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ABSTRACT: Structural collapse is traditionally associated with the exceedance of a target value of 
inter-story drift or plastic hinge rotation at structural components. However, such an approach may not 
accurately estimate the structural collapse potential due to load redistribution and variation of structural 
damage within the structure. Moreover, collapse prediction may be sensitive to such assumed threshold 
values. Therefore, in this study, energy balance of a structural system is utilized to represent the severe 
structural damage history that eventually leads to structural collapse. Performing energy-based collapse 
analyses, a new dynamic-instability based collapse criterion is developed and key collapse measures 
are identified. Using the results, a new collapse fragility model is then established for estimating and 
improving structural reliability against collapse. Moreover, extensive parametric studies are performed 
to investigate sensitivity of collapse fragilities to variability in structural and earthquake parameters. 

 
1. INTRODUCTION 
Accurate estimate of collapse likelihood of 
buildings under seismic excitations has recently 
become critical in efforts to promote life safety 
and hazard-resilience of the society. Despite 
recent advances in structural collapse assessment, 
accurate prediction of structural collapse with 
systematic incorporation of uncertainty still 
remains a question.  

The most commonly used approach to 
assess the collapse capacity of structures under 
extreme earthquakes is based on the concept of 
incremental dynamic analysis (IDA; 
Vamvatsikos and Cornell, 2002). The IDA 
approach is based on the behavior of so-called 
“IDA curves,” which track the relationship 
between an “intensity measure (IM)” and a 
“damage measure” (DM) evaluated for several 
ground motions at incrementally increased 
intensity levels. Uncertainties in structural 

properties and applied ground motions can be 
integrated into probabilistic description of 
structural collapse performance by adopting the 
probabilistic basis of performance–based 
earthquake engineering (PBEE) framework 
together with IDA. The maximum inter-story 
drift ratio (IDR) is often selected as the measure 
to represent the global behavior of structural 
system in the PBEE framework. Likewise, the 
occurrence of “collapse” is usually indicated by 
acceleration of IDR towards “infinity” such that 
the IDA curves become almost flat, but this may 
not be clear due chaotic structural behavior. 
Therefore, assumed threshold values based on 
IDR such as DM-based rule (e.g., exceedance of 
10% maximum drift) or IM-based rule on slope 
of IDA curve between IDR and elastic spectral 
acceleration (e.g., lower than 20% of the initial 
IDA slope) are most commonly used limit-states 
to identify structural collapse capacity. However, 
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collapse assessment approaches based on IDR or 
other mostly used parameters such as plastic 
hinge at a component may not accurately 
represent the overall collapse behavior of 
structural systems due to load redistribution and 
variation of structural damage within the 
structure. Moreover, collapse prediction is found 
to be sensitive to such subjective collapse limit-
states based on some assumed threshold values. 

Characterization of overall cumulative and 
load-path dependent performance of structures 
considering aforementioned uncertainties is 
needed for accurate and reliable collapse risk 
assessment. Since energy parameters at system-
level are aggregated quantities considering re-
distribution and variation of each individual 
component-damage within the structural system, 
they can be excellent indicators to represent total 
severe structural damage history due to cyclic-
loading just before collapse. This paper therefore 
focuses on energy-based analysis of structures to 
assess seismic collapse risk. 

Among few collapse experiments reported 
in the literature, three steel experimental case 
studies are selected to develop computational 
models validated near collapse. Using the 
validated computational models, a new dynamic-
instability-based collapse limit-state and the most 
effective collapse descriptor representatives of 
structural global behavior history are identified 
based on the energy balance of a structural 
system. A new collapse fragility model is then 
introduced using the developed collapse criteria 
and collapse descriptor for reliable probabilistic 
evaluation of structural collapse. Finally, the 
effects of earthquake characteristics and 
structural parameters on the developed collapse 
fragilities are investigated for the purpose of 
estimating and improving structural reliability 
against collapse. 

In the following sections, a brief summary 
of the study is presented, while giving more 
details on the development of new probabilistic 
approaches in structural collapse assessment.  To 
this end, the details of the computational 
simulation model for only one of the selected 

case studies (Lignos et al., 2008) is provided in 
the next section to describe the framework of the 
study summarized above. 

2. COMPUTATIONAL SIMULATON OF A 
SELECTED COLLAPSE-CASE STUDY 

One of the selected case studies considered in 
this study is the collapse shake-table test by 
Lignos et al. (2008), which is a 4-story, 2-bay 
steel frame in 1/8 scale with reduced-beam 
sections (RBS). Figure 1 shows the setup of the 
test frame on the NEES mass simulator at the 
University at Buffalo, which consists of elastic 
members with plastic hinges at the ends. The 
mass simulator is connected to the test frame by 
means of axially rigid horizontal links through 
which the simulator transfers P-Delta effects 
acting as a leaning column on the test frame. 

 

 
Figure 1: Shake-table-test of a 1/8 scale 4-story, 2-
bay steel frame (Lignos et al. 2008).  

 
An analytical clear span model for the test 

frame was developed in OpenSees (PEER, 2004). 
A practical model approach was employed to 
avoid numerical convergence issues, but the 
model is detailed enough to accurately simulate 
collapse behavior, especially to perform 
extensive parametric studies where 
computational cost is demanding. Following the 
method used by Lignos et al. (2008), rotational 
springs were used to analytically model the 
plastic hinges at ends of elastic elements with a 
modified Ibarra-Krawinkler deterioration model 
available in OpenSees, calibrated based on a 
steel component database of steel beams with 
RBS under cyclic loading. Moreover, offsets 
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from the element ends were applied to take RBS 
into account. The nonlinear geometry effects 
were considered using co-rotational 
transformations. The nonlinear dynamic analysis 
results for the developed OpenSees model under 
the test ground motion show good agreement 
with the experiment data (Deniz, 2014). Using 
the validated computational model, we 
investigated the system’s energy balance as 
summarized in the next section, to introduce a 
new collapse criteria and a key collapse measure.  

3. ENERGY-BASED COLLAPSE CRITERIA 
Earthquake loads applied on the structure 
introduce seismic energy into the system. Some 
part of this input seismic energy (EEQ) is 
absorbed as the kinetic energy (EK) and the strain 
energy (ES; i.e., the sum of elastic energy (EE) 
and hysteretic energy (EH)), and the rest is 
dissipated as damping energy (ED). As the 
system experiences loading and unloading 
repeatedly during an earthquake event, it starts to 
show highly nonlinear, cyclic and inelastic 
behavior, which leads to excessive deformations 
that initiate gravity forces applied on the 
structure to release gravity energy (EG).  Taking 
the integral of the dynamic equation of motion 
with respect to differential displacement, the 
components of the energy balance can be then 
described as (Deniz, 2014): 

 𝐸𝐾 + 𝐸𝐷 + 𝐸𝐸 + 𝐸𝐻 = 𝐸𝐸𝐸 + 𝐸𝐺  (1) 

In order to investigate the energy balance 
with regard to the collapse of a structural system, 
the energy analyses were performed on the test 
frame by Lignos et al. (2008) for the test ground 
motion Canoga Park record at the intensity scale 
factors of 0.4, 1.0, 1.5, 1.9 and 2.2, which were 
continuously applied on the frame during the 
experiment. Figure 2 show the system-energy 
time histories for the gravity energy (EG), 
seismic input energy (EEQ), total input energy 
(i.e., EI = EEQ+EG), and strain energy absorbed in 
springs (ESPR) at the last scale factor of 2.2 where 
collapse is observed. Note that the beginnings of 
the energy time histories in Figure 2 indicate the 

cumulative energy responses obtained from the 
previous analyses for the scale factor of 1.9.  

 

 
Figure 2: System-energy time histories near collapse 
for the case study by Lignos et al. (2008). 

 
Figure 2 clearly shows that while gravity 

energy keeps steady at a comparatively small 
level comparing to other energy responses at the 
beginning, it then starts to rapidly increase near 
collapse, even far exceeds seismic input energy 
stored in the structure. Considering dynamic 
instability due to the loss of structural resistance 
against the gravity loads, a new energy based 
collapse criteria has been therefore proposed 
based on the incidence of gravity energy 
exceeding seismic energy with a sudden increase 
(i.e., EG>>EEQ near collapse). Instead of some 
assumed threshold values, this approach relies on 
an actual occurrence of collapse due to 
domination of gravity loads over applied lateral 
seismic loads. Moreover, using this new 
approach, one does not need to check structural 
response at each degree-of-freedom. 

Several nonlinear dynamic analyses were 
performed for the validated test case study of 
Lignos et al. (2008) using the far-field set of 78 
ground motions by Haselton and Deierlein 
(2007). Figure 3 shows the IDA curves of elastic 
spectral acceleration to inter-story drift ratio 
obtained from the OpenSees model. Traditional 
IM-based rule (green pluses) and DM-based rule 
(yellow squares) are compared to the new criteria 
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called “energy rule” (red circles) based on the 
maximum intensity level observed before the 
dynamic instability occurs, i.e., gravity energy 
exceeds dynamic energy. Comparing the 
proposed energy rule with the traditional rules in 
Figure 3, it is found that the energy rule 
significantly gives larger collapse drift 
predictions because it depends on the actual 
dynamic instability near collapse. On the other 
hand, it should be noted that the meaning of 
collapse assumed for traditional rules in the 
literature does not necessarily represent the real 
collapse case but mostly “collapse prevention.” 
In Figure 3, much variability is also observed in 
collapse capacity levels for all rules due to the 
effect of randomness in the selected ground 
motions. Large difference is observed especially 
in drift capacity predictions except for the DM-
based rule, which depends on a predetermined 
threshold drift value. This is due to sensitivity of 
drift measures near collapse. Therefore, next 
section investigates key collapse measures with 
smaller variability based on the energy balance 
concept to facilitate more effective risk 
assessment of structural collapse. 

 

 
Figure 3: Comparison of collapse data for Sa and 
IDR obtained by different collapse rules. 

4. A NEW COLLAPSE DESCRIPTOR 
From the results of validated computational 
simulations of collapse (e.g. Figure 2), it is noted 
that inelasticity is concentrated only in rotational 

springs at the ends of beams and columns. 
Therefore, ESPR is the total strain energy 
dissipated from all degrading elements in the 
frame. In Figure 2, although the strain energy is 
steady following the seismic input energy, it then 
shows a rapid increase following the huge 
release of gravity energy (i.e., EI≈EG) near 
collapse. Considering this energy balance, an 
“equivalent velocity-ratio (𝑉𝑅)” of spring energy 
to seismic energy is investigated, i.e.  

𝑉𝑅 = �
max (𝐸𝑆𝑆𝑆)
2  max (𝐸𝐸𝐸)

= max (|𝑉𝑆𝑆𝑆|)
√2  max (�𝑉𝐸𝐸�)

     (2) 

where, VSPR and VEQ  are the equivalent velocities 
for spring and seismic energies respectively 
based on kinetic energy formulations. When the 
gravity energy becomes equal to the seismic 
energy near collapse, the total input energy then 
becomes almost twice the seismic energy (i.e., 
EI≈2EEQ), which is clear from the energy balance 
described in Eq. (1). Therefore, the maximum 
energy that a structure can absorb is less than 
2EEQ, and thus the equivalent velocity-ratio 𝑉𝑅 
should be less than 1.0.  

Figure 4 shows the IDA data in terms of 
equivalent velocity ratio 𝑉𝑅  and spectral 
acceleration 𝑆𝑎 (at first period with 2% damping) 
for the test case study by Lignos et al. (2008) 
under the same 78 far-field ground motions. 
Note that the collapse data is obtained based on 
the last non-collapse point on the IDA curve 
according to energy-based collapse criteria.  

 

 
Figure 4: IDA curves and the collapse data for Sa 
and VR obtained by energy-collapse criteria. 
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Using the collapse data (red circles) in 
Figure 4, statistical analyses were performed on 
dimensionless 𝑉𝑅 as well as on drift ratio 𝐷𝑅 and 
lateral inter-story drift ratio IDR based collapse 
capacities. The collapse capacity defined by 𝑉𝑅 
exhibits a significantly reduced variability, 
which is evidenced by the coefficient of variation 
(cov) of 0.058 comparing to traditionally used 
𝐷𝑅  (cov = 0.215) and IDR (cov = 0.226). 
Therefore, with 𝑉𝑅, one can predict the collapse 
capacity of a structural system with less 
uncertainty. 

5. A NEW COLLAPSE FRAGILITY MODEL  
Assessment of collapse fragility relations are 
usually obtained in two ways (Zareian et al., 
2010): so-called “damage measure (DM) based” 
approach in which the collapse is described in 
terms of a structural response parameter such as 
IDR to evaluate the probability of collapse at a 
specified intensity level; and so-called “intensity 
measure (IM) based” approach which directly 
uses an IM of ground motion (such as 𝑆𝑎 ) to 
describe the collapse limit state. Both methods 
rely on “demand versus capacity” framework, 
i.e., the probability of collapse is assessed by the 
likelihood of the event of the seismic demand 
exceeding the seismic capacity.  

Assumptions made for the DM-based 
approach, e.g., dependency between capacity and 
demand and approximations in assessment of 
conditional distributions of DM given IM may 
make the IM-based approach seem like a more 
reliable method to get collapse estimates. 
However, the IM-based approach considers 
uncertainty only in seismic capacity, which may 
provide less reliable collapse prediction. On the 
other hand, using more representative global 
structural responses with a small sensitivity near 
collapse such as 𝑉𝑅  can improve DM-based 
approach that traditionally uses IDR measure. 
Thereby, considering uncertainty in both seismic 
demand and seismic capacity, this study focuses 
on DM-based approach using energy based 
collapse criterion for the development of a new 
fragility model. Rather than using traditional 

models such as those based on IDR, new 
capacity and demand models based on 𝑉𝑅 
together with 𝑆𝑎  (one of the mostly used 
intensity measures in seismic hazard assessments) 
are selected instead to assess new more effective 
collapse fragility relations. The proposed 
methodology is demonstrated in the next sections 
using the IDA data in Figure 4.  

5.1. Probabilistic Model of Collapse Demand  
First, linear regression is employed here to 
characterize conditional distribution of structural 
demand 𝑉𝑅𝐷 for a given intensity 𝑆𝑎  using IDA 
data in Figure 4. A limited 𝑆𝑎 range within one 
standard deviation from the mean (i.e., 0.22g≤
𝑆𝑎 ≤2.23g corresponding to 79 percent of all 
blue IDA data points in Figure 4) is considered 
in the linear regression to get a better linear 
model fitting to IDA points. In addition, 
logarithms are applied to 𝑆𝑎  before the 
regression in order to achieve an approximate 
linear relationship.  

The conditional probability of structural 
demand 𝑉𝑅𝐷 exceeding a given level of the 
capacity 𝑣 at a given spectral elastic acceleration 
level 𝑠  of ground motion can be described in 
terms of cumulative distribution function (CDF) 
of the conditional demand 𝑉𝑅𝐷:  

𝑃𝑉𝑅𝐷| ln𝑆𝑎=ln𝑠 =  1 − 𝐹𝑉𝑅𝐷| ln 𝑆𝑎(𝑣 | ln 𝑠)   (3) 

In order to find the conditional distribution 
of demand in Eq. (3), a linear regression model 
was applied to 𝑉𝑅  as in Eq. (4) to find the 
conditional mean (5) and constant variance (6): 

𝑉𝑅𝐷
′ = k1 ln 𝑆𝑎 + k2 + 𝜎𝜎     (4) 

𝐸[𝑉𝑅𝐷| ln 𝑆𝑎] = k1 ln 𝑆𝑎 + k2    (5) 

𝑉𝑉𝑉�𝑉𝑅𝐷| ln 𝑆𝑎� = 𝜎2    (6) 

where,  𝑉𝑅𝐷
′  is the structural demand in 

equivalent velocity ratio obtained from 
approximate linear relationship for a given level 
of ln 𝑆𝑎,  𝑘1 and 𝑘2 are coefficients found based 
on linear regression, 𝜀  is a normal random 
variable with zero mean and unit variance, and 
finally 𝜎 represents the magnitude of the linear 
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regression error. Since 𝜀  has a normal 
distribution and other terms in Eq. (4) are 
deterministic, the structural demand 𝑉𝑅 becomes 
a normal random variable as well. If 𝑉𝑅 given an 
intensity level ln 𝑆𝑎 follows a normal distribution 
and 𝜇𝑉𝑅𝐷|𝑙𝑙𝑆𝑎  and 𝜎𝑉𝑅𝐷| ln𝑆𝑎  are corresponding 
conditional mean and deviation obtained from 
Eq. (5) and Eq. (6) respectively, then the 
conditional CDF of structural demand based on 
𝑉𝑅 measure in Eq. (3) becomes: 

𝐹𝑉𝑅𝐷| ln 𝑆𝑎(𝑣 | ln 𝑠) = 𝛟�
𝑣−𝜇𝑉𝑅𝐷| ln𝑆𝑎

𝜎𝑉𝑅𝐷| ln𝑆𝑎
�     (7) 

Following the methodology described above, 
the linear demand model between 𝑉𝑅  and 𝑙𝑙 𝑆𝑎 is 
obtained in Figure 5 (green line). Validity of the 
developed linear approximation made for the 
conditional distribution in Eq. (3) depends on 
assumption of a constant conditional variance 
(the so-called “homoskedasticity” assumption). 
Although the linear model shows approximate 
constant variance for a limited intensity range in 
Figure 5, the distribution of data points indicates 
some variation in the degree of scatter of data 
points with increasing intensity level. Therefore, 
linear regression with “non-stationary” 
conditional variance was also applied to the IDA 
data points in Figure 5 to improve the stationary 
linear demand model (red line). For this purpose, 
the conditional deviation was assumed as a 
function of 𝑆𝑎: 

𝜎𝑉𝑅𝐷| ln 𝑆𝑎 = 𝜎 = 𝜎𝑜 Sa𝑐   (8) 

where, 𝜎𝑜  is an unknown constant and 𝑐  is a 
coefficient larger than zero (note than a zero 
value of 𝑐 means stationary variance). It can be 
reasonably assumed that the IDA data points in 
the region of smaller variance should have higher 
“weights” comparing to ones in the region of 
larger variance. Therefore, the weights 𝑤  were 
assigned as inversely proportional to 𝑆𝑎2𝑐. 

After several non-stationary linear 
regression analyses, the normal demand model 
with a coefficient 𝑐  of 0.25 in Figure 5 was 
found to be the best model for a limited range of 
𝑆𝑎based on giving reasonable demand trend as 

𝑆𝑎increases while capturing increasing variation 
in demand. Although both the stationary and 
non-stationary demand models in Figure 5 seem 
to be appropriate for a limited intensity range, 
such models can still be acceptable because they 
have the benefits of practical applicability and 
reducing computational expense of estimation. 
Since the non-stationary model seems to capture 
the variation in the data points a little better 
comparing to the stationary model, this 
regression approach is used in the following 
sections for developing a new collapse fragility. 
 

 
Figure 5: The linear regression models with 
stationary and non-stationary variance (c=0.25). 

5.2. Fragility Function by Probabilistic Model of 
Collapse Capacity 

For a given level of velocity ratio “𝑣” for the 
demand 𝑉𝑅𝐷, the probability of collapse becomes 
the CDF of the capacity 𝑉𝑅𝐶: 

𝑃�𝑉𝑅𝐶 < 𝑉𝑅𝐷 = 𝑣� = 𝐹𝑉𝑅𝐶(𝑣)  (9) 

In order to develop the capacity function in 
Eq. (9), a normal collapse capacity model was 
assumed for the IDA-collapse data in Figure 4 
(red points). The results showed a good 
agreement between the IDA-collapse data and 
the fitted normal distribution with a mean  𝜇𝑉𝑅𝐶 
of 0.668 and a standard deviation 𝜎𝑉𝑅𝐶 of 0.039. 

Note that Eq. (9) provides collapse fragility 
in terms of only uncertain damage capacity. Next 
section therefore develops a fragility considering 
uncertainty in both demand and capacity. 



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 
Vancouver, Canada, July 12-15, 2015 

 7 

5.3. Fragility Function by Probabilistic Models 
of Both Collapse Capacity and Demand 

Using safety margin approach, structural 
collapse can be identified considering 
randomness in a demand/capacity format. If 
safety margin 𝑀𝑉𝑅 of a structural system is a 
random variable defined as the difference 
between demand 𝑉𝑅𝐷  and capacity 𝑉𝑅𝐶 , then 
probability of collapse becomes the probability 
of safety margin being less than zero (i.e., 
demand exceeding capacity) at a spectral 
acceleration level “s”: 

𝑃𝐶𝐶𝐶|𝑆𝑎=𝑠  = 𝑃�𝑀𝑉𝑅 ≤ 0�𝑙𝑙 𝑆𝑎 = ln 𝑠�   (10)                                 

It is noted that the linear combination of the 
developed normal collapse capacity and demand 
models identified above such as 𝑀𝑉𝑅 becomes a 
normal random variable too. One can reasonably 
assume that demand and capacity are statistically 
independent events at a given intensity level. The 
mean and deviation for 𝑀𝑉𝑅can be then assessed 
as in Eq. (11) and Eq. (12) respectively: 

𝜇𝑀𝑉𝑅
=  𝜇𝑉𝑅𝐶 −  𝜇𝑉𝑅𝐷|𝑙𝑙𝑆𝑎            (11)                                                                      

𝜎𝑀𝑉𝑅
= �σ𝑉𝑅𝐶

2 + σ𝑉𝑅𝐷|𝑙𝑙𝑆𝑎
2         (12)                                                                         

Then, the probability of collapse is 
evaluated as the normal CDF of 𝑀𝑉𝑅  at the given 
spectral elastic acceleration level of ln 𝑠:  

𝑃𝐶𝐶𝐶|𝑆𝑎=𝑠 = 𝛟�−
𝜇𝑀𝑉𝑅

(𝑆𝑎)

𝜎𝑀𝑉𝑅
(𝑆𝑎)�               (13)                                                                    

Following the methodology described above, 
the new fragility model based on energy-collapse 
criterion (red curve) is first evaluated in Figure 6. 
Then it is compared to the common approaches 
such as “IM-based fragility model using 
lognormal CDF of 𝑆𝑎  (blue curves)” and “DM-
based fragility model using IDR (black curves)” 
in two ways. Figure 6 first compares the new 
fragility model (red curve) with common 
approaches obtained using energy-based collapse 
criteria. The DM-based fragility model using 
IDR (solid black curve) largely underestimates 
the probability of collapse due to large 

conditional cov (0.406) found for the demand 
model of IDR as well as high sensitivity of IDR 
to intensity scaling near collapse, thereof, does 
not work for the energy-collapse rule. On the 
other hand, probably due to ignoring uncertainty 
in seismic demand, IM-based fragility model 
using 𝑆𝑎  (solid blue curve) seems to slightly 
overestimate collapse probabilities in general 
comparing to the new model (red curve). 

  

 
Figure 6: Collapse fragility relations obtained by 
different rules 

 
In Figure 6, the new fragility model using 

energy-rule (red curve) is then compared with 
the common fragility approaches using 
traditional rules based on IDA data in Figure 3: 
IM-based fragility model using DM-rule (dotted 
blue curve) and IM-rule (dashed blue curve); and 
DM-based fragility model using DM-rule (dotted 
black curve) and IM-rule (dashed black curve). 
As seen, there is a large difference between 
collapse points obtained by the three collapse 
rules. It is important to indicate that energy-rule 
assesses the collapse capacity at the maximum 
intensity before the structure loses its dynamic 
instability. However, DM-rule is based on a pre-
determined threshold value (ignoring variance in 
capacity), while IM-rule is based on a simple 
deterministic rule using shape of IDA curves, 
which can be chaotic due to possible hardening 
in structural behavior. Therefore, these 
traditional rules have been found not sufficient to 
identify when and how a structure collapses 
under the effect of variable dynamic loads.  
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5.4. Effect of Uncertainties On Collapse 
Fragility Models 

Extensive parametric studies were performed for 
the test case study by Lignos et al. (2008) to 
account for the impacts of a structural model 
changes on the collapse prediction of structures. 
Moreover, several subsets of 78 far-field ground 
motion set by Haselton and Deierlein (2007) 
were formed to investigate the record-to-record 
variability of ground motion records on the 
developed collapse fragilities (Deniz, 2014). 

It has been observed that ductile connection 
model parameters related to strain-hardening 
ratio and deterioration rate after yielding can 
result in remarkably different collapse estimates. 
It is also noteworthy that collapse capacity based 
on 𝑉𝑅  measure is less sensitive to a change in 
structural properties. Moreover, it is found that a 
suite of ground motions selected based on the 
ratio of peak ground displacement to peak 
ground velocity may reduce the epistemic 
uncertainty significantly. 

6. CONCLUSIONS 
A new collapse criterion termed as “energy rule” 
is based on the actual occurrence of dynamic 
instability caused by loss of structural resistance 
against the gravity loads, instead of the behavior 
of the IDA curves and subjective thresholds. 
Therefore, it seems to be a more reliable option 
in collapse assessment of structures. Moreover, a 
quantitative indication of structural collapse by 
this approach (in terms of boundless drift) may 
facilitate developing a mathematical description 
of dynamic instability, which can be particularly 
useful for quantitative collapse detection during 
stochastic collapse analyses. 

Integration of identified key collapse 
measures such as equivalent velocity ratio (𝑉𝑅) 
into the collapse fragility models using energy-
rule may decrease the dispersion due to record-
to-record variability, which in turn corresponds 
to a reduction in uncertainty level associated to 
collapse probability computation. 

Lastly, parametric studies indicate that 
uncertainties due to structural and ground motion 
properties need to be properly incorporated into 

collapse prediction to promote reliable 
probabilistic evaluation of structural collapse. If 
these uncertainties are underestimated, one could 
obtain unconservative collapse predictions.  
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