
1 INTRODUCTION  

Most research efforts to estimate the failure probabil-
ities of structural systems (Freudenthal et al. 1966; 
Thoft-Christensen & Baker 1982; Ditlevsen & Mad-
sen 1996; Melchers 1999; Der Kiureghian 2005) 
have been aimed at component reliability analysis, 
which characterizes the failure event by a single limit 
state; however, it is widely accepted that complexity 
of system-level failure of a structure requires system 
reliability analysis (Lee 1989; Moses 1990; Park 
2001; Song & Der Kiureghian 2003; Liu & Tang 
2004), in which the failure event is described by a 
Boolean function of multiple limit state functions. 
For example, a cut-set system event is described as 
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where Ei is the i-th component event representing the 
failure at a location or member, i = 1,…,Ncomp; Ck is 
the k-th cut-set event, i.e. a failure mode, k = 
1,…,Ncut, where the cut-sets are a joint realization of 
component events that constitutes a realization of the 
system event Esys; and 

kCI denotes the index set of 
components that appear in the k-th cut-set.  

Component failure events, Ei, are often statistically 
dependent on each other due to correlated or com-
mon random variables in the limit state definitions 
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ABSTRACT: Many structural systems are subjected to the risk of cascading system-level failures initiated by 
local failures. For efficient reliability analysis of such complex system problems, many research efforts have 
been made to identify critical failure sequences with significant likelihoods by an event-tree search coupled 
with system reliability analyses; however, this approach is time-consuming or intractable due to repeated cal-
culations of the probabilities of innumerable failure modes, which often necessitates using heuristic assump-
tions or simplifications. Recently, a decoupled approach was proposed (Kim 2009; Kurtz et al. 2010): critical 
failure modes are first identified in the space of random variables without system reliability analyses or an 
event-tree search, then an efficient system reliability analysis is performed to compute the system failure 
probability based on the identified modes. In order to identify critical failure modes in the decreasing order of 
their relative contributions to the system failure probability, a simulation-based selective searching technique 
was developed by use of a genetic algorithm. The system failure probability was then computed by a multi-
scale system reliability method that can account for statistical dependence among the component events as 
well as among the identified failure modes (Song & Kang 2009; Song & Ok 2010). This paper presents this 
decoupled approach in detail and demonstrates its applicability to complex bridge structural systems that are 
subjected to the risk of cascading failures induced by fatigue. Using a recursive formulation for describing 
limit-states of local fatigue cracking, the system failure event is described as a disjoint cut-set event (Lee & 
Song 2010). Critical cut-sets, i.e. failure sequences with significant likelihood are identified by the selective 
searching technique using a genetic algorithm. Then, the probabilities of the cut-sets are estimated by use of a 
sampling method. Owing to the mutual exclusiveness of the cut-sets, the lower-bound on the system cascad-
ing failure probability is obtained by a simple addition of the estimated probabilities of the identified cut-sets. 
A numerical example of a bridge structure demonstrates that the proposed search method skillfully identifies 
dominant failure modes contributing most to the system failure probability, and the system failure probability 
is accurately estimated with statistical dependence fully considered. An example bridge with 97 truss ele-
ments is considered to investigate the applicability of the method to realistic large-size structures. The effi-
ciency and accuracy of the method are demonstrated through comparison with brute-force Monte Carlo simu-
lations. 



(Galambos 1990; Henwadi & Frangopol 1994). Cut-
set events Ck are also statistically dependent since 
they share common or statistically dependent com-
ponent events; hence, a system reliability analysis 
method must account for statistical dependence at 
both levels, i.e. among failure modes and among 
component events, to accurately evaluate the system-
level risk. For efficient system reliability evaluation, 
most of the existing failure-mode-based approaches 
employ approximation methods such as bounding 
formulas (Ditlevsen 1979; Feng 1989; Park 2001) or 
response surfaces (Zhao & Ono 1998). While these 
may enable rapid estimation, they are not flexible in 
including types and amount of available information 
on components or in accounting for statistical depen-
dence. To overcome these issues, a new bounding 
approach was developed by use of linear program-
ming (Song & Der Kiureghian 2003) and was further 
developed for multi-scale analysis (Der Kiureghian 
& Song 2008); however, solving such linear pro-
gramming problems may cause computational or 
numerical issues when the feasible domain of linear 
programming is small or the system event consists of 
a large number of components. 

Another issue present in system reliability analysis 
is that innumerable failure modes often exist, be-
cause real structures are highly redundant and the 
failures of members re-define the limit-states of the 
remaining members due to stress re-distribution. 
These issues make it intractable to enumerate all 
possible limit states for system reliability analysis 
especially for complex structures with a large num-
ber of structural elements. To overcome these diffi-
culties, some methods using an event tree (Murotsu 
et al. 1984; Karamchandani 1987; Srividya & Ran-
ganathan 1992) have been developed to identify only 
the failure modes with significant likelihood (Moses 
& Stahl 1978; Murotsu et al. 1984; Thoft-
Christensen & Murotsu 1986; Ranganathan & Desh-
pande 1987). The system failure probability is then 
calculated using the probabilities and statistical de-
pendence of the identified failure modes; however, 
while evaluating the contributions of individual fail-
ure modes to the search process, component and sys-
tem reliability analyses need to be performed repeat-
edly, requiring high computational cost for structures 
with large amounts of redundancy. 

In order to deal with these issues, Kim (2009) pro-
posed a new framework for risk assessment that de-
couples the identification process of the dominant 
failure modes from the process for evaluating the 
probabilities of failure modes and the system event. 
This dichotomy reduces the need for repeated com-
ponent and system reliability analyses in the failure 
mode searching process. First, dominant failure 
modes are obtained by a simulation-based selective 
searching technique using a genetic algorithm, which 
identifies cascading fatigue failure modes rapidly. 
Then, the probabilities of the failure modes identified 

by the selective search and the corresponding system 
failure probability are computed by system reliability 
analyses. While brute-force Monte-Carlo simulation 
of failure sequences could provide the system relia-
bility accurately given sufficient time to converge, 
the selective searching method provides not only the 
system failure probability but also critical failure 
modes without prior knowledge of the system re-
sponse.  

In this paper, the selective searching method is ap-
plied to a bridge structural system subjected to the 
risk of fatigue-induced cascading failures. Using an 
efficient characterization of fatigue-induced failure 
modes developed by Lee & Song (2010), cascading 
failure events are described as mutually exclusive (or 
disjoint) cut-set events, making the system failure 
probability simply the sum of the probabilities of all 
identified critical failure modes. This paper first in-
troduces the simulation based selective searching 
technique, followed by a summary of the efficient 
formulation of fatigue-induced failure modes and 
methods used for calculating the probabilities of the 
identified cut-sets. The proposed risk assessment 
framework is then demonstrated by a large-size pla-
nar-truss bridge structure. 

2 SELECTIVE SEARCHING TECHNIQUE FOR 
DOMINANT FAILURE MODES  

Most of the methods developed to identify failure 
modes of structural systems can be placed into the 
following two types of approaches (Shao & Murotsu 
1999): the so-called probabilistic approach, which 
includes the branch and bound method (Murotsu et 
al. 1984; Thoft-Christensen & Murotsu 1986; Ka-
ramchandani 1987) and simulation based techniques 
(Grimmelt & Schueller 1982; Rashedi 1983; Moses 
& Fu 1988; Ditlevsen & Bjerager 1989; Melchers 
1994); and the so-called deterministic approach, 
which includes the incremental loading method 
(Moses & Stahl 1978; Moses 1982; Lee 1989), the β-
unzipping approach (Thoft-Christensen & Murotsu 
1986), the methods based on mathematical pro-
gramming (Corotis & Nafday 1989), or methods em-
ploying heuristic techniques (Xiao & Mahadevan 
1994; Shetty 1994). 

In general, the probabilistic approach is considered 
theoretically rigorous but computationally costly, 
whereas the deterministic approach is computational-
ly efficient but has the risk of overlooking important 
failure modes (Shao & Murotsu 1999). To remedy 
these issues, Shao & Murotsu (1999) proposed an 
improved simulation-based selective searching tech-
nique in which a genetic algorithm (GA) (Holland 
1975; Goldberg 1989) is used to find the few most 
dominant failure modes that contribute the most to 
the system failure probability. Noting that GA works 
with a population of multiple searching points, Kim 



(2009) extended the approach to capture multiple 
failure modes at once. The proposed searching me-
thod differs from the one proposed by Shao & Mu-
rotsu (1999) by the two distinct GA strategies: 
searching direction and elitism, as explained below. 

Consider an n-dimensional random variable space 
x which represents possible realizations of uncertain 
quantities in a system reliability problem. Through a 
nonlinear transformation determined by the joint 
probability distribution model of the corresponding 
random vector X, one can obtain the space of uncor-
related standard normal variables u, i.e. u = T(x) (for 
details, see Der Kiureghian 2005). For a graphical 
reference, see an example in Figure 1 below: 
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Figure 1. Three failure modes in the two-dimensional standard 
normal space 

 
In Figure 1, dotted lines show component limit-

state surfaces while solid lines show failure modes 
defined in terms of multiple component limit states. 
Since the joint probability density function (PDF) in 
the space of uncorrelated standard normal variables 
is determined solely by the distance from the origin, 
||u||, failure modes closest to the origin are likely to 
contribute more to the system failure probability;  
however, one must note that the contribution to the 
system failure probability also depends on the vo-
lume of the failure domain. The method by Shao & 
Murotsu (1999) searches the random variable space 
from points on hyperspheres, starting with a larger 
radius, toward the origin, by generating a set of sam-
ples in the space of uncorrelated standard normal va-
riables. This “inward” searching strategy finds the 
few most dominant failure modes closest to the ori-
gin. The corresponding values in the original space 
are first obtained by the inverse transform x = T

-1
(u). 

A fitness function value is assigned to each sample 
of x based on its distance from the origin. Then, 
chromosomes with high fitness function value are se-
lected as elite chromosomes and are saved to create 
the population for the next generation. This process 
is repeated until the failure point nearest the origin is 
not renewed for a prescribed number of iterations. 

By contrast, the searching method by Kim (2009) 
intends to reverse the searching direction. This “out-
ward” search identifies multiple dominant failure 
modes in the decreasing order of their likelihoods un-
til their contributions become negligible. The system 
failure probability can then be accurately evaluated 
from the identified critical failure modes. First, gen-
erate random points in the space of uncorrelated 
standard normal variables for the initial population of 
the GA search. To search outward, the points are 
generated on the surface of a hypersphere with a 
smaller radius. If one has an idea of the expected sys-
tem reliability index, the range of hypersphere radii 
must encapsulate the expected value and address the 
uncertainty of the expected value. In accordance with 
the joint PDF of the standard normal space, points on 
a hypersphere with radius R  are generated by 
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where T
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nd d dd is a “direction” vector, i.e. 
a point randomly generated on the surface of a unit-
radius hypersphere, which can be obtained by norma-
lizing randomly generated standard normal vectors 

T
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nu u uu  The direction vectors constitute 
the initial population of chromosomes for the GA 
search. The u

i
 ’s can be generated by any sampling 

method. In this study, Latin Hypercube sampling 
(McKay et al. 1979) is used for efficient sampling. 
 Second, transform the sampling points u

i
(R) to the 

corresponding values in the original random variable 
space, i.e. x

 i
(R) = T

-1
[u

 i
(R)]. For a structural system, 

x may denote the uncertainties in loadings, material 
properties and resistances of the structural members. 
For each x

i
(R), the structural analysis is performed to 

check if local failures occur. If any members have 
failed, the structural analysis is performed again with 
the failed member removed. Progressive failures can 
be found using this framework. These procedures are 
repeated for each x

i
(R). If system failures occur ac-

cording to a set of system failure criteria, the corres-
ponding failure modes and sampling points are rec-
orded. All chromosomes corresponding to these 
detected system failure modes are imported into a 
mating pool, i.e. a group of individuals that will later 
produce offspring as the population of the next gen-
eration. 

Third, perform a selective search in the vicinity of 
the x

i
(R) that caused system failures. Additional fail-

ure modes are often identified since one structural 
element is often involved in multiple system failures, 
making failure modes relatively close together in the 
random variable space. This selective search is ex-
ecuted by creating offspring from the parent popula-
tion of the mating pool through the evolution opera-
tors of crossover and mutation. Although several 
options are available for these evolution operators 



(Goldberg 1989; Deb & Agarwal 1995; Vahdati et al. 
2009), the methodologies most suitable for this study 
are those illustrated in Figure 2. For the crossover 
operation, a real value between 0 and 1 is randomly 
generated for each gene, i.e. the rectangular sections 
in Figure 2. If this value is larger than 0.5, parent 1’s 
gene is selected as the offspring’s; otherwise, parent 
2’s gene is selected. This multi-point crossover oper-
ation generates the next-generation searching points, 
i.e. offspring in the vicinity of the parent populations. 
This keeps the cases of analyses diverse. Additional-
ly, the mutation operation is used to search for failure 
modes far from the identified ones, by inverting the 
signs of the genes, as seen in Figure 2b. This turns 
the search direction for that gene in the opposite di-
rection. 

 
 
Figure 2. Genetic operations for selective search: (a) even cros-
sover operation and (b) mutation operation 

 
 Lastly, if no new failure modes are identified over 
successive generations of samples more than a pre-
scribed number of times, Nsame, the radius of the 
hypersphere, R, will be increased by a small amount 
and the aforementioned process is repeated. One 
must also note that failure modes are rarely found if 
Nsame is too small and the computational cost be-
comes high if Nsame is too large. The searching 
process is then repeated until failure probabilities of 
newly observed failure modes become less than a 
prescribed fraction, e.g. 0.1% in the example in this 
paper, of the most dominant failure mode identified 
or when the search radius reaches the largest speci-
fied value. 

3 LIMIT STATES AND PROBABILITIES OF 
FATIGUE-INDUCED SEQUENTIAL 
FAILURES 

3.1 Formulation of time until fatigue crack failures 

To model fatigue crack growths and failures in truss 
members during the selective search, first consider 
the Paris-Erdogan crack growth model (Paris & Er-
godan 1963): 
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where a represents the crack length, N is the load 
cycle number, C and m are material parameters, and 
ΔK is the range of the stress intensity factor. Using 
Newman’s approximation (Newman & Raju 1981), 
one can represent this range of the stress intensity 
factor as 

 

( ) πK S Y a a     (4) 

 
where S represents the far-field stress range, and Y(a) 
is the “geometry” function. By integrating the diffe-
rential equation that arises from Equations 3 and 4, 
one can describe the time until a truss member under 
cyclic loading fails as 
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where 0

iT represents the time until the failure of the 
i-th member given that no other members have 
failed; 0ν  is the frequency of the applied loading; 

cia  is the critical crack length of the i-th member 
that leads to the crack failure; 0

ia is the initial crack 
length for the i-th member given that no members 
have failed; and 0

iS denotes the far-field stress range 
of the i-th component in the original (i.e. no damage) 
stress distribution. 

As for sequential system failures induced by local 
failures, it becomes necessary to model load redistri-
butions and find how long it takes for other members 
to fail after the previous members have failed. Using 
further inspiration from Lee & Song (2010), one can 
formulate these times efficiently in terms of the re-
distributed stresses. For example, the time until the i-
th component fails after the occurrence of the local 
failure sequence {12…(i─1)} can be eva-
luated by the following recursive formula (Lee & 
Song 2010): 
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where 1,..., 1i

iS   represents the far field stress range at 
the i-th component after the load re-distributions 
caused by the failure sequence {12…(i─1)}. 

3.2 Identification of system limit states during the 
selective search 

For a given outcome X=x during the selective search, 
the times until the sequential failures at different lo-
cations are compared at each step to determine the 
failure sequence that corresponds to the outcome x. 
For example, if 0

3T  is smaller than 0 ,iT 3i  , the 
crack failure is considered to occur first at compo-
nent 3. Then, if 3

4T  is smaller than 3 ,iT 3,4i  , 
the crack failure sequence is updated to {34}. This 
process continues until the damaged structure satis-
fies given system failure criteria (described below). 
If the time terms accumulated up to the point, e.g. 

0 3 3,4

3 4 7T T T    is smaller than a given inspection 
cycle, insT , x is identified as a system failure case, 
i.e. a point inside the shaded failure domain in Figure 
1. If not, x indicates a non-system-failure case. 

For the example in this study, the structure is con-
sidered to have a system-level failure if any of the 
following four criteria is satisfied. The first criterion 
is local instability. For a two dimensional structure, 
this means that less than two members are attached 
to a non-supporting node. The second criterion is 
global instability. For a two dimensional structure, 
the structure becomes globally unstable if 

 

2 0node member reactionDOFN N N     (7) 

 
where nodeN  is the number of the nodes; memberN  is 
the number of the members; and reactionDOFN  is the 
number of reaction degrees of freedom. The third 
system failure condition is that the condition number 
of the structural stiffness matrix becomes too large. 
For this study, when the condition number of the 
stiffness matrix of the damaged structure becomes 
one billion times larger than that of the undamaged, 
this is seen as satisfying this third condition. Lastly, 
if any of the nodal displacements becomes excessive-
ly large, the system is said to have failed. 

3.3 Probabilities of identified failure sequences and 
system failure probability 

A failure sequence progressing toward a system fail-
ure can be described in terms of the times until the 
failures described in Equations 5 and 6. For example, 

the system failure event caused by the failure se-
quence {12…i} is described as follows (Lee 
& Song 2010): 
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The events in the brackets describe the occurrence of 
the particular failure sequence (“1 fails first” and “2 
fails next” and so on) while the last event indicates 
that the system failure occurs within the inspection 
cycle. The event in Equation 8 constitutes one of the 
cut-sets for the system failure event shown in Equa-
tion 1. Owing to the mutually exclusiveness of the 
cut-sets formulated as above, the lower-bound on the 
system cascading failure probability is obtained by a 
simple addition of the probabilities of the cut-sets. 
Therefore, the sum of the probabilities of the cut-sets 
identified by the selective searching technique pro-
vides a lower bound, i.e. 
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where id

cutN  denotes the number of the critical fail-
ure sequences identified by the selective searching 
technique. It is noted that there is no need to charac-
terize the statistical dependence between failure 
modes or to perform additional system reliability 
analyses to get ( )sysP E , as the cut-sets formulated in 
Equation 8 are all mutually exclusive. Lee & Song 
(2010) computed the probability of each failure 
mode, ( )kP C , 1,..., id

cutk N , by performing compo-
nent reliability analyses for each of the events in Eq-
uation 8 using the first- or second-order reliability 
method (FORM or SORM; Der Kiureghian, 2005), 
followed by a system reliability analysis using an ef-
ficient sampling method (Genz 1992). For the nu-
merical example of this paper, high nonlinearity of 
limit state functions in Equation 5 and Equation 6 
prevented FORM and SORM from obtaining accu-
rate estimates on the probabilities of the events in 
Equation 8. A sampling method was thus used to es-
timate the probabilities of the identified cut-set 
events. The probability of the cut-set event is directly 
estimated by a Monte Carlo sampling method instead 
of performing component reliability analyses and a 
system reliability analysis. The estimated probabili-
ties are added up as in Equation 9 to obtain a lower 
bound of the system failure probability. 



4 NUMERICAL EXAMPLE  

The proposed methodology is demonstrated through 
a numerical example of a truss bridge system shown 
in Figure 4. The structure consists of 97 elements 
(E1,…,E97) and 50 nodes (N1,…N50). There are pin 
supports at the nodes N2 and N50, and roller sup-
ports at the nodes N1 and N49. This planar structure 
is both internally and externally statically indetermi-
nate to the third degree. This model was inspired by 
the Grand Sung-Soo bridge in Seoul, South Korea 
(before the re-construction), and has the same mem-
bers lengths and areas as described in KSCE (1995). 
In this example, three truss members were added at 
the internal hinges to add complexity. 

 

 
 
Figure 4. Truss bridge example. 

 
 Since proper field strain data was unavailable for 
the particular example, any sort of direct strain histo-
ry based method, such as the one shown in Zhou 
(2006) was deemed inappropriate, in favor of using 
the fatigue analysis recommended by the LRFD 
Bridge Specifications (AASHTO 2004). This entails 
executing a full influence load analysis using a truck 
weighing 75% of the AASHTO design truck. From 
this analysis, one can obtain stress ranges from each 
member in a given damage state during the selective 
search. If none of the stresses for a given member are 
large enough to initiate crack growth, that member’s 
limit state can be neglected for that time of analysis. 
 
Table 1.  Distribution types and statistical parameters of ran-
dom variables. __________________________________________________ 
Random variables  Distribution    Mean     c.o.v.  __________________________________________________ 

C           Lognormal     1.202x10
-13

    0.533 
m            Lognormal        3         0.02 
a

0
           Exponential      0.11 mm   1 

I             Normal          1      0.1 __________________________________________________ 

  
See Table 1 for the distribution types and statistic-

al parameters of the random variables used in this 
study: material parameters of the Paris-Erdogan 
crack growth model, i.e. Ci (mm/cycle/(MPa∙mm)

m
) 

and mi, the initial crack lengths 0

ia  of the truss 
members, i=1,…,97, and the stress range multiplier I, 
to model the randomness in the traffic loading. Each 
of these random variables is modeled based on ex-
amples in the literature (Lee & Song 2010). Each 
member is assumed to have an elastic modulus of 
200 GPa. The average daily truck traffic (ADTT) for 

the Grand Sung-Soo bridge was 4,483 (Cho et al. 
2000). The ADTT was multiplied by 365 days to de-
termine the annual loading frequency 0ν .  
 
Table 2.  Reliability indices of seven dominant failure modes. __________________________________________________ 
    Failure mode       Reliability Index __________________________________________________ 
     61→ 69 → 7           2.7752 
     61→ 68 → 6            2.7788 
     61→ 69 → 6            2.7852 
      61 → 64             2.7859 
     64 → 61             2.8200 
     62 → 69 → 6            2.8261 
     62 → 68 → 7         2.8301 __________________________________________________ 
 

A total of 63 significant failure modes were identi-
fied by the selective searching method, whose relia-
bility indices range from 2.7752 to 4.7534. It is noted 
that 30 modes with higher likelihood have similar re-
liability indices between 2.7752 and 3. See Table 2 
for a list of a few of the most critical failure modes 
and their associated reliability indices. The existence 
of many critical failure modes with similar likelihood 
reflects the high degree of symmetry and redundancy 
of the bridge. It is also noted that all of these 30 criti-
cal modes originate at members 61, 62, 63, and 64, 
which are the diagonals in the central part of sus-
pended truss. The nature of these “competing” failure 
modes made it necessary to identify 63 modes.  
 In using the selective searching method, an Nsame 
value of 10 was used. The lower bound on the sys-
tem failure probability by Equation 9 using 63 modes 
is 7.03×10

−2
 (generalized reliability index 1.4509). 

This result is verified by brute-force Monte Carlo 
Simulation (MCS) which produces the reliability in-
dex of 1.4735 with a c.o.v. of 3.4%. The relative er-
ror is only 4.22%. See Table 3 for a list of CPU time 
costs for the proposed method and MCS. The brute-
force MCS simply generates x

 
repeatedly and 

check if the system fails within the inspection cycle 
or not in order to tally the number of times a system 
failure occurs, disregarding the way the system fail-
ure happens. By contrast, the proposed method iden-
tifies the most significant failure modes in the de-
creasing order of likelihood. 
 
Table 3.  Computational cost for the proposed method and 
MCS. __________________________________________________ 
             CPU time (seconds)  __________________________________________________  

Proposed Method    441.04 sec (Failure mode search) 
Brute-force MCS     132,620 sec (≈36.84 hours) __________________________________________________ 

5 CONCLUSION 

This paper develops an efficient and accurate method 
to identify dominant failure modes of a structural 
system subjected to the risk of fatigue-induced cas-
cading failures and compute the probabilities of the 
overall system and failure mode events. Using the 
proposed approach, identification of dominant failure 



modes and evaluation of the system failure probabili-
ties are decoupled. Dominant failure modes are first 
identified using the selective searching technique 
employing a genetic algorithm. The failure modes 
are formulated as mutually exclusive events, and 
their probabilities are calculated by sampling. The 
system failure probability can then be found by simp-
ly summing up the failure mode probabilities while 
fully considering dependence between dominant 
failure modes. This approach has several advantages: 

 
 Decoupling failure mode identification and sys-

tem reliability analysis helps to prevent the com-
putational cost from rapidly increasing with the 
complexity of the structure. 

 This simulation-based technique identifies cas-
cading fatigue failure modes  

 The mutually exclusive formulation for sequen-
tial failure modes accurately accounts for statis-
tical dependence between failure mode events 

 
In order to demonstrate this method in system re-

liability analysis of complex bridge systems, a 97 
member planar-truss numerical example was ana-
lyzed. The proposed method identified 63 failure 
modes. A brute-force Monte Carlo simulation con-
firmed that the proposed method can compute the 
system failure probability accurately and efficiently. 

6 ACKNOWLEDGEMENTS 

The second author would like to thank the U.S. Na-
tional Science Foundation for funding under grant 
number CMMI 1000666. Any opinions, findings and 
conclusions or recommendations expressed in this 
material are those of the authors and do not necessar-
ily reflect the views of the National Science Founda-
tion. 

REFERENCES 

AASHTO. 2004. AASHTO LRFD Bridge Design Specifications, 
3rd Ed. AASHTO, Washington, D.C., USA. 

Cho, H.-N., Lim, J.-K. & Choi, H.-H. 2000. Reliability-based 
fatigue failure analysis for causes assessment of a collapsed 
steel truss bridge. Engineering Failure Analysis 8: 311-324. 

Corotis, R.B. & Nafday, A.M. 1989. Structural system reliabili-
ty using linear programming and simulation. Journal of 
Structural Engineering 115(10):2435-47. 

Deb, K., and Agarwal, R.B. 1995. Simulated Binary Crossover 
for Continuous Search Space. Complex Systems 9: 115-148. 

Der Kiureghian, A. & Song, J. 2008. Multi-scale reliability 
analysis and updating of complex systems by use of linear 
programming. Reliability Engineering and System Safety 
93(2): 288-297. 

Der Kiureghian, A. 2005. First- and second-order reliability 
methods. In E. Nikolaidis, Ghiocel, D.M. & Singhal, S. 
(eds.), Engineering Design Reliability Handbook CRC 
Press, Boca Raton, FL. 

Ditlevsen, O. & Bjerager, P. 1989. Plastic reliability analysis by 
directional simulation. Journal of Engineering Mechanics, 
ASCE 115(6): 1347-1362. 

Ditlevsen, O. & Madsen, H.O. 1996. Structural Reliability Me-
thods. Chichester, UK: John Wiley & Sons. 

Ditlevsen, O. 1979. Narrow reliability bounds for structural sys-
tem. Journal of Structural Mechanics 7(4): 453-472. 

Feng, Y. 1989. A method for computing structural system relia-
bility with high accuracy. Computers & Structures 33(1): 1-
5. 

Freudenthal, A.M, Garrelts, J.M. & Shinozuka, M. 1966. The 
analysis of structural safety. Journal of Structures Division, 
ASCE 92: 267-325. 

Galambos, T.V. 1990. Systems reliability and structural design. 
Structural Safety 7: 101-108. 

Genz, A. 1992. Numerical computation of multivariate normal 
probabilities. Journal of Computational and Graphical 
Stat.: 141-149. 

Goldberg, D.E. 1989. Genetic algorithms in search, optimiza-
tion and machine learning. Reading (MA): Addison-
Wesley. 

Grimmelt, M. & Schueller, G.I. 1982. Benchmark study on me-
thods to determine collapse failure probabilities of redun-
dant structures. Structural Safety 1: 93-106. 

Henwadi, S. & Frangopol, D.M. 1994. System reliability and 
redundancy in structural design and evaluation. Structural 
Safety 16: 47-71. 

Holland, J.H. 1975. Adaptation in natural and artificial sys-
tems. University of Michigan Press, Ann Arbor, MI, USA. 

Karamchandani, A. 1987. Structural System Reliability Analysis 
Methods. Report No. 83, Department of Civil Engineering, 
Stanford University. 

Kim, D.-S. 2009. Matrix-based System Reliability Analysis Us-
ing the Dominant Failure Mode Search Method. Dept. of 
Civil and Environmental Engineering, Seoul National Uni-
versity, Seoul, Korea. 

Korea Society of Civil Engineers (KSCE) 1995. Final report on 
precise safety inspection of Sung-Soo bridge, Seoul Metro-
politan Government (in Korean). 

Kurtz, N., Song, J. Kim, D.-S. & Ok, S.-Y. 2010. Multi-scale 
system reliability analysis of bridge structures using domi-
nant failure modes identified by selective searching tech-
nique, Proc. of IABMAS2010, July 11-15, Philadelphia, PA, 
USA. 

Lee, J.S. 1989. Basic study on the reliability analysis of struc-
tural systems. Journal of Ocean Engineering and Technolo-
gy 3(2): 656-657. 

Lee, Y.-J. & Song, J. 2010. Identification of critical sequences 
of fatigue-induced failures by branch-and-bound method 
employing system reliability bounds, Proc. of AIAA SDM 
Conference, April 12-15, Orlando, FL, USA. 

Liu, N. & Tang, W.H. 2004. System reliability evaluation of 
nonlinear continuum structures – a probabilistic FEM ap-
proach. Finite Elem. in Analysis and Design 40: 595-610.  

McKay, N.J., Beckman, R.J. & Conover, W.J. 1979. A compar-
ison of three methods for selecting value of input variables 
in the analysis of output from a computer code. Technome-
trics 21: 239-245.  

Melchers, R.E. 1994. Structural system reliability assessment 
using directional simulation. Structural Safety 16: 23-37. 

Melchers, R.E. 1999. Structural Reliability: Analysis and Pre-
diction, 2

nd
 edition. John Wiley, New York, NY, USA. 

Moses, F. & Fu, G. 1988. Important sampling in structural sys-
tem reliability. Fifth ASCE EMD/GTD/STD Specialty Con-
ference on Probabilistic Mechanics, Blacksburg, Virginia. 

Moses, F. & Stahl, B. 1978. Reliability analysis format for off-
shore structures. Proceeding of the 10th Annual Offshore 
Technology Conference, Houston, Texas Paper 3046. 

Moses, F. 1982. System reliability developments in structural 
engineering. Structural Safety 1(1): 3-13. 



Moses, F. 1990. New directions and research needs in system 
reliability research. Structural Safety 7: 93-100. 

Murotsu, Y., Okada, H., Taguchi, K., Grimmelt, M., & Yone-
zawa, M. 1984. Automatic generation of stochastically do-
minant failure modes of frame structures. Structural Safety 
2:17-25. 

Newman, J. C. & Raju, I. S. 1981. An empirical stress intensity 
factor equation for the surface crack. Engineering of Frac-
ture Mechanics 15: 185-193. 

Paris, P.C. & Erdogan, F. 1963. A critical analysis of crack 
propagation laws. J. Basic Eng., Trans. ASME 85: 528-534. 

Park, S.Y. 2001. A new methodology for the rapid calculation 
of system reliability of complex structures. Architectural 
Research 3(1): 71-80. 

Ranganathan, R. & Deshpande, A.G. 1984. Generation of do-
minant modes and reliability analysis of frame. Structural 
safety 4:217-28. 

Rashedi, M.R. 1983. Studies on reliability of structural systems. 
Department of Civil Engineering, Case Western Reserve 
University. 

Shao, S. & Murotsu, Y. 1999. Approach to failure mode analy-
sis of large structures. Probabilistic Engineering Mechanics 
14: 169-177. 

Shetty, N.K. 1994. Selective enumeration method for identifica-
tion of dominant failure paths of large structures. Proc. 
OMAE Conf., ASME, Safety and Reliability 2: 381-391. 

Song, J. & Der Kiureghian, A. 2003. Bounds on system reliabil-
ity by linear programming. Journal of Engineering Mechan-
ics 129(6): 627-636. 

Song, J. & Kang, W.H. 2009. System reliability and sensitivity 
under statistical dependence by matrix-based system relia-
bility method. Structural Safety 31(2): 148-156. 

Song, J. & Ok, S.-Y. 2010. Multi-scale system reliability analy-
sis of lifeline networks under earthquake hazards. Earth-
quake Engineering & Structural Dynamics 39(3): 259-279. 

Srividya, A. & Ranganathan, R. 1992. Automatic generation of 
stochastically dominant failure modes in frame structures 
for reliability studies. Reliability Engineering and System 
Safety 37: 15-23. 

Thoft-Christensen, P. & Baker, M.J. 1982. Structural Reliabili-
ty Theory and its Applications. Springer-Verlag. 

Thoft-Christensen, P. & Murotsu, Y. 1986. Application of 
Structural Systems Reliability Theory. Springer-Verlag. 

Vahdati, G., Yaghoubi, M., Poostchi, M., & Naghibi, M. B. 
2009. A new approach to solve traveling salesman problem 
using genetic algorithm based of heuristic crossover and 
mutation operator. Proc. of 2009 International Conference 
of Soft Computing and Pattern Recognition, December 4-7, 
Malacca, Malaysia. 

Xiao Q, & Mahadevan S. 1994. Fast failure mode identification 
for ductile structural system reliability. Structural Safety 
13(4): 207-226. 

Zhao, Y.G. & Ono, T. 1998. System reliability evaluation of 
ductile frame structures. Journal of Structural Engineering 
124(6): 678-685. 

Zhou, Y. E. 2006. Assessment of bridge remaining fatigue life 
through field strain measurement. Journal of Bridge Engi-
neering 11(6): 737-744. 


