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Abstract—Understanding and analyzing the radio frequency
(RF) environment have become indispensable for various au-
tonomous wireless deployments. To this end, machine learning
techniques have become popular as they can learn, analyze and
even predict the RF signals and associated parameters that char-
acterize a RF environment. However, classical machine learning
methods have their limitations and there are situations where
such methods become ineffective. One such setting is where active
adversaries are present and try to disrupt the RF environment
through malicious activities like jamming or spoofing. In this
paper we propose an adversarial learning technique for identifying
rogue RF transmitters and classifying trusted ones by designing
and implementing generative adversarial nets (GAN). The GAN
exploits the in-phase (I) and quadrature imbalance (i.e., the
IQ imbalance) present in all transmitters to learn the unique
high dimensional features that can be used as “fingerprints”
for identifying and classifying the transmitters. We implement
a generative model that learns the sample space of the IQ values
of the known transmitters and use the learned representation to
generate fake signals that imitate the transmissions of the known
transmitters. We program 8 universal software radio peripheral
(USRP) software defined radios as trusted transmitters and
collect over-the-air raw IQ data from them using a RTL-SDR in a
laboratory setting. We also implement a discriminator model and
show that the discriminator is able to discriminate between the
trusted transmitters from fake ones with 99.9% accuracy. Finally,
the trusted transmitters are classified using convolutional neural
network (CNN) and fully connected deep neural networks (DNN).
Results reveal that the CNN and DNN are able to correctly
discriminate between the 8 trusted transmitters with 81.6% and
96.6% accuracies respectively.

Keywords: RF fingerprinting, GAN, machine learning,
deep neural network, IQ imbalance, USRP, confusion matrix.

I. INTRODUCTION

Localization, identification, and characterization of radio
frequency (RF) signal sources (aka RF transmitters) are in-
dispensable for applications such as locating a cell phone,
identifying a jammer, detecting the presence or absence of a
signal, tracking objects, etc. Localization of a RF transmitter
is a well studied problem where the received power at a
receiver is utilized to estimate the distance to the trans-
mitter, given some known transmitters and path-loss models
(see [1] and the references therein). With more and more
autonomous deployments of wireless networks, identification
of transmitters has also become important. For example, a
wireless sensor network relies on trustworthy signals; how-
ever, malicious transmitters can contaminate the signals and

jeopardize the utility of the sensor network. Existence of such
threats underscore the need for techniques that recognize and
authenticate transmitter identity irrespective of the network
protocols and the communication technologies being used.
However, correctly identifying a transmitter and being able
to characterize it in real time remains a challenging problem.

Use of secure mechanisms to authenticate RF transmitters
has been a common way to identify malicious transmitters.
However, implementation of such secure mechanisms adds to
the computation and communication overhead for real time
systems such as connected autonomous vehicles. Recent devel-
opments in radio frequency machine learning (RFML) systems
have given rise to the possibility of using these methods for
automated real time authentication of RF transmitters. These
methods can also be used in adversarial settings for tasks such
as the identification of malicious transmitters by through the
use of learning powered transmitter forensics [2].

Unlike the image or speech processing domain, where
machine learning techniques have been widely successful,
learning in the RF domain is just beginning to see some
breakthroughs. For processing images, spatial correlations and
knowledge of previously observed objects make future predic-
tions possible. Similarly, in speech recognition recognizable
patterns emerge from known sequences that can be used to
synthesize phrases and words. In essence such techniques are
built on prior distributions and patterns that make general-
izations possible. However, such techniques cannot be easily
extended to the RF domain because of the unpredictable and
varied nature of the RF signals. To make matters worse, the
presence of adversaries make it even more difficult to learn
and characterize RF signals. For one smart adversaries can
spoof transmitters and introduce noise in the transmission
channels making it harder to learn unique characteristics of
the transmitters, in essence manipulating the learning phase
to render the detection model ineffective. Thus, application of
RFML systems for RF synthesis and recognition has become
an interesting and open research area.

For machine learning techniques to be effective, one must
choose an attribute or feature that is unique to a transmitter,
irrespective of the signals it transmits. One such commonly
used feature is the rise time signature that is generated by slight
variations of the component values during the manufacturing
process. Though the rise time signature has mostly been used
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for signal intelligence and by regulatory agencies, it performs
poorly in the presence of malicious entities. Moreover, the rise
time signature is commercially unavailable , hence cannot be
used as a standard signature. ‘IQ imbalance’ is another feature
that is affected at the time of manufacturing due to the use of
noisy mixers, oscillators and unbalanced low pass filters [3].
This is the imbalance between the in-phase (I) and quadrature
(Q) components of a signal which is the result of interaction
of the radio frequency with the local oscillator frequency
which is required to get the intermediate frequency. Though
there are techniques to compensate for this imbalance [4],
the fact remains that all transceivers exhibit this unique IQ
imbalance. The IQ imbalance depends on the choice of the
hardware components used, and is an unwanted byproduct of
the manufacturing process that is hard to imitate. This imbal-
ance can be used as a basis for feature engineering (automated
or otherwise) for transmitter identification and recognition.
However, this fact is also known by the adversaries. Thus,
their target would be to learn and estimate the probability
distribution of the training data used for model creation, given
a particular sample space. The adversaries can use a generative
model to generate fake signals so as to spoof the transmission
of known transmitters. Generative Adversarial Nets (GAN) [5]
uses a generative model which enables the realistic generation
of samples from a given distribution which can then be used to
train a discriminator for identifying real samples drawn from
fake ones obtained from the generator.

In this paper, we use generative adversarial nets (GAN)
to detect rogue transmitters. Unlike most machine learning
techniques, GAN has been designed to learn in adversarial
situations. We propose and implement a generative model and
a discriminative model to (i) detect unknown and/or rogue
transmitters and (ii) classify the known transmitters. We lever-
age the fact that the IQ imbalance for every radio transmitter is
unique and could be exploited by the GAN to generate unique
features or fingerprints. The main contributions of this paper
are:

• We propose a generative model that uses a deep neural
network (DNN) for generating (fake) signals that very
closely resemble real signals. The generator proceeds
by reducing the parameter space, replicates the time-
invariant features and serves as a compact front-end for
fake radio signal generation.

• We propose a discriminative model using a deep neural
network that takes input from the known signal transmit-
ters as well as the fake signals from the generative model.
The purpose of this discriminative model is to distinguish
the real signals from the fake ones. The outcome of the
decision process is fed to the generative model, allowing
the adversary (generator) to update its model so as to
better generate fake signals.

• Once we detect the trusted transmitters from the rogue
ones, we use supervised training models to classify the
trusted transmitters. We design a convolution neural net-
work (CNN) for that purpose, which leverages the corre-

lation between the complex-valued IQ data constellations.
We design another deep neural network to improve the
accuracy of the CNN.

• Our models have been validated on a laboratory test
bed consisting of several universal software radio periph-
eral (USRP) B210s [6] and one RTL-SDR receiver [7].
The USRPs transmitted signals on a particular frequency
which were received by the RTL-SDR. The collected
dataset had 1024 complex IQ samples per timestamp,
generating 2048 features. The generative and discrimi-
native models were trained and tested on the collected
dataset. The unique pattern of variation of the IQ im-
balances for each radio is captured as features by the
multiple layers of the neural network.

• The novelty of the proposed work lies in accurately
modeling and implementing the proposed generative and
discriminative models on real hardware using raw IQ
data. To the best of our knowledge, this is the first paper
that uses GANs to identify adversarial RF signals and for
fingerprinting radio transmitters.

Next we describe the current and previous work in machine
learning based transmitter identification.

II. BACKGROUND AND RELATED WORK

During the process of designing and manufacturing cheap
radio hardware certain imperfections have become the norm.
The IQ imbalance is one such imperfection that is unique to
different radio hardware and are caused by imperfections in
local oscillators and mixers. As a result of this, the in-phase (I)
and quadrature (Q) components of the modulator are not or-
thogonal. When a signal is transmitted using a particular radio
transmitter, some IQ imbalance is imposed over the complex-
valued IQ data during transmission [8] as shown in Fig. 1.
IQ imbalance leads to performance degradation for higher
order modulations because the symbol rotation becomes more
sensitive with increasing number of constellations towards I
and Q branches [9].
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Fig. 1. IQ Imbalance for QPSK: (a) Before (b) After 45° Phase Imbalance

In recent years, there have been some efforts at using
machine learning techniques for fingerprinting RF transmit-
ters. In [10], O’Shea et al presented a radio modulation
classification method using naively learned features. They
have shown that blind temporal learning on densely encoded
time series using convolutional neural networks is a viable
approach. However, this method did not perform well in
the low signal to noise ratio (SNR) regime. In [11], the
authors have presented an unsupervised learning technique

2019 IEEE Wireless Communications and Networking Conference (WCNC)



using convolutional autoencoders which can eventually learn
the basics of modulation functions and then leverage that
to recognize different digital modulation schemes. They also
proposed a method to evaluate the quantitative metrics on
reconstructed data to recognize the schemes. Another study for
modulation classification using raw IQ samples was presented
in [12]. A method for modulation classification was proposed
in [13] for a distributed wireless spectrum sensing network.
The authors proposed a recurrent neural network model using
long short term memory (LSTM) cell, yielding 90% accuracy
for synthetic dataset [14].

An in-depth study on the performance of deep learning
based radio signal classification was proposed in [15]. The
authors considered 24 modulation schemes with a rigorous
baseline method that uses higher order moments and strong
boosted gradient tree classification for detection. The authors
also applied their method on real over-the-air data collected
by Software Defined Radios (SDRs). An approach based on
the concept of adversary was proposed in [2] for synthesizing
new physical layer modulation and coding schemes. The
adversarial approach is targeted to learn the channel response
approximations in any arbitrary communication system, en-
abling the design of a smarter channel autoencoder. All these
proposed approaches demonstrate how difficult it is to make
machine learning techniques effective in the RF domain.

Motivated by the above mentioned works, we focus on
transmitter identification in the presence of adversaries. The
idea of training discriminative models via an adversarial
process was first proposed by Goodfellow [5]. Since then,
generative adversarial nets (GAN) have been adopted for var-
ious fields and applications, particularly for image processing
where GANs have proved their efficacy [16]–[18].

III. PROPOSED GAN FOR RF FINGERPRINTING

Recent advances in neural networks have made it possible to
obtain robust models with low generalization errors by training
“deep” neural architectures efficiently. The “depth” signifies
the number of iterative operations performed on the input data
using each layer’s transfer function and deeper architectures
allow the network to learn robust feature representations
from the input data. Though such techniques demand higher
computation and involve complicated layer-by-layer backprop-
agation, nevertheless, most deep learning systems are able to
perform training on deep networks using some variation of
gradient decent with adaptive learning rates (e.g., Adam [19]),
regularization to avoid overfitting (e.g., Dropout [20]) and
the use of backpropagation. Our intention is to design neural
network models that can train in the presence of adversaries
and discriminate between fake and known transmitters through
automatic fingerprinting.

A. Proposed GAN Architecture

The GAN framework has two primary models, a generative
model (G) that generates fake data from a given data distribu-
tion, and a discriminative model (D) that estimates the prob-
ability that a sample came from the training data rather than
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Fig. 2. Proposed GAN architecture

G. The proposed GAN architecture is shown in Fig. 2. G and
D are the generative and discriminative models respectively.
The adversary generates random modulation scheme (m(t)),
signal amplitude (r(t)), and phase (l(t)) and mixes additive
white Gaussian noise (n(t)) with that. The generated signal
(g(t)) which is initially random in nature improves over time
as the generator learns from the discriminator and improves
on its accuracy to imitate real data. On the other hand, the
discriminator (D) gets input from both the generator (G) and
Trusted transmitters. This helps it to learn to differentiate
between real and fake inputs. The known transmitter data is
collected and fed to the discriminator (D) as raw IQ values.

Overall, the target is to train G in such a way that will
maximize the probability of D making a mistake. G tunes its
hyper parameters with the feedback from D. We argue, GAN
is an efficient way to generate correlated data samples and
thereby approach an accurate generative model– something
the rogue transmitters aim to achieve. Once the model is
trained, the generated signals are synthesized to mimic rogue
transmitters based on the sample space of IQ signal data from
the known transmitters.

B. The Generative Model

As far as the generator is concerned, the overall problem can
be treated as an N -class decision problem where the input is a
complex base-band time series representation of the received
signal. That is, the dataset is the in-phase and quadrature
components of a radio signal obtained at discrete time periods
through analog to digital conversion with a carrier frequency
to obtain a 1 ×N complex valued vector. Classically, this is
written as:

s(t) = c1m(t) + c2r(t) + c3l(t) (1)

where s(t) is a continuous time series signal modulated onto
a sinusoid with either varying frequency, phase, amplitude,
trajectory, or some permutation of multiple parameters. Here,
m(t), r(t), and l(t) are the time series continuous signals
for modulation, amplitude, and phase respectively, selected
randomly by the generator. The coefficients c1, c2, and c3 are
some path loss or constant gain terms associated with m(t),
r(t), and l(t) respectively. The output g(t) is obtained as:

g(t) = s(t) + n(t) (2)
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where n(t) is the additive Gaussian white noise. The output
g(t) is then fed to a generator which is used as an unsupervised
learning tool as a part of the generative network. The generator
learns the probability distribution pg(x) over sample space (x)
of the input. In this case, x is the sample space of IQ values.

C. The Discriminative Model

The discriminative model learns by minimizing a cost func-
tion during training. The cost function, C(G;D), depends on
both the generator (G) and the discriminator (D). It is formu-
lated as C(G;D) = Epdata(x) logD(x) + Epg(x) log(1−D(x)),
where pg(x) is the generator’s distribution over x, pdata(x)
is the data distribution over x, D(x) is the probability that x
came from pdata(x) than pg(x). The training is formulated as:

max
D

min
G

C(G;D) (3)

For the GAN framework there is an unique optimal discrim-

inator for a fixed generator, D∗(x) = pdata(x)

pdata(x) + pg(x)
. It is

also inferred that G is optimal when pg(x) = pdata(x), i.e., the
generator is optimal when the discriminator cannot distinguish
real samples from fake ones. Similarly, the D is optimal when
the discriminator can recognize each real sample from fakes.

IV. TESTBED EVALUATION

In order to validate the proposed GAN, we implemented
the generator and discriminator models using data from uni-
versal software radio peripheral (USRP) and conducted indoor
experiments to distinguish between 8 similar transmitters.

A. Signal Generation and Data Collection

In order to learn the features of similar transmitters, we
used eight USRPs of the same kind, namely B210 from
Ettus Research [6]. The signal generation and reception are
shown in Fig. 3. The B210s were programmed to transmit
random data on 904 MHz using Quadrature Phase Shift Keying
(QPSK) modulation. Then the modulated signal was transmit-
ted through the USRP sink block. We used GNURadio [21]
for signal processing and data transmission. The flow graph is
presented in Fig. 4. For the receiver, we used a RTL-SDR [7]
which captured over-the-air raw IQ data and stored them on
file.

Random
Signal

QPSK
Mod Transmitters Receiver

Dataset
Generation

GNURadio USRP
B210

RTL-SDR rtlsdr
Python
Library

Data

(#samples,
2*sample size)

Signal Processing and Data Collection

Fig. 3. Signal Generation and Data Collection Technique

We collected the IQ signal data with a sample size of 1024.
Each data sample had 2048 entities consisting of the I and Q
values for the 1024 samples. A larger sample size would mean
more training examples for the neural network. The choice of
1024 samples was sufficient to capture the unique pattern of
IQ imbalances and at the same time it was not computationally

Fig. 4. GNU Radio Flow Graph for Data Collection

Parameters Values
Transmitter Gain 45 dB

Transmitter Frequency 904 MHz (ISM)
Bandwidth 200 KHz

Sample Size 1024
Samples/Transmitter 40,000

# Transmitters 4 and 8
TABLE I

TRANSMISSION CONFIGURATION PARAMETERS

expensive. We collected 40,000 training examples from each
transmitter to avoid the data skewness problem observed in
machine learning. The configuration parameters are given in
Table I. We had two sets of data: (i) using 4 transmitters:
6.8 GB size, 160K rows and 2048 columns and (ii) using 8
transmitters: 13.45 GB size, 320K rows and 2048 columns.

Sample 
Space

Noise

G
Generator

Real
Data

D
Discriminator

Is 
Real?

Tuning 
Parameters

Fig. 5. A Simplified View of GAN Implementation

B. Machine Learning Libraries

There are several libraries and tools that implement deep
learning frameworks with support of immensely concurrent
GPU architecture that reduce the burden of programming the
traditional routines for training of larger neural networks. We
use Keras [22] as the frontend and Tensorflow [23] as the
backend. Keras is an overlay on neural network primitives with
Tensorflow [23] or Theano [24] that provides a customizable
interface for quick deployment of complex neural networks.
We also use Numpy, Scipy, and Matplotlib Python libraries.

C. Experimental Setup and Performance Metrics

We conducted the experiments on a Ryzen 8 Core system
having 64 GB RAM and a GTX 1080 Ti GPU unit having 11
GB memory. We focused on three main aspects:
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Fig. 6. GAN Implementation for rogue Transmitter Detection

• Designing a generative adversarial net (GAN) to distin-
guish rogue transmitters from trusted ones.

• Designing a convolutional neural network (CNN) to ex-
ploit the correlation in collected signal data of the trusted
transmitters.

• Designing a deep neural network (DNN) to classify the
trusted transmitters for fingerprinting.

To measure the effectiveness of the proposed neural net-
works, “accuracy” is used as the typical performance metric.
However, accuracy can sometimes be misleading and incom-
plete when data is skewed. A confusion matrix overcomes
this problem by showing how confused the classification
model is on its predictions. It provides more insights on the
performance by identifying not only the number of errors, but
more importantly the types of errors.

V. GAN IMPLEMENTATION

For implementing the GAN, we use the over-the-air data
collected from the trusted transmitters. The generator (G) gen-
erates fake data from the same sample space to impersonate as
a transmitter. Trusted and fake data are fed to the discriminator
(D) with an equal and unbiased probability. We design the
discriminator and generator separately, as shown in Fig. 5.

The generator starts with randomly generating data within
the sample space [-1,1]. Two dense layers of size 512 and
1024 are applied with tanh activation function. Then one dense
layer of 2× sample size (2048 in this case) is invoked with
the sigmoid activation function. G continues to learn the data
distribution (pg) and generating fake samples of size 2048
within the signal IQ values sample space. D consists of one
input layer of 2048 nodes, two hidden layers of 1024 and
512 nodes respectively, and finally a softmax output layer of
2 nodes to classify an input as either Fake or Trusted. We
use tanh as activation function at the hidden layer and added
Dropout [20] of 0.5 in between those layers for regularization.
The overall GAN implementation is shown in Fig. 6.

We train both the generator and discriminator through itera-
tive sequential learning to strengthen the generative model over
time. We use categorical cross-entropy training on Adam [19]
optimizer for gradient based optimization. We notice that the
discriminator was able to detect the fake transmitters with 50%
accuracy before the adversarial training. After several epochs
(< 50) of adversarial training, the optimal discriminator (D∗)

Fig. 7. Confusion Matrix for Determining Trusted and Fake Transmitters

is able to detect the Fake transmitters with about 99.9%
accuracy, as shown in the confusion matrix in Fig. 7. Note
that one epoch consists of a forward and a backward pass
through the designed model over the entire dataset. It is clear
from the confusion matrix that the number of false negatives
and false positives are very low and well within acceptable
range [25]. Once the GAN is trained, it will be able to detect
rogue transmitters from over-the-air reception of raw IQ data.

A. CNN Implementation

The main motivation for implementing a convolution neural
network was to capture the correlation between IQ values of
samples. The CNN has three Conv2D layers of 1024, 512 and
256 filters, a Flatten operation, and three fully connected (FC)
layers of 512, 256 and 8 nodes as shwon in Fig. 8. We use
Dropout [20] of 0.25 and 0.5 after each conv2D and dense
layer respectively. We use kernel size of (2,3) and stride of
(2,2) at each Conv2D layer. We also apply a pooling layer
MaxPooling2D after each Conv2D layer with pool size of
(2,2) and stride of (2,2). We use ReLU [26] activation for all
convolution and fully connected layers, other than the softmax
layer of the output nodes.

We obtain 89.07% and 81.6% accuracy for 4 and 8 transmit-
ter classification respectively using the aforementioned CNN.
The low accuracies are due to the poor correlation among sam-
ples from the same radio. The accuracy plots and confusion
matrices for both the cases are shown in Figs. 9 and 10. Both
training and validation accuracy increase with the number of
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epochs. With the CNN, the number of false positives and false
negatives are somewhat high for the predicted versus the true
labels. So, we proceed to build a deep network to achieve
better accuracy for a trusted transmitter classifier.

(a) 4 Transmitters (b) 8 Transmitters

Fig. 9. Accuracy Plot for Transmitter Classification using CNN

(a) 4 Transmitters (b) 8 Transmitters

Fig. 10. Confusion Matrix for Transmitter Classification using CNN

B. DNN Implementation

Once the discriminator recognizes the trusted transmitters
from the fake ones, we feed the trusted transmitter data to a
deep neural network for its classification. The implementation
of the DNN is similar to the discriminator model of GAN
and is shown in Fig. 11. The only difference is that the
softmax output layer has 8 nodes to recognize the 8 classes. We
use biases and regularization to avoid under- and over-fitting.
We use Adam [19] based optimization with categorical cross-
entropy training. The DNN yields an accuracy of 97.21% for
4 transmitters, and 96.6% for 8 transmitters. The accuracy and
confusion matrices are shown in Figs. 12 and 13 respectively.
It is evident that the number of false positives and false
negatives in the confusion matrices are significantly low for
the DNN.
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Fig. 11. DNN Implementation for Transmitter Classification

(a) 4 Transmitters (b) 8 Transmitters

Fig. 12. Accuracy for Transmitter Classification using DNN

C. Comparisons of GAN/CNN/DNN Implementations

Once a transmitter is found to be Trusted via the pro-
posed GAN, we use the DNN or the CNN to identify it. We
used 90%, 5%, and 5% to train, validate, and test respectively.
The overall accuracy of different implementations is shown
in Table II. We find that the CNN does not exhibit the best
accuracy for transmitter classification, which clearly depicts
the lack of correlation between the data. We also conducted
experiments by varying the number of transmitters from 2 to
8. In Fig. 14, we present how training and testing accuracy
changes with increasing number of transmitters. As expected,
the accuracy decreases when there are more classes that a
transmitter needs to be mapped to.

The GAN based deep neural network achieves an acceptable
accuracy for transmitter identification proving the feasibility of
the proposed idea. In summary,

1) GAN network is able to distinguish between Trusted
and Fake RF signals.

2) Convolution neural network yields 81%-86% accuracy

(a) 4 Transmitters (b) 8 Transmitters

Fig. 13. Confusion Matrix for Transmitter Classification using DNN
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Dataset (GB) #Trans Method #Parameters Acc (%)
6.8 4 DNN (5 layers) 6.8 M 97.21

13.45 8 DNN (5 layers) 6.8 M 96.6
6.8 4 CNN (6 layers) 38 M 89.07

13.45 8 CNN (6 layers) 38 M 81.59
3.6 M (G)

6.8 4 GAN (DNN) 6.8 M (D) 99.9
10.4 M (GAN)

3.6 M (G)
13.45 8 GAN (DNN) 6.8 M (D) 99.9

10.4 M (GAN)
TABLE II

ACCURACY FOR DIFFERENT IMPLEMENTATIONS

2 4 6 8
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Fig. 14. Training and Accuracy with Increasing numbers of Transmitters

for discriminating between the known transmitters.
3) Deep neural network yields excellent accuracy for

known transmitter classification.
4) DNN or CNN can be used for transmitter fingerprinting

after the discriminator is able to distinguish Trusted
and Fake signals.

It is to be noted that traditional machine learning techniques
suggest different neural networks for different kinds of clas-
sification problems. However, we have used a single neural
network architecture for both 4 and 8 class classifications, for
providing an end-to-end solution. One can use the same neural
networks for classifying up to 8 transmitters without changing
any parameter or hyper-parameter of the proposed models.

VI. CONCLUSIONS

In this paper, we address the problem of identifying RF
transmitters of similar types in the presence of adversarial sig-
nals. We argue that most machine learning techniques would
not be effective in adversarial situations and that breakthroughs
in generative adversarial nets (GAN) can be instrumental in
detection of rogue transmitters and subsequently the accurate
identification of known ones. We propose and implement a
generative model and a discriminative model for the GAN.
We collected over-the-air raw IQ data using USRP B210 and
used that to train the GAN. The discriminator was able to
detect rogue transmitters with an accuracy of ∼99.9%. As for
transmitter classification, we first implemented a convolution
neural network (accuracy ∼89%) for exploiting the correlation
between IQ data. Then we designed and implemented a deep

neural network that showed an accuracy of ∼97% for trans-
mitter identification. Our overall implementation framework
provides an end-to-end solution for transmitter fingerprinting
and identification using raw IQ data.
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