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Abstract—Until recently, soft error reliability has been focused
on single-bit errors and as a consequence, methodologies for
Architectural Vulnerability Factor (AVF) analysis have been well
defined and established for single-bit faults. However, studies have
shown that multi-bit faults are becoming more prevalent with
technology scaling [1]. If this trend continues, multi-bit faults
will eventually become a high percentage of all microprocessor
faults.

Research into modeling methodologies for multi-bit faults is
scarce. Recently, we presented an Architecturally Correct Execu-
tion (ACE) analysis methodology to evaluate the AVF of spatial
multi-bit faults (MB-AVF) [2]. We used our methodology to study
multi-bit AVF by extending the ACE analysis infrastructure
of a performance simulator. While this methodology precisely
measures AVF for Detected Unrecoverable Errors (DUEs), it only
approximates AVF for Silent Data Corruptions (SDC). This is
because the methodology determines a bit’s ACE state using a
single-bit ACE analysis. However, a bit’s ACE state may change
due to the presence of another bit flip, a condition termed ACE
interference, and this effect will not be captured by the MB-AVF
modeling methodology. As a result, our SDC calculation method
is accurate only if ACE interference is rare for multi-bit faults.

In this paper, we present a fault injection study to determine
the prevalence of ACE interference in typical benchmarks ex-
ecuting on a GPU. Our results show that ACE interference is
a rare event in GPUs: we found that the ACE state of a bit
rarely changes in presence of other faults. These results support
the conclusion that our multi-bit ACE analysis can accurately
estimate the SDC AVF of a processor design.

I. INTRODUCTION

With hundreds of cores and improved programmability,
Graphics Processing Units (GPUs) have become the compute
accelerator of choice for general purpose and supercomput-
ing applications. However, these high-throughput devices are
designed primarily for graphics rendering (written in DirectX
and OpenGL), which tend to be fault insensitive compared
to the applications that leverage the GPU for computation.
As more and more applications start to leverage the GPU for
compute acceleration, GPU reliability is quickly becoming a
major concern. Reliability studies have shown that particle-
induced transient faults in SRAM are major contributors to the
rate of microprocessor faults [3]. These transient faults arise
from high-energy particle strikes, which deposit charge onto
transistors as they pass through a silicon device. A sufficient
deposited charge has the potential to invert the state of a logic
device, therefore causing a temporary fault in this device.

To cope with transient faults, microprocessor vendors estab-
lish target fault rates for each design. Designers then perform
extensive analysis to ensure that a design meets these target
fault rates. One such analysis is architectural vulnerability
factor (AVF) analysis, which measures the fraction of faults
in a structure that become program-visible errors. When com-
bined with the raw fault rate of a structure, AVF can be used
to calculate the soft error rate of a structure. Widely-used
techniques to measure AVFs include statistical fault injection
and ACE analysis [4][5][6]. These two methods help designers
analyze the AVF of an architecture in various stages of the
design process.

A fault injection campaign compares the reference behavior
of the circuit for a given workload (that is, the correct behavior
validated by the designer) with the behavior obtained in the
presence of each fault in a predetermined set [7]. Hardware-
implemented fault injection, software-implemented fault in-
jection, and simulation-based fault injection are the three
most common approaches used to evaluate and study error-
handling mechanisms. Error injection techniques, at high-level
abstraction layers, are helpful to understand application-level
erroneous behaviors [8].

ACE analysis identifies bits necessary for architecturally
correct execution (ACE bits) of a program and measures the
percentage of ACE bits in a hardware structure. Corruption
of an ACE bit results in a visible error at the output of the
program. ACE analysis is conservative, as it initially assumes
that all bits in a hardware structure are ACE, then finds the bits
that can be proven unnecessary for the correct execution of the
program (unACE bits). Hardware designers can perform ACE
analysis in performance simulators early in the design cycle.

Due to technology scaling, current trends suggest that
particle strikes will increase in size and scale, with increases
in both the number of strikes affecting multiple bits, as well
as the number of bits flipped by a single strike. Research
suggests that the multiplicity of multi-cell upset will grow
with decreasing feature size [1]. We commonly refer to these
multi-cell upsets as spatial multi-bit faults.

While there have been countless studies on single-bit tran-
sient faults and their effects, and on methodologies to quantify
AVFs for single-bit faults, few studies have assessed the impact
of spatial multi-bit transient faults. We recently introduced a
method to quantify and measure MB-AVFs for spatial multi-



bit faults [2]. Using this method, we measured MB-AVFs in
a performance simulator for detected, unrecoverable errors
(DUE MB-AVFs) and for silent data corruption errors (SDC
MB-AVFs).

Our approach relies on performing single-bit ACE analysis
to identify a bit’s ACE state, and uses these values to calculate
multi-bit AVF. As a result, our methodology does not accu-
rately classify a bit whose ACE state changes in the presence
of a fault in another bit. We refer to this behavior as ACE
interference. Because ACE interference is not captured by the
SDC ACE analysis, the calculated SDC MB-AVFs are only
approximations.

To determine whether this is a significant source of error,
we conducted a fault injection study and showed that ACE in-
terference occurs rarely, therefore introduces negligible errors
into the calculation of SDC MB-AVF. However, in our fault
injection study, we only injected faults into the vector general
purpose register file (VGPR) structure of the GPU. In this
work, we extend this fault injection study to more structures
of the GPU, including the local data share (LDS) and active
mask stack (AMS). Unlike our previous work, we also look
for two types of ACE interference. The first is when an ACE
bit becomes unACE in the presence of one or more additional
bit flips. The second case is when an unACE bit becomes ACE
in the presence of one or more additional bit flips, which has
not been studied in prior work [2].

Overall, our results further support the notion that ACE
interference is rare in common workloads, and therefore that
our methodology to calculate SDC MB-AVF using single-bit
ACE analysis is accurate enough to support early design-time
protection decisions.

The paper is organized as follows: Section II presents the
terminology used in Architectural Vulnerability Factor anal-
ysis. Section III briefly presents the methodology for multi-
bit AVF calculation as introduced in our previous work [2].
Section IV presents our experimental setup and Section V
presents our results. We finally conclude in Section VI.

II. BACKGROUND AND TERMINOLOGY

A transient fault arises from energetic particles generating
electron-hole pairs as they pass through a semiconductor
device. Transistors can collect these charges, and a sufficient
amount of accumulated charge can invert the state of a logic
device. This introduces a logical fault to the circuit’s operation.
Since this type of fault does not cause a permanent failure, it
is referred to as a soft or transient fault [9].

A single particle strike can result in two different classes of
faults: when it causes one single bit in a hardware structure to
change state, the resulting fault is termed single-bit fault; when
it affects multiple bits, the fault is termed a spatial multi-bit
fault [2]. In this work, we focus on the spatial multi-bit faults
where one particle strike leads to the flipping of multiple bits
in a hardware structure.

Multi-bit faults can happen on any number of bits in any
particular pattern. However, in this work, we focus on multi-bit

Fig. 1. A fault mode is a specific multi-bit fault pattern, and a fault group is a
set of bits in a structure that match this pattern. For example, a 2x1 multi-bit
fault mode has three unique fault groups (G0 through G2) in this 4x1 array
(B0 through B3) [2].

faults in adjacent bits. We define fault mode as a specific multi-
bit fault pattern (for example, we call a fault on 3 adjacent bits
in a cache line a 3x1 fault mode). A fault group is a set of
bits of a particular fault mode. For example, Figure 1 shows
that there are three fault groups (G0, G1, and G2) for a 2x1
fault mode on a 4-bit x 1-bit structure.

A transient fault can yield various outcomes. We start
by identifying non-error conditions, which include when the
location of the fault is either: 1) not read by the running
program, 2) read, but corrected by hardware error correction
(e.g., error correcting codes), or 3) read, but has no effect
on the program output (i.e., the output of the program in the
presence of the fault is identical to the output in an error-
free environment). These cases are all classified as unACE
because they do not affect the final program output. We then
classify the remaining error conditions as Detected Unrecov-
erable Errors (DUEs) or Silent Data Corruptions (SDCs).
These cases are both classified as ACE because the program
will generate an incorrect output. DUEs happen in hardware
structures that were designed with error detection (but not
correction) schemes, such as parity. DUEs can be further
divided into true DUEs and false DUEs. A false DUE is a
detected error that would have been unACE if left undetected,
whereas a true DUE is an error that would be ACE if left
undetected. SDCs happen when an undetected fault induces
the system to generate an erroneous output.

The fraction of the faults in a system that result in an
erroneous output is the Architectural Vulnerability Factor
(AVF) of the system. Consequently, the fraction of faults that
become DUE is called the DUE AVF for the system, and the
fraction of faults that result in SDC is the SDC AVF of the
system.

III. MULTI-BIT AVF ESTIMATION

Although the focus of this work is not on the methodology
of MB-AVF calculation, to keep our discussion self-contained,
we provide a short description of the methodology developed
in our previous work [2]. More information on the methodol-
ogy can be obtained in our paper.

A. Definition and Methodology

The MB-AVF of a hardware structure for a particular multi-
bit fault mode is defined as the fraction of faults of that



fault mode that result in a visible error in the final output
of a program. Therefore, the MB-AVF over a period of N
cycles for fault mode M of a hardware structure H containing
GH,M unique fault groups of fault mode M can be expressed
mathematically as follows:

MB-AV FH,M =

∑N
n=1 [ACE groups in H at cycle n]

GH,M ×N
(1)

B. Measurement Methodology

It is crucial to have MB-AVF estimation for both DUEs
and SDCs. Without these estimates, a designer is forced to
assume that all bits in a hardware structure are vulnerable
and add protection accordingly. This is undesirable, as it adds
unnecessary overhead in both area and power.

One method to perform MB-AVF estimation is ACE anal-
ysis. ACE analysis is conservative; thus, a designer can be
confident that AVF estimates from ACE analysis are an upper
bound on the true AVF. Therefore, under-designing protection
is not a concern when using ACE analysis.

In ACE analysis for multi-bit AVF, fault groups are consid-
ered, as opposed to single-bit ACE analysis, which considers
single bits. For multi-bit AVF, ACE analyses are performed on
different fault modes independently, that is, we will perform
perform different ACE analyses for 2x1, 3x1 and 4x1 fault
modes. Using the principles above, MB-AVF can be calculated
in a similar fashion to single-bit AVFs.

We extended a performance simulator-based ACE analysis
infrastructure to measure MB-AVFs. A multi-bit fault group
is considered ACE if any bit within that fault group is ACE.
Therefore, a fault group with no ACE bits is an unACE group.
Our prior MB-AVF work also considered protection schemes
such as parity and ECC through the use of protection domains.

MB-AVFs can be calculated for both DUEs and SDCs. As
discussed earlier, however, SDC MB-AVF measurement using
ACE analysis is an approximation because it does not consider
the effect of ACE interference. More details can be found
in [2].

C. ACE interference

As previously mentioned, we did not model ACE inter-
ference in our estimation of the SDC MB-AVF. As such,
our SDC MB-AVF estimation methodology is only valid if
ACE interference does not have a major effect on AVF. ACE
interference occurs when a bit changes ACE state in the
presence of one or more other faults in the system.

There are two types of ACE interference: 1) an ACE bit
becomes unACE in the presence of another fault; and 2) an
unACE bit becomes ACE in the presence of another fault.
An example of the first case is if a program performs an
XOR operation on 2 bits. A fault in either one of the bits
will lead to an incorrect output of the XOR operation; both
bits are individually ACE. However, if both bits are flipped
simultaneously, the XOR operation will have a correct output,
as if there were no fault present (i.e., both bits are unACE).
An example of the second case is if a program performs an

AND operation on 2 bits, both of which have value 0. Both
bits are individually unACE because a fault in either bit will
still result in a 0 from the AND. However, a fault in both
bits simultaneously will result in a 1 from the AND; thus,
both bits are ACE when flipped simultaneously. Both of these
cases break the assumption of multi-bit ACE analysis that the
ACE state of a bit does not change in the presence of other
faults in the system.

IV. EXPERIMENTAL SETUP

Fault injection is conducted using an architectural simulator,
Multi2Sim [10]. In Multi2Sim, we can inject errors during
any cycle of the runtime of any hardware model. The fault
mechanism is not specific to the microarchitecture and can be
applied to different GPU architectures [11]. For this experi-
ment, the AMD RadeonTM5870 was used. A fault file with the
fault information such as the fault mode, location, and time
is fed to the simulator. A fault is represented by a bit flip
in the simulated hardware structure at the specified cycle and
location. The faulty value is potentially propagated to other
locations or masked by the program.

To perform our ACE interference study, we first performed
a round of at least 5000 random single-bit fault injections
for each workload in order to identify single-bit ACE and
unACE faults. Although our goal is not to statistically estimate
the AVF of the workloads, we observed that, for most of our
benchmarks, the AVF tends to show little variance after 5000
fault injections. We identify the faults that induce erroneous
output by comparing the output of each run with that of a fault-
free run. We then inject 2x1, 3x1, and 4x1 multi-bit faults in
the identified ACE bits and adjacent bits. A correct output
obtained with any of the multi-bit faults indicates an ACE
interference with this ACE bit.

Next, we identify groups of all unACE bits (adjacent bits
which, if flipped individually, will not cause an erroneous
output) starting with the previously determined single-bit
unACE faults. We then perform 2x1, 3x1 and 4x1 multi-bit
injections on these fault groups. An incorrect output obtained
with any of these fault groups indicates an instance of ACE
interference.

We used workloads from the AMDAPP SDK benchmark
suite [12]. We inject faults into three different structures of
the GPU, the vector general-purpose register file (VGPR), the
local data share (LDS) and the Active Mask Stack (AMS).
These structures are large and occupy a substantial fraction of
GPU die area in modern GPU processors [13].

V. RESULTS

This section presents the results of our fault injection
studies. These results include both the case of a single ACE bit
becoming unACE in the presence of another fault as well as
the case of multiple unACE bits becoming ACE when flipped
together.

As the AVF for each hardware structure varies across the
workloads, we selected workloads which had a relatively high
number of single-bit ACE faults. The number of injections for



TABLE I
ACE INTERFERENCE IN VGPR MULTI-BIT FAULTS.

Benchmark SDC ACE Bits Multi-bit Fault Groups
with ACE Interference SDC un-ACE Bits Multi-bit Fault Groups

with ACE Interference
2x1 3x1 4x1 2x1 3x1 4x1

DCT 199 0 0 0 396 0 0 0
DwtHaar1D 12 0 0 0 500 0 0 0
FastWalshTransform 236 0 0 1 300 0 0 0
Histogram 300 0 0 0 300 0 0 0
MatrixMultiplication 300 0 0 0 300 0 0 0
MatrixTranspose 300 0 0 0 350 0 0 0
PrefixSum 300 0 1 0 300 0 0 0
RecursiveGaussian 47 0 0 0 300 0 0 0
ScanLargeArrays 36 0 0 0 300 0 0 0

TABLE II
ACE INTERFERENCE IN LDS MULTI-BIT FAULTS.

Benchmark SDC ACE Bits Multi-bit Fault Groups
with ACE Interference SDC un-ACE Bits Multi-bit Fault Groups

with ACE Interference
2x1 3x1 4x1 2x1 3x1 4x1

DCT 16 0 0 0 577 0 0 0
DwtHaar1D 9 0 0 0 800 0 0 0
Histogram 4800 0 0 0 182 0 0 0
MatrixMultiplication 68 0 0 0 700 0 0 0
MatrixTranspose 19 0 0 0 1860 0 0 0
PrefixSum 319 0 0 0 2979 0 0 0
RecursiveGaussian 47 0 0 0 100 0 0 0
Reduction 245 0 0 0 1000 0 0 0
ScanLargeArrays 35 0 0 0 2359 0 0 0

TABLE III
ACE INTERFERENCE IN AMS MULTI-BIT FAULTS.

Benchmark SDC ACE Bits Multi-bit Fault Groups
with ACE Interference SDC un-ACE Bits Multi-bit Fault Groups

with ACE Interference
2x1 3x1 4x1 2x1 3x1 4x1

DCT 54 0 0 0 75 0 0 0
DwtHaar1D 5 0 0 0 975 0 0 0
Histogram 12 0 0 0 1 0 0 0
MatrixMultiplication 99 0 0 0 1000 0 0 0
MatrixTranspose 39 0 0 0 237 0 0 0
PrefixSum 24 0 0 0 900 0 0 0
RadixSort 12 0 0 0 3 0 0 0
Reduction 21 0 0 0 500 0 0 0
ScanLargeArrays 5 0 0 0 458 0 0 0

each benchmark/structure was chosen based on the number
of ACE bits and unACE bits identified after the single-bit
injections.

In our experiments, we observe that the second type of
interference is extremely rare. An unACE bit is very likely
to remain unACE in the presence of other faults, unless these
other faults were ACE to begin with.

A. Vector General Purpose Register File (VGPR)

We performed an ACE interference study in the vector
register file of the GPU. The results are presented in Table I.
Out of 1730 injections into single-bit SDC ACE locations, we
observe only 2 cases of interference, in FastWalshTransform
and PrefixSum. We found no cases of interference in single-
bit unACE locations. For the cases of interference, while both
the single-bit and the multi-bit faults caused the program to
diverge from its execution path, in the case of the multi-bit
faults, the program converged back to its correct execution
path a few hundred cycles later. This was not the case for
the single-bit faults. These were essentially occurrences of Y

branches: branches that do not affect correct program behavior
when forced down the incorrect path [14].

Overall, only 0.1% of fault groups showed ACE inter-
ference, indicating that ACE interference is not a common
occurrence in the GPU register file.

B. Local Data Share (LDS)

The results of injections into the local data share (LDS) are
shown in Table II. This study on the local data share shows
that interference is not an issue in common GPU workloads.

One particularly interesting case was ScanLargeArrays. This
benchmark shows no ACE interference when we perform bit-
by-bit comparisons of the output of each run to the golden
run. However, if we instead compare the output of each run
to the golden run using a threshold criterion (i.e., a small
difference in numerical results is acceptable), we found that,
this benchmark exhibits a significant amount of interference,
where single ACE bits would seem to become unACE in
the presence of adjacent faults. These faults occurred at the
exponent fields of floating point values contained in the local



data share and caused these values to pass the self-checking
mechanism of this benchmark. More than 75% of our 4x1
injections led to output values close enough to be considered
correct within this threshold. This makes an interesting case for
future work to analyze ACE interference on approximate com-
puting workloads, where approximate values can be treated as
correct output.

C. Active Mask Stack (AMS)

The Active Mask Stack is a structure that influences the
control flow of a program. Faults in the AMS can result
in computing extraneous code or wrongly continuing the
execution of a basic block. For this reason, we expect that
if a single-bit fault in the AMS induced an erroneous output,
it will almost certainly always produce an erroneous output,
whether or not another faulty bit is present. The results in
Table III confirm our assumptions.

VI. CONCLUSION AND FUTURE WORK

As multi-bit faults are receiving more attention from re-
searchers, it becomes more crucial to agree on standards
and methodology to evaluate the vulnerability of hardware
structures in the presence of these faults.

In this paper, we confirmed the methodology we previously
presented [2] to estimate Multi-Bit AVFs is accurate. To do this
we expanded the fault injection study we had done previously
on the register file to include additional structures of a GPU.

Our results show that ACE interference is a rare event in
GPUs: we found that an SDC ACE bit rarely becomes unACE
in the presence of other faults in the system, and vice versa,
an unACE bit rarely becomes ACE in the presence of another
unACE bit. Thus, ACE interference will have a negligible
impact on SDC MB-AVF estimates. Our results further support
prior work that asserts that ACE analysis can be used to
produce accurate SDC MB-AVF values, and so can be used
to guide early design-time protection decisions.

Future work includes generalizing these results to approx-
imate computing workloads and other microarchitectures, in-
cluding different GPU microarchitectures and to CPUs.
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