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ABSTRACT  
The prediction of collapse of structures has gained growing attention recently, as it is 

important to be able to predict and model structural collapse due to extreme loads. A lack of 
accurate and validated structural collapse models significantly limits the structural engineering 
community to predict possible extreme loads that precipitate collapse. This paper proposes an 
integrated platform for validated prediction of collapse of steel structures that accounts for material 
softening followed by elimination of finite elements to enable simulation of fracture. The proposed 
approach employs a Void Growth Model (VGM) to simulate the initiation of softening and the 
Hillerborg model for modeling the softening itself, followed by an element deletion strategy that 
is developed in this framework.  The parameters of these models were calibrated to a 
comprehensive set of experimental test results of circumferentially notched tensile (CNT) coupon 
specimens. These calibrated models were then validated through comparison with a broad array of 
experimental test results of steel structures, ranging in complexity from tensile coupons to 
moment-resisting beam-to-column connections. The proposed approach is shown to be accurate. 
Through element deletion, the formulation can account for complete structural component 
separation, thus precipitating modeling of the collapse of structures. This approach thus enables 
high-fidelity parametric simulation capabilities of interest to researchers, practitioners, and code 
developers who address collapse of structures. 

 
 

INTRODUCTION 
In recent years the collapse of steel structures such as Wedbush Building due to a 

construction accident (Mercury News 2013), and the structural collapses during the 1994 
Northridge (Cooper et al. 1994) and 1995 Kobe earthquakes (Miyazaki et al. 2013) have 



highlighted the limitation of knowledge and understanding of structural behavior of steel structures 
undergoing progressive or disproportionate collapse (Khandelwal 2008; Szyniszewski et al. 2012). 
One factor that makes studying structural collapse difficult is the lack of full-scale structural 
collapse experimental test results against which researchers could validate their proposed collapse 
modeling approaches. In addition, a lack of accurate and validated structural collapse models limits 
the options for design against disproportionate collapse within the structural engineering 
community. This paper proposes an integrated platform for validated prediction of collapse of steel 
structures that accounts for material softening followed by elimination of finite elements to enable 
simulation of fracture and complete separation in steel members. 

 
 

COLLAPSE MODELING USING ELEMENT DELETION APPROACH 
 
To properly model collapse of steel structures using finite element analysis, one needs to 

properly account for material separation. In this paper, the Void Growth Model (VGM) and a 
damage model, called the Hillerborg Model hereafter, that are available in ABAQUS finite element 
software were used to account for fracture initiation in within finite elements and its subsequent 
deletion of the elements through material softening (ABAQUS 2011). The material nonlinear 
formulation is developed in conjunction with using a von Mises yield surface with associated 
plastic flow and isotropic hardening behavior. An updated Lagrangian geometrical nonlinear 
element formulation that includes large strains is also used (ABAQUS 2011). Elements are 
formulated in the current configuration using current nodal positions. Contact was modeled using 
a balanced master-slave contact pair formulation that uses sophisticated tracking algorithms for 
tracking the motions of the surfaces (ABAQUS 2011). Contact constraints are enforced through a 
kinematic contact algorithm (ABAQUS 2011). 

Fracture initiation is modeled in ABAQUS through the VGM, a phenomenological model 
of fracture initiation due to void nucleation, growth, and coalescence inside the ductile material 
(Rice et al. 1969). A fundamental assumption of the model is that the critical equivalent plastic 
strain is a function of stress triaxiality expressed by Equations (1) and (2): 
 

 (1)

 

ε T  = ηe  (2)
where: 

 T – triaxiality 
 σm – mean stress 
 σ	 – von Mises equivalent stress 

 ε T  – critical equivalent plastic strain at fracture initiation   
 β – material property constant 
 η – material capacity constant 

 
The criteria for fracture initiation is met when the integral of the ratio of the equivalent plastic 
strain at an integration point of the element to the critical equivalent plastic strain as a function of 
triaxiality equals 1, expressed by Equation (3) (Hooputra et al. 2004): 
 



̅

̅
1 (3)

	
For calibration and validation, triaxiality, equivalent plastic strain, and other stress-strain related 
properties are calculated at the integration point of each finite element. The value of this integral 
would increase at each increment of the analysis monotonically with plastic deformation. Upon 
reaching a value of 1.0, the fracture initiation criteria is met and material softening subsequently 
takes place (ABAQUS 2011). Void coalescence in a finite element is then represented by softening 
of an element. Softening of the element is modeled through a Hillerborg Model (Hillerborg et al. 
1976). The damage manifests itself through softening of the yield surface and degradation of 
elasticity modeled by Equation (4) and Equation (5), respectively:  
 

1 ∗  (4)
 

1 ∗  (5)
where: 

  – equivalent stress with softening accounted for 
  – equivalent stress with no softening being modeled 
 − damage variable    
  – Elastic modulus modified to account for softening 
  – Elastic modulus 
  

During softening, spatial mesh dependency is introduced based on strain localization, which causes 
dissipated energy to decrease as the mesh is refined (ABAQUS 2011).  A stress-displacement 
relationship has thus been proposed in the literature to mitigate localization (Hillerborg et al. 
1976). This is achieved through defining a material parameter that describes the energy required 
to open a unit area of crack, .  The fracture energy is then given by Equation (6).  
 

	
0

 (6)

where: 
  – fracture energy  

 ̅  – equivalent plastic strain at fracture initiation 

 ,  – equivalent plastic strain, displacement at element deletion, respectively 

 L – characteristic length 
  – yield stress 

 
The characteristic length, L, depends on the element geometry and formulation (ABAQUS 

2011). The equivalent plastic displacement is a fracture work conjugate to the yield stress after the 
onset of softening. Before fracture initiation	 0, and after fracture initiation	 ̅ . 
The relationship between the equivalent plastic displacement and the damage parameter, D, was 
chosen to be linear for all of the simulations in this paper after performing numerous simulations 



and comparing the softening curve of the simulations to the experimental ones. The damage 
variable, D, is defined by Equation (7): 
 

 (7)

 
The critical equivalent plastic displacement at which D equals 1 has to be provided.  In this work, 
when this is reached at an integration point of an element, the element is deleted. By allowing for 
monotonically decreasing stress and stiffness during softening, this approach, in addition to 
mitigating spatial mesh dependency, allows for minimizing spurious transient effects of dynamic 
instabilities upon element deletion that may cause inaccuracy of the results. This is due to the fact 
that element stiffness and stress are brought to zero through a linear relationship defined by 
Equations (4), (5), and (7), thus avoiding abrupt changes in element stiffness and stress and the 
resulting transient dynamic response. Figure 1Figure 1 shows the Hillerborg model, where the 
damage parameter, D, equals 0 at fracture initiation and it increases monotonically to 1 through 
Equation (7), at which point the element is deleted. Variable  is the equivalent stress at fracture 
initiation. 

 
Figure 1: Hillerborg model relation of equivalent stress versus equivalent strain at an 
integration point of an element 

 
PARAMETER CALIBRATION 

 
For calibration, a model of the circumferential notched tensile (CNT) coupon specimen 

was created in ABAQUS using 8 node hexahedral elements with first-order interpolation and 
reduced integration. The nominal flow property used for each of the steels is a piece-wise linear 
fit to the measured true stress-strain curve obtained from the experimental test results (Kanvinde 
et al. 2004). Each material was calibrated to experimental test results from CNTs with different 
root notch sizes. This allowed for calibration of fracture initiation for a particular material at a 
range of triaxiality. Triaxiality is varied in CNT by the root notch size which ranged from 0.06 to 
0.25 inches; the smaller the notch radii, the larger the triaxiality if the root diameter is kept 
constant.  

The parameters that need to be calibrated for this approach are η the material capacity, β 
the material parameter, and  the critical equivalent plastic displacement; these parameters are 
seen in Equations (2 and (7. The mesh of the finite element models was typically refined to have 



a maximum element size of 0.02 inches to account for different boundary conditions at critical 
locations such as notches in CNTs.  

To achieve best fit calibration of the simulation results to experimental test results a particle 
swarm optimization (PSO) algorithm was employed. PSO is a computational method that 
optimizes a problem by iteratively improving solution with regard to a given measure of quality, 
such as a target value of an error quantity (Kennedy 1997). PSO proposes values for the parameters 
and runs the simulation. It compares the simulation with the experimental test results and provides 
an error value which it uses to assess the quality of the parameters chosen and determine the global 
and local best position (Smith et al. 2013).  The error value is calculated by Equation (8). For 
subsequent runs the PSO updates the calibrating parameters through updating the velocity by 
Equation (9) and the position by Equation (10) of each of the parameters: 

 
∆

 (8)

where: 
 ∆  – the difference between the total energy of simulation and experimental (or other 

established) results 
  – the total energy of the experimental (or other established) results 

 
1  (9)

 
1 1  (10)

where: 
 i – particle index 
 k – discrete time index 
 v – velocity of ith particle 
 x – position of the ith particle 
 p – best position found by the ith particle (personal best) 
 G – best position found by swarm (global best, best of personal bests) 
 γ1,2 – random numbers on the interval [0,1] applied to ith particle 
 φ – Inertia function 
 α1,2 – Acceleration constants 

 
For each simulation, an error value from Equation (8) for a set of parameters is compared to the 
global best parametrical set that has the lowest error value. If it is smaller than the global best, it 
keeps the values of the parameters as the optimal ones. PSO goes through this process for each 
particle position and iteration. This process continues until satisfactory results are obtained, which 
are defined by the lowest error value for all of the runs. 
 

Using this approach, the calibrated structural steels, their parameters, and associated 
information about the original experimental tests are provided in Table 1 and Table 2. In these 
tables, DUN is the unnotched root diameter, DN is the diameter at the notch, RN is the radius of the 
notch, and ∆ƒ is the displacement at which fracture initiation occurred. Figure 2 shows calibration 
results for A572 Grade 50 steel taken from a wide flange section. Figure 3 shows the calibration 
results for JIS-SN490B Grade 50 taken from a plate section. Calibration results for other structural 



steels are similar with a mean error value and standard deviation being, respectively, 0.127 and 
0.029 for American steels and 0.077 and 0.01 for Japanese steels. 

 
Table 1: Calibration of the structural steels commonly used in North America ranging from 
low yield to high yield including bridge steel is shown 

         Parameters  err 

Author Test Material 
Type 

DUN 

(in) 
DN 

(in) 
RN  

(in) 
σy 

(ksi) 
σu 

(ksi) 
∆ƒ  

(in) 
η β  (in)   

(Myers et 
al. 2009) 

1 

A36 

0.500 0.248 0.126 

50 74 

0.067 

4.17 2.79 0.0068 0.187 

2 0.496 0.252 0.126 0.067 
3 0.500 0.252 0.126 0.067 
4 0.496 0.252 0.126 0.066 
5 0.496 0.248 0.063 0.050 
6 0.496 0.248 0.063 0.051 
7 0.492 0.248 0.063 0.051 
8 0.500 0.252 0.063 0.051 

(Myers et 
al. 2009) 

1 
A992 

0.504 0.252 0.067 
54 114 

0.047 
1.00 2.04 0.0041 0.091 2 0.508 0.248 0.067 0.043 

3 0.508 0.252 0.067 0.044 

(Myers et 
al. 2009) 

1 
A992 

0.496 0.244 0.067 
54 114 

0.037 
1.00 2.04 0.0041 0.091 2 0.496 0.244 0.067 0.039 

3 0.496 0.248 0.067 0.038 

(Myers et 
al. 2009) 

1 
A992 

0.689 0.244 0.067 
54 114 

0.025 
1.25 2.40 0.0048 0.132 2 0.685 0.244 0.067 0.026 

3 0.685 0.244 0.067 0.020 

(Kanvinde 
et al. 
2004) 

1 
A572-

Grade 50 
from W-
section 

0.500 0.252 0.126 

61 72 

0.056 

1.19 0.99 0.0076 0.098 

2 0.500 0.252 0.126 0.074 
3 0.500 0.252 0.126 0.074 
6 0.500 0.252 0.059 0.044 
7 0.500 0.252 0.059 0.042 
8 0.500 0.252 0.059 0.047 

(Kanvinde 
et al. 
2004) 

1 

A572-
Grade 50 

from 
plate 

0.500 0.252 0.126 

56 85 

0.041 

2.95 3.79 0.0068 0.131 

2 0.500 0.252 0.126 0.033 
3 0.500 0.252 0.126 0.037 
4 0.500 0.252 0.059 0.022 
5 0.500 0.252 0.059 0.024 
6 0.500 0.252 0.252 0.049 
7 0.500 0.252 0.252 0.050 

(Kanvinde 
et al. 
2004) 

1 

A514-
Grade 
110 

0.500 0.252 0.126 

116 124 

0.028 

1.85 1.75 0.0028 0.128 

2 0.500 0.252 0.126 0.027 
3 0.500 0.252 0.059 0.016 
4 0.500 0.252 0.059 0.013 
5 0.500 0.252 0.252 0.053 
6 0.500 0.252 0.252 0.039 

(Kanvinde 
et al. 
2004) 

1 

HPS70W 

0.500 0.252 0.126 

85 101 

0.066 

4.45 2.66 0.0102 0.120 
2 0.500 0.252 0.126 0.055 
3 0.500 0.252 0.059 0.034 
4 0.500 0.252 0.059 0.033 

              Mean  Error  = 0.127 

       Standard Deviation = 0.029 



Table 2: Calibration of structural steels commonly used in Japan 

         Parameters err 

Author Test 
Material 

Type 
DUN 

(in) 
DN 

(in) 
RN  

(in) 
σy 

(ksi) 
σu 

(ksi) 
∆ƒ  

(in) 
η β  (in)   

(Kanvind
e et al. 
2004) 

1 
JIS-

SN490B 
Grade 50 

0.500 0.252 0.126 

47.6 74.7 

0.061 

1.00 0.83 0.0078 0.064 
2 0.500 0.252 0.126 0.064 
3 0.500 0.252 0.059 0.043 
4 0.500 0.252 0.059 0.049 

(Kanvind
e et al. 
2004) 

1 JIS-
SM490Y
BTMC-

5L Grade 
50 

0.500 0.252 0.126 

59.9 74.9 

0.092 

1.47 0.84 0.0083 0.084 
2 0.500 0.252 0.126 0.092 
3 0.500 0.252 0.059 0.060 
4 0.500 0.252 0.059 0.056 

(Kanvind
e et al. 
2004) 

1 JIS-
SN490B 
Grade 50 
from W-
section 

0.500 0.252 0.126 

49.1 69.0 

0.089 

1.36 0.79 0.0083 0.084 
2 0.500 0.252 0.126 0.091 
3 0.500 0.252 0.059 0.051 
4 0.500 0.252 0.059 0.055 

       Mean  Error  = 0.077 

       Standard Deviation = 0.010 
 

 
Figure 2: Calibration results of A572 Grade 50 steel CNT with notch radius of 0.06 inches 
(left) and 0.125 inches (right) with error value of 0.0984 

  
Figure 3: Calibration results of JIS-SN490B Grade 50 steel CNT with notch radius of 0.06 
inches (left) and 0.125 inches (right) with error value of 0.0635 

0

1

2

3

4

5

6

0.00 0.02 0.04 0.06

Fo
rc
e
, k
ip

Displacement, in

Notch Radius = 0.06 in

Experimental Results

FEM Results

0

1

2

3

4

5

0 0.02 0.04 0.06 0.08 0.1

Fo
rc
e
, k
ip
s

Displacement, in

Notch Radius  = 0.125 in

Experimental Results

FEM Results

0

1

2

3

4

5

6

0 0.02 0.04 0.06 0.08

Fo
rc
e
, k
ip
s

Displacement, in

Notch Radius = 0.06 in

Experimental Results

FEM Results

0

1

2

3

4

5

6

0 0.02 0.04 0.06 0.08 0.1

Fo
rc
e
, k
ip
s

Displacement, in

Notch Radius = 0.125 in

Experimental Results

FEM Results



VALIDATION 
 

After the parameters of the VGM and Hillerborg models were calibrated for a particular 
steel based on the use of CNT specimens, they were validated through comparison with a broad 
array of experimental test results of steel structures, ranging in complexity from tensile coupons 
to moment-resisting beam-to-column connections. The list of validation simulations is provided 
in Table 3. The calibrated parameters were validated in ABAQUS software using an 8 node 
hexahedral elements with first-order interpolation and reduced integration (i.e., comparable 
modeling assumptions as were stated for the calibration studies). For each particular steel, the 
plasticity model was identical to the one used in calibration for which the nominal flow properties 
were a piece-wise linear fit to the measured true stress-strain curve obtained from the experimental 
test results. The mesh of finite element models varied from simulation to simulation but met certain 
criteria. For each simulation, the meshing size was judged adequate to properly account for 
boundary conditions when a finer mesh of finite elements gave similar results. In addition, critical 
structural components were meshed with at least two elements through its thickness to account for 
stress gradients. The error value used to compare simulation results with experimental test results 
given Equation (8) is provided for each simulation, with the overall mean error being 0.220 and 
standard deviation of 0.078. Figure 4 to Figure 6 show typical validation results and fracture 
location comparisons. 

 

  
Figure 4: Force-displacement plot of validation results versus experimental (upper left), the 
experimental layout of RBS sub-assemblage frame with central column loaded in a 
downward direction (upper right), fracture location in the reduced beam section during 
experiment (lower left), and FEM simulation results (right) with contours representing von 
Mises stress (Sadek et al. 2010) 



 

 

  
Figure 5: Force-displacement plot of validation results versus experimental (upper left), the 
experimental layout of WUF-B sub-assemblage frame with central column loaded in a 
downward direction (upper right), fracture location in the bottom beam flange during 
experiment (lower left), and FEM simulation results (right) with contours representing von 
Mises stress (Sadek et al. 2010) 

 

  
Figure 6: Force vs. displacement plot of validation results versus experimental (right), the 
experimental layout of the moment resisting beam to column connection (Rentschler et al. 
1978) 
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Table 3: Results of validation studies 

Author Test Type Test Material Type σy(ksi) σu(ksi) ∆ƒ  (in) err  

(Myers et 
al. 2009) 

CNT 

9 

A36 50 74 

0.038 

0.327 
10 0.043 
11 0.042 
12 0.041 

(Myers et 
al. 2009) 

CNT 

13 

A36 50 74 

0.021 

0.278 
14 0.024 
15 0.024 
16 0.023 

(Myers et 
al. 2009) 

CNT 
17 

A36 50 74 
0.036 

0.189 18 0.036 
19 0.037 

(Myers et 
al. 2009) 

CNT 

20 

A36 50 74 

0.020 

0.215 
21 0.025 
22 0.025 
23 0.031 

(Kanvinde 
et al. 2004) 

Plate - BH 
1 A572-Gr. 50  56 85 0.140 0.210 
1 HPS70W 85 101 0.148 

0.320 
2 HPS70W 85 101 0.138 

(Kanvinde 
et al. 2004) 

Plate RBS 
1 A572-Gr. 50  56 85 0.246 0.156 
1 HPS70W 85 101 0.203 

0.178 
2 HPS70W 85 101 0.216 

(Kanvinde 
et al. 2004) 

Compact 
Tension 

1 A572-Gr. 50  56 85 0.109 
0.125 2 A572-Gr. 50  56 85 0.120 

3 A572-Gr. 50  56 85 0.105 
1 A572-Gr. 50  61 72 0.422 

0.071 2 A572-Gr. 50  61 72 0.409 
3 A572-Gr. 50  61 72 0.404 

(Kanvinde 
et al. 2004) 

3 Pt. 
Bending 

1 A572-Gr. 50  61 72 0.122 
0.112 

2 A572-Gr. 50  61 72 0.163 
(Birkemoe 
et al. 1978) 

Double 
Angle Con. 

1 
CSA G40.21-

44W 
53 79 1.020 0.332 

(Rentschler 
et al. 1978) 

Moment 
Con. 

14-1 A572-Gr. 50  61 72 2.103 0.213 
14-2 A572-Gr. 50  61 72 1.641 0.223 
14-3 A572-Gr. 50  61 72 3.031 0.312 

(Sadek et 
al. 2010)  

RBS 1 A992 54 114 31.700 0.189 
WUF-B 1 A992 54 114 18.400 0.298 

    Mean Error = 0.220 
    Standard Deviation of Error = 0.078 

 
CONCLUSION 
 

In this study, the Void Growth Model is used in conjunction with the Hillerborg Model to 
model fracture initiation and softening of finite elements at integration point accurately using 
ABAQUS finite element software. Once stress and stiffness are degraded through softening the 
element is deleted. This is done by first calibrating the parameters of the mentioned models and 
then using those calibrated parameters to simulate other experimental tests. Since the Hillerborg 
model is based on equivalent plastic displacement, this approach is mesh independent as long as 
the mesh is fine enough to properly account for boundary conditions of the problem. Therefore, 
the proposed approach is shown to be accurate, and through element deletion, the formulation can 



account for complete structural component separation thus precipitating modeling of the collapse 
of steel structures. Researchers, practitioners, and code developers who address collapse could use 
this approach to perform high-fidelity parametric simulation to study structural behavior of steel 
structures during collapse. 
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