
Calculating Architectural Vulnerability Factors for

Spatial Multi-bit Transient Faults

⇤

Mark Wilkening, Vilas Sridharan†, Si Li‡, Fritz Previlon, Sudhanva Gurumurthi§ and David R. Kaeli
ECE Department, Northeastern University, Boston, MA, USA,

wilkening.m@husky.neu.edu, previlon@ece.neu.edu, kaeli@ece.neu.edu
†RAS Architecture, Advanced Micro Devices, Inc., Boxborough, MA, USA, vilas.sridharan@amd.com

‡ECE Department, Georgia Institute of Technology, Atlanta, GA, USA, sli@gatech.edu
§AMD Research, Advanced Micro Devices, Inc., Boxborough, MA, USA, sudhanva.gurumurthi@amd.com

Abstract—Reliability is an important design constraint in

modern microprocessors, and one of the fundamental reliability

challenges is combating the effects of transient faults. This

requires extensive analysis, including significant fault modeling

to allow architects to make informed reliability tradeoffs.

Recent data shows that multi-bit transient faults are becoming

more common, increasing from 0.5% of static random-access

memory (SRAM) faults in 180nm to 3.9% in 22nm. Such faults

are predicted to be even more prevalent in smaller technology

nodes. Therefore, accurately modeling the effects of multi-bit

transient faults is increasingly important to the microprocessor

design process.

Architecture vulnerability factor (AVF) analysis is a method

to model the effects of single-bit transient faults. In this paper,

we propose a method to calculate AVFs for spatial multi-

bit transient faults (MB-AVFs) and provide insights that can

help reduce the impact of these faults. First, we describe a

novel multi-bit AVF analysis approach for detected uncorrected

errors (DUEs) and show how to measure DUE MB-AVFs in

a performance simulator. We then extend our approach to

measure silent data corruption (SDC) MB-AVFs. We find that

MB-AVFs are not derivable from single-bit AVFs. We also find

that larger fault modes have higher MB-AVFs. Finally, we

present a case study on using MB-AVF analysis to optimize

processor design, yielding SDC reductions of 86% in a GPU

vector register file.

Keywords-reliability; soft errors; fault tolerance.

I. INTRODUCTION

Reliability is a critical design constraint for all micropro-
cessors. In particular, studies have shown particle-induced
transient faults in SRAM are the dominant contributor to
microprocessor faults [5]. These faults arise from high-
energy particle strikes, such as neutrons from cosmic ra-
diation, which deposit charge onto transistors as they pass
through a silicon device. A sufficient amount of charge has
the potential to invert the state of a logic device and generate
a temporary fault. There have been several documented cases
of transient faults occurring in production systems on both
CPUs and GPUs [16] [27] [30] [34].

⇤A portion of this work was performed while Mark Wilkening and Si
Li were co-ops in AMD Research.

To prevent excessive failures from transient faults, mi-
croprocessor vendors set a desired failure rate target for
each design. Vendors then design for the best power and
performance under this constraint. Significant analysis is re-
quired to validate the design against this target and improve
the efficiency of the protection used to achieve this failure
rate. Common techniques include accelerated testing of
new technologies [17], pre-silicon validation and efficiency
analyses, such as statistical fault injection and architectural
vulnerability factor (AVF) modeling [11] [25], and post-
silicon validation, such as field-data collection and beam
testing [12] [34]. By using all of these techniques together,
a vendor can design microprocessors to meet stringent
reliability standards.

Recently, multiple-bit transient faults have emerged as
an increasingly important challenge in SRAM [17]. Due to
technology scaling, high-energy particles are able to deposit
charge onto multiple SRAM devices, resulting in faults in
multiple adjacent bits. This is called a spatial multi-bit fault
(sMBF). Table I (reproduced from Ibe et al. [17]) shows
that in a 180nm process, fewer than 0.6% of faults affected
more than one bit along an SRAM wordline, while in a
22nm process, 3.6% of all faults affected multiple bits along
a wordline. This increase in multi-bit fault rate is projected
to continue despite the introduction of technologies such as
FinFET transistors that reduce the overall rate of transient
faults, but do not slow the trend toward larger multi-bit
faults [29].

An architect can choose to employ many techniques to
protect against multi-bit faults. For instance, stronger error-
correcting codes (ECCs) such as double-error correction /
triple-error detection (DEC-TED) ECCs can be used, and
bit interleaving, which ensures that physically adjacent bits
are protected by different ECCs, can be used in conjunction
with ECCs [24]. However, these techniques have power,
area, and performance costs. For instance, implementing
DEC-TED ECC on a 128-bit data word requires 17 check
bits (i.e., a 13% overhead), whereas implementing single-
error correction / double-error detection (SEC-DED) ECC
requires only 9 check bits (i.e., a 7% overhead). DEC-TED



Design Rule (nm) Total Bit width of multi-bit fault
2 3 4-8 >8

180 0.5 0.5 0.0 0.0 <0.1
130 1.2 0.8 0.2 0.2 <0.1
90 1.9 1.5 0.2 0.2 <0.1
65 2.4 2.1 0.1 0.0 <0.1
45 2.3 1.9 0.2 0.1 <0.1
32 3.1 2.6 0.2 0.3 <0.1
22 3.9 3.0 0.2 0.3 0.1

Table I: Ratio of multi-bit faults to total faults in percent, from Ibe et
al. [17]. Multi-bit faults are 3.9% of all faults in 22nm and both rate and
width increase with decreased feature sizes.

ECC also requires a deeper XOR tree to decode, resulting
in increased latency. Similarly, a physically interleaved array
requires multiple columns to be activated and multiplexed to
read out a single bit, resulting in increased dynamic power
consumption, area overhead, and latency [4]. Therefore,
an architect must understand the required level of multi-
bit protection: excessive protection will increase power and
area and reduce performance unnecessarily, but inadequate
protection will result in an unreliable design.

Single-bit transient faults have been a known challenge
for some time, and there are well-developed methods for
characterizing and determining the impact of such faults.
One method is to measure AVFs through architecturally-
correct execution (ACE) analysis [25]. Measuring AVFs
allows an architect to prioritize hardware structures for
protection and, when combined with transient fault rates
from accelerated testing, to bound the overall soft error rate
of a chip. Unfortunately, while multi-bit fault rates can be
measured via accelerated testing, methods to allow architects
to quantify the impact of multi-bit faults are lacking.

In this paper, we propose a method to quantify architec-
tural vulnerability factors for spatial multi-bit faults (MB-
AVFs). To measure MB-AVFs, we develop a novel extension
to ACE analysis in a performance simulator. We measure
MB-AVFs for detected uncorrected errors (DUE MB-AVF)
as well as those for silent data corruptions (SDC MB-AVF).
MB-AVF analysis allows an architect to understand the
impact of architectural decisions on a design’s failure rate
due to multi-bit faults, and MB-AVF values derived from
ACE analysis can be used in conjunction with fault rates
from accelerated testing to calculate the soft error rate of a
chip from all transient faults.

The novel contributions of this paper include:
• We introduce a method to quantify and calculate the

MB-AVF of any hardware structure. This method ap-
plies to both DUE MB-AVF and SDC MB-AVF.

• We present a precise model to measure DUE MB-AVFs
using ACE analysis in performance simulation.

• We extend this model to approximate SDC MB-AVFs
using ACE analysis, and use a fault injection study to
determine that this approximation has negligible error.

• We show how the inherently parallel nature of a GPU
can be exploited to reduce the SDC MB-AVF of the

vector general-purpose register file (VGPR) while min-
imizing area cost dedicated to reliability.

Our work has several key findings that are applicable to
the design of any processor:

• We show that MB-AVFs are not derivable analyti-
cally from single-bit AVFs; MB-AVFs can vary inde-
pendently of single-bit AVFs and must be measured
through simulation.

• We find that MB-AVFs range from one to M times
single-bit AVFs, where M is the number of bits in
the multi-bit fault pattern in question, and that larger
fault modes have larger MB-AVFs, offsetting to some
extent the reduced rate of these larger faults (shown in
Table I).

• We find that many multi-bit faults, that designers con-
servatively assume cause SDCs, actually cause DUEs.

• We identify a property of hardware structures called
ACE locality, or the tendency of ACE bits to cluster
together, that can be used to guide design. Structures
that exhibit high ACE locality have lower MB-AVFs.
Therefore, for example, logical interleaving, in which
each data word is split into multiple interleaved check
words, can have MB-AVFs many times lower than that
of physical interleaving, in which each data word is
interleaved with other data words.

The rest of the paper is organized as follows. Section II
presents background and terminology related to transient
faults, AVF, and ACE analysis. Section III provides an
overview of related work. Section IV presents our model
for multi-bit DUE AVF. Section V explains our method
for measuring multi-bit AVF using ACE analysis. This
is followed by a description of the insights obtained in
Section VI. Then, Section VII extends this model to multi-bit
SDC AVF. We present a case study for using the information
obtained through our model for practical design decisions in
Section VIII, and conclude in Section IX.

II. BACKGROUND AND TERMINOLOGY

A. Definitions and Concepts

We define a fault as an undesired state change in hard-
ware. In this work, we limit ourselves to the analysis of
transient faults, or faults that cause a temporary state change
(versus stuck-at, or permanent, faults). If a transient fault
flips a bit in a hardware structure, that bit can be overwritten
to remove the fault. Faults affecting multiple (2 or more) bits
in a hardware structure are called multi-bit faults. Any fault
(single- or multi-bit) results in all affected bits flipping to
the opposite states.

There are three major classes of transient faults that can
occur due to particle strikes. A single-bit fault (SBF) occurs
given a single strike affecting a single bit. A spatial multi-bit
fault (sMBF) occurs given a single strike affecting multiple
bits at the same instance in time. This is in contrast to a



temporal multi-bit fault (tMBF), in which multiple strikes
(spaced in time) lead to multiple flipped bits the next time a
set of bits is read. Both spatial and temporal multi-bit faults
can be arbitrary shapes and sizes.

We define an error as an incorrect result in program
output. Errors can also be further classified based on their
impact on the system. An undetected error can cause silent
data corruption (SDC), which causes a program to behave
incorrectly without being detected by the hardware. Errors
that are detected but are not corrected are called detected
uncorrected errors (DUE). Some errors are detected early,
and will not cause data corruption if ignored. These errors
are named false DUEs, while detected errors that would
result in SDC if ignored are called true DUEs [42].

B. Architectural Vulnerability Factors

Not all faults become errors. The fraction of faults in a
hardware structure that become errors is called the struc-
ture’s architectural vulnerability factor, or AVF [25]. The
AVF of a hardware structure H containing BH bits over a
period of N cycles can be expressed as:

AV FH =

PN
n=1 [ACE bits in H at cycle n]

BH ⇥N
(1)

AVFs are measured by identifying whether state in a
system is required for architecturally correct execution. State
in the system required for architecturally correct execution
is named ACE state. Any fault in this state will result in an
incorrect execution (an error). All other state is unACE state.
Faults in this state will have no effect on correct execution.
The process of identifying ACE and unACE state is called
ACE analysis. ACE analysis conservatively assumes that all
state is ACE and then systematically proves state unACE,
resulting in the computation of an upper bound estimate
for the AVF of the system. While ACE analysis has certain
limitations (e.g., [23]), the technique is widely used and has
immense practical value to industry [9] [18].

C. Existing Multi-bit Remediation Techniques

Existing processors use a variety of techniques to pro-
tect against multi-bit transient faults. Techniques such as
redundant multi-threading can detect most multi-bit faults
(e.g., [19] [43]). Many ECCs (e.g., DEC-TED ECCs) can de-
tect and correct multi-bit faults, and cyclic redundancy codes
(CRCs) can provide robust multi-bit error detection [22].

A technique known as bit interleaving commonly is used
in conjunction with parity or ECC [24]. Logical interleaving
increases the number of ECC words per data word and
assigns physically adjacent bits to different ECC words.
This increases the area overhead of ECC because each data
word contains multiple ECCs. Physical interleaving, on the
other hand, assigns physically adjacent bits to different data
words, thus ensuring adjacent bits are protected by different

ECCs. Interleaving can be done between two data words (x2
interleaving), four data words (x4 interleaving), and so on.

III. RELATED WORK

There has been a large body of research on AVF modeling
and analysis, starting with the works by Mukherjee et al.,
Weaver et al., and Biswas et al., who coined the term
and developed the initial methodology [7] [25] [42]. Adve
et al. demonstrated limits to AVF analysis, showing that
assumptions of independence break down at very high fault
rates or in very large structures [23]. Wang et al. compared
ACE analysis to fault injection and found ACE analysis to
be conservative [41]. This analysis was rebutted, and the
effects pointed out by Wang were incorporated into an ACE
analysis infrastructure [8]. Sridharan and Kaeli extended the
notion of vulnerability to allow independent measurement of
the vulnerability of programs and hardware [32] [33]. There
also have been several publications that estimate AVF using
architectural or microarchitectural state [26] [40] and that
measure the AVF of GPUs [13] [38].

A few prior studies explore the impact of multi-bit faults
in SRAMs and logic. George et al. modeled sMBFs using
a fault injection methodology [15]. George et al. examined
interleaving as a potential remedy to sMBFs in combina-
tional logic [14], and Szafaryn et al. examined the over-
heads associated with multi-bit fault protection [37]. Suh et
al. introduced the periodic autoregressive moving average
(PARMA) framework to compute the mean time to failure
(MTTF) of caches from SBFs and tMBFs [36]. Suh et
al. then proposed the MACAU framework to compute the
intrinsic MTTF of hardware structures under the cumulative
effects of overlapping SBFs, temporal MBFs and spatial
MBFs using Markov chains [35].

Our work differs from the work by George et al. in
much the same way that the original ACE analysis method-
ology differed from prior fault injection frameworks [21].
Our work also differs from MACAU in several ways.
First, MACAU computes MTTFs and not AVFs. Therefore,
MACAU is useful for estimating the soft error rate of
a final product, including all architecture and technology
effects, but it is difficult to separate the effects of single-
bit and multi-bit faults, and to isolate architectural from
technology-driven effects. MB-AVF analysis is designed
specifically to allow this type of architectural analysis,
irrespective of process technology choices. Second, although
MACAU supports a wide variety of ECCs, it cannot evaluate
important design points such as bit interleaving: every multi-
bit fault in a structure with interleaving affects multiple
ECC words, a case that MACAU ignores to simplify the
needed math. Finally, MACAU does not integrate easily
with existing industrial AVF infrastructures that support
sophisticated masking analysis (e.g., [9] [18]).



Figure 1: A fault mode is a specific multi-bit fault pattern, and a fault
group is a set of bits in a structure that match this pattern. For example, a
2x1 multi-bit fault mode has three unique fault groups (G0 through G2) in
this 4x1 SRAM array (B0 through B3).

IV. MB-AVF FOR DETECTED UNCORRECTED ERRORS

In this section, we provide an overview of our modeling
strategy to compute AVFs for multi-bit faults. We begin by
introducing some basic concepts and assumptions present in
our modeling approach, and then show through an example
how to compute multi-bit AVF from single-bit AVF.

A. Fault Modes and Fault Groups

The term multi-bit fault can refer to the failure of any
number of bits in any arbitrary geometry. In this work we
define the term fault mode to refer to a particular multi-
bit fault geometry (i.e., a specific pattern of bit flips). For
example, we refer to a particle strike affecting three consec-
utive bits within one row as a three-by-one spatial multi-bit
fault, where three-by-one is the fault mode. Different fault
modes will appear with different raw fault rates, and can be
analyzed separately using different vulnerability factors to
determine separate error rates for each mode.

In this work, we will refer to an individual multi-bit fault
of a particular fault mode as occurring on a particular fault
group in a particular cycle. We define a fault group as the set
of bits satisfying the geometry of a particular fault mode, on
which a multi-bit fault of that mode may occur. For example,
Figure 1 presents all possible fault groups of a 2x1 fault
mode on a 4x1 bit structure.

B. Spatial vs. Temporal Multi-bit Faults

In this work, we constrain ourselves to modeling only
sMBFs. To justify our focus on sMBFs, we must confirm
that sMBFs are a greater threat than tMBFs.

Mean times to failure (MTTFs) for tMBFs can be calcu-
lated using the methodology developed by Saleh et al. [28].
Recent data shows that for sMBFs in 22nm technology,
0.1% of all neutron strikes affect more than 8 bits along
a wordline [17]. Figure 2 shows that at this sMBF rate, and
across a variety of realistic raw fault rates [31], the MTTF
of a 32MB cache from sMBFs is lower than the MTTF
from tMBFs even when assuming infinite cache lifetimes
(i.e., data lasts forever and is never replaced). When limiting
cache-line lifetime to 100 years, the MTTFs from tMBFs
increase by several orders of magnitude.

Figure 2: Mean time to failure (MTTF) of a 32MB cache from tMBFs
and sMBFs at various raw fault rates. Realistic rates of sMBFs result in
MTTFs that are 6-8 orders of magnitude lower than MTTFs from tMBFs,
even when assuming an average cache lifetime of 100 years.

Furthermore, as cell spacing decreases in future technolo-
gies, the percentage of particle strikes that cause sMBFs is
likely to increase. Figure 2 shows that a 5% rate of sMBFs
will decrease the MTTF by two orders of magnitude relative
to a 0.1% rate, further exacerbating the problem of sMBFs.

From this analysis, we conclude that sMBFs are a sig-
nificantly greater threat to silicon reliability than tMBFs,
and that modeling and remediation efforts should focus on
sMBFs rather than tMBFs. For the rest of this paper, the
term multi-bit fault refers solely to a sMBF, and MB-AVF
refers to AVF of sMBFs.

C. Calculating Spatial Multi-bit AVF

We define the MB-AVF of a hardware structure as the
probability that a fault of a given multi-bit fault mode
in the structure will result in a visible error in the final
output of a program. MB-AVF is determined through ACE
analysis, in which fault groups required for correct execution
are considered ACE groups, and fault groups that are not
required for correct execution are considered unACE. The
MB-AVF of a hardware structure is the fraction of fault
groups in the structure that are ACE. MB-AVF is computed
similarly to SB-AVF, but considers fault groups in place of
individual bits.

MB-AVF values are determined independently for each
fault mode. This is consistent with how multi-bit fault
rates are measured; a typical accelerated testing campaign
measures an overall fault rate, as well as a fault rate per fault
mode [17]. For a hardware structure H containing GH,M

unique fault groups of mode M , the structure’s MB-AVF for
fault mode M over a period of N cycles can be expressed
as:

MB-AV FH,M =

PN
n=1 [ACE groups in H at cycle n]

GH,M ⇥N
(2)



D. Differences between Single- and Multi-bit AVF

Now that we have defined MB-AVF, it is worth asking
how much MB-AVF can differ from traditional SB-AVF, and
whether it is possible to derive MB-AVF analytically from
SB-AVF. Let us consider a single fault group of a fault mode
with M bits. If all bits in this group are ACE, the SB-AVF
and MB-AVF of this fault group in a single cycle are:

SB-AV F =
M ⇥ 1

1⇥M
= 100%

MB-AV FM =
1

1
= 100% = 1⇥ SB-AV F

However, if only one bit is ACE, then the single- and
multi-bit AVFs of this group in a single cycle are:

SB-AV F =
1⇥ 1

1⇥M
=

100

M
%

MB-AV FM =
1

1
= 100% = M ⇥ SB-AV F

Therefore, from first principles, we can see that the MB-
AVF can vary between 1x and Mx SB-AVF, where M is the
number of bits in the fault mode. Moreover, this multiplier
is determined by the pattern of ACE times among bits in the
fault group. If all bits are ACE in exactly the same cycles,
then the MB-AVF equals the SB-AVF. On the other hand,
if only one bit is ACE in each cycle, then the MB-AVF is
Mx the SB-AVF.

The pattern of adjacent ACE and unACE times depends
on the interaction between the physical layout of a hardware
structure and workload behavior, and thus is not easily deriv-
able analytically. Furthermore, the fact that MB-AVF can
be Mx SB-AVF implies that using SB-AVF to approximate
MB-AVF may significantly under-estimate a design’s soft
error rate (SER) from multi-bit faults.

E. Calculating Soft Error Rates

Given raw fault rates for each fault mode (e.g., from
accelerated testing) measured in failures per billion hours
(failures in time (FIT)), and MB-AVFs for a hardware
structure, we can multiply the raw fault rate and MB-AVF for
each fault mode to get a soft error rate from that particular
fault mode for that structure. If we sum these over all fault
modes (including single-bit faults) we can derive a total
soft error rate for that structure. For a hardware structure
H considering M fault modes with GM fault groups in the
structure, over a period of N cycles, the soft error rate of
the structure is given by:

SERH =
MX

m=1

GMX

g=1

NX

n=1

FITm ⇥MB-AV Fm,g,n (3)

By summing SERH over all structures, we can calculate
the overall soft error rate of a chip from all single- and
multi-bit transient faults.

V. MEASURING MULTI-BIT AVF
This section describes a method to compute DUE MB-

AVFs using a performance simulator. One method to com-
pute MB-AVFs would be to perform a fault injection cam-
paign for each fault mode. However, fault injection suffers
from well-known problems that spurred development of
ACE analysis, a method to identify ACE bits using a perfor-
mance simulator [25]. The problems with fault injection are
exacerbated by the need to quantify MB-AVFs for multiple
fault modes. Therefore, we focus on measuring MB-AVFs
by extending a typical performance simulator-based ACE
analysis infrastructure.

In this section, we focus on calculating DUE MB-AVF.
Section VII extends this model to estimate SDC MB-AVF.

A. ACE Groups and Protection Domains
For this model, a fault group is considered ACE if any of

the bits within the group are considered ACE. A group with
no ACE bits is an unACE group. If a flip in any bit in the
group will cause a DUE, then flipping all bits will also cause
a DUE. Therefore, the ACEness of group G containing B
bits at cycle C can be expressed by:

ACEG,C =
B[

b=1

ACEb,C (4)

This model of multi-bit ACE analysis is simple and can
be computed easily from single-bit ACE analysis.

Another extremely important aspect of characterizing the
impact of multi-bit faults is the effect of error-protection
schemes such as parity or ECCs. In order to model an
error-protection scheme accurately, a framework must be
constructed to define the scheme. We define error-protection
schemes in our model through the definition of protection
domains, and their interactions with multi-bit faults. A
protection domain consists of a region of data protected by
a single element of the protection scheme; this corresponds
to a single parity or ECC word. Each protection scheme
can define the size of its protection domains, as well as
the location(s) of the domains. This allows for a flexible
incorporation of different ECCs and interleaving schemes.
A protection scheme also must define the number of faults
present in a single domain that the scheme either can detect
or correct. This defines the level of protection of the scheme
and how it will interact with multi-bit faults to create
different types of errors.

B. Multi-bit ACE Analysis
To calculate MB-AVF through ACE analysis, the ACE-

ness of fault groups must be determined. With the addition
of protection domains, Equation 4 is no longer valid because



Figure 3: MB-AVF ACE analysis of a 3x1 fault over two SEC-DED protection domains. A fault that affects B0-B2 is DUE ACE in PD0 and corrected
(unACE) in PD1. If a fault is DUE ACE in either PD0 or PD1, fault group G0 is DUE ACE.

individual bits in a group no longer are independent due to
the interaction of multi-bit faults and protection domains.
When considering protection schemes, a fault group can
contain bits from more than one protection domain. We refer
to a set of bits from a single protection domain within a fault
group as an overlapped region.

Two measurements must be considered when determining
the effect of a protection domain overlapped with a fault
group: the ACEness of the overlapped region and the action
taken by the protection domain on observing the fault.

For generality, the ACEness of an overlapped region R
is the union of the ACEness of all bits B in the region, as
shown in Equation 5:

ACER,C =
B[

b=1

ACEb,C (5)

In practice, a protection domain is read as a complete unit,
and the DUE ACEness of all bits in an overlapped region
always will be the same.

The action taken by the protection domain determines if
the fault is corrected, detected, or undetected on being ob-
served. This action is a direct specification of the protection
scheme used. For example, with a simple model of SEC-
DED ECC, an overlapped region of size 1 will result in a
corrected error. If the size of the overlapped region is exactly
2, the error is detected but uncorrected.

An overlapped region R is DUE-ACE in cycle C if the
region is ACE in cycle C and the region reacts as detected
with the protection domain. This calculation is expressed in
Equation 6:

DUEACER,C = ACER,C ^DetectedR (6)

The DUE ACEness of a fault group then is calculated as
the union of the DUE ACEness of all overlapped regions
in the fault group. The ACEness of group G containing R
overlapped regions at some cycle C can be expressed by:

DUEACEG,C =
R[

r=1

DUEACEr,C (7)

Take the group shown in Figure 3. This figure depicts
a 3x1 fault group (G0) overlapping two SEC-DED ECC
protection domains (PD0, PD1) over a period of 30 cycles.
To calculate the DUE MB-AVF of these bits, ACE analysis
must be used to calculate the ACEness of this group over
this 30-cycle period. We first assume we already have
performed single-bit ACE analysis to determine ACE and
unACE cycles for each individual bit. We then must analyze
each overlapped region between the fault group and any
protection domains separately.

Consider the overlapped region from PD0, which is a
SEC-DED ECC protection domain containing two bits from
the fault group. If a 3x1 multi-bit fault occurs, this protection
domain will detect an error on reading the data. Because of
this, we can classify the ACE time in bits B0 and B1 as DUE
ACE. Considering the overlapped region from PD1, which
contains one bit from the fault group, we can determine the
protection domain will correct all errors on reading the data.
We therefore classify all ACE time as corrected. Because
the DUE ACEness of a fault group is the union of the DUE
ACEness of its overlapped regions, cycles with any DUE
ACE regions are considered DUE ACE for the group.

C. Computational Complexity

An important aspect in considering the usefulness and
practicality of this model is the computational complexity.
The model is similar in computational complexity to single-
bit ACE analysis. For multi-bit analysis, bits in the design
must be organized into overlapped regions, and as events in
the bits in these regions are resolved, analysis accounting
for the interactions of the bits in the sets may resolve the
ACEness of the sets. Overlapped regions and their reactions
can be calculated statically. In this manner, multiple fault
modes of arbitrary complexity may be statically set up before



simulation, and dynamically evaluated as events are resolved
through single-bit ACE analysis.

VI. INSIGHTS FROM MULTI-BIT AVF

In this section, we present results from measuring multi-
bit AVFs in our processor model. For ease of description,
most results in this section use parity protection. Similar
trends were observed when using ECC protection unless
otherwise noted. We usually report MB-AVFs normalized to
SB-AVF to highlight trends across benchmarks with vastly
different absolute AVF values.

A. Experimental Setup
Graphic processing units (GPUs) and accelerated process-

ing units (APUs) now are used in scientific and mission crit-
ical applications. Therefore, the reliability of these devices
is paramount. We use the gem5 simulator to model an APU
consisting of an x86 CPU and integrated GPU with four
compute units and one memory channel [6]. We augment the
simulator with an AVF measurement infrastructure similar
to those described in the literature [25] [33]. We measure
AVF in the GPU L1 and L2 caches. Each compute unit has
a 16KB L1 cache and the integrated GPU has a 256KB L2
cache per memory channel. Both caches use a 64-byte cache
line, but allow byte reads and writes. These structure sizes
are consistent with state-of-the-art designs, and a high-end
GPU may have dozens of compute units and up to a dozen
memory channels [1].

The workloads for our experiments come from the Ro-
dinia benchmark suite, the AMD OpenCL sample suite, and
the Mantevo benchmark suite [2] [3] [10]. All workloads are
evaluated to completion.

The basic AVF measurement is conducted in two phases:
an event-tracking phase followed by an analysis phase. The
event-tracking phase collects the time when key events that
potentially can affect the ACEness of the bits in the structure
occur. The analysis phase calculates the AVF by analyzing
the collected event times. The AVF infrastructure consid-
ers program-level effects, such as first-level and transitive
dynamic-dead instructions and logic masking. We measure
AVFs only during portions of the workload that use the GPU.

Our model supports fault modes with arbitrary geometries,
including contiguous and non-contiguous fault modes of any
size in any structure including SRAMs and datapath latches.
For clarity of description, this paper focuses on the most
common multi-bit fault modes, contiguous Mx1 faults in
SRAMs [17]. These faults are also the most problematic for
conventional ECCs that protect data stored along a word-
line.

B. Differences between Single-bit and Multi-bit AVF
As discussed in Section IV-D, MB-AVF can vary between

1x and Mx SB-AVF, where M is the number of bits in the
fault mode. Figure 4 plots the 2x1 MB-AVF of the L1 cache

Figure 4: DUE MB-AVF for a 2x1 fault in the L1 cache varies between
1x and 2x of the single-bit AVF, depending on both interleaving style and
workload access pattern. Logical interleaving, which incurs additional area
overhead, consistently has the lowest MB-AVF.

with parity and three different x2 interleaving schemes: logi-
cal interleaving, way-physical interleaving, which interleaves
lines from different ways in the same set, and index-physical
interleaving, which interleaves lines from adjacent indices.

We draw three main conclusions from Figure 4. First,
as expected from first principles, the 2x1 MB-AVF varies
between 1x and 2x the single-bit AVF in the structure, but
there is substantial variation in this ratio among workloads.

Second, we see that logical interleaving consistently
yields MB-AVFs very close to the theoretical minimum.
This is because bits in the same cache line often are written
and read close together in time. Therefore, these bits are
more likely to be both ACE (necessary for correct program
execution) or both unACE than bits from different cache
lines. We refer to this property as ACE locality. Figure 4
shows that data in the same cache line has higher ACE
locality than data in different cache lines. This effect is due
to the union effect of multi-bit ACEness: if one physically
interleaves bits from different cache lines, the odds are
high that most multi-bit faults will hit at least one ACE
bit, causing the entire fault group to be ACE. Conversely,
interleaving bits from the same cache line means that some
multi-bit faults will be unACE when they strike a cache line
that is entirely unACE.

Third, we see that the MB-AVF of physical interleaving
varies substantially based on the workload and style of
interleaving (way vs. index). In general, interleaving across
indices yields a lower MB-AVF than interleaving across
ways. This is due to workloads with strided access patterns,
which access different indices in succession. Thus, lines in
adjacent indices are more likely to have high ACE locality
than lines in the same index.

Figure 5 shows a specific example from the Mantevo
MiniFE benchmark (a finite element analysis workload).
Figure 5a plots the single-bit and two-bit AVF over time for
the application. Both AVFs vary as the benchmark’s cache
usage varies over time. However, the ratio between MB-
AVF and SB-AVF also changes based on application phase.
During the phase when the SB-AVF is greater than 90%,



(a) 2x1 MB-AVF and SB-AVF with x2 index interleaving (b) 2x1 MB-AVF with different interleaving schemes

Figure 5: DUE SB-AVF and DUE MB-AVF in the L1 cache for the Mantevo MiniFE benchmark. The ratio between MB-AVF and SB-AVF changes during
different phases of the application, as does the ratio between MB-AVF for different interleaving schemes.

(a) Parity (b) SEC-DED ECC

Figure 6: The effect of fault mode on DUE MB-AVF in the L1 cache with x4 way-physical interleaving. MB-AVF increases for larger fault modes because
a larger fault is more likely to affect at least one ACE bit.

MB-AVF is 99%, or 10% higher than SB-AVF. In the phase
when SB-AVF is 45%, MB-AVF is 71%, or 58% higher than
the SB-AVF.

Similarly, Figure 5b plots MiniFE’s 2x1 MB-AVF over
time with x2 logical, way-physical, and index-physical inter-
leaving. In one phase of the application, logical interleaving
has a substantially lower MB-AVF than way-physical and
index-physical interleaving. In the other phase, all interleav-
ing styles have approximately the same MB-AVF.

Overall, for our workloads, way-physical interleaving had
a 56% higher MB-AVF and index-physical interleaving had
a 65% higher MB-AVF than logical interleaving in the L1
cache, because a cache with logical interleaving has higher
ACE locality than a cache with physical interleaving. This is
a general result that can be used to guide design: increasing
the ACE locality in a structure will reduce its MB-AVF.

C. Effects of Fault Mode on Multi-bit AVF
Figure 6 shows the effect of fault mode on the MB-AVF

for detected uncorrected errors (DUE MB-AVF). Figure 6a
shows MB-AVFs when using parity and x4 way-physical
interleaving, and Figure 6b shows MB-AVFs when using
SEC-DED ECC and x4 way-physical interleaving. We draw
two main conclusions from these figures. First, the figures
show that MB-AVF increases for larger fault modes because
a larger fault group has a higher probability of containing

an ACE bit. On average across all benchmarks, 4x1 MB-
AVF is 2.74x SB-AVF when using parity protection, and
this ratio varies from 1.52x to 4.0x among benchmarks. As
discussed previously, the increase in MB-AVF with fault
mode is much lower when using logical interleaving, but the
trend of increased MB-AVF with fault mode size remains.

Second, MB-AVFs for Mx1 faults with SEC-DED ECC
are similar to MB-AVFs of M�Ix1 faults with parity, where
I is the level of interleaving in the structure. This is because
an 8x1 fault with SEC-DED ECC will be uncorrected in at
most 4 cache lines, the same as a 4x1 fault with parity. From
the figures, we observe that 8x1 MB-AVF with SEC-DED
ECC is 2.7x SB-AVF, the same as 4x1 MB-AVF with parity.

VII. EXTENDING MB-AVF TO UNDETECTED ERRORS

Undetected errors have the potential to cause silent data
corruptions (SDCs). Even when using parity or ECC, a large
enough multi-bit fault can defeat the protection and cause
SDC. In the absence of AVF estimates, a designer typically
is forced to assume conservatively that an undetected multi-
bit fault will cause SDC. This may lead to overdesign of a
reliability scheme, wasting area and power. Therefore, it is
worth understanding SDC AVF behavior for multi-bit faults.

Unfortunately, there exists a complication to our approach
for MB-AVF ACE analysis resulting from our method
of using single-bit masking behavior to describe multi-bit



masking behavior. Specifically, a bit’s ACEness may be
changed by the presence of another fault. For example, a
program may read the first two bytes in a cache line and
XOR the least significant bit of both bytes. A single-bit
fault in the least significant bit of either byte alone could
result in SDC. A multi-bit fault covering both bits, however,
will be unACE because the result of the XOR operation
will be the same as in the fault-free case. We call this effect
ACE interference. Because our model does not capture ACE
interference, we cannot conclude that our model accurately
measures SDC MB-AVF.

In Section VII-A, we evaluate this potential inaccuracy
using a fault injection study. Our results show that ACE
interference occurs extremely rarely and thus introduces neg-
ligible error in our model. Section VII-B extends our ACE
analysis model to estimate SDC AVF, and Section VII-C
presents our findings.

A. Evaluating Model Accuracy
To evaluate the accuracy of our SDC MB-AVF model, we

inject faults into a representative SRAM structure, the GPU
vector general-purpose register file (VGPR). We use a fault
injection framework built into the simulator multi2sim [39].
The simulation infrastructure used in this study is different
from that used for multi-bit AVF measurement; however,
this study is focused on examining program-level masking
behavior, not microarchitectural behavior. The workloads for
our study come from the AMD OpenCL sample suite [2].

To determine the prevalence of ACE interference, we
first identify SDC ACE bits in each benchmark with a
set of 5,000 random single-bit fault injections. SDC ACE
bits are determined by comparing program output to a
baseline output obtained without injecting faults. We then
create multi-bit fault groups using the identified SDC ACE
bits and adjacent bits, and inject multi-bit faults into these
fault groups. We report the number of fault groups that
exhibit ACE interference. The fraction of fault groups with
ACE interference estimates the probability of multiple faults
interacting in such a way as to change the ACEness of
surrounding bits. We intuitively expect such interaction to be
low, allowing us to describe multi-bit ACE behavior using
single-bit ACE behavior.

We perform multi-bit injections for 2x1, 3x1, and 4x1
fault modes and report the results in Table II. We report the
number of identified SDC ACE bits for each benchmark and
the number of fault groups with ACE interference for each
fault mode.

Table II shows that out of 1730 total ACE bits, only
2 multi-bit fault groups (0.1%) showed ACE interference.
The majority of workloads have no multi-bit fault groups
that exhibit ACE interference. The interactions resulting in
ACE interference are complex. In PrefixSum, for example,
both the single-bit injection and multi-bit injection with ACE
interference caused a change in control flow which caused

Benchmark SDC ACE Bits Multi-bit Fault Groups
with ACE Interference
2x1 3x1 4x1

ScanLargeArrays 36 0 0 0
DCT 199 0 0 0
DwtHaar1D 12 0 0 0
FastWalshTransform 236 0 0 1
Histogram 300 0 0 0
MatrixTranspose 300 0 0 0
PrefixSum 300 0 1 0
RecursiveGaussian 47 0 0 0
MatrixMultiplication 300 0 0 0

Table II: ACE interference in multi-bit faults. SDC ACE bits were identified
by single-bit fault injection. Only 0.1% of multi-bit fault groups containing
SDC ACE bits exhibited ACE interference.

program execution to diverge. For the multi-bit injection,
execution converged again to the fault-free instruction stream
412 instructions later, eventually leading to the same output
as the fault-free case. For the single-bit injection, the execu-
tion never converged, leading to incorrect output at the end
of execution.

From this study, we conclude that using ACE analysis
to estimate SDC AVF will likely have low error due to
program-level interactions between multiple flipped bits.
Therefore, multi-bit ACE analysis can serve as an accurate
early estimate of SDC MB-AVF during architecture of a
processor.

B. Estimating Silent Data Corruption MB-AVF

Determining SDC MB-AVF through ACE analysis is
similar to the process for DUE MB-AVF, with a few differ-
ences. Again, two measurements must be considered when
determining the effect of a protection domain overlapped
with a fault group: the ACEness of the region and the
action taken by the protection domain on observing the fault.
For DUE analysis, single-bit ACE analysis was required to
determine the ACEness of regions and groups. For SDC
analysis, program-level masking behavior (e.g., dynamic
deadness [25]) must be accounted for as part of the single-bit
AVF ACE analysis.

The ACEness of an overlapped region is determined
using Equation 5. Using this information, the reaction of
the protection domain, and the results of the program-level
masking analysis, the region can be classified as: unACE,
true DUE ACE, false DUE ACE, or SDC ACE. SDC ACE
results when a region is undetected and affects program
output. A region that is undetected but does not affect
program output is unACE. The ACEness of the fault group is
then the ACEness of the worst-case region in the group. For
instance, if any region in a group is SDC ACE, the group is
SDC ACE. Next in order of precedence is true DUE ACE,
followed by false DUE ACE and unACE.

In cache structures, we classify a fault group with both
SDC and DUE ACE overlapped regions as SDC ACE
because we cannot guarantee that the DUE ACE region will
be detected before the SDC ACE region has propagated



Figure 7: MB-AVF ACE analysis of a 3x1 fault over two parity-protection domains. A fault that affects B0-B2 will be undetected in PD0, causing SDC
if either B0 or B1 is ACE. Time that is SDC ACE in PD0 and DUE ACE in PD1 is classified as SDC ACE in group G0 because we cannot guarantee
detection of the error in PD1 before data in PD0 propagates to program output.

(a) Parity, x2 Index-Physical Interleaving (b) Parity, x2 Way-Physical Interleaving

Figure 8: SDC MB-AVF for 3x1 faults in the L1 cache for MiniFE. Without MB-AVF analysis, designers conservatively would assume that all 3x1 faults
caused SDC. In reality, MiniFE sees SDC MB-AVFs between 50% and 95%, and also DUE MB-AVFs of 5-30%. Furthermore, index-physical interleaving
has a 1.8x lower SDC MB-AVF than way-physical interleaving.

to program output. This simplification is not fundamental
to our approach, and we relax this for other structures in
Section VIII.

Figure 7 illustrates this process with an example 3x1
fault group. This figure depicts fault group G0 overlapping
parity-protection domains PD0 and PD1 over a period of 30
cycles. To calculate the MB-AVF of these bits, ACE analysis
is used to calculate the ACEness of this group over this
30-cycle period. We first perform single-bit ACE analysis
to determine ACE and unACE cycles for each individual
bit. We then analyze each overlapped region between the
fault group and any protection domains separately. Consider
the overlap with PD0, which is a parity-protection domain
containing two bits from the fault group. If a 3x1 multi-
bit fault occurs, this protection domain will not be able to
detect this fault. Because of this, we can classify the ACE
time in bits B0 and B1 as SDC. Considering the overlap
with PD1, which contains one bit from the fault group, we
can determine the protection domain will detect all errors
on reading the data. We can therefore classify all ACE time
as DUE. Because of the precedence described earlier, all
cycles resulting in SDC in at least one overlapped region
are SDC ACE in the group, and all cycles with no SDC
ACE regions but at least one DUE ACE region are DUE

ACE in the group.

C. SDC MB-AVF Results
Figure 8 shows DUE and SDC AVF for 3x1 faults with

parity and x2 index-physical and way-physical interleaving
when running MiniFE. The figure shows that SDC MB-AVF
is significantly higher than DUE MB-AVF for both interleave
modes, but there is a non-trivial rate of DUE for 3x1 faults.
This is because a 3x1 fault group may contain one DUE
ACE line and zero SDC ACE lines. Each 3x1 fault can
result in SDC in one fault group (two flipped bits), and DUE
in another fault group (one flipped bit). Whether the SDC
and DUE fault groups are ACE or unACE determines the
relative values of the SDC and DUE MB-AVFs, and depends
on the access pattern of the workload. In the absence of
MB-AVF measurements, designers typically are forced to
assume that all 3x1 faults cause SDC. Our results show that
this assumption overestimates the SDC rate by up to 2x for
MiniFE. Moreover, this assumption underestimates the DUE
rate because DUE MB-AVFs are 5-30% in MiniFE. Other
benchmarks exhibit similar behaviors.

Figure 9 plots the MB-AVF for 5x1 through 8x1 fault
modes with SEC-DED ECC and x2 way-physical interleav-
ing for all benchmarks. There are three interesting findings
in this figure. First, the figure shows that the SDC AVF



Figure 9: SDC MB-AVF for 5x1 through 8x1 faults with SEC-DED ECC
and x2 interleaving. The SDC MB-AVF plateaus for larger fault modes due
to high ACE locality within cache lines.

Figure 10: False DUE is a small contributor to AVF on average, but it
doubles the DUE AVF in certain benchmarks. Changes in false DUE across
fault modes depend on workload access pattern.

increases substantially from 5x1 to 6x1 faults. With x2
interleaving, 5x1, 6x1, 7x1, and 8x1 faults each affect
exactly two cache lines. With a 5x1 fault, however, one of
the two cache lines will detect the fault because it has only
two erroneous bits. Therefore, some of the 5x1 MB-AVF
is DUE. The 6x1 faults, by contrast, are undetected in all
affected cache lines, and thus all 6x1 MB-AVF are SDC.

Second, the SDC AVF plateaus or shows only a slight
increase from 6x1 to 8x1 faults because bits within a cache
line tend to have high ACE locality, and all three of these
fault modes affect the same number of cache lines. There-
fore, 8x1 faults do not cause substantially more SDC cases
than 6x1 faults. This is a general result for any structure that
exhibits high ACE locality within a protection domain.

D. Measuring False DUE

Figure 9 also shows that the 5x1 SDC MB-AVF is some-
times lower than the DUE SB-AVF (depicted as bars less
than 1 in the figure). This is a consequence of false DUE.
False DUE are detected uncorrected errors that would not
have resulted in incorrect program output if left undetected.
This quantifies the expected increase in error rate when
adding protection. Figure 10 shows the amount of true and
false DUE in the L1 cache for our workloads, plotted by fault
mode. Benchmarks not shown on this plot had negligible
levels of false DUE.

On average, false DUE is a small contributor to overall

Fault Mode 1x1 2x1 3x1 4x1 5x1 6x1 7x1 8x1
Fault Rate 96.4 3.0 0.2 0.1 0.1 0.05 0.05 0.025

Table III: Fault rates used for our study. We set the total fault rate to 100
and derive multi-bit fault percentages from [17].

DUE. However, certain benchmarks exhibit high levels of
false DUE. In CoMD, 41% of the single-bit DUE AVF
is false DUE. The contribution decreases slightly for 4x1
faults, where 36% of the 4x1 DUE MB-AVF is false DUE.
In srad, on the other hand, 29% of the single-bit DUE AVF
is false DUE, while 50% of the 4x1 DUE MB-AVF is false
DUE. These differing trends are the result of different cache
access patterns between the two workloads.

VIII. CASE STUDY: USING MB-AVF FOR DESIGN

In this section, we demonstrate the use of multi-bit AVF
and multi-bit ACE analysis during the design process. We
focus on specifying protection to meet SDC targets in the
GPU vector general-purpose register file (VGPR), one of
the largest on-chip SRAM structures [1]. This is typical of
studies done during the architecture stage of a processor’s
design cycle. The goal is to minimize overall die area spent
on reliability while achieving specified soft error rate targets.
For this study, we compare MB-AVF analysis to using SB-
AVF to approximate MB-AVFs for all fault modes, a typical
approximation made in absence of MB-AVF analysis.

As shown in Table III, we assume a total fault rate of
100 broken down into single- and multi-bit faults up to
8 bits as per the study by Ibe et al. for a 22nm process
technology [17]. We assume that each 32-bit register has
its own ECC or parity. We compare SEC-DED ECC, which
has an area overhead of 21.9%, to parity, which has an area
overhead of 3.1%. We assume that registers are interleaved
to protect against multi-bit faults. We model two different
styles of interleaving: intra-thread interleaving, in which
different registers from the same GPU thread are interleaved
(e.g., R0 and R1 from thread 0); and inter-thread inter-
leaving, in which registers from different GPU threads are
interleaved (e.g., R0 from thread 0 and R0 from thread 1).

In Section VII-B, our modeling treated a fault group with
overlapping SDC ACE and DUE ACE as SDC ACE because
we could not guarantee detection of the DUE before the SDC
propagated to program output. However, a GPU reads and
writes registers from multiple threads simultaneously. In our
model, operations occur on 16 threads at a time. Therefore,
when inter-thread interleaving is performed within groups of
16 threads, a fault group in the VGPR with overlapping SDC
ACE and DUE ACE will detect the DUE before the SDC
propagates to program output. We account for this when
modeling the MB-AVF of inter-thread interleaving.

A. Results
Figure 11 shows SDC rates for several design points,

summed over all fault modes and averaged across bench-
marks, from MB-AVF analysis as well as from using SB-



Figure 11: SDC MB-AVF of the GPU VGPR with parity or ECC and intra-
thread x2 and x4 (rx2 and rx4), and inter-thread x2 and x4 (tx2 and tx4)
interleaving. MB-AVF analysis yields lower SDC rates than approximating
MB-AVFs with SB-AVFs, and shows that inter-thread interleaving has lower
SDC than intra-thread.

AVF to approximate MB-AVFs. The figure provides two
interesting insights. First, applying MB-AVF analysis can
reduce SDC estimates relative to approximating MB-AVFs
from SB-AVFs. This is because MB-AVF analysis correctly
identifies more multi-bit faults that cause DUE, rather than
SDC, and classifies a larger fraction of total AVF as DUE
AVF rather than SDC AVF.

Second, the figure shows that parity with x4 inter-thread
interleaving has substantially lower SDC than ECC with x2
interleaving, including 86% and 71% lower SDC than ECC
with intra-thread and inter-thread interleaving, respectively.

This result is due to two effects. First, inter-thread inter-
leaving outperforms intra-thread interleaving because most
fault groups that contain SDC ACE bits also contain DUE
ACE bits. Therefore, many SDCs in those fault groups are
converted to DUEs by an adjacent thread’s DUE when inter-
thread interleaving is used. Second, ECC may not detect any
fault greater than its detection capability (e.g., ECC with x2
interleaving can miscorrect 6x1 and 7x1 faults). Parity, on
the other hand, guarantees detection of all faults with an odd
number of bit flips (e.g., parity with x2 interleaving detects
all 6x1 faults and many 7x1 faults because both fault modes
create at least one overlapped region with a 3-bit fault).
Therefore, as large multi-bit faults become more common,
parity may have a detection advantage over ECC.

One implication of this result is that parity may be a
better choice than ECC in systems in which detection is
the primary concern, such as systems with higher-level
rollback/recovery mechanisms. In addition, future systems
may be better off decoupling detection from correction
(e.g., [20]) to meet reliability targets.

IX. CONCLUSION

As spatial multi-bit faults become more common, it will
be more important to have accurate analyses of their impact
on a system. Estimating multi-bit architectural vulnerability
factors allows architects to model the impact of multi-bit
faults at design time and to deploy appropriate strategies to
protect their designs. In this paper, we proposed a method

to quantify AVFs for spatial multi-bit faults. We proposed
an architecturally correct execution analysis methodology
to measure multi-bit detected uncorrected error AVFs and
found that these MB-AVFs vary independently from single-
bit AVFs. We also extended this methodology to estimate
multi-bit silent data corruption AVFs and confirmed that the
model estimates SDC AVFs to reasonable precision. Finally,
we demonstrated the use of MB-AVFs to make area and
reliability trade-offs during processor design.

ACKNOWLEDGEMENTS

David R. Kaeli, Fritz Previlon, and Mark Wilkening
were supported in part by NSF CISE grant SHF-1017439.
AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product
names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

REFERENCES

[1] AMD, “AMD graphics cores next (GCN) architecture,”
http://www.amd.com/Documents/GCN Architecture
whitepaper.pdf, 2012.

[2] ——, “OpenCL accelerated parallel processing (APP) SDK,”
http://developer.amd.com/tools-and-sdks/heterogeneous-
computing/amd-accelerated-parallel-processing-app-
sdk/downloads/, 2013.

[3] R. F. Barrett, M. A. Heroux, P. T. Lin, C. T. Vaughan, and
A. B. Williams, “Mini-applications: Vehicles for co-design,”
in SC’11 Companion, 2011, pp. 1–2.

[4] F. Bauer, G. Georgakos, and D. Schmitt-Landsiedel, in
Integrated Circuit and System Design. Power and Timing
Modeling, Optimization and Simulation, L. Svensson and
J. Monteiro, Eds. Berlin, Heidelberg: Springer-Verlag, 2009,
ch. A Design Space Comparison of 6T and 8T SRAM Core-
Cells, pp. 116–125.

[5] R. Baumann, “Radiation-induced soft errors in advanced
semiconductor technologies,” IEEE Trans. on Device and
Materials Reliability, vol. 5, no. 3, pp. 305–316, Sept. 2005.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[7] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukher-
jee, and R. Rangan, “Computing architectural vulnerability
factors for address-based structures,” in Int’l Symposium on
Computer Architecture (ISCA), 2005, pp. 532–543.

[8] A. Biswas, P. Racunas, J. Emer, and S. Mukherjee, “Com-
puting accurate AVFs using ACE analysis on performance
models: A rebuttal,” IEEE Computer Architecture Letters,
vol. 7, no. 1, pp. 21–24, 2008.

[9] A. Biswas, N. Soundararajan, S. S. Mukherjee, and S. Guru-
murthi, “Quantized AVF: A means of capturing vulnerability
variations over small windows of time,” in Workshop on
System Effects of Logic Soft Errors (SELSE), 2009.

[10] S. Che, M. Boyer, M. Jiayuan, D. Tarjan, J. W. Sheaffer, S.-
H. Lee, and K. Skadron, “Rodinia: A benchmark suite for
heterogeneous computing,” in Int’l Symposium on Workload
Characterization, Oct. 2009, pp. 44–54.



[11] C. Constantinescu, M. Butler, and C. Weller, “Error injection-
based study of soft error propagation in AMD Bulldozer
microprocessor module,” in Int’l Conference on Dependable
Systems and Networks (DSN), 2012, pp. 1–6.

[12] A. Dixit, R. Heald, and A. Wood, “Trends from ten years of
soft error experimentation,” in Workshop on Silicon Errors in
Logic - System Effects (SELSE), 2009.

[13] N. Farazmand, R. Ubal, and D. Kaeli, “Statistical fault
injection-based analysis of a GPU architecture,” in Workshop
on Silicon Errors in Logic - System Effects (SELSE), 2012.

[14] N. J. George, C. R. Elks, B. W. Johnson, and J. Lach,
“Bit-slice logic interleaving for spatial multi-bit soft-error
tolerance,” in Int’l Conference on Dependable Systems and
Networks (DSN), 2010, pp. 141–150.

[15] ——, “Transient fault models and AVF estimation revisited,”
in Int’l Conference on Dependable Systems and Networks
(DSN), 2010, pp. 477–486.

[16] I. S. Haque and V. S. Pande, “Hard data on soft errors: A
large-scale assessment of real-world error rates in GPGPU,”
in Int’l Conference on Cluster, Cloud and Grid Computing
(CCGRID), 2010, pp. 691–696.

[17] E. Ibe, H. Taniguchi, Y. Yahagi, K.-I. Shimbo, , and T. Toba,
“Impact of scaling on neutron-induced soft error in srams
from a 250 nm to a 22 nm design rule,” in IEEE Transactions
on Electron Devices, Jul 2010, pp. 1527–1538.

[18] H. Jeon, M. Wilkening, V. Sridharan, S. Gurumurthi, and
G. Loh, “Architectural vulnerability modeling and analysis
of integrated graphics processors,” in Workshop on Silicon
Errors in Logic - System Effects (SELSE), Stanford, CA,
March 2012.

[19] H. Jeon and M. Annavaram, “Warped-DMR: Light-weight
error detection for GPGPU,” in Int’l Symposium on Microar-
chitecture (MICRO), Dec 2012, pp. 37–47.

[20] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Ku-
mar, “Low-power, low-storage-overhead chipkill correct via
multi-line error correction,” in Int’l Conference on High
Performance Computing, Networking, Storage and Analysis
(SC’13), 2013, pp. 24:1–24:12.

[21] S. Kim and A. K. Somani, “Soft error sensitivity characteriza-
tion for microprocessor dependability enhancement strategy,”
in Int’l Conference on Dependable Systems and Networks
(DSN), 2002.

[22] P. Koopman and T. Chakravarty, “Cyclic redundancy code
(CRC) polynomial selection for embedded networks,” in Int’l
Conference on Dependable Systems and Networks (DSN),
2004, pp. 145–154.

[23] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Architecture-
level soft error analysis: Examining the limits of common
assumptions,” in Int’l Conference on Dependable Systems and
Networks (DSN), 2007.

[24] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Charac-
terization of multi-bit soft error events in advanced SRAMs,”
in Digest of Electron Devices Meeting, December 2003, pp.
21.4.1–21.4.4.

[25] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt,
and T. Austin, “A systematic methodology to compute the
architectural vulnerability factors for a high-performance
microprocessor,” in Int’l Symposium on Microarchitecture
(MICRO), 2003.

[26] A. A. Nair, S. Eyerman, L. Eeckhout, and L. K. John, “A
first-order mechanistic model for architectural vulnerability
factor,” in Int’łSymposium on Computer Architecture (ISCA),
2012, pp. 273–284.

[27] E. Normand, “Single event upset at ground level,” IEEE
Transactions on Nuclear Science, vol. 43, no. 6, pp. 2742–
2750, Dec 1996.

[28] A. M. Saleh, J. J. Serrano, and J. H. Patel, “Reliability of
scrubbing recovery-techniques for memory systems,” IEEE
Transactions on Reliability, pp. 114–122, Apr 1990.

[29] N. Seifert, B. Gill, S. Jahinuzzaman, J. Basile, V. Ambrose,
S. Quan, R. Allmon, and A. Bramnik, “Soft error susceptibil-
ities of 22nm tri-gate devices,” IEEE Transactions on Nuclear
Science, pp. 2666–2673, Dec 2012.

[30] S. Shazli, M. Abdul-Aziz, M. Tahoori, and D. Kaeli, “A
field analysis of system-level effects of soft errors occurring
in microprocessors used in information systems,” in IEEE
International Test Conference (ITC), 2008, pp. 1–10.

[31] C. Slayman, “Soft error trends and mitigation techniques in
memory devices,” in Annual Reliability and Maintainability
Symposium (RAMS), Jan. 2011, pp. 1–5.

[32] V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural
dependency from architectural vulnerability,” in Int’l Sympo-
sium on High Performance Computer Architecture (HPCA-
15), 2009, pp. 117–128.

[33] ——, “Using hardware vulnerability factors to enhance AVF
analysis,” in Int’l Symposium on Computer Architecture
(ISCA), 2010, pp. 461–472.

[34] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard,
and S. Gurumurthi, “Feng shui of supercomputer memory:
Positional effects in DRAM and SRAM faults,” in Int’l Conf.
for High Performance Computing, Networking, Storage and
Analysis (SC’13), 2013, pp. 22:1–22:11.

[35] J. Suh, M. Annavaram, and M. Dubois, “MACAU: A Markov
model for reliability evaluations of caches under single-
bit and multi-bit upsets,” in Int’l Symposium on High-
Performance Computer Architecture (HPCA), 2012, pp. 1–12.

[36] J. Suh, M. Manoochehri, M. Annavaram, and M. Dubois,
“Soft error benchmarking of L2 caches with PARMA,” in
Joint Int’l Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), 2011, pp. 85–96.

[37] L. G. Szafaryn, B. H. Meyer, and K. Skadron, “Evaluating
overheads of multibit soft-error protection in the processor
core,” IEEE Micro, pp. 56–65, July-Aug 2013.

[38] J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing soft-
error vulnerability on GPGPU microarchitecture,” in Int’l.
Symposium on Workload Characterization, 2011.

[39] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli,
“Multi2Sim: A simulation framework for CPU-GPU com-
puting,” in Int’l Conference on Parallel Architectures and
Compilation Techniques (PACT), Sep. 2012.

[40] K. R. Walcott, G. Humphreys, and S. Gurumurthi, “Dynamic
prediction of architectural vulnerability from microarchitec-
tural state,” in Int’l Symposium on Computer Architecture
(ISCA), 2007, pp. 516–527.

[41] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE
analysis reliability estimates using fault-injection,” in Int’l
Symposium on Computer Architecture (ISCA), 2007, pp. 460–
469.

[42] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Rein-
hardt, “Techniques to reduce the soft error rate of a high-
performance microprocessor,” in International Symposium on
Computer Architecture (ISCA), 2004, pp. 264 – 275.

[43] Y. Zhang, S. Ghosh, J. Huang, J. W. Lee, S. A. Mahlke,
and D. I. August, “Runtime asynchronous fault tolerance via
speculation,” in Int’l Symposium on Code Generation and
Optimization (CGO), 2012, pp. 145–154.


