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Abstract—The recent advances of wireless technologies in RF
environments coupled with large scale usage of such technolo-
gies has warranted more autonomous deployments of wireless
systems. Machine learning techniques, that include recurrent
structures, have shown promise in creating such autonomous
deployments using the idea of Radio Frequency Machine Learn-
ing (RFML). In large scale autonomous deployments of wireless
communication networks, the signals received from one compo-
nent play a crucial role in the decision making process of other
components. In order to efficiently implement such systems each
component of the network should be uniquely identifiable. In
this paper we propose a transmitter fingerprinting technique
for radio device identification using recurrent structures, by
exploiting the temporal property of the received radio signal. We
design and implement three recurrent neural networks (RNNs)
using different types of cell models: (i) long short term memory
(LSTM); (ii) gated recurrent unit (GRU) and (iii) convolutional
long short term memory (ConvLSTM), for this task. We program
8 universal software radio peripheral (USRP) software defined
radios (SDRs) as transmitters and collect over-the-air raw in-
phase (I) and quadrature (Q) (I/Q) time series data from them
using a DVB-T RTL-SDR receiver, in a laboratory setting. We
exploit both the temporal variations as well as the inherent
spatial dependencies in the collected I/Q time series data, to learn
unique feature representations and use these as “fingerprints”
for identifying the transmitters. Experimental results reveal that
the RNNs with LSTM, GRU, and ConvLSTM cells are able
to correctly distinguish between the 8 transmitters with 92%,
95.3%, 97.2% accuracy respectively.

Keywords: RF fingerprinting, recurrent neural network,

supervised learning, software defined radios.

I. INTRODUCTION

We are living in a world where the distances are shrink-

ing every day, thanks to an explosion in the use of con-

nected devices. The ubiquitous usage of wirelessly connected

Internet-of-Things (IoT) [1] along with the deployment of

wireless autonomous systems has ushered in a new era of

industrial scale deployment of radio frequency (RF) devices.

This prevalence of large scale peer-to-peer communication

and the nature of the underlying ubiquitous network brings

forth the challenge of accurately identifying a RF transmitter.

Every device that is part of a large network needs to be able

to identify its peers with high confidence in order to set up

secure communication channels. One of the ways in which

this is done is through the interchange of “keys” [2] for host

identification. However, such schemes are prone to breaches by

malicious agents [3] because often the actual implementations

of such systems are not cryptographically sound. In order

to get around the problem of faulty implementations, one

can use the transmitter’s intrinsic characteristics to create a

“fingerprint” that can be used by a transmitter identification

system. Every transmitter, no matter how similar, has intrinsic

characteristics because of the imperfections in its underlying

components such as amplifiers, filters, frequency mixers as

well as the physical properties of the transmitting antenna;

these characteristics are unique to a specific transmitter. The

inaccuracies present in the manufacturing process and the

idiosyncrasies of the hardware circuitry also contribute to the

spatial and temporal characteristics of the signal transmitted

through a particular device.

This inherent heterogeneity can be exploited to create

unique identifiers for the transmitters. One such property is the

imbalance in the Inphase (I) and Quadrature (Q) phase com-

ponents of the signal (I/Q data). However, because of the sheer

number of the transmitters involved, manually “fingerprinting”

each and every transmitter is not a feasible task [4]. Thus, in

order to build such a system, there needs to be an “automatic”

method of extracting the transmitter characteristics and using

the resulting “fingerprint” for the differentiation process. One

way of achieving this is by learning the representation of the

transmitter in an appropriate “feature space” that has enough

discriminating capability so as to be able to differentiate

between “apparently identical” transmitters.

Among the various approaches that can be used to discern

this feature space, deep learning (DL [5]) based methods

provide an efficient and automatic way of learning and

characterizing the feature space. They are able to learn and

analyze the inherent properties of large deployments and use

it to predict and characterize the associated parameters for

the task of automatic feature learning for classification (or

regression). Deep neural networks have been shown to be

effective for automatically learning discriminating features

from data for various tasks [6]. With proper choice of the

neural network architecture and associated parameters, they

can compute arbitrarily good function approximations [7].

Since the task of classification is equivalent to learning the

decision boundary, neural networks were a natural candidate

for a learning machine. Coupled with their prior success in

learning from signal data, they were the natural choice for

implementing our system.
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Neural networks have previously been used for transmitter

identification [8]–[10] and are particularly attractive since they

can generate accurate models without knowledge of the apriori
data distribution. Neural networks have been shown to be able

to predict modulation techniques [8] and identify transmitters

[10] by only considering the spatial correlations within the

actual [9] or synthetic RF data [11]. It is to be noted that all

prior works have only exploited the spatial correlation of the

signal data, though a continuous signal can be represented as

a time series, having both temporal and spatial properties [12].

Inspired by the success of deep learning systems for the

task of characterizing RF environments [13] and the successful

use of recurrent neural networks (RNN) for the task of

analyzing time series data [14], we propose to use deep

recurrent structures for learning transmitter “fingerprints” for

the task of transmitter identification. Recurrent Neural Net-

works (RNNs) [6] have been shown to be useful for capturing

and exploiting the temporal correlations of time series data.

There are a few variants of recurrent neural networks: (i)

Long Short-Term Memory (LSTM) [15], (ii) Gated Recurrent

Unit (GRU) [16], and (iii) Convolutional Long Short-Term

Memory (ConvLSTM) [17]. All these variants are designed to

learn the long term temporal dependencies and are capable

of avoiding the “vanishing” or “exploding” gradient prob-

lems [18].

In this paper, we use these variants of recurrent neural

networks with time series of I/Q data to identify different

transmitters. The main contributions of this paper are:

1) We exploit the temporal properties of I/Q data by using

a supervised learning approach for transmitter identi-

fication using recurrent neural networks. We use two

approaches: first, we exploit only the temporal property

and then we exploit the spatio-temporal property. We use

RNNs with LSTM and GRU cells for the first approach

while we use a convLSTM model for the latter. Although

transmitter fingerprinting has been studied before, to

the best of our knowledge this is the first work which

leverages the spatio-temporal property of the over-the-

air signal data for this task.

2) To examine the performance of the proposed networks,

we test them on an indoor testbed. We transmit raw

signal data from 8 universal software radio periph-

eral (USRP) B210s [19] and collect over-the-air signals

using a RTL-SDR [20]. We use the I/Q values from each

USRP for fingerprinting the corresponding transmitter.

3) The novelty of this work lies in accurately modeling and

implementing different types of RNNs to build a robust

transmitter fingerprinting system using over-the-air sig-

nal data, by exploiting spatio-temporal correlations.

The rest of the paper is organized as follows: in the next

section, we present a survey of existing machine learning

based transmitter identification techniques. In section III, we

propose different RNN models. In section IV, we present the

testbed setup and experiments that we conduct to evaluate

the proposed models. We present the experimental results in

section V. Conclusions are drawn in the last section.

II. RELATED WORKS

Recurrent neural networks [6] have been used extensively

for modeling temporal data such as speech [14]. There is

limited amount of work that recognizes the potential of using

recurrent structures in the RF domain and in general the use

of deep learning in the RF domain has been limited in the past

with only a few applications in recent times [8], [13].

In [8], the authors have demonstrated the use of neural

networks for modulation detection. Apart from the results, an

interesting aspect of the work is the way I/Q values were used

as input to the neural network. More precisely, given N I/Q

values, the authors used a vector of size 2N as an input to

the neural network, effectively using the I and Q components

as a tuple representing a point in the complex plane. This

representation proves to be useful for using the I/Q data in

different learning models.

In [21], O’Shea et. al. presented a recurrent neural network

that extracted high level protocol information from the low

level physical layer representation for the task of classification.

A radio anomaly detection technique was presented in [22],

where the authors used a LSTM based RNN as a time series

predictor using the error component to detect anomaly from

real signals. Another application of RNN was proposed in [23],

where the authors used a deep recurrent neural network to

learn the time-varying probability distribution of received

powers on a channel and used the same to predict the suit-

ability of sharing that channel with other users. A method for

modulation classification was proposed in [24] for a distributed

wireless spectrum sensing network. The authors proposed

a recurrent neural network using long short term memory

(LSTM) cell, yielding 90% accuracy on a synthetic dataset

[25]. Bai et. al. proposed an end-to-end RF fingerprinting

[26] method using two RNNs in order to learn the spatial

or temporal pattern. Both simulated and real-world data was

used to improve the positioning accuracy and robustness of

moving RF devices.

For the task of transmitter classification, there are a few

traditional methods that use manual feature engineering and

leverage different radio attributes like transients, or spurious

modulations to create discriminating feature sets. A transient

signal is transmitted when a transmitter is powered up or

powered down. During this short period (typically a few

micro seconds) capacitive loads charge or discharge. Different

classification approaches using transient based recognition was

proposed in [27]–[29]. A different approach for transmitter

fingerprinting and classification was proposed in [30], where

the authors classified FM radio transmitters based on unique

stray features extracted from spurious modulation character-

istics. However, none of these methods address the problem

of providing an end-to-end solution using raw signal data

for transmitter identification using automatically extracted

“fingerprints”.
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III. PROPOSED RNN MODELS FOR CLASSIFICATION

In order to estimate the noise in a RF channel, the system

needs to “listen” to the underlying signal for sometime and

“remember” the same. Previously, neural networks lacked

this capability when used in the context of temporal data.

Another issue with using neural networks with temporal data

was the problem of vanishing gradients, when trying to use

back propagation. Both these problems were solved by the

introduction of Recurrent Neural Networks (RNN) [5].
a) Formulation of temporal property of RF data: Given

T training samples (for T timestamps) where each training

sample is of size of M and consists of a vector of tuples of

the form (I,Q) ∈ C representing a number in the complex

plane, we represent a single sample as xt = [[(I,Q)i]
t; i =

1, 2, · · · ,M ] ∈ CM for each timestamp t = 1, 2, · · · , T , and

we use it as an input to the neural network. We use a sample

size (M ) of 1024 as a default. We want to find the probability

of the input vector for next time step (xt+1) to belong to class

Ck, where k ∈ 1, 2, . . . ,K, K being the number of classes.

The probability P (Ck|xt+1) can be written as

P (Ck|xt+1) =
P (xt|Ck)P (Ck)

P (xtxt+1)
(1)

where (P (xt|Ck)) is the conditional probability of xt given

the class Ck and (P (xtxx+1)) is the probability of xt and

xt+1 occurring in order.

A. Long Short Term Memory (LSTM) Cell Model
Though LSTM cells can be modeled and designed in various

ways depending on the need, we use the cells as shown in

Fig. 1. In one LSTM cell, there are (i) three types of gates:

input (i), forget (f ), and output (o); and (ii) a state update of

internal cell memory. The most interesting part of the LSTM

cell is the “forget” gate, which at time t is denoted by ft. The

forget gates decide whether to keep a cell state memory (ct) or

not. The forget gates are designed as per the equation (2) on

the input value xt at time t and output (ht−1) at time (t− 1).

ft = σ(Wxfxt +Whfht−1 + bf ) (2)

Note that Wxf and bf represent the associated weight and

bias respectively, between input (x) and forget gate (f ) and σ
denotes the sigmoid activation function. Once ft determines

which memories to forget, the input gates (it) decides which

cell states (c̃t) to update as per equations (3) and (4).

it = σ(Wxixt +Whiht−1 + bi) (3)

c̃t = tanh(Wxcxt +Whcht−1 + bct−1) (4)

In equation (5), the old cell state (ct−1) is updated to the new

cell state (ct) using forget gates (ft) and input gates (it).

ct = ft ◦ ct−1 + it ◦ c̃t (5)

Here ◦ is the Hadamard product. Finally, we filter the output

values through the output gates (ot) based on the cell states

(ct) as per equations (6) and (7).

ot = σ(Wxoxt +Whoht + bo) (6)

ht = ot ◦ tanh(ct) (7)

LSTM Cell

tanh

(xt,ht-1)

it

ft ot htct-1

t
tanhct

tanh
sigmoid activation

tanh activation

Hadamard product

sum over all elements

Fig. 1. LSTM Cell Architecture Used in the RNN Model

B. Gated Recurrent Unit (GRU) Model

The main drawback of using LSTM cells is the need for

additional memory. GRUs [16] have one less gate for the same

purpose, thus having a reduced memory and CPU footprint.

The GRU cells control the flow of information just like the

LSTM cells, but without the need for a memory unit. It simply

exposes the full hidden content without any control. It has a

“reset gate” (zt), an “update gate” (rt), and a cell state memory

(ct) as shown in Fig. 2. The reset gates determine whether

to combine the new input with a cell state memory (ct) or

not. The update gate decides how much of ct to retain. The

equations (8), (9), (10), and (11), related to the different gates

and states are given below.

zt = σ(Wxzxt +Whzht−1 + bz) (8)

rt = σ(Wxrxt +Whrht−1 + br) (9)

ct = tanh(Wxcxt +Whc(rt ◦ ht−1)) (10)

ht = (1− zt) ◦ ct + zt ◦ ht−1 (11)

GRU Cell(xt,ht-1)

zt

ht
tanh ct

tanh
sigmoid activation

tanh activation

Hadamard product

sum over all elements

W weight multiplication

rt

W

W

1-

xt

h
t-

1 h
t-1

Fig. 2. GRU Cell Architecture Used in the RNN Model

C. Convolutional LSTM Network Model

The recurrent neural networks with LSTM or GRU cells, do

not consider the spatial information encoded in the the input-

to-state or state-to-state transitions. To mitigate this problem,

we use a convolution within the recurrent structure of the

RNN. We first discuss the spatio-temporal property of RF data

and then model a convolutional LSTM network to exploit the

same.

1) Formulation of Spatio-temporal property for RF data:
Suppose that a radio signal is represented as a time varying

series over a spatial region using R rows and C columns.

Here R represents the time varying nature of the signal and

as such in our case it represents the total number of time

stamps at which the signal was sampled (T in our case). C on

91



the other hand represents the total number of features sampled

at each time stamp (in our case its 2048 since there are 1024

features sampled each of dimension 2). Note that each cell

corresponding to one value of R and one value of C represents

a particular feature (I or Q) at a given point in time.

In order to capture the temporal property only, we use

a sequence of vectors corresponding to different timestamps

1, 2, · · · , t as x1, x2, · · · , xt. However, to capture both spatial

and temporal properties, we introduce a new vector χt,t+γ ,

which is formulated as: χt,t+γ = [xt, xt+1, · · · , xt+γ−1]. So

the vector χt,t+γ eventually preserves the spatial properties

with an increment of γ in time. So, we get a sequence of new

vectors χ1,γ , χγ,2γ , · · · χt,t+γ , · · · , χt+(β−1)γ,t+βγ , where β
is �R/γ�, and the goal is to create a model to classify them into

one of the K classes (corresponding to the transmitters). We

model the class-conditional densities given by P (χt−γ,t|Ck),
where k ∈ 1, · · · ,K. We formulate the probability of the next

γ-length sequence to be in class Ck as per equation 12. The

marginal probability is modeled as P (χt,t+γ).

P (Ck|χt,t+γ) =
P (χt−γ,t|Ck)P (Ck)

P (χt,t+γ)
(12)

2) The Model: The cell model is similar to an LSTM

cell, but the input transformations and recurrent transfor-

mations are both convolutional in nature [17]. We formu-

late the input values, cell state and hidden states as a 3-

dimensional vector, where the first dimension is the number

of measurements which varies with the time interval γ and

the last two dimensions contain the spatial information (rows

(R) and columns (C)). We represent these as: (i) the in-

puts: χ1,γ , χγ,2γ , · · · χt,t+γ , · · · , χt+(β−1)γ,t+βγ (previously

stated); (ii) cell outputs: C1, · · · , Ct, and (iii) hidden states:

H1, · · · ,Ht. We represent the gates in a similar manner as

in the LSTM model. The parameters t, it, ft, ot, W , b hold

the same meaning as in section III-A. The key operations are

defined in equations 13, 14, 15, 16, and 17. The probability of

the next γ-sequence to be in a particular class (from equation

12) is used within the implementation and execution of the

model.

it = σ(Wxiχt,t+γ +WhiHt−1 + bi) (13)

ft = σ(Wxfχt,t+γ +WhfHt−1 + bf ) (14)

Ct = ft ◦ Ct−1 + it. tanh(Wxcχt,t+γ +WhcHt−1 + bc) (15)

ot = σ(Wxoχt,t+γ +WhoHt−1 + bo) (16)

Ht = ot ◦ tanh(Ct) (17)

IV. TESTBED EVALUATION

In order to validate the proposed models, we collected

raw signal data from 8 different universal software radio

peripheral (USRP) B210s [19]. We collected the data in an

indoor lab environment with a signal-to-noise ratio of 30 dB,

and used the dataset to distinguish between 4 or 8 transmitters,

as mentioned in [10].

Parameters Values
Transmitter Gain 45 dB

Transmitter Frequency 904 MHz (ISM)
Bandwidth 200 KHz

Sample Size 1024
Samples/Transmitter 40,000

# Transmitters 4 and 8
TABLE I

TRANSMISSION CONFIGURATION PARAMETERS

A. Signal Generation and Data Collection

In order to evaluate our methods for learning the inherent

spatio-temporal features of a transmitter, we used eight USRPs

of the same type, namely B210 from Ettus Research [19], as

transmitters. The signal generation and reception are shown

in Fig. 3. We used GNURadio [31] to randomly generate

signal and modulated the same with Quadrature Phase Shift

Keying (QPSK). We programmed the USRP B210s to transmit

the modulated signal over the air and sensed the same using

a DVB-T dongle (RTL-SDR) [20]. We generated the entire

dataset from “over-the-air” data as sensed by the RTL-SDR

using the rtlsdr python library.

Random
Signal

QPSK
Modulation

USRP B210

RTL-SDR
Data

Collection
Datasets

Over The Air
Transmission

Fig. 3. Over the Air Signal Generation and Data Collection Technique

We collected I/Q signal data with a sample size of 1024 at

each time stamp. Each data sample had 2048 entries consisting

of the I and Q values for the 1024 samples. Note that a

larger sample size would mean more training examples for the

neural network. Our choice of 1024 samples was sufficient to

capture the spatial-temporal properties while at the same time

the training was not computationally intensive. We collected

40,000 training examples from each transmitter to avoid the

data skewness problem observed in machine learning. The

configuration parameters that were used are given in Table

I. We collected two sets of data: (i) using 4 transmitters:

6.8 GB size, 160K rows and 2048 columns and (ii) using

8 transmitters: 13.45 GB size, 320K rows and 2048 columns.

Note that we intend to make the dataset publicly available

upon publication of the article.

B. Spatial Correlation in the Dataset

Correlation between data samples play a crucial role

in the process of transmitter identification. We represent

the I and Q values of each training sample at time (t)
as: [I0Q0I1Q1I2Q2I3Q3I4Q4 · · · I1023Q1023]

t. We used the

QPSK modulation [32] which means that the spatial correla-

tion should be between every fourth value, i.e., between I0
and I4, and Q0 and Q4. So we calculate the correlation co-

efficient of I0I1I2I3 and I4I5I6I7. Similarly, for Q0Q1Q2Q3

and Q4Q5Q6Q7. We take the average of all the correlation

coefficients for each sample.
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Fig. 4. Spatial Correlation in the Dataset

We use numpy.corrcoef for this purpose which uses Pearson

product-moment correlation coefficients, denoted by r. The

Pearson’s method for a sample is given by:

r =

(M−1)∑
i=0

(Ii − I)(Qi − Q̄)√
(M−1)∑
i=1

(Ii − I)2

√
(M−1)∑
i=0

(Qi − Q̄)2

(18)

where, M is the sample size, Ii and Qi are the sample values

indexed with i. The sample mean is Ī =
1

M

(M−1)∑
i=0

Ii.

The spatial correlations of all the samples for the different

transmitters are shown in Fig. 4. We observe that for most

of the transmitters, the correlation is ∼0.42, with a standard

deviation of ∼0.2. However, transmitter 3 exhibits minimal

correlation between these samples, which implies that the

spatial property of transmitter 3 is different from the other

transmitters. As a result Transmitter 3 should be easily distin-

guishable from the others. This claim will be validated later in

the experimental result section where we see 0% false positive

and false negative for transmitter 3 for all the three proposed

models. This observation gives us the motivation to exploit

the spatial property as well as the temporal property for the

collected time-series data.

C. Neural Network Libraries

There are many libraries available in python with support for

different types of neural network and concurrent GPU archi-

tecture. We use Keras [33] as the frontend and Tensorflow [34]

as the backend for our implementations. Keras is an overlay on

the neural network primitives provided by Tensorflow [34] or

Theano [35] and provides a customizable interface for quick

deployment of complex neural networks. We also use Numpy,

Scipy, and Matplotlib Python libraries.

D. Experimental Setup and Performance Metrics

We conducted the experiments on a Ryzen 8 Core system

with 64 GB RAM, a GTX 1080 Ti GPU unit having 11 GB

memory. During the training phase, we use data from each

transmitter to train the neural network model. In order to

test the resulting trained model, we use test data collected

from one of the transmitters and present the same to the

trained network. In general to measure the effectiveness of

any learning algorithm, “accuracy” is used as the typical

performance metric. However, accuracy can sometimes be

misleading and incomplete when the data is skewed. For

the task of classification, a confusion matrix overcomes this

problem by showing how confused the learned model is on its

predictions. It provides more insights on the performance by

identifying not only the number of errors, but more importantly

the types of errors.

V. MODEL IMPLEMENTATIONS AND RESULTS

In this section we discuss the implementation of each of the

proposed recurrent neural networks. We train each network

for transmitter classification with K classes. For the sake of

robustness and statistical significance, we present the results

for each model after averaging over several runs.

A. Implementation with LSTM Cells

As discussed earlier, the recurrent structure of the neural

network can be used to exploit the temporal correlation in

the data. To that end, we first implemented a recurrent neural

network with LSTM cells and trained it on the collected

dataset using the paradigm as shown in Fig. 5. We used

two LSTM layers with 1024 and 256 units sequentially. We

also used a dropout rate of 0.5 in between these two LSTM

layers. Next we used two fully connected (Dense) layers with

512 and 256 nodes respectively. We apply a dropout rate of

0.2, and add batch normalization [36] on the output, finally

passing it through a Dense layer having 8 nodes. We use ReLU
[37] as the activation function for the LSTM layers and tanh
[38] for the Dense layers. Lastly, we use stochastic gradi-
ent descent [38] based optimization with categorical cross-

entropy training. Note that the neural network architecture

was finalized over several iterations of experimentation with

the data and we are only reporting the final architecture here.

We achieved 97.17% and 92.00% testing accuracy for 4 and

8 transmitters respectively. The accuracy plots and confusion

matrices are shown in Figs. 6 and 7 respectively. Note that

the number of nodes in the last layer is equal to the number

of classes in the dataset. It is also to be noted that during

the process of designing the RNN architecture, we also fine

tuned the hyper-parameters based generalization ability of the

current network (as determined by comparing the training and

validation errors). We also limited the number of recurrent

layers and fully connected layers for each model for faster

training [39], since no significant increase in the validation

accuracy was observed after increasing the number of layers.

The rows and columns of the confusion matrix correspond

to the number of transmitters (classes) and the cell values show

the recall or sensitivity and false negative rate for each of the

transmitters. Note that recall or sensitivity represents the true

positive rates for each of the prediction classes.

B. Implementation with GRU Cells

Next we implemented another variation of the RNN model

using GRU cells for leveraging temporal correlation. We used
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Fig. 5. RNN Implementation with LSTM Cells for Transmitter Classification

(a) 4 Transmitters (b) 8 Transmitters

Fig. 6. Accuracy Plots for Transmitter Classification using LSTM Cells

the same architecture as the LSTM implementation, presented

in Fig. 8. The proposed GRU implementation needs fewer

parameters than the LSTM model. A quantitative comparison

is given in Section V-D. The only difference is that we

use two GRU layers with 1024 and 256 units instead of

using LSTM cells. We achieved 97.76% and 95.30% testing

accuracy for 4 and 8 transmitters respectively. The accuracy

plots and confusion matrices are given in Figs. 9 and 10. The

GRU implementation provided a slight improvement over the

accuracy obtained using LSTM, for each run of the models,

for both the datasets.

C. Implementation with ConvLSTM2D Cells

Finally, in order to exploit the spatio-temporal property

of the signal data, we implemented another variation of the

LSTM model with convolutional filters (transformations). The

implemented architecture is shown in Fig. 11. ConvLSTM2D

(a) 4 Transmitters (b) 8 Transmitters

Fig. 7. Confusion Matrices for Transmitter Classification using LSTM Cells
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Fig. 9. Accuracy Plots for Transmitter Classification using GRU Cells

(a) 4 Transmitters (b) 8 Transmitters

Fig. 10. Confusion Matrices for Transmitter Classification using GRU Cells

uses two dimensional convolutions for both input transforma-

tions and recurrent transformations. We first use two layers

of convLSTM2D with 1024 and 256 filters respectively, and

a dropout rate of 0.5 in between. We use kernel size of

(2,2) and stride of (2,2) at each ConvLSTM2D layer. Next we

add two fully connected (Dense) layers having 512 and 256

nodes respectively after flattening the convolutional output.

ReLU [37], and tanh [38] activation functions are used for

the convLSTM2D and Dense layers respectively. ADADELTA

[40] with a learning rate of 10−4 and a decay rate of 0.9, is

used as the optimizer with categorical cross-entropy training.

We achieved 98.9% and 97.2% testing accuracy for 4 and

8 transmitters respectively. The accuracy plots and confusion

matrices are given in Figs. 12 and 13 respectively. Being

able to exploit the spatio-temporal correlation, ConvLSTM

implementation provides improvement over the accuracies

obtained using the LSTM and GRU models, for both the

datasets.
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Fig. 11. RNN Implementation with ConvLSTM Cells for Transmitter Clas-
sification

D. Comparisons of LSTM/GRU/ConvLSTM Implementations

We used 90%, 5%, and 5% of the data to train, validate,

and test respectively. We ran each model for 50 epochs with

early-stopping on the validation set. One epoch consists of a

forward pass and a backward pass through the implemented
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(a) 4 Transmitters (b) 8 Transmitters

Fig. 12. Accuracy Plots for Transmitter Classification using ConvLSTM Cells

(a) 4 Transmitters (b) 8 Transmitters

Fig. 13. Confusion Matrices for Transmitter Classification using ConvLSTM
Cells

architecture for the entire dataset. The overall accuracy of the

different implementations is shown in Table II. We find that the

implementation of convolutional layers with recurrent struc-

ture (ConvLSTM2D) exhibit the best accuracy for transmitter

classification, which clearly shows the advantage of using the

spatio-temporal correlation present in the collected datasets.

In Fig. 14, we present a better illustration of the achieved

classification accuracies for the different implemented models.

E. Comparisons of Proposed and Existing Approaches

Next we present two comparative studies of our proposed

implementations with some existing techniques. We introduce

a differential analysis of different RNN based implementations

in the RF domain in Table III. Another comparative study

for different transmitter classification techniques is shown in

Table IV.

The “Inputs” column in both the tables refer to the type

of inputs used for the methods under consideration. Table III

shows a comparison of our ConvLSTM based RNN for trans-

mitter classification with other RNN based implementations

for separate tasks like modulation recognition and traffic

sequence recognition. Table IV establishes the efficacy of our

ConvLSTM based RNN model for the task of transmitter
#Trans Models #Parameters Acc (%)

4 LSTM (6 layers) 14.2 M 97.17
4 GRU (6 layers) 10.7 M 97.76
4 ConvLSTM (6 layers) 14.2 M 98.90

8 LSTM (6 layers) 14.2 M 92.00
8 GRU (6 layers) 10.7 M 95.30
8 ConvLSTM (6 layers) 14.2 M 97.20

TABLE II
ACCURACY FOR DIFFERENT IMPLEMENTATIONS
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Fig. 14. Comparison of Testing Accuracies of Different Types of Recurrent
Neural Networks

Approaches Model SNR (dB) Acc (%) Inputs

Traffic Sequence
Recognition [21] LSTM 20 31.2 Hybrid Real-synthetic Dataset

Automatic Modulation
Classification [24] LSTM 20 90 Synthetic Dataset [25]

Transmitter
Classification (Ours) ConvLSTM 30 97.2 Raw Signal

TABLE III
COMPARISON OF PROPOSED APPROACH WITH THE EXISTING RNN

IMPLEMENTATIONS

classification by comparing the accuracy with that obtained

using other methods, for the same task. It is to be noted that

all the other methods use expert crafted features as inputs (

[27]–[30]), or work with synthetic datasets ( [21], [24]). Our

method, on the other hand achieves superior accuracy (97.2%)

using features automatically learned from the raw signal data,

thereby paving the way for real-time deployment of large scale

transmitter identification systems.

It must be pointed out that the proposed RNN models can be a

trained using raw signal data from any type of radio transmitter

operating both in indoor as well as outdoor environments.

We would also like to point out that though our data was

collected in a lab environment, we had no control over

the environment, there were other transmissions in progress,

people were moving in and out of the lab and there was a

lot of multi-path due to the location and design of the lab.

Furthermore the power of the transmitters was low and hence

this compounded the problem further. Given this, though we

say that the data was collected in a lab environment, in reality

it was an uncontrolled daily use environment reflective of

our surroundings. Thus we can safely say that these methods

will work in any real world deployment of large scale radio

network. In summary,

• Exploiting temporal correlation only, recurrent neural

networks yield 95-97% accuracy for transmitter classifi-

Approach #Trans SNR (dB) Acc (%) Inputs
Orthogonal Component Spurious

Reconstruction (OCR) [30] 3 20 62 - 71 Modulation

Genetic Algorithm [27] 5 25 85-98 Transients
Multifractal Not

Segmentation [28] 8 mentioned 92.5 Transients
k-NN [29] 8 30 97.2 Transients

Ours 8 30 97.04 Raw Signal
TABLE IV

COMPARISON OF THE OUR IMPLEMENTATION WITH THE EXISTING

TRANSMITTER CLASSIFICATION APPROACHES
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cation using LSTM or GRU cells. RNN implementation

with GRU cells needs fewer parameters than LSTM cells

as shown in Table II.

• Exploiting spatio-temporal correlation, the implementa-

tion of RNN using ConvLSTM2D cells provides better

accuracy (97-98%) for transmitter classification, thus pro-

viding a potential tool for building automatic real world

transmitter identification systems.

• We present a comparative study of the proposed spatio-

temporal property based fingerprinting with the existing

traditional and neural network based models. This clearly

shows that the proposed model achieves the best accuracy

compared to any of the existing methods for the task.
VI. CONCLUSION

In this paper, we proposed a robust transmitter identification

technique by exploiting both the inherent spatial and temporal

properties of RF signal data. We designed and implemented

three different types of neural network models for this purpose.

We collected over-the-air signal data from USRP B210s and

used the same to train and validate our system. The RNN

model using LSTM cells yields 92% testing accuracy leverag-

ing only temporal property of the signal data. The one using

GRU cells does the same with lower space requirement and

yields a better testing accuracy of 95.30%. Finally, the RNN

model with ConvLSTM cell achieves 97.20% testing accuracy

for the same dataset leveraging both the temporal and spatial

correlations. In the future we plan to use these methods for

identification of actual infrastructure transmitters (for example

FM, AM and GSM) in real world settings.
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