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Computational Analyses of Quasi-Isolated Bridges with 
Fusing Bearing Components

Introduction
 IDOT Earthquake Resisting System (ERS):
 Recently developed & adopted design approach 

tailored to typical Illinois bridge types (and in part 
addressing increased hazard levels in AASHTO)
 Primary objective: Prevention of span loss
 Three levels of design and performance:

» Level 1: Connections between super- and sub-structures 
designed to provide a nominal fuse capacity

» Level 2: Provide sufficient seat widths at substructures to 
allow for unrestrained superstructure motion

» Level 3: Plastic deformations in substructure and 
foundation elements (where permitted)
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Quasi-Isolation for Bridges
 Typical bridge bearing systems designed to act as fuses to 

limit the forces transmitted from the superstructure to the 
substructure
 Type I bearings: bearings with an elastomer to concrete sliding surface
 Type II bearings: elastomeric bearings with PTFE sliding surface
 L-shaped retainers: designed to limit service load deflections
 Low-profile bearings with steel pintles and anchorbolts
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Bridge Prototype Model
 Three 50’ spans with six W27x84 Gr. 50 composite girders and 

8” concrete deck
 15’ Tall multi-column intermediate substructures
 Concrete abutments with backwalls and 2” gap from deck  
 Pile foundations for all substructures
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Bridge Prototype Plan 

Mesh Representation of OpenSees Model Bridge Prototype Elevation
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Modeling of Bearing Components

Sliding elastomeric bearing models
Ongoing experimentation is studying behavior
Difference in static vs. kinetic coefficient of 

friction
Friction slip-stick behavior noted in cases
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Bearing Type I; Exp.#5x1

Model:µSI=0.35; µSP=0.33; µK=0.24
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Bearing Type I; Exp.#1

Model:µSI=0.37&µK=0.29
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Bi-directional bearing elements
 Dependent on axial force
 Allows for initial capacity and different pre and post-slip 

static coefficients of friction
 Force-displacement behavior coupled in orthogonal shear 

directions
 Kinematic-hardening surface used to trace bearing 

movement
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Retainer simulation for 
System Analyses
 Gap with elasto-plastic response until 

retainer fracture
 Independent behavior of the (2) 

retainers 
 Calibrated based on experiments and  

Finite Element Modeling
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Intermediate Substructures
Beam-column elements with lumped plasticity 

at nodes
Fiber sections used to model nonlinear 

behavior at hinge locations of column
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Foundations and Backwalls 
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Limit State Identification 
Longitudinal 

 Bearings
 Elastomer deformation & nonlinear behavior
 Yielding and fracture in anchor bolts & pintles of fixed bearings
 Sliding of bearings on substructure

 Column and wall piers
 Cracking of concrete
 Yielding of reinforcement
 Crushing of concrete

 Foundations
 Plastic deformation of backwall & backfill 
 Plastic deformation of pile groups & pile caps 
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Longitudinal Analysis

11

 Limit state identification stiff foundation
 2500 yr Paducah ground motion
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Longitudinal Analysis
 Slip of bearings at abutments
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Longitudinal Analysis
 Yielding in substructure #2, backwall interaction, and plastic 

deformation in foundation  
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Longitudinal Analysis
 Slip of bearings at pier #1
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Limit State Identification 
Transverse

 Bearings
 Elastomer deformation, retainer deformation with fracture & 

nonlinear bearing behavior
 Yielding and fracture in anchor bolts & pintles of fixed bearings
 Sliding of bearings on substructure

 Column and wall piers
 Cracking and/or crushing of concrete
 Yielding of reinforcement

 Foundations
 Plastic deformation of pile groups & pile caps 
 Possible interaction with backwall & backfill
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Transverse Analysis
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 Limit state identification fixed foundation
 2500 yr Paducah ground motion (only 8 Seconds)
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Transverse Analysis
 Plasticity in retainers and bearing slip at abutment # 1
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Transverse Analysis
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 Fracture of retainer component
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Transverse Analysis
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 Fracture of fixed bearing
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System Analyses Objectives
Quantification of expected value and dispersion for:
Peak & residual bearing displacements 
Peak force demands on fuse components
Peak force demands on sub-structures
Sequence of fuse & systems failure

 Parametric study to investigate influence of: 
Superstructure length and type
Substructure height and type (column pier & wall)
Isolation bearings (Type I & Type II) 
Foundation characteristics (stiff & soft soils)
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Summary & Conclusions
New element models represent key aspects of local 

bearing behaviors
Global bridge model captures limit states for a 

realistic three dimensional analysis
 Flexibility of elastomeric bearings and sliding of 

bearings allows for  quasi-isolated response
 Retainer elements and low-profile bearings need to 

be carefully detailed to limit forces on substructures
 Backwalls have a significant contribution in limiting 

longitudinal displacements
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