts were made. In [9], the authors presented
opportunistic spectrum access based on a Markovian model
that accounted for the bursty nature of ON/OFF traffic models.
Through empirical results, the authors have shown that the
selection of a channel for the secondary user will depend on
the probability distribution of the primary user’s traffic as well
the elapsed OFF time. This paper established the feasibility of
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using PU usage modeling for designing the spectrum access
methods for SU bursty traffic.

There are few existing researches on spectrum sensing and
prediction that use machine learning based techniques. An
artificial neural network based approach for spectrum sensing
in noisy environment was proposed in [10]. The simulation
results accomplished better sensing reliability than traditional
techniques for signals with low signal-to-noise ratio (SNR).
A machine learning based spectrum prediction approach was
proposed in [11]. A multi-layer perception (MLP) based neural
network was used to predict the primary user’s activity, the
resulting model was validated through extensive simulations.

In [6], the authors give an analytical overview of various
existing methods for spectrum prediction, that are based
on: moving average, autoregressive models, hidden Markov
models, Bayesian interference and static neighbor graph. It
was established that all these models have limited scope for
accurate long-term prediction. A deep cooperative sensing
scheme was proposed by Lee et al. in [12]. A convolutional
neural network (CNN) model was proposed to exploit both
spectral and spatial correlation of individual sensing outcomes
for multiple PUs and SUs. All these studies demonstrate the
necessity of a practical long-term spectrum usage prediction
method for the PUs that leverage machine learning techniques.

Our focus is on the effectiveness of recurrent neural net-
works [13] which have been used extensively for modeling
temporal data such as speech [14]. There is limited amount of
work that recognizes the potential of using recurrent structures
in the Radio frequency (RF) domain. Though such use of I/Q
data for building machine learning systems for communication
has been limited in the past, recently it has been used in
several applications [15]–[18]. RF data (being a time series
data) has both spatial and temporal property within the I/Q
components. However, to the best of our knowledge there is
no recurrent neural network based application which exploits
both the spatial and temporal property of the RF data and use
that for a long-term prediction model for PU’s presence or
absence.

III. PROBLEM DESCRIPTION

In this section, we lay out the assumptions, present the
system model, and formulate the problem.

A. Primary User Activity Pattern
The primary users alternate between ON (busy) and OFF

(idle) periods. Random variables ron and roff determine
the duration of ON and OFF periods respectively. The
probability distribution of rON and roff depends on the
specific activity pattern of the primary user. We assume that
the primary user’s ON and OFF times are independently
and identically distributed and use a Poisson point process to
model them. Thus we model the probability distributions for
the ON and OFF times of the primary users as:

fon(ron;βon) =


1

βon
e
−
ron
βon ron ≥ 0

0 ron < 0

(1)

foff (roff ;βoff ) =


1

βoff
e
−
roff
βoff roff ≥ 0

0 roff < 0

(2)

where, βon and βoff are the mean ON and OFF times
respectively.

We define the activity factor of the primary users as the
ratio of the mean PU ON time to the sum of the mean of PU
ON and OFF times and thus this is given by:

PUactivity =
βon

βon + βoff
(3)

It must be noted that, it is not required to pre-define a model
for learning; the proposed prediction models are able to learn
any kind of PU activity pattern. We considered the Poisson
process for our testbed experiments.

B. System Model

We assume that PUs and SUs co-exist in a geographical
area. The SUs can utilize the spectrum bands when they are
not being used by the PUs. The PUs have priority and can
transmit when they need to. On the other hand, SUs always
have backlogged traffic to transmit and must yield to the PU as
soon as they require the spectrum. The transmission times for
the PUs obey the pattern (distribution) as discussed earlier. As
a result of this system model, prior knowledge of PU activity is
vital for SUs to effectively and efficiently share the spectrum.
We assume that there is a centralized spectrum sensor that
monitors the PU transmission activities and maintains records
of all past observations. The trained models corresponding to
the proposed neural network architectures are co-located with
the spectrum sensor and use the past observations as inputs in
order to predict the activity pattern of the PUs.

C. Problem Formulation

The trained neural network model predicts the primary
user’s activity at time τ for the next Γ timestamps and the SS
sends that information to the secondary user. Depending on
the prediction information received from the spectrum sensor,
the secondary user schedules its transmission for the next Γ
timestamps, thus minimizing the interference violation as well
as the under-utilization.

We denote the states of the primary user’s and secondary
user’s transmission as sPU and sSU . The ON state of each is
represented as 1, and OFF state as 0. We also denote tolerable
thresholds for interference violation and under-utilization as
Ithr, and Uthr respectively.

At time τ , the trained model predicts the PU activity for
the next Γ timestamps. In our system we let the SS inform
the secondary user when it sees continuous PU inactivity for
more than 50% of the predicted Γ timestamps. Note that this
is a heuristic for solving the underlying optimization problem
as given by equation 4. However in the most general setting,
at the time τ , depending on the information received from the
SS, the secondary user sets its state sSU to 0 or 1 for the
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next Γ timestamps. Let Ich(t) denote the indicator variable at
time t (τ < t ≤ τ + Γ), indicating whether the secondary user
causes interference to the primary user on channel ch. Note
that: Ich(t) = sPU (t) × sSU (t). Similarly, let Uch(t) denote
an indicator variable representing the under-utilization of ch
channel at time t. Notice that: Uch(t) = sPU (t) + sSU (t),
where + denotes the logical OR operation. sPU (t) and sSU (t)
represent the PU’s and SU’s states respectively at time t. We
note that a conservative strategy for dynamic spectrum allo-
cation will result in under-utilization, whereas an aggressive
strategy will lead to a considerable amount of interference
violation, as discussed in connection to Fig. 1.

The secondary user can transmit on the channel when the
primary user is in the OFF state (i.e., sPU = 0). It should
terminate its transmission as soon as the primary user starts to
transmit (i.e., sPU = 1). However, while the SU is transmitting
(τ < t ≤ τ+Γ), it will not be aware of this state change of the
PU (that is it will not be able to detect the change in the Ich(t)
states). Thus the possibility of having accurate knowledge of
Ich(t) will depend on how well the neural network can model
the underlying probability distribution of the activity of the
primary user.

Finally, our objective is to maximally assign the secondary
user to the ON state constrained over the thresholds of
interference violation (Ithr) and under-utilization (Uthr). Thus,
the general problem can be formulated as follows: let the
number of timestamps where the SU is active be denoted by
η where η can takes values between τ+1 and τ+Γ. Then the
problem can be formulated as that of maximizing η subject to
the constraints on the interference and under-utilization being
bounded above by the respective thresholds. Thus we have:

max η

subject to
η∑
t=1

Ich(t) ≤ Ithr

η∑
t=1

Uch(t) ≤ Uthr

(4)

IV. PROPOSED RNN BASED PREDICTION MODELS

We present two types of neural network models that
leverage the temporal and spatio-temporal correlation in the
historical data of the PU activities, in order to predict future
PU activities. We take the I/Q values of over-the-air signal data
as raw features for future state prediction, as the I/Q values
do not require further sophisticated signal processing. Hence
they are capable of providing an end-to-end solution for our
problem using machine learning techniques.

A. Recurrent Neural Network Model
Fully-connected and convolutional neural networks that are

traditionally used for deep learning lack the capability to
exploit the context available in temporal data. Additionally,
there is the problem of vanishing gradients, when trying to use
back propagation with temporal data. Both these problems are
addressed by Recurrent Neural Networks (RNN) [19] which
we now describe in brief in the context of our problem.

1) Temporal Property of I/Q data: Given T training sam-
ples (for T timestamps) where each sample is a vector of size
M , and each component of the vector is a tuple (I,Q) ∈ C
representing a number in the complex plane, we represent
this vector for a given time stamp t as xt = [[(I,Q)i]

t; i =
1, 2, · · · ,M ] ∈ CM where t = 1, 2, · · · , T , and use it as an
input to the neural network. We use a sample size (M ) of
1024 as a default for our experiments. We want to find the
probability of sPU (t) = 0 for the next input vector (xt+1) for
t = t+1. The probability P (sPU (t) = 0|xt+1) can be written
as:

P (sPU (t) = 0|xt+1) =
P (xt|sPU (t) = 0)P (sPU (t) = 0)

P (xt|sPU (t) = 0)P (sPU (t) = 0) + P (xt|sPU (t) = 1)P (sPU (t) = 1)

(5)

where P (xt|sPU (t) = 0) and P (xt|sPU (t) = 1) are the
conditional probabilities of xt given sPU (t) was set to 0 and
1 respectively. P (sPU (t) = 0) and P (sPU (t) = 1) are the
marginal probabilities, values of which will depend on the
activity factor of the primary user. The predicted value of
vector x at the next timestamp (t + 1) will depend on the
predicted value of the current one [20], which is given by:

x̃t+1 = argmax
xt+1

(P (xt+1|x̃t)) (6)

2) The LSTM Model: To exploit the temporal property, we
first use the idea of LSTM cells as shown in Fig. 2. In one
LSTM cell, there are typically (i) three types of gates: input
(i), forget (f ), and output (o); and (ii) a state update of internal
cell memory (c). The most important part of the LSTM cell
is the “forget” gate, which at time t is denoted by ft. The
forget gates decide whether to keep a cell state memory (ct)
or not. The forget gates are designed as per the equation (7) on
the input value xt at time t and output (ht−1) at time (t− 1).
Note that Wxf and bf represent the associated weight and bias
respectively, between input (x) and the forget gate (f ).

ft = σ(Wxfxt +Whfht−1 + bf ) (7)

where, σ denotes the sigmoid activation function. Once ft
determines which memories to forget, the input gates (it)
decide which cell states (c̃t) to update as per equations (8)
and (9).

it = σ(Wxixt +Whiht−1 + bi) (8)

c̃t = tanh(Wxcxt +Whcht−1 + bct−1
) (9)

In equation (10), the old cell state (ct−1) is updated to the new
cell state (ct) using forget gates (ft) and input gates (it).

ct = ft ◦ ct−1 + it ◦ c̃t (10)

where, ◦ is the Hadamard product. Finally, we filter the output
values through output gates (ot) based on the cell states (ct)
as per equations (11) and (12).

ot = σ(Wxoxt +Whoht + bo) (11)

ht = ot ◦ tanh(ct) (12)
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Fig. 2. LSTM Cell Architecture Used in the Proposed RNN Model

B. Convolutional Recurrent Neural Network

The recurrent neural networks using LSTM cells do not
consider the spatial information encoded in the input-to-state
or state-to-state transitions [20]. However, there are many
applications where spatio-temporal correlation exists within
the dataset. To address this issue, we use a convolution within
the recurrent structure of the RNN. We first discuss the spatio-
temporal property of RF data and then model a convolutional
LSTM cell to exploit the same.

1) Spatio-temporal Property of I/Q Data: Suppose that a
radio signal is represented as a time varying series over a
spatial region using R rows and C columns. Here R represents
the time varying nature of the signal and as such in our case it
represents the total number of time stamps at which the signal
was sampled (T in our case). C on the other hand represents
the total number of features sampled at each time stamp (in
our case its 2048 since there are 1024 features sampled each of
dimension 2). Note that each cell corresponding to one value
of R and one value of C represents a particular feature (I or
Q) at a given point in time. In order to capture the spatial
variation of the signal we need to consider samples from the
signal at consecutive time stamps. In our case we consider
time intervals of length γ and hence we represent this by
sub-matrices of the original R × C matrix representing the
whole time varying signal. Each of these sub-matrices have γ
rows corresponding to the selected timestamps and C columns.
Thus in a nutshell: to capture the temporal property only, we
made use of a sequence of vectors for timestamps 1, 2, · · · , T ,
namely, x1, x2, · · · , xT whereas now, to capture both spatial
and temporal properties, we introduce a new vector χt,t+γ ,
which is formulated as: χt,t+γ = [xt, xt+1, · · · , xt+γ−1]. So
the vector χt,t+γ eventually preserves the spatial properties
with an increment of γ in time. Thus, we get a sequence of new
vectors χ1,γ , χγ,2γ , · · · χt,t+γ , · · · , χt+(ψ−1)γ,t+ψγ , where ψ
is bR/γc. We formulate the probability of primary user to be
idle (P (sPU (t) = 0|χt, t+γ)) for the next γ-length sequence
as:

P (sPU (t) = 0|χt, t+γ) =
P (χt−γ, t|sPU (t) = 0)P (sPU (t) = 0)

P (χt−γ, t|sPU (t) = 0)P (sPU (t) = 0) + P (χt−γ, t|sPU (t) = 1)P (sPU (t) = 1)

(13)

The marginal probabilities for the primary user to be idle
or busy are modeled as P (sPU (t) = 0) and P (sPU (t) = 1)
respectively. P (χt−γ, t|sPU (t) = 0), and P (χt−γ, t|sPU (t) =

1) are the conditional probabilities of χt−γ, t given sPU (t)
was set to 0 and 1 respectively. The predicted value of γ-
length sequence vector χ at timestamp t will depend on the
predicted value of the previously predicted γ length sequence
[20], which is given by:

χ̃t, t+γ = argmax
χt+1···χt+γ

(P (χt, t+γ |χ̃t−γ, t)) (14)

It must be noted that in our case γ = Γ where Γ is as
described in Section III-C.

2) The ConvLSTM Model: We model the ConvLSTM cell
as presented in Fig. 3. It is similar to an LSTM cell, but the
input transformations and recurrent transformations are both
convolutional in nature [20]. We formulate the input values,
cell state and hidden states as 3-dimensional vectors, where
the first dimension is the number of features (C/2) and varies
over time, and the last two dimensions contain the spatial
information (rows (R) and columns (C)).

We represent these as: (i) the inputs:
χ1,γ , χγ,2γ , · · · χt,t+γ , · · · , χt+(ψ−1)γ,t+ψγ (previously
stated); (ii) cell outputs: C1, · · · , Ct, and (iii) hidden states:
H1, · · · ,Ht. We represent the gates in a similar manner as in
the LSTM model. The parameters t, it, ft, ot, W , b have the
same meaning as in section IV-A2. The key operations are
defined in equations 15, 16, 17, 18, and 19. The probability
of next γ-sequence to be in a particular class (from equation
13) is used within the implementation and execution of the
model.

it = σ(Wxiχt,t+γ +WhiHt−1 + bi) (15)

ft = σ(Wxfχt,t+γ +WhfHt−1 + bf ) (16)

Ct = ft ◦ Ct−1 + it. tanh(Wxcχt,t+γ +WhcHt−1 + bc)
(17)

ot = σ(Wxoχt,t+γ +WhoHt−1 + bo) (18)

Ht = ot ◦ tanh(Ct) (19)

σσ
tanh

ot
Xt

Ht

Ct

it

ft
σ

tanhHt-1

Ct-1

tanh

σ
tanh activation

sigmoid activation

sum over all elements

Hadamard product

Fig. 3. ConvLSTM Cell Architecture Used in the Proposed RNN Model

C. Proposed PU Activity Prediction Model

We propose two models based on recurrent neural networks
to train the spectrum sensor using the historical data of primary
user activities. The objective is to learn every primary user’s
activity pattern and use it for scheduling SU activity. We also
use the traditional linear regression model for prediction in
order to test the performance of the neural network based

2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)



models against classical techniques. We present the training
strategy of each model in Fig. 4. First, we divide the dataset
into subsets for training and validation. In each epoch, we
validate the trained model on the validation data and depending
on the validation error we tune the hyper-parameters of each
model. A single epoch consists of a forward pass and a
backward pass through the implemented architecture for the
entire dataset. We normalize the data for both training and
validation to balance each feature. We design three different
models using three different approaches on the normalized
data.

Validation
Dataset

Linear
Regression

LSTM

ConvLSTM

Training
Dataset

Flatten

Dense
Normalize Predicted  

Data

50 Epochs

50 Epochs Test Dataset

Compare Accuracy

Trained
Models

Fig. 4. PU Activity Prediction Training of the Spectrum Sensor

The details of the RNN with ConvLSTM cells is presented
in Fig. 5. The first two hidden layers consist of ConvLSTM
cells with 1024 and 256 filers respectively. The last two hidden
layers are Dense layers, applied after flattening the output from
the last ConvLSTM layer. We also apply Dropout [21] of 0.5
between the different layers to avoid over-fitting of the trained
model. The LSTM implementation is also similar, with the
exception of not having the Flatten layer in between the LSTM
and Dense layers. Increasing the number of filters or layers
did not help in achieving higher accuracy for either of the
models. The output layer consists of a fully connected Dense
layer with 1 neuron to generate the predicted value. We run
and validate the training data for 50 epochs for both the LSTM
and ConvLSTM models, beyond which we did not notice any
further improvement. During the testing phase, once we get
the predicted values, we compare them with the known values
for the test/validation dataset and estimate the accuracy of the
trained models.
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Fig. 5. RNN Implementation with ConvLSTM Cells for PU Activity
Prediction

Next we present the conceptual overview of the deployment
phase of the proposed prediction models for a cognitive radio
network as shown in Fig. 6. The trained models are deployed
within the spectrum sensor. The SS also collects and stores the
historical data of all the primary users for enough time to build
a robust trained model. This trained model also gets updated on
the newly learned primary user’s activity after some specific

Primary User Size (GB)
PU#1 3.26
PU#2 3.5
PU#3 3.29
PU#4 3.2
PU#5 3.14
PU#6 3.16
PU#7 3.1
PU#8 3.22

TABLE I
COLLECTED DATASET SIZES FOR DIFFERENT PRIMARY USERS

duration of time. Determining the data collection time and
model updating time are application specific. Once the spec-
trum sensor can get a primary user’s absence prediction from
the trained model, it relays the information to the secondary
users. The secondary users later access the idle channel in a
cooperative manner, details of which is beyond the scope of
this article. Now we are ready to describe our experimental
results.

Trained
Models

Spectrum Sensor SU1

SU1

SUn

PU1

PU2

PUm

Sense 
Channel

Fig. 6. Deployment of the Proposed PU Prediction Model

V. IMPLEMENTATION AND RESULTS

In this section we present the details of our implementation
and the experimental results.

A. Experimental Environment

In order to validate the proposed models, we collected over-
the-air data in an indoor lab environment from 8 universal
software radio peripheral (USRP) B210s [7] acting as primary
users. We name these 8 radios as PU#1 to PU#8. We collected
the dataset on an i7 machine with 16 GB RAM. We conducted
the proposed model training and evaluation on a Ryzen 8 Core
system with 64 GB RAM, a GTX 1080 Ti GPU unit with 11
GB graphics memory.

B. Data Collection Environment

The data collection environment is presented in Fig. 7.
A random signal is generated using GNURadio [22] and
modulated with Quadrature Phase Shift Keying (QPSK). We
programmed the USRP B210s to alternate between ON or
OFF states such that the activity factor remained between 0.7
and 0.75. Thus, the collected dataset has more PU presence
data than absence, which helps the learning process. The
duration of ON and OFF times follows the model described
in Section III-A. We generated datasets of different sizes for
different PUs. Collected dataset sizes are presented in Table I.

The transmitted signal is received by a RTL-SDR [8] that
used the rtlsdr python library. The AND gate (in Fig. 7) after
the primary user block, is used to represent the fact that either
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Parameters Values
Transmitter Gain 45 dB

Transmitter Frequency 904 MHz (ISM)
Bandwidth 200 KHz

Sample Size 1024
Samples/Transmitter Variable

Primary Users USRP B210
Receiver RTL-SDR

# Primary Users 8
TABLE II

PRIMARY USER TRANSMISSION CONFIGURATION PARAMETERS

the noise or the signal from primary user is transmitted at a
particular timestamp. Primary user’s OFF time is the absence
of radio signal data, therefore it is represented as “Noise”.
We generate different datasets for all the primary users. The
“over-the-air” transmission data was collected in an indoor lab
environment where the B210 transmitters and the RTL-SDR
receiver were at a distance of 10 feet with a direct line of
sight. Thus, the underlying channel can be best modeled as a
Rician fading channel. There was also multi-path effects due
to the reflections from the walls.

Random
Signal

QPSK
Modulation

Primary
 User

RTL-SDRData
CollectionDatasets

Over The Air
Transmission

Timer

Noise

Random

Fig. 7. Data Collection Procedure for each Primary User
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Fig. 8. I/Q Values Representation: (a) Signal Present (b) Noise

During the primary user’s ON time, the I/Q values were
organized in a constellation (please refer to Fig. 8(a)). During
the primary user’s OFF time the I/Q values are random
(please refer to Fig. 8(b)). Each data sample had 2048 entities
consisting of 1024 I and 1024 Q values. We chose 1024 as
sample size as it was sufficient to capture the spatial properties
and at the same time the training was not computationally
intensive. The configuration parameters for the radios are given
in Table II.

C. Signal to Noise Ratio of Data Collection Environment

To measure the signal to noise ratio (SNR) of the testbed en-
vironment, we use a RTL-SDR [8] dongle and Spektrum [23]
which is an open source spectrum analyzer available for both
Windows and Linux. The screenshots of Spektrum are shown
in Fig. 9 and 10 when the signal is absent and present re-
spectively. We calibrate the SNR using the Spektrum software

(rather than using a spectrum analyzer) in order to avoid the
associated costs and also in order to show the robustness of
our methods to imprecise measurements (as measurements in
software are always inferior to actual hardware measurements).
From Fig. 9, we found that the noise floor was between -20 dB
and -30 dB. Fig. 10 shows that the signal strength for the 200
KHz (from 904.9 MHz to 904.1 MHz) channel was between
0 dB and 10 dB. We set the transmitter gain to 45 dB and
calculated the SNR as the difference between the noise floor
and the signal strength. Our calculated SNR was 5 dB - (-25
dB) = 30 dB, with a 45 dB transmitter gain. It is to be noted
that the signal strengths (in dB) of noise and signal measured
by Spektrum is relative, but the difference between them is
absolute.

Fig. 9. Noise Floor Plot using Spektrum [23] Software

Fig. 10. Signal Level Plot using Spektrum [23] Software

D. Used Machine Learning Libraries and Performance Met-
rics

We used Keras [24] as the frontend and Tensorflow [25]
as the backend for desiging the proposed neural network
models. Keras is an overlay on neural network primitives with
Tensorflow [25] or Theano [26] that provides a customizable
interface for quick deployment of complex neural networks.
We also use Numpy, Scipy and Matplotlib Python libraries for
linear regression and other traditional methods.

“Accuracy” is used as the typical performance metric to
measure the effectiveness of the proposed neural networks.
However, accuracy can sometimes be misleading and incom-
plete when the data is skewed. In our dataset, the total PU ON
time is greater than OFF times, making the dataset skewed.

2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)



A confusion matrix overcomes this problem by showing how
confused the classification model is on its predictions. It
provides more insights into the performance by identifying
not only the number of errors, but also the types of those, i.e.,
false positives and false negatives.

We use accuracy and confusion matrix to demonstrate the
reliability of the proposed models. We show the interference
violation and under-utilization to show the feasibility and ap-
plicability of the proposed models in cognitive radio networks.

E. Experimental Results

We train three different machine learning models on the
collected dataset of each primary user. The linear regression
model was straight forward and trained with 90% of each
dataset. For both the LSTM and ConvLSTM based models,
we use 90%, 5%, and 5% of data for training, validation, and
testing respectively. During each training, we set the maximum
epoch to 50 with an early stopping condition, such as, if
there is no improvement of validation loss for consecutive 5
epochs, then the training is stopped. We choose 50 epochs
because we observed through multiple runs of training, that
each model reaches optimum accuracy within 50 epochs. We
use Adam [27] based optimization with 10e− 4 learning rate
and mean squared error loss for training both the LSTM and
ConvLSTM based models. We adjusted the hyper-parameter’s
values such that the model gives the best possible accuracy
with training time trade-off.

Once each model is trained, we predict each primary user’s
activity for the next 4000 timestamps using the proposed
models. We only present last 50 timestamps of those 4000
timestamps in Fig 11, for better display quality and under-
standing. The plot demonstrates the primary user’s presence
and absence using a threshold on the received signal strength
indicator (RSSI) for PU#1. The threshold is application spe-
cific; it is set to -10 dB for our testbed. Although PU#1’s
activity factor was set between 0.7 to 0.75, we see more
absence for the last 50 timestamps, which shows the robustness
of the data collection procedure. It is evident from the plots
that the predicted values for both primary user’s presence
and absence are getting closer to actual values for LSTM
and ConvLSTM models, however, ConvLSTM yields the best
results. We observe similar results for the other primary users
(PU#2 - P#8) as well.

1) Analysis on Proposed Prediction Models: The prediction
accuracy for all the primary users (PU#1 - PU#8), for all
the proposed models are presented in Table III. We notice
that linear regression gives 73-76% accuracy, whereas the
LSTM and ConvLSTM models manage to get 97%-99%
accuracies respectively. This phenomenon can be justified by
the presence of correlation within the recurrent structure of
RF data. The linear regression based model does not leverage
that property. The LSTM based model exploits only the
temporal property of that recurrent structure giving a better
accuracy (∼97%). However, ConvLSTM based model exploits
the spatio-temporal property within the data and hence gives

(a) Presence@LR (b) Absence@LR

(c) Presence@LSTM (d) Absence@LSTM

(e) Presence@ConvLSTM (f) Absence@ConvLSTM

Fig. 11. Predictions of last few Timestamps for different Models for PU#1

the best accuracy(∼99% - 100%) among all the proposed
prediction models for all the 8 primary users.

2) Performance of ConvLSTM Model: The accuracies for
training and validation are presented in Fig. 12 for PU#1. It is
observed that training and validation accuracy saturates within
a few epochs of the start of training. The model behaves in the
same manner for the other PUs as well. Once the ConvLSTM
model is trained, we find the confusion matrices for all the
8 PUs for the next 4000 timestamps, as presented in Fig. 13.
Since the PU’s activity factor was set between 0.7 and 0.75, we
notice a skewed behavior for the total presence and absence
times of the primary users respectively. It is clear from the
confusion matrices that the ConvLSTM based model yields
negligible numbers of false positives and false negatives during
the deployment phase.

3) Analysis on Interference Violations and Under-
utilization: We calculate the total number of interference
violations (IV ) and under-utilization (UU ) for each model.
Table IV presents the total numbers and improvement of IV
and UU after using all the proposed learning models, over
using the conservative allocation strategies. It is clear that
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Fig. 12. Prediction accuracy for ConvLSTM

(a) PU#1 (b) PU#2

(c) PU#3 (d) PU#4

(e) PU#5 (f) PU#6

(g) PU#7 (h) PU#8

Fig. 13. Confusion Matrices for Prediction using ConvLSTM for 8 PUs

Linear RNN RNN
Regression (LSTM) (ConvLSTM)

PU #1 73.98% 97.62% 100%
PU #2 77.60% 97.83% 99.95%
PU #3 75.15% 97.92% 100%
PU #4 75.15% 97.60% 99.98%
PU #5 75.80% 97.88% 99.98%
PU #6 74.58% 97.62% 99.98%
PU #7 74.72% 97.75% 100%
PU #8 76.75% 97.72% 99.98%

TABLE III
ACCURACIES OF IMPLEMENTED MODELS FOR DIFFERENT PRIMARY

USERS

Techniques Interference IV Under UU
Violation (IV ) Change Utilization (UU ) Change

Conservative 1043 - 1478 -
Linear 1041 ↓0.2% 15 ↓98.9%

Regression
RNN-LSTM 7 ↓99.3 % 6 ↓99.5%

RNN-ConvLSTM 0 ↓100 % 0 ↓100%
TABLE IV

COMPARISON OF INTERFERENCE VIOLATION AND UNDER-UTILIZATION
FOR THE PROPOSED MODELS FOR PU#1

the long-term prediction from ConvLSTM based model has
no interference violation and under-utilization. Fig. 14 gives
the graphical overview of how the IV and UU change as the
time increases for all types of models. It is evident that the
cumulative number of interference violation is significantly
high for the conservative approach than the proposed learning
based models. However, the cumulative under-utilization is
high for both the conservative and linear regression models.
The changes of LSTM and ConvLSTM based models are
not quite visible in this figure, so we present the enhanced
view of their changes in Fig. 15. In summary we have
shown that, (1) Linear regression based model gives 73-76%
accuracy for primary user’s activity prediction. (2) LSTM
based recurrent neural network model increases that accuracy
to 97% for the activity prediction of all the 8 primary users.
(3) ConvLSTM based RNN model gives the best accuracy
(∼100%) for the long-term prediction of primary user’s
activity. (4) The ConvLSTM based model also decreased
the number of interference violations and under-utilizations
by 100% compared to the conservative one. (5) Trained
ConvLSTM based RNN models can be deployed in a central
spectrum sensor for a robust and efficient cognitive radio
network.

4) Computational Complexities: We focus on the compu-
tational time complexity for the training phase only, as the
trained model gives the output within constant time (O(1))
during the deployment phase. Computing the time complexity
for training a neural network is still evolving. In [28], the
authors proved that a neural network of depth δ can be trained
in poly(s2

δ

), where s is the dimension of the input, and
poly(.) takes a polynomial time depending on the machine
configuration. Here s depends on the dataset size.

Suppose each dataset has T samples. As mentioned earlier,
we use 95% of data for training and validation purpose. The
complexity for RNN models with 6 layers using 95% of T data
samples for training and validation, is poly(0.95×Te326). For
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(a) Interference Violations (b) Under-utilization

Fig. 14. Cumulative Interference Violations and Under-utilization for Con-
servative and all Proposed Models for PU#1

(a) Interference Violations (b) Under-utilization

Fig. 15. Enhanced Comparison of Cumulative Interference Violations and
Under-utilization for the Proposed Models for PU#1

linear regression model, the complexity is O(p2T+p3), where
p is the number of features. The prediction complexity is O(p).

VI. CONCLUSIONS

The opportunistic usage of spectrum by secondary users has
the possibility of leading to an uniform and efficient usage
of overly crowded radio frequency bands. In this regard we
present the use of machine learning techniques to predict the
possible opportunities for such spectrum usage by secondary
users. We investigate the spatio-temporal aspect of over-the-air
radio data for that purpose. The long-term pattern of primary
user’s ON and OFF times are learned by the proposed
neural network models. The comparative analysis with lin-
ear regression shows that exploiting the recurrent structures
with respect to temporal and spatial variations achieves the
best possible accuracy, as seen from the proposed prediction
models. Leveraging the memory of earlier transmission helps
the sensing network to determine primary user activity pat-
tern accurately over time. Successful implementation of the
proposed models will improve spectrum utilization and lower
interference violation for dynamic spectrum access networks.
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