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Abstract

Concrete-filled steel tubes (CFTs) are being uiseah increasing number of
structural engineering applications. One particafgplication which exploits the many
advantages a CFT offers is a moment-resisting freonsisting of steel I-beams framing
rigidly into CFT beam-columns. This research examsithe load-deflection relationship
of CFT beam-columns in detail, with the final oltjee of modeling the cyclic nonlinear
behavior of CFT beam-columns in frame structur®s.analytical model is presented to
simulate both the monotonic and cyclic behaviosinfle member CFTs and composite
frame structures composed of both CFT and steelbaesn

The first part of this research examines the esession strength of a CFT
member. Uniaxial stress-strain curves are devdlopenodel the multiaxial stress
behavior of the CFT due to the steel tube confitimggconcrete. These stress-strain
curves are incorporated into a fiber element amalystem, which is used to generate
accurate CFT cross-section strength surfaces.cidss-section study culminates with
the development of an empirical polynomial exprsdor the three-dimensional (P;M
M,) cross-section strength surface of a CFT. Thpession is verified against the fiber
model results and is generalized for CFTs havingde range of material strengths and
cross-section dimensions.

The expression for the three-dimensional crossesestrength of a CFT forms
the basis for the second part of the researchd¢lielopment of a compact and efficient
macro analytical model to accurately simulate #@ad order inelastic behavior of a
CFT beam-column. This model is incorporated infmigée element analysis computer
program, developed for this work, to analyze simgembers and composite frame
structures. The material nonlinear behavior of €KTmodeled using a concentrated
plasticity two-surface bounding surface approacplémented in three-dimensional

force-space. The loading and bounding surfacéseimodel are asymmetric for CFTs



due to the infilled concrete. A formulation is peated for the kinematic and isotropic
hardening of these asymmetric surfaces to modeddah®lex cyclic load-deformation
behavior of the CFT beam-columns.

The CFT inelastic beam element formulation inckidenumber of
experimentally-calibrated parameters which modebberal characteristics such as
stiffness degradation, strength degradation, aadiétrease in the size of the elastic zone
as a CFT is subjected to cyclic loading. A numidfenonotonic and cyclic experimental
tests with varying material and geometric propsréiee examined to calibrate these
parameters of the model. Several additional monot@nd cyclic tests are then
presented as verification of the accuracy and bssag@e of applicability of the nonlinear
CFT beam-column model, including a final examplasisting of a cyclically-loaded

three-dimensional subassembly of steel I-beamsifig;gmto a CFT beam-column.
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Chapter 1

Introduction

Composite members have long been recognizediagerffmeans of resisting
loads in structures. These structural elementdbawarthe beneficial qualities of steel
and concrete to form a member with qualities spea the individual components
themselves. The steel provides high stiffnesstansile strength; the concrete provides
compressive strength and economy. A composite fxednmn may take one of two
basic forms: 1) a steel-reinforced concrete mer(fBleC), which consists of a steel W-
section encased in reinforced or unreinforced arcor 2) a concrete-filled steel tube
(CFT), which may be either a circular or a rectdagstructural steel tube filled with
reinforced or unreinforced concrete.

Steel-reinforced concrete members have been uglednereasing regularity in
the past decade. Only recently, however, have @&mbers become more prevalent in
structural framing systems. For building strucsyi@FTs have been used primarily as
columns, most notably forming the primary columm$iaced lateral load-resisting and
gravity load-resisting systems in high-rise struesuBode, 1976; Griffis, 1992]. Two
unique examples are the 62-story Two Union Squaildihg in Seattle [Godfrey, 1987]
and Casselden Place, a high-rise structure in Miet#o[Bridge and Webb, 1993; Webb,



1993]. The Two Union Square building utilizes fdr foot diameter CFT super-
columns with 19 ksi concrete as the primary latkradl-resisting element and additional
CFT perimeter columns to resist gravity loads. Selen Place incorporates CFTs as the
gravity load-resisting system into which composigams frame. The use of CFTs in this
structure minimized the required construction laded maximized the speed of
construction. Concrete-filled steel tubes have bBken used in seismic applications, in
particular for bridge piers [Bode, 1976; Kitada929Priestley et al., 1994]. Recent
trends indicate an increase in the use of CFT mesnhet only in applications similar to
those discussed above, but as beam-columns in m&waovative applications that take
advantage of the many benefits a CFT offers [Godlsamanouchi, 1993]. The
research reported herein presents a computatioo@infor simulating the behavior of

CFT beam-columns used in frames subjected to maiwtw cyclic loading.

1.1 Concrete-Filled Steel Tubesin Frame Structures

Concrete-filled steel tubes provide manifold bésefnd advantages by exploiting
the beneficial properties of steel and concretethadnteraction between the two
materials. CFTs offer high strength and stiffnessellent seismic properties, economy,
and efficiency [Tomii et al., 1973; Bode, 1976;adf, 1992; Webb, 1993]. The
advantages of using CFT members become espeqiglrent when CFTs are used in
braced and unbraced frames. When used as beamsoln these types of structures,
CFTs demonstrate superior economy and strengthtaditional steel or reinforced

concrete members [Matsui, 1986; Morino et al., 1993



The usefulness, economy, and efficiency of CFTesgs has been recognized by
engineers across the world, especially in Japdre Japanese Planning Group for the
1992 US-Japan Workshop on Hybrid and Compositec&tres [Yamanouchi et al.,
1993] has identified several CFT structural systénsuture large-scale testing. One
theme structure presented by this group consisatswb-way unbraced frame structure
composed of steel beams and CFT beam-columnsl(Aig. This unbraced composite
frame represents one type of structure whose maiwémd cyclic behavior may be

assessed using the analytical formulation to bseegorted in this work.
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Figure 1.1 Medium Rise CFT Theme Structure (after Yamanoethi. [1993])

CFT members perform efficiently under a varietyazfding conditions, providing
excellent compressive strength, as well as supfexural and axial stiffness. The
orientation of the steel and the concrete in a @K&s advantage of the properties of

both materials. The steel tube forming the extesfdhe member, has a much larger
3



modulus of elasticity and ultimate strength thaad¢bncrete and provides a large moment
of inertia, leading to high stiffness and flexutapacity [Bridge, 1976]. The concrete, on
the other hand, forms an ideal core to withstaedcttmpressive loading typical in beam-
column applications.

When a CFT member is subjected to compressiverigatlirther benefits arise
due to the interaction of the steel and concrdtany authors have recognized that CFTs
under compressive loads provide strength in exaedse sum of the individual material
strengths of the steel and concrete [Gardner, 1B&8yji et al., 1973; Ichinohe et al.,
1991; Tomii, 1991]. As a CFT undergoes compressiading, the concrete begins to
rapidly expand at a strain of approximately 0.088ucing an outward pressure on the
steel tube [Gardner and Jacobson, 1967; Knowle®ark] 1969]. The steel tube, in
turn, exerts a confining pressure on the concregeilting in added concrete strength and
ductility. Spalling of the concrete, often a pralin reinforced concrete members, is
inhibited by the steel tube. Concrete, normalfglatively brittle material, becomes
ductile when combined with the steel, resultingimember with favorable seismic
properties [Matsui, 1986; Tomii, 1991].

While the steel improves the properties of theccete, the concrete contributes to
the performance of the steel tube. The presentteeafoncrete core significantly delays
local buckling of the tube by forcing all bucklingodes outward [Tomii et al., 1973;
Kitada and Nakai, 1991]. The delayed local buckamd increased concrete ductility
contribute to the toughness of CFTs--the abilit{&iTs to sustain a high proportion of
their capacity even after local buckling of theestend crushing of the concrete has
occurred [Bridge, 1976].

In addition to their efficient load resistanceasingle member level, CFTs
provide a number of economic benefits and additiadaantages specific to frame
structures. Frame structures composed of CFT loedinmans and wide flange beams,
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with proper connection design, provide high enexiggorption characteristics and, in
turn, very good seismic load resistance [Matsu8619 The symmetry of circular or
square CFT cross-sections produces a beam-coluthregual resistance to bi-
directional moments, a distinct advantage in tld@@ensional moment-resisting frames
(e.g., Fig. 1.1). In moderate- to high-rise camsion, a building with CFT beam-
columns can ascend much more quickly than a corbfgarainforced concrete structure
since the steelwork can precede pouring of theretady several floors [Webb, 1993].
The steel tubes also serve as the formwork fomtteconcrete during construction,
which decreases both material and labor expensee[BL976; Prion and Boehme,
1989]. The cost of a CFT member on a strengtldpkar basis is much less than steel
and roughly equivalent to reinforced concrete éov to medium strength concrete. With
the use of high-strength concrete, though, CFTstaomger per square foot than
conventional reinforced concrete columns [Webb 3199 inally, in high-strength
applications, a smaller column size may be usedeasing the amount of usable floor
space in office buildings.

The disadvantages of using CFTs in frame strustsineuld be considered as well
as the advantages. The exposed bare steel tulieeegxpensive fire-protection. The
disadvantage of the low fire-resistance of thel ssegomewhat mitigated by the concrete
core, which provides a larger thermal capacity thiamside a hollow tube, thus
decreasing the amount of necessary fire-proofintgna [Tomii et al., 1973; Lie and
Stringer, 1994]. A CFT, however, still remains msusceptible to fire damage than a
reinforced concrete or steel-reinforced concretenbex and, at present, must be fire-
proofed accordingly.

Another potential drawback of CFTs in frame stuoes, particularly unbraced
frames, is the difficulty and expense of providirggd beam-to-column connections
[Prion and Boehme, 1989]. Tube connections haea Baudied by a number of
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researchers and industry experts, however, ancktudts are now starting to be
synthesized into comprehensive design specificatibtatsui, 1986; Prion and McLellan,
1992; Azizinamini and Prakash, 1993; BMTC, 1994].

Current design specifications for CFTs for bothreections and single members
provide only limited guidance for the engineer,exsally with the use of high strength
materials. Lundberg [1993] has compared the AIRED [1994] calculation for beam-
column capacity to experimental results and fourad the code is inconsistent and may
even be unconservative in some cases. The sharngsmof the current design
specifications stem in large part from the limibese of experimental and analytical
research to quantify CFT behavior.

Despite the potential drawbacks of CFTs, theiraatizges over traditional
structural members promise to establish an expgmdie for this versatile structural
element in modern construction. With continuedyital and experimental research,
many of the current disadvantages of CFTs may kecome, leading to a more thorough
understanding of CFT beam-column behavior and roongprehensive design

specifications.

1.2 Research Objectives

The trend toward the use of CFT structural memivehimes has presented the
need for more comprehensive experimental and acalyesearch to better understand
the complicated behavior of CFTs [Goel and Yamahgu®93]. The analytical
requirements for studying CFT frame behavior cdrdisieveloping an efficient method
to study the overall frame load-deflection behawmboth static and seismic loading
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situations. The purpose of this research is t@ldgvan analytical procedure which
examines CFT member and frame behavior at the mempdc level, i.e., each structural
member is usually modeled by one to three distreten-type finite elements. In
particular, the nonlinear finite element model deped in this work will be used to study
three-dimensional unbraced moment-resisting frasnegosed of steel I-girders framing
rigidly into rectangular CFT beam-columns and scigie to either monotonic or cyclic
loading.

The development of an analytical procedure capafbsbeodeling the nonlinear
load-deflection behavior of CFT frames requiresimhber of tasks. These tasks may be
summarized by examining the three primary objestfethis research:

1) Formulate a polynomial expression represerttiegcross-section strength of a
rectangular CFT. This expression should be appkcép a wide range of cross-section
sizes and material strengths. Modeling CFT cressian strength--the capacity of a
zero-length CFT section under combined axial amdlivgy loads--requires the
development of accurate stress-strain relationshipsh account for the interaction
between the concrete and the steel. Also, comditoust be identified, such as local
buckling or concrete crushing, which cause thei@etd lose its capacity to sustain
additional load. The representation of cross-eadcirength forms the basis for the
plasticity model contained in the next objective.

2) Develop a macro finite element beam-column ehtal reproduce accurately
the nonlinear load-deflection behavior of CFT spems loaded monotonically and
cyclically. The beam-column model consists of acamtrated plasticity formulation in
which plasticity is confined to the element ende plasticity state at either end of the
element is modeled using a two-surface, boundingse model in three-dimensional

force space (P-|AM,)L. An inner loading surface represents the locUisrek points at

1All symbols are defined in Appendix D.



which inelastic behavior initiates and an outerrmbng surface represents the locus of
force points that cause full plastification of daneent end. The two surfaces translate
kinematically and contract or expand isotropicé&blynodel load-deflection
characteristics such as strength and stiffnessadagon. A further objective of the
concentrated plasticity model formulation entadhlrating the size of the surfaces, the
rate of surface contraction or expansion, andake of plastic hardening, such that the
set of fixed calibration parameters are applicédble wide range of CFT cross-section
sizes and material strengths.

3) Implement the concentrated plasticity model@&6T beam-columns along
with existing formulations for steel beam-column®ia finite element program to

analyze the behavior of complete composite momesisting frame structures.

1.3 Scope of Research

To achieve the main goals of this research, argéparpose frame analysis
computer program was developed based on the usstahdard three-dimensional beam
finite element, having a total of twelve degredrekdom per element, for both steel and
CFT elements. The program performs a fully nommanalysis, accounting for both
geometric and material nonlinearities. Elemerftr&ss is formulated using a
superposition of elastic, geometric, and plastittiotion stiffness matrices. Either single
members or entire frame structures in three-dinogragispace may be analyzed statically,
with loads applied either monotonically or cycligalln addition, the program has the
capability to perform a transient dynamic analydisingle members and frames,
although this research concentrates on cycliccshatinavior.
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As mentioned in Section 1.2, the CFT formulatient@ins strictly to rectangular
CFT members. The analysis is restricted to merbeavior only; the behavior of CFT
connections is not included in this work. In timalgses of frame structures, fully
restrained connections are assumed. The scopesatsearch is limited to CFTs which
are completely filled with concrete and make no afseeinforcing bars or shear
connectors to improve the concrete/steel bond.itiaally, it is assumed that perfect
bond between the steel and the concrete is magatain

Local buckling of the steel tube is not modelecly in this macro model
formulation, although indirect account of local klireg is made in the computation of the
cross-section strength of a CFT, and in the isadrbardening model. Because CFTs
rarely exhibit torsional or lateral-torsional buck), these failure modes are not modeled.
Also, since shear and torsional forces are expdotbd small, material nonlinearity due
to these forces is neglected.

The general CFT beam-column formulation preseintekdis work is a
comprehensive and flexible macro model that is ggpate for modeling a wide range of
rectangular CFT cross-sections and material stnsngtowever, the applicability of the
CFT model is limited somewhat by the availabilifye@perimental test results. The
formulation for the cross-section strength appiee€FT sections with width/thickness
ratios up to approximately 100, concrete compressitengths up to 15 ksi, and yield
strengths typical of standard AISC rectangular $U#¢SC, 1994]. The formulation and
results of the beam-column model, namely the catidal plasticity parameters, are
somewhat more limited in scope. Experimental momictload-deflection curves for
CFT members with width/thickness ratios up to agpnately 50 and concrete strengths
up to 15 ksi were used in the calibration of thedelo For the cyclic analysis, sections
with a similar range of width/thickness values aondcrete strengths of 3 to 5 ksi were
analyzed and calibrated. Strictly speaking, tiseilte of the analytical formulation are
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meant to apply only for sections within this randgextension of these preliminary results
is pending further experimental research to enth@@ccuracy of the analysis

parameters.

1.4 Organization of Thesis

The analysis of the cross-section strength of GiéTstitutes the first part of the
thesis. A discussion of CFT cross-section behaatooduces Chapter 2. This is
followed by a discussion of the numerical procedised to accurately predict CFT
cross-section behavior. The chapter concludesawvitiscussion of the procedure used to
determine a polynomial equation representing theetldimensional cross-section
strength of a general CFT. This cross-sectiomgtheequation is incorporated into the
concentrated plasticity model for the material mogdr behavior of CFTs, which is
introduced in Chapter 3 and developed in detaiapter 4.

Chapter 3 examines the nonlinear CFT beam elefoantlation. The behavior
of CFT beam-columns subjected to monotonic or cyolading is discussed first,
followed by a general overview of the analyticaldab Following this introductory
section, each component of the stiffness formutaadiscussed--the CFT elastic
stiffness, the geometric stiffness, and finallyg giastic reduction stiffness, the final step
of the concentrated plasticity formulation. Thscdssion of the plasticity formulation
describes in general terms the method for modéhagbserved CFT beam-column
behavior, and introduces the plasticity model thateveloped in detail in Chapter 4.

The concentrated plasticity model discussion adgiér 4 is divided into three
general sections. The first section discussestteporation of the CFT cross-section
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strength equation developed in Chapter 2 into thending surface model. Next, the
plastic reduction stiffness matrix for a single Cél€ment is developed. The last section
of Chapter 4 details the mathematical formulat@ntiie translation and the contraction
and expansion of the loading and bounding surfaces.

Chapter 5 presents the calibration of the numiemcalel to experimental test
results and presents a verification of the ana{t@FT beam-column model. Example
problems are first illustrated to verify the contcated plasticity routine for steel
elements. Following this verification, the modektalibrated to monotonically- and
cyclically-loaded CFT members. Several additidBll experiments are then used to
illustrate the accuracy and general applicabilftthe calibrated model. The last section
of the chapter illustrates a final verification plem consisting of a three-dimensional
cruciform subassembly composed of steel I-beanmsifigiinto a CFT beam-column.

The final chapter summarizes the research on @&ambcolumns and the
corresponding nonlinear model of their behavioon€lusions are presented and possible

future research topics are suggested.
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Chapter 2

Analysis of CFT Cross-Section Strength

The concentrated plasticity model for the mater@ilinear behavior of concrete-
filled tube beam-columns requires an explicit egumatiescribing the size and shape of
the loading and bounding surfaces. To this end dmapter details the development of a
comprehensive empirical equation for determinirgttiree-dimensional cross-section
strength of CFT beam-columns.

The fiber element method, as developed by SamaR992] and El-Tawil et al.
[1993], is used in this work to accurately compihie cross-section strength of CFTs.
CFT cross-section strength is defined in this neteas the combined axial load and
bending moment capacity of a zero-length beam-coluiirhe ultimate bending strength
of the section for a given applied axial load ised@ined by executing a moment-
curvature-thrust computation using the fiber elenagproach. This approach is detailed
in Section 2.2. The peak moment from the momentature-thrust analysis defines a
point in three-dimensional force space (PHML) representing the capacity of the cross-

section under a given set of loads. Thus, a camptheee-dimensional cross-section
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strength surface may be generated by a series miemiscurvature-thrust analyses over a
range of axial loads and load eccentricities (varying degrees of biaxial bending).

The development of an equation for the three-dsimral cross-section strength
of CFTs consists of four steps. First, the comptsef the fiber analysis specific to
CFTs are determined: the stress-strain relatipisstii the steel and concrete, and the
criteria for terminating the moment-curvature cotapion. Experimental tests of short
CFT sections are then compared to the results fhenfiber element analysis, and the
stress-strain relationships and the analysis textioin criteria are refined to produce
accurate results. Once the results from the gbament method agree with the
experimental results, the third step entails gemgrahree-dimensional cross-section
strength surfaces for a series of CFTs with a wedge of dimensions and material
strengths. Finally, using the P, data from the series of fiber element analyses, an
empirical polynomial equation is generated to repnt the cross-section strength surface
of a general CFT surface.

Chapter 2 is structured as follows. Section #stusses the behavior of CFT
cross-sections, highlighting the behavioral aspéaswill be modeled by the cross-
section strength surface equation. Section 2.2ritbes the fiber element analysis
procedure used to generate moment-curvature-tiagtams. Section 2.3 contains a
description of the steel and concrete constitutlationships and Section 2.4 the
conditions for terminating the moment-curvaturasitrcomputation. Section 2.5
illustrates the accuracy of the fiber element asialyesults by comparing the results to
experimental CFT test results. In the final portad this chapter, Section 2.6, the
procedure for developing an equation to empiricadfyresent a general three-dimensional

cross-section strength surface for rectangular G&@istailed.
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2.1 CFT Cross-Section Behavior

This section introduces the general behavior©Fa& cross-section and serves a
dual purpose. First, it provides a general disoassf CFT behavior which is continued
in Chapter 3 for longer members. Second, this@ettys the foundation for the
remainder of the chapter by discussing the behalvaspects that will be incorporated
into the stress-strain formulations and terminatioteria for the moment-curvature

thrust computation.

2.1.1 Axially-Loaded Cross-Sections

The cross-section behavior of CFTs may be bestnstambd by first examining a
member subjected to a concentric axial load. picgt CFT applications, the axial load
will be compressive. The case of pure tensileitgpdf a CFT is of less interest because
the steel and the concrete do not interact. Idsteay will act independently of one
another, and the capacity of the member may beaiety approximated by assuming
that only the strength of the steel tube contribiethe load resistance [Furlong, 1967].
CFTs in compression, on the other hand, demonsitratgie behavior which is
dependent upon a number of factors.

A concentric axial load applied evenly across@ts8FT column will cause
longitudinal deformation of the steel and the ceter At low values of axial load, the
steel and the concrete deform longitudinally atdhme rate, but expand laterally at
different rates. At these low levels of strainjd8on's ratio for the steel exceeds
Poisson's ratio for the concrete (0.28 for thel stexsus 0.15 to 0.25 for the concrete),
resulting in a greater lateral expansion of thelstnd little or no interaction between the
two materials [Gardner and Jacobson, 1967; Ts@ji.e1991]. During this stage of

loading, the steel and the concrete sustain lodelb@endently of one another. At an axial
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strain of approximately 0.001, microcracking in tmcrete begins to occur and the
lateral expansion rate of the concrete increasgédagins to approach the lateral
expansion rate of the steel. Between a strain@ffl0and 0.002, the concrete expansion
reinitiates full interactive contact between the twaterials, inducing biaxial stresses in
the steel and triaxial stresses in the concret@Hes and Park, 1970; Bode, 1976; Cali,
1987; Tsuji et al., 1991; Zhang et al., 1991].

The interaction between the concrete and the sgealts in an overall increase in
the load-carrying capacity of the member. The ca®give strength and the ductility of
the concrete core is enhanced by the confiningspresof the steel tube. On the other
hand, the outward pressure of the concrete ontélet tsibe decreases the longitudinal
capacity of the steel. If the steel tube has ebtielded, this biaxial state of stress
effectively decreases the amount of additionallds&d the steel can sustain before
yielding occurs. If, on the other hand, the stabke has begun to yield when the biaxial
stresses initiate, the steel will be unable toanghe longitudinal yield stress. In either
case, the tube must shed some of its axial lo#lteteoncrete [Gardner and Jacobson,
1967]. While the concrete's expansion has a deleteeffect on the longitudinal steel
capacity, the increase in axial strength of thecoete actually outweighs the
corresponding decrease in steel strength, resuttiag overall increase in the capacity of
the CFT section [Council on Tall Buildings and Unldabitat, 1979].

The behavior of CFTs after the onset of concretdiocement differs for circular
and rectangular tubes. A circular steel tube camtain lateral pressure on the
expanding concrete by developing a circumferetiasgile stress. The circumferential or
hoop tension developed in the circular tube prav@darger resistance to the expanding
concrete and a higher degree of confinement thafldhsides of a rectangular tube,
which provide little perpendicular pressure tonastthe expanding concrete [Furlong,
1967; Knowles and Park, 1970]. Consequently, tmeiete in rectangular tubes
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undergoes little increase in strength due to cenfient [Knowles and Park, 1970;
Bridge, 1976]. The concrete in a rectangular tulde however, experience an increase
in ductility due to confinement [Tomii et al., 1973although not to the degree of a
circular tube. For both cross-section shapesnamase in the thickness of the tube
results in a corresponding increase in the degreerdinement provided by the steel

because of the increased lateral stiffness ofube.t

2.1.2 Combined Axial Load and Bending

A cross-section subjected to a bending momenddlitian to axial load exhibits
behavior which depends primarily on tbét ratio (the ratio of the depth or width of the
tube to the thickness of the tube), and the sthengft the steel and the concrete.
Additionally, local buckling of the steel tube miaypact the capacity of the cross-section.
Cross-section behavior may be described by araictien curve which illustrates a
section's moment capacity for a given axial lokayure 2.1 illustrates typical CFT
interaction curves for different values of concrattengthf_ (this interaction curve is
shown in normalized force space; &d M, are, respectively, the ultimate axial load in
the presence of no bending and the ultimate bendmgent in the presence of no axial
load). The figure illustrates that CFT cross-sewiinitially sustain increasing amounts
of moment as the axial load increases from zefbe degree of this characteristic
increase in moment, which is manifested in the eartwilge of the interaction curve,
depends primarily upon tH&/t ratio and the concrete and steel strengths. A bpad
is increased further beyond the bulging portiothefcurve, CFTs begin a rapid decrease

in moment capacity as the axial load approachesatsmum value, P
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Figure 2.1 Cross-Section Strength Curves for Typical CFT Gi®sstions

The moment capacity of a CFT derives primarilyrirthe resistance of the steel
tube and the resistance of the compression conciéte amount of concrete in
compression depends on the location of the nearialof the cross-section. For CFTs
with a higher concrete strength or larger raticarfcrete to steel area, the neutral axis
will lie closer to the top fiber of the section. héh increasing amounts of axial load are
applied to a given cross-section, the neutral asases toward the centroid of the cross-
section, increasing the contribution of the comgi@sconcrete. Therefore, a section
with a larger f or a largeD/t ratio will experience a larger increase in momegacity
(relative to its value of NJ) as the axial load increases from zero, and tmilstexhibit a
larger bulge in the interaction diagram in the madge region of axial load (compare f
=3.5and f=15.0in Fig. 2.1). The presence of axial loalll also enhance the

confining effect on the concrete. This illustraties beneficial behavior of CFT beam-
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columns subjected to moderate values of axial &satlbending, and demonstrates the
advantage of combining high strength concrete stitlel tubes that may be quite thin.

While CFT behavior is most advantageous for mddeaaial loads, CFTs under
high axial load exhibit rapid moment capacity det@tion and brittle failures. For high
values ofP/ P, , the tensile resistance of the steel tube is writieed and may, for CFTs
with low D/t and low f{, still be elastic upon crushing of the compressioncrete. In
addition, if the steel on the compression sidethukled upon concrete crushing (which
is more likely as th®/t ratio increases), an undesirable brittle failursuss. Because
of these characteristics of CFTs subjected to larig@ load, most researchers limit their
studies of beam-columns to axial loads giving erat P/ P, less than or equal to
approximately 0.5 [Tomii and Sakino, 1979a, 1974dkisui and Tsuda, 1987].

The capacity of a CFT cross-section must alsaxaeneed with respect to the
local buckling of the steel tube. This deleterieffect is somewhat mitigated by the
presence of the concrete core in a CFT. Matsi8§l8stablished experimentally that the
D/t ratio at which a CFT buckles locally may be incezshto 1.5 times that of hollow
tubes. Correspondingly, a decrease in@jeratio will increase the amount of strain the
section can undergo before it buckles locallyaduition, Tomii and Sakino [1979a,
1979b] and Ichinohe et al. [1991] have shown tH&Ef €with low D/t ratios can

maintain their strength long after local buckliresloccurred.

2.1.3 Other Cross-Section Effects

Residual Stresses

In addition to stresses due to the applied logdsdual stresses may also be

present in the steel tubes. The level of residtiakses in steel tubes is highly dependent
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upon the manufacturing process and the shape aftiss section [Sherman, 1992]. The
tubes considered in this work are cold-formed, wdldeam tubes. These types of tubes
are manufactured in sheets, bent into shape, amviklded at the seam. The residual
stresses produced by this process are largest itntbugh-thickness direction [Sherman,
1992] and are assumed in this work to have a nbfgigffect in the longitudinal and
circumferential direction. In addition, to avoltetproblem of residual stresses
altogether, some researchers have used anneadtusies, (i.e., tubes which are heated
to a high temperature and then cooled slowly anfibumly to relieve any residual
stresses) [Tomii and Sakino, 1979a, 1979b, 1978kin® and Tomii, 1981]. Unless
otherwise noted, all of the experimental resultscin this research are tubes which have

not been annealed.

Bond

Composite interaction in a CFT member dependsrhgn the amount of bond
between the concrete and the steel. Virdi and DbgwlL980] have identified two types
of bond between the concrete and steel in a CFEratoicking and macrolocking.
Microlocking, the primary type of bond, refers ketbonding of the concrete with the
surface irregularities (or roughness) of the ingitlthe tube. Macrolocking refers to the
mechanical and frictional interaction between thearete and steel due to
nonuniformities in the tube, e.g., out-of-straigiga or out-of-roundness.

The ultimate bond strength between the mategsadgtained upon local crushing
of the concrete at the interface. Virdi and Dowlj@§80] studied the effect of a number
of parameters and established a characteristic Stwadgth for CFTs of 150-160 psi.
They concluded that surface preparation and theuatrad compaction are the only

significant parameters that will increase the ant@filbond. Parameters such as concrete
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strength, length of the concrete/steel interfaoe tabe thickness, and the tube diameter
had only negligible effects on the amount of bond.

Nevertheless, it has yet to be determined compsbely how much strength, if
any, is lost in a CFT member that is part of a fgEamnce the bond between material
breaks down [Morino et al., 1993]. It is also hiffit to model slip at the interface of the
tube and the concrete core in a macro model. Ttissassumed in this research that
perfect bond is maintained between the steel amddhcrete (i.e., that no slip occurs).
Most analytical studies of CFTs to date have inomated this assumption [Neogi et al.,
1969; Tomii et al., 1973; Bridge, 1976; Tomii anakio, 1979b; Prion and Boehme,
1989; Shakir-Khalil and Zeghiche, 1989; Masuo et191; Kawaguchi et al., 1991].

Creep and Shrinkage

The effect of creep and shrinkage, an essentraideration in reinforced
concrete construction, has a much smaller influemcthe behavior of CFTs [Nakai et
al., 1991]. The steel tube serves as an enclasgbament in which conditions remain
ideally humid, minimizing these effects. Long-tecreep and shrinkage tests by Nakai et
al. [1991] compared plain concrete specimens tosCHIheir results indicate that the
amount of shrinkage due to drying is negligible paned to the plain concrete. Creep
does produce an increase in the longitudinal drawer time in CFTs, but the ratio of the
final strain after creep to the initial elasticastr due to the axial load in their CFT
specimens was about half of the value obtaineg@lfon concrete. Creep and shrinkage

are neglected in this work.
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2.2 Fiber Element Method for Computing CFT Cross-Section
Strength

2.2.1 Background on Methodsfor Cross-Section Strength Computation

A number of different methods have been used &byaa the cross-section
strength of CFTs. Tomii and Sakino [1979b] comdu@$T cross-section strength using
a stress block method. In this approach, thessdees the concrete and steel are
represented by uniform rectangular blocks, anddkaltant forces over the cross-section
are assumed to act at the centroids of the sttesksh Chen and Atsuta [1976, 1977]
derived parametric equations to describe the mowmanviature-thrust relationship of
CFT sections. These equations, derived using emapexpressions for the stress-strain
relationships of the steel and concrete, relate emirto curvature based on the amount of
applied axial load. Numerical integration techmgnave also been used by several
authors to determine the moment-curvature-thruatiomship of CFT sections. This
particular method analyzes a given cross-sectiomelbgrmining the stress and strain at
discrete points and then obtaining resultant irateforces by integrating the stresses. The
method used in this work, a fiber element analysisne such approach. Variations of
this method have been used by Bode [1976], ShakatiKand Zeghiche [1989], and
Kawaguchi et al. [1993] for uniaxial bending oftaaegular CFTs and by Sanz-Picon
[1992] and El-Tawil et al. [1993] for biaxial bemgdi of SRC sections.

2.2.2 Fiber Element Analysis

The fiber element method affords a high degrescotiracy as a numerical tool to
analyze the moment-curvature-thrust behavior of GEdm-column cross-sections.
Values of stress and strain are monitored at a euidifferent points on the
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discretized cross-section throughout the analyBise resultant forces on a cross-section
(axial force and bending moment) are obtained byerically integrating the stresses
over all of the elements of the cross-section. dé¢miracy of the solution improves as the
cross-section is discretized into a finer and fimexsh of elements.

The moment-curvature-thrust relationship for aegieross-section is generated
by performing a series of iterative proceduresgitled in Section 2.2.4). By computing a
number of moment-curvature-thrust analyses at Bpeeilues of applied axial load ratio,
p= P/ P, and angle of eccentricity (i.e., the orientatidrthe applied moment with
respect to the principal axes of the cross-sectamh)o- or three-dimensional cross-
section strength surface may be generated. Fioea gccentricity angle of the applied
moment, a two-dimensional cross-section strengthec(M-P diagram) is generated by
obtaining the maximum moment from separate momentature-thrust analyses
performed at increments of axial load ranging froero to P. A piecewise three-
dimensional cross-section strength surface (Rviyldiagram) may then be generated by
calculating a series of two-dimensional cross-sacstrength surfaces with the moment
applied at increments of eccentricity angle randimog ° (major axis bending) to 90

(minor axis bending).

2.2.3 Discretization of the Cross-Section

The fiber element analysis first requires a sjeation of the CFT cross-section
dimensions and the number of mesh elements. Téoraegey of a rectangular CFT is
defined by three parameters: the width (b), dépdhand thickness of the tube (t).

Figure 2.2 illustrates these dimensions and thdhmgscheme incorporated to discretize
the rectangular CFT cross-sections analyzed inréisisarch. Each cross-section was
divided into five regions, facilitating a nearlyitorm element size and an element aspect
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ratio as close to 1:1 as possible. This schenteadiisws different degrees of mesh

fineness to be used for the steel and concrete.

T P T
I

~— Region 1

N\— Region 4

H Region 3

S N N A

—~ _SHe R

Region 2

Figure2.2 CFT Geometry and Typical Meshing Scheme

The density of the mesh for the cross-sectiordiestun this research was
carefully monitored to determine the optimum degnsiith respect to accuracy and
analysis time. The mesh densities used were g@ifflg refined so that increasing the
mesh density did not result in any significant aesin the results. The density of the
mesh shown in Fig. 2.2 is somewhat coarser thadehsity used in the cross-sections of
this study. In general, the steel tube was meshadomewhat finer grid than the
concrete. One layer through the thickness oftiel tube provided sufficiently accurate
results for most cross-sections except for thiskeel tubes having a depth to thickness

ratio of 24. For these cross-sections, two lagle@ugh the thickness were used.
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Maintaining a 1:1 aspect ratio resulted in appratity 40 to 60 elements per steel
region. The concrete interior (region 5) was asshed using a 1:1 aspect ratio. For
square CFTs, for example, this mesh density resuliggrid of concrete elements ranging

in number from approximately 3636 elements to 58 50 elements.

2.2.4 Moment-Curvature-Thrust Analysis

The moment-curvature-thrust analysis used inrdgsarch to analyze the cross-
section behavior of CFTs was developed by SanzAHt®92] and El-Tawil et al. [1993]
for the analysis of steel, steel-reinforced corgranhd reinforced concrete cross-sections.
Their fiber element procedure was implemented im&aractive, graphical computer
program, COSBIAN [Sanz-Picon, 1992; El-Tawil et 4B93], which was extended in
this work to analyze concrete-filled steel tubessrsections. The analytical procedure is
described in detail in their work; this sectionyohtiefly highlights the assumptions and
the salient points of the fiber analysis. Thistieecalso provides a basis for the
descriptions of the CFT stress-strain relationsfesction 2.3) and the criteria for
terminating the moment-curvature-thrust computatib@FTs (Section 2.4).

The fiber element procedure may be described bynexing one increment of a
moment-curvature-thrust analysis. For such anyarslthe moment must be computed
for a given value of curvaturg, The procedure for calculating the cross-seatimment
contains a series of iterative steps. It begirth tie initialization of the neutral axis
orientation and the top fiber straiy,, which, combined with the given value of
curvature, define the strain distribution over thess-section. The orientation of the
neutral axis (the angkebetween the neutral axis and the centroidal axiseosection) is
initialized to the eccentricity of the axial loal(see Fig. 2.3). The top fiber strain is
initialized to its specified increment. From theature and the top fiber strain values,
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the location of the neutral axis may be calculatéde strain at each element is then
computed assuming the strain distribution is lin€Bnis assumption implies that perfect
bond exists between the concrete and steel at éiteria interface (see Section 2.1.3).
The strain at any fiber is then computed by mujtig the curvature by the distance from
the centroid of the element to the neutral axisasnesd with respect to a line

perpendicular to the neutral axis (Fig. 2.3).

y ‘ P = applied axial load
Y

&

-~ Linear Strain
RN Distribution

Figure 2.3 Fiber Element Analysis Definitions (after Sanz-Ri¢992])

Once the strain at each fiber element has beenrdieted, stresses are computed
from the strains using the constitutive relatiopshdescribed in Section 2.3. The force
on each element is the product of the elementsstied area. The resultant internal axial
force on the cross-section is computed by numdyiggtegrating the stresses over the

cross-section, which is accomplished by summinddhee in each fiber element:
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F=Zk:0i A, (2.1)

where k is the number of fiber elements in the 1sEction, Ais the area of each fiber
element, anay; is the stress at the centroid of each elemenis Vidiue of force, F, is
then compared to the applied axial load, P. Ivélees are not within a prescribed
tolerance, the top fiber strain is adjusted andotiogess is repeated until convergence.
For biaxial loading, the correct orientation oé theutral axis must also be
established. Once the axial force is equilibratedments in the major (z) and minor (y)
axis directions are calculated by summing the mampesduced by the force in each

element (the product of the element's force andisismnce to the neutral axis):

|\/|Z :P@y :iai DAi I:M (22)
My=PEeZ=Zk:0i A [z . (2.3)

The ratio of the calculated moments, /M, is then compared to the tangent of the angle

of load eccentricitygr, which is defined as:

tana = S (2.4)

€

where ¢ and ¢ are the eccentricities of the applied load as oreassfrom the y and z

axis, respectively. If the ratio of the calcularedments and the ratio of the load
eccentricities are not within a specified toleraritbhe orientation of the neutral axis is
adjusted until the two ratios converge. When thetral axis orientation changes, the

strain distribution changes. New strain valuescateulated based on the new neutral
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axis orientation and the procedure for axial faxeavergence is repeated. The moment
ratio, M y/M ,, IS again compared to Eq. (2.4) and the neutraliaxadjusted if the two
ratios are not within a tolerance. These two tteegprocesses are repeated until both the
axial forces converge and the moments convergee @ns has occurred, the resultant

moment is calculated by:

M=,/ M2+M? (2.5)

This value defines one point of the moment-cunethrust relationship. For a complete
moment-curvature-thrust analysis, the curvatutbes increased by a specified
increment and the iterative process is repeatdée: mMfoment-curvature-thrust

computation terminates when one of the failureegatdescribed in Section 2.4 is met.

2.2.5 Analysis Parameters

The fiber element analysis discussed in the pusvgection requires specified
increments and convergence tolerances for thdiiterprocedures contained within it.

Following are the values for these parameterswiea¢ used in this research:

Curvature incrementXp) =0.00001
Strain incrementAg) =0.0001
Increment in neutral axis orientatioh®) =2.00

Axial force convergence tolerance =0.10%
M y/M , convergence tolerance =1.0%

These values are all based on the recommendatiessred by Sanz-Picon [1992].
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2.3 Steel and Concrete Constitutive M odels

The calculation of the concrete and steel elersgasses from the element strains
forms a key step in the fiber element approachesihe resultant forces on the cross-
section for a given curvature are computed dirdotign the stresses. The accuracy of the
moment-curvature-thrust solution, therefore, depanmbn a correct formulation of the
concrete and steel constitutive relationships.

In this research, empirical uniaxial nonlinear stitntive models were formulated
to represent the multiaxial stress-strain behavidhe concrete core and the steel tube.
As discussed in Section 2.1, the multiaxial stsgssin behavior of the steel and concrete
in a CFT results from the interaction between theceete and the steel. This interaction
often results in additional strength and ductilitthe concrete and a decrease in the
longitudinal strength of the steel tube (effectsotare more pronounced in circular
tubes). For the rectangular tubes studied inrdgearch, the effect of confinement is
assumed to produce only an increase in the dyabilithe concrete and no increase in
strength [Tomii and Sakino, 1979b]. Similarlyistassumed that the concrete/steel
interaction in rectangular CFTs produces no deereathe yield strength of the steel
tube.

Because only longitudinal strains are monitorethenfiber element analysis,
multi-axial behavior must be accounted for indileasing uniaxial stress-strain curves.
Relatively few authors have addressed the efferttefactive stresses between the steel
and the concrete in modeling the behavior of CFliserefore, much of the following
discussion and parts of the proposed stress-&xgiressions originate from experimental

and analytical work performed on confined rectaagutinforced concrete sections.

2.3.1 Concrete Constitutive Model
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The stress-strain behavior of the concrete in & SElependent upon its
unconfined uniaxial behavior and the relative raficoncrete to steel (commonly
expressed as the depth or width to thickness maitib/t ratio). TheD/t ratio affects the
degree of concrete confinement provided by thd,sded therefore, the amount of
ductility exhibited by the concrete.

The uniaxial stress-strain relationship for cotera a rectangular CFT consists
of four distinct regions: a tensile region, aneamting curve in the compression region, a
plateau region, and a descending curve in the cesspm region [Tomii and Sakino,
1979b]. Figure 2.4 illustrates the basic form uisetthis work of several typical stress-

strain curves for various combinations of concettength and/t ratio. The tensile

Compression
fé =15 ksi, Dit< 24
15
Stress
(ksi)
10
fe =10 ksi, D/t = 48
5 —
. fé = 6.5 ksi, D/t > 64
0 fe = 3.5 ksi, D/t >
[ I I 1 I
-0.01 -0.005 0 0.005 0.01 0.015 0.02
Tension N Strain
-5

Figure 2.4 Uniaxial Stress-Strain Curve for Concrete in Regtdar CFTs

region consists of a linear curve up to the rupsiirength of the concrete, and then a
curve that asymptotically approaches zero strége first portion of the compression

region is an ascending curve from zero to the maringsoncrete strength,.f Upon
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reaching the maximum strength (typically at a stafi0.002 to 0.003), the stress remains
constant until a strain of 0.005. Beyond this gdat region, the concrete curve descends
at a slope based upon tB¢t ratio of the CFT. All of the regions depend on tbacrete
strength, but only the descending portion of thejeession curve is a function of the
D/t ratio.

The ascending branch formulation used in this workectangular CFTs was
originally proposed by Popovics [1973] for uncoefihconcrete and is shown here as

modified by Collins et al. [1993]:

where:
n=0.8+ fe (f_ in psi units), and (2.7
©* 500 P ’ '
f. n
€, =—=—. 2.8
° T E n-1 (2.8)

The strain at f €., ranges from 0.0019 for a concrete strength ok8i5to 0.0030 for a

0!

concrete strength of 15 ksi. The modulus of etéagtof concrete in this region is given

by [Collins et al., 1993]:

E, = 40000,/f, + 1000000(psi units) (2.9)
Equations (2.6 - 2.9) are appropriate for a widgeaof concrete strengths. Collins et al.

[1993] confirmed the accuracy of these equationsdocrete strengths up to 15 ksi.
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Although the expression developed by Popovics wiggally proposed for unconfined
concrete, it has been used to model the behavioordined concrete in reinforced
concrete sections [Cusson and Paultre, 1993]. ddumsd Paultre showed that the
expression produced very accurate results forgesefl concrete sections confined by
rectangular ties.

The portion of the rectangular concrete stressrstxpression beyond the strain
at the maximum concrete strength is based on the @roposed by Tomii and Sakino
[1979Db] for CFTs. Beginning & (the strain at ), the stress remains constant until a
strain of 0.005 is reached. This plateau regipnesgents the added ductility provided by
the confining action of the steel tube.

The descending branch of the concrete curve egtirath a strain of 0.005 to
0.015 at a slope which is a function of bé ratio. The larger th®/t ratio, the steeper
the slope. This reflects the loss of concreteitityotvith a decrease in the amount of
confinement provided by the steel. This lineamsegt descends from a stress pofd f,,

where {, is given by the following formula:

f, = (1.6 - 0.0ZSE’%J .. (2.10)

Equation (2.10) was developed by Tomii and Sakir8¥Pb] using experimental data
from rectangular CFTs witD/t ratios between 24 and 44. To encompass a
comprehensive range &f/t ratios, the Tomii and Sakino model for strains lnel/6.005
was extended as follows. FobDdt ratio of 24, Eq. (2.10) equals.flt is assumed in this
work that, regardless of tHg/t ratio, the concrete does not exceed its cylindength
(f.). Therefore, sections with@y/t ratio less than 24 maintain a constant concre¢sstr

of f, as the strain increases from 0.005 to 0.015 ooty Sections witlD/t ratios
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ranging between 24 and 64 have a non-zero valfiegwen by Eq. (2.10). Ata
D/t ratio of 64, f, equals zero. All sections with/t ratios larger than this follow the
same curve as the section witlD4 ratio of 64, dropping from_fat a strain of 0.005 to
zero stress at a strain of 0.015. For strain walh#yond 0.015, the stress in all sections is
assumed to remain at a constant valyef@r any subsequent value of strain [Tomii and
Sakino, 1979b]. Refer again to Fig. 2.4 for cleation.

For rectangular tubes (as differentiated from sgmabes), thé®/t of the section
is different in the major and minor axis directimfghe CFT. TheD/t ratio used in the
Eqg. (2.10) for rectangular CFTs is the averagéefrhajor axiD/t ratio and the minor
axis D/t ratio.

The formulation for the concrete tensile resparsesd in this work for rectangular
CFTs is adopted from the formula proposed by Vexahid Collins [1986], which was
also used by Sanz-Picon [1992] for the analys&te#l-reinforced concrete cross-
sections. The concrete is assumed to follow afieéastic curve given by the equation:

¢

fct = —csct
0.001

(2.11)

until it reaches the rupture strength of the cotecr@ he rupture strength is given by:
f, =75t (2.12)

Once the concrete reaches this stress, its strelegtieases according to the following

equation:

*The dimension D in the D/t ratio for rectangulas (fifferentiated from square) tubes refers to the
dimension in the plane parallel to the plane ofdieqn The nomenclature for a242x1/2 tube, for
example, is as follows. The major, or strong, &{isratio is 48 (the depth of the section, 24 jdidd by
1/2) and the minor, or weak, axis D/t ratio is #ae(width, 12, divided by 1/2).
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f. (2.13)

fo=—"t
“ 1+ /20C

The subscripttin Egs. (2.11) and (2.13) denotes concrete tessiss and strain. Al

values of strength in Egs. (2.11 - 2.13) are in psi

2.3.2 Steel Constitutive Model

In the stress-strain formulation for CFTs contdiirethis work, confinement of
the concrete in a rectangular CFT is assumed tease only the ductility of the concrete
(Section 2.3.1). Because the concrete strengtbtisnhanced, the stress-strain
expression for steel in a rectangular CFT corredppmly assumes that any biaxial
stresses in a rectangular tube are relatively simathost ranges of loading. Therefore,
the steel stress-strain expression is represegtactbrve similar to that used for tube
steel. The tension and compression regions ofuhee are modeled by the same curve,
with one exception. To account for the interactiole to the small degree of
confinement for rectangular CFTs in compressiajrsthardening is not modeled in the
compression region [Tomii and Sakino, 1979b]. Aatgraction that may occur between
the steel and concrete in the tension region itentsyl because the concrete in tension
offers little resistance. Therefore, steel intid@sion region acts independently of the
concrete, and is modeled as if it were a hollovefubcluding strain hardening.

The steel stress-strain curve is illustrated o Ei5. In the compression region,

the steel exhibits linear elastic behavior up ®yield point of the material jfand then
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Figure 2.5 Uniaxial Stress-Strain Curve for Steel in Rectaag@FTs

follows a perfectly-plastic plateau, remainingta yield stress, ffor subsequent values
of strain. In the tension region, the stress-stb@havior mirrors the linear elastic,
perfectly-plastic behavior of the compression ragiatil the onset of strain hardening.
In this research the value of strain at which sthardening begins,,, was set to 0.0186
[Sanz-Picon, 1992]. The stress at strain valugerime,, increases according to the

following equation [Sanz-Picon, 1992]:

fo= +f, (psi) (2.14)
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The steel stress in this equation asymptoticaliyweoges to f This so-calleghower
equation first developed by Richard and Abbott [1975],suee parameter N to define
the shape of the curve. For the analyses perfotmasg] N is set to a value of 2 [Sanz-
Picon, 1992]. As described in Section 2.1.3, ngsidtresses are assumed to be zero in

the cross-section strength analyses in this work.

2.4 Criteriafor Terminating the Moment-Curvature-Thrust
Computation

The generation of a moment-curvature-thrust dragrquires a set of criteria for
determining when the computation should terminies identifying the conditions at
which the section can no longer carry additionatlo Rectangular CFT cross-sections in
which the concrete remains essentially unconfimet@ays a large role in the strength of
the member, such as CFTs with a large ratio of tac¢o steel (i.e., a high/t ratio)
and subjected to a high axial load, the stressastsgpressions produce a moment-
curvature-thrust diagram with a distinct peak momé@rhe descending branch of the
concrete stress-strain curve for these sectioriatlse a similar descending slope in the
moment-curvature-thrust diagram. Termination efthoment-curvature-thrust
computation in this case occurs when the momentdses to a certain percentage of the
maximum moment attained. However, in the casedfngular tubes with low
D/t ratios and small values of axial load ratio, treebmaintains its characteristic
ductility and the concrete remains ductile as \aak to confinement. In such a case, the
stress-strain curves of the steel and concreteestigigat the section can withstand
constant or increasing moment to very large strairtsgs large capacity, however, will

not be reached because of other failure mecharsaptsas local buckling or concrete
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crushing. Therefore, alternate means of termigatie moment-curvature-thrust diagram

incorporating these additional failure criteria riine employed.

2.4.1 Discussion of the Termination Criteria

Four separate criteria were established to deterhie termination point of the
moment-curvature-thrust diagrams for CFTs. Theca include the following: 1) the
moment-curvature-thrust diagram drops below 95%sgieak moment value; 2) a
specified percentage of steel yields and a spdaiezcentage of the concrete in
compression crushes; 3) a specified percentatieeddteel in compression buckles and a
specified percentage of the concrete in compressishes; and 4) any portion of the
steel reaches a tensile strain equal to a specifjgdre strain of the steel. The use of
several criteria permits an accurate predictioditbérent failure mechanisms during a
three-dimensional cross-section strength analgsihich strengths are determined for a
wide variety of loading, ranging from pure bendtogure axial load.

The first criterion applies primarily to CFT sects with medium to high
D/t ratios subjected to a combination of axial load bedding. Once the peak moment
is reached, the moment will decrease with any &irihcrease in curvature due to the
descending branch of the concrete stress-straue curhe moment-curvature-thrust
computation is terminated when the decreasing modreps to 95% of the maximum
moment.

The second criterion terminates the analysis véheertain percentage of the steel
yields (typically close to 100%) and a certain petage of the concrete in compression
crushes. Crushing of the concrete combined weéél siielding (or with steel buckling, as
in criterion three) is the typical method of faguior most CFT cross-sections, especially
for sections subjected to high axial loads [Gardmat Jacobson, 1967; Chen and Chen,

36



1973; Shakir-Khalil and Zeghiche, 1989]. The strat which crushing of the concrete
occurs has been established as 0.005 in this widnks value was identified by Tomii
and Sakino [1979b], who indicated in their studrest the concrete stress-strain curve
consistently begins to descend at this strain.

Failure of a CFT may also occur by concrete cnggleombined with a specified
amount of local buckling or bulging of the steeltf¢tla et al., 1987; Shakir-Khalil and
Mouli, 1990]. After local buckling occurs, the arate resists some of the compressive
load shed by the steel [Matsui, 1986]. As in ciote two, the strain at which the
compression concrete crushes is assumed to be. OTd@bsame percentage of crushed
concrete specified for criterion two is used hexevall. The strain at which local
buckling of the steel tube is assumed to occuomsputed based on the equation
specified in the AISC LRFD Specification [1994]hi$ equation limits the D/t ratio of
steel tubes to prevent local buckling before teelsgields [SSRC, 1979; AISC LRFD,

1994]. For a rectangular CFT, this limit is:

3E
f

y

%s : (2.15)

Solving for the yield strairg, = f, /E_, and setting this strain equal to the local bunkli

strain,g,, results in the following expression:

(2.16)

Experiments have shown that CFT sections oftenigeoadditional capacity after the

initiation of local buckling [Tomii and Sakino, 19&b]. Also, the presence of concrete in

the CFT delays the onset of local buckling [Mat&®86; Matsui and Tsuda, 1987; Tsuiji
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et al., 1991], rendering Eq. (2.16) conservativg;esit was developed for hollow tubes.
Therefore, rather than terminating the computanomediately at the onset of local
buckling, a specified percentage of compressiosl steist buckle and a certain
percentage of the concrete must crush before timgetation is terminated.

The fourth and final criterion limits the tensdain in any given steel element to
a value of 0.2. At this strain the steel will rupg, causing a catastrophic failure of the
section. This criterion may apply to CFTs haviegythin tubes (higtD/t ratio) and
subjected to little or no axial load (i.e., pureatmg conditions [Prion and Boehme,

1989)).

2.4.2 ValuesUsed for the Termination Criteria

The values of the criteria for terminating the namtacurvature-thrust
computation remained constant throughout this rekealhe values of these parameters

are as follows:

Percent of yielded steel = 98% (criterion 2)
Percent of crushed compression concrete = 50% iterfar2 & 3)
Percent of locally buckled compression steel = Zbfiterion 3)

Maximum steel fiber strairg(,) = 0.2 (criterion 4)

The majority of the sections in this research vgereerned by either the first
criterion (moment dropping to 95% of the maximumjtee third criterion (local buckling
of the compression steel and crushing of the cosspgya concrete). The former criterion
typically governed for sections with hid/'t ratios combined with high axial load ratios.
The third criterion governed for moBY't ratios at lower axial load ratios. Generally, the
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percentage of crushed concrete dictated the stomguimt rather than the percentage of
local buckling, because the crushing strain isdatgan the buckling strain and, as
specified, 50% of the compression concrete musthccompared to 25% of the
compression steel buckling.

Experimental tests indicate that large curvatunag be reached beyond the point
of initial local buckling [Tomii and Sakino, 1979a]Also, the local buckling of the steel
tube in a CFT will be delayed due to the concreteifg all buckling modes outward
[Furlong, 1967; Tsuji et al., 1991]. However, true of 25% was used (rather than a
higher value) since at present [1994] there i l#gkperimental data justifying a higher
value.

Unlike reinforced concrete sections, the initiataf concrete crushing will not
cause an immediate loss of member capacity bethesmncrete in a CFT is confined.
Therefore, considerably more concrete may crusbredéilure. The value of 50% was
selected based on comparison of the results taiexpetal data.

The percent of steel yielding is the value recomaeel by Sanz-Picon [1992].
The value of the rupture strain used in criterids 4 typical value specified in the steel

literature [Salmon and Johnson, 1990].

2.5 Comparison to Experimental Results

The accuracy of the constitutive relationships tnadcriteria for terminating the
computation of the moment-curvature-thrust relagiop was verified by using the fiber
element method to analyze cross-sections testeztiexgntally by other researchers. The
constitutive relationships and termination critew@re refined and adjusted as necessary

to produce the best correlation to the experimeatdatd. Once the available experimental

39



results are accurately reproduced for a select pumitsections, a wide range of sizes
and strengths of CFT sections may be modeled aetyra

Table A.1 in Appendix A lists rectangular CFT @asection tests presented in
sufficient detail to allow calibration of the antal results; Table 2.1 illustrates the
salient data for each of these tests. Most ot#hibration for rectangular CFTs was
performed using the tests by Tomii and Sakino [E71979b]. These authors provide
the most complete results, documenting both moroenature-thrust and two-
dimensional cross-section strength relationshipests by Furlong [1967] were also used.
As of 1994, there are almost no other well docuexbexperimental results of short

rectangular CFTs subjected to combined axial farwkflexure.

Table 2.1 Rectangular CFT Cross-Section Tests

Test Figure Tube L/D D/t f f, Other
Notation | Dimensions (ksi) | (ksi) Data
(in.)
Furlong, 1967| Furll 5.0x 5.0x 7.2 26.5 6.5 70.3 -
0.19
Furlong, 1967 Furl2 4.0x 4.0x 9.0 47.6 3.4 48.0 --
0.084
Furlong, 1967 Furl3 4.0x 4.0% 9.0 32.0 4.2 48.0 -
0.125
Tomii and Tom44a | 3.9x 3.9x% 3.0 44.0 6.6 28.0] annealefd
Sakino, 19793 0.089 tube
Tomii and Tom44b | 3.9x 3.9x 3.0 44.0 3.8 49.2| annealef
Sakino, 19793 0.089 tube
Tomii and Tom33 | 3.9x 3.9x 3.0 33.0 3.6 42.0f annealed
Sakino, 19793 0.118 tube
Tomii and Tom24 | 3.9x3.9x 3.0 24.0 3.2 42.0f annealefd
Sakino, 19793 0.162 tube
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Figures 2.6 to 2.16 compare the moment-curvatunest results of the fiber
element analysis to the experimental results ofilTand Sakino [1979a, 1979b]. Each
figure is referenced by the notation in column Zable 2.1. Tomii and Sakino
performed four series of tests, with't ranging from 24 to 44 and fanging from 3.2 to
6.6 ksi. The steel tubes in these tests were ssthemremove residual stresses. The
fiber analysis results are quite accurate for mdrarvature-thrust curves with a low- to
mid-range P/Pand slightly less accurate for higher PFgs. 2.8, 2.11, and 2.13). The
latter tests show a maximum error of approximai®y) % and a maximum error in the
peak moment of 3.0 %. Figures 2.17 to 2.20 iatstthe close correlation of the fiber
element analysis results with the results of Tand Sakino's experiments; all errors are
less than 10%. Both the fiber analysis and theexyental results are normalized by the

ultimate axial and bending loads calculated infiber analysis.

110 —

100 —

0 —
80 [~

70 — |

Moment
(in-k) 60 [~

50 —
40 [
30
20

10

0 0.005 0.01 0.015

Curvature (1/in)

— Fiber Analysis Experimental [Tomii and Sakino, 19[79a

Figure2.6 Moment-Curvature-Thrust Diagram (Tom44a); P#R.13

41



120 —

100 [~ e
/

hy

Moment ‘
(in-k)
60 —

40

20

| | |
0 0.005 0.01 0.015 0.02

Curvature (1/in)

— Fiber Analysis Experimental [Tomii and Sakino, 19]79a

Figure2.7 Moment-Curvature-Thrust Diagram (Tom44a); P#0.27

90 -
80
70

60
Moment
(in-k)

30
20

10

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

Curvature (1/in)

— Fiber Analysis Experimental [Tomii and Sakino, 19]79a

Figure 2.8 Moment-Curvature-Thrust Diagram (Tom44a); P#R.58

42



Moment

(in-k)

Moment
(in-k)

120 —

100 —

20

0 | | | | | | | |
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Curvature (1/in)

— Fiber Analysis Experimental [Tomii and Sakino, 19[79a

Figure2.9 Moment-Curvature-Thrust Diagram (Tom44b); P#0.0

140 —
120 —

£

100 —

60 —
40

20

0.009

0 1 1 1
0 0.005 0.01 0.015

Curvature (1/in)

— Fiber Analysis Experimental [Tomii and Sakino, 19]79a

Figure2.10 Moment-Curvature-Thrust Diagram (Tom44b); P#0.26

43

0.02



80 —

70 —

Moment
(in-k) 50 |~
40 —

30 [~

10

0 | | |
0 0.001 0.002 0.003 0.004

Curvature (1/in)

— Fiber Analysis Experimental [Tomii and Sakino, 19[79a

Figure2.11 Moment-Curvature-Thrust Diagram (Tom44b); P#0.57

150 —

100 —

Moment
(in-k)

50 —

0.005

0 0.005 0.01

Curvature (1/in)

— Fiber Analysis Experimental [Tomii and Sakino, 19[79a

Figure2.12 Moment-Curvature-Thrust Diagram (Tom33); P#0.0

44

0.015



120 —

100 [—

80 |- '
Moment /
(in-k)

40 —

20

0 | | | | | | |
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Curvature (1/in)

— Fiber Analysis Experimental [Tomii and Sakino, 19[79a

Figure2.13 Moment-Curvature-Thrust Diagram (Tom33); PA#0.47

200 —
, 4
S

150 —
Moment
(in-k)

100 —

50 —

0 | | | | | | | | |

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

Curvature (1/in)

— Fiber Analysis Experimental [Tomii and Sakino, 19]79a

Figure2.14 Moment-Curvature-Thrust Diagram (Tom24); P#0.0

45

0.008

0.01



150 /
Moment /
(in-k)
100 —
50
0 | | |
0 0.005 0.01 0.015 0.02
Curvature (1/in)
— Fiber Analysis Experimental [Tomii and Sakino, 19[79a

Figure2.15 Moment-Curvature-Thrust Diagram (Tom24); P#0.29

200 —
150 —
Moment
(in-k) —
100 — /
/
50
0 | |
0 0.005 0.01

0.015
Curvature (1/in)

— Fiber Analysis Experimental [Tomii and Sakino, 19[79a

Figure2.16 Moment-Curvature-Thrust Diagram (Tom24); PA#0.57

46



12 —

P/Po

02 —

M/Mo

— Fiber Analysis Experimental [Tomii and Sakino, 19]79a

Figure 2.17 Two-Dimensional Cross-Section Strength Diagram (4éa)

12 —

P/Po

I

0 0.2 0.4 0.6 0.8 1 1.2
M/Mo
— Fiber Analysis Experimental [Tomii and Sakino, 19[79a

Figure 2.18 Two-Dimensional Cross-Section Strength Diagram (44b)

a7



P/Po

‘ ‘ ‘ ‘ /

0
0 0.2 0.4 0.6 0.8 1 1.2
M/Mo
— Fiber Analysis Experimental [Tomii and Sakino, 19[79a

Figure 2.19 Two-Dimensional Cross-Section Strength Diagram (38m

12
1
08
P/Po
06
04
02 \>
| | | | /

0 0.2 0.4 0.6 0.8 1 1.2
M/Mo
— Fiber Analysis Experimental [Tomii and Sakino, 19[79a

Figure2.20 Two-Dimensional Cross-Section Strength Diagram (Zém

48



Figures 2.21 to 2.23 illustrate the fiber analyssults versus the two-dimensional
cross-section strength data presented by Furld®@j7[1 each figure is referenced by the
notation listed in column 2 of Table 2.1. Thespasknental results show a considerable
degree of scatter, in contrast to the consistexutit®epresented by Tomii and Sakino.
Furlong used a slow rate of loading and statedatditional strength could be achieved
with a more rapid loading rate. This may expl&iea over-prediction of strength shown
in Figs. 2.21 and 2.22. On the other hand, theupdediction in strength shown in Fig.
2.23 may be due to the inaccuracy of the steelgiti@s used in the analysis. The yield
stress of the tubes tabulated by Furlong was spddily the supplier, and was not

determined prior to the tests.
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2.6 Equation for the Three-Dimensional Cross-Section
Strength Surface

To develop an empirical expression for the cresdign strength of a general
CFT, the calibrated fiber element analysis procedvas used to analyze a wide range of
cross-sections. A series of CFT sections was tselend analyzed, producing sets of
force point (P-N-M,) data to which an equation could be fit. The itesy expression
for the three-dimensional cross-section strengtfase is meant to apply to any CFT
within the range of selected sections. This exquoes in turn, forms an integral part of

the CFT beam-element concentrated plasticity model.

2.6.1 Selection of CFT Cross-Sections

The first step in the development of an expres®othe CFT cross-section
strength surface entailed selecting a wide rangeass-sections representative of CFTs
used in both present and future construction practirhe two properties which most
directly affect the behavior of the CFT cross-smctire the ratio of the concrete area to
the steel area and the ratio of the concrete dtidnghe steel strength. Cross-sections
may thus be identified by two dimensionless ratithge ratio of the tube width to tube
thickness D/t ratio), which accounts for the ratio of the areas] the ratio of the
concrete compression strength to the steel yietsgth €, /fy). Four series of square
tubes were selected witd/t ratios ranging from 24 to 96. Within each serfear
sections with different /fy ratios were chosen. The concrete strength rafiged3.5

ksi to 15 ksi; the steel yield strength of the wib&as 46 ksi. Thereforé(;/fy ranged
from 0.0761 to 0.326. The sections chosen reptesenge oA /A ,, all above a value

of 0.04, the minimum required by the AISC LRFD Speation [1993] to constitute a

composite column. These cross-sections are surnadain Table 2.2.
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Table2.2 CFT Cross Sections Used for Determining the Crasgiéh Strength Surface
Equation

Steel tubes (f= 46 ksi, {, = 58 ksi):
. Series 24 12x12x1 (D/t = 24,A_/A, = 0.160)
. Series 48 18x18x2 (D/t = 48,A_/A, =0.0816)
. Series 72 27x 27x3 (D/t = 72,A /A, = 0.0548)
- Series 96 36x 36x 3 (D/t = 96,A_ /A, =0.0412)

Concrete properties:
- TypeA f, =3.5ksi ¢ /f, =0.0761)
- TypeB f =6.5ksi ¢ /f, =0.141)
- TypeC f =10ksi € /f, =0.217)
- TypeD f =15ksi €,/f, =0.326)

The tube sizes were chosen based on the listingafable shapes published by
AISC [1994]. The two smallest cross-sections ibl€2.2,12x12x1 (D/t = 24) and

18x18x2 (D/t = 48), are standard manufactured shapes. Thdargest section,

27x 27x2 (D/t = 72), although not listed by AISC, was chosenrtavigle a uniform
increment inD/t values. This cross-section is, however, still espntative of a typical
structural tube since standard tubes with dimerssif26x 26x 2 and28x 28x 2 are
produced. The largest section in Table D2t(= 96) was also chosen to provide a
uniform spacing oD/t ratios, and it represents the larger sectionsrtiagtbe used in
future construction [Goel and Yamanouchi, 1993he Tube with the large®/t ratio in
the AISC listing of structural tubes is3@x 30x 2 (D/t = 80). The tube thickness of this
section was maintained and the width and depth wereased by six inches to obtain a
D/t ratio of 96. All of the tubes in Table 2.2 aredzfbrmed square tubes with a
nominal yield strength of 46 ksi and an ultimatesgth of 58 ksi. Additionally, the

following stress/strain parameters were used fersteel (see Section 2.3.2):
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Modulus of elasticity (B = 29,000,000 psi
Strain at which strain hardening begiag)(= 0.0186
Strain hardening modulus (F = 300,000 psi

Additional rectangular CFT sections with an aspatid (the ratio of the long side
of the tube to the short side) ranging from 1 tar CFTs with tube strengths up to 70
ksi were checked following the development of thess-section strength equation using
the 16 sections of Table 2.2. These additionallt®are summarized in Sections 2.6.5
and 2.6.6.

For each combination @&/t andfc'/fy shown in Table 2.2, a cross-section
strength surface consisting of 100 P-M, points was generated using the fiber element
analysis. Each three-dimensional surface consaftadseries of 10 two-dimensional
cross-section strength curves generated at loaht&aity increments of 10 degrees,
ranging from O (major axis bending) to 9@minor axis bending). For each two-

dimensional cross-section strength curve, 10 pamtise M-P plane were computed.

2.6.2 Development of the CFT Cross-Section Strength Equation Form

The equation describing the three-dimensionalsesestion strength surface of
rectangular CFTs is a polynomial expression witmgeconsisting of products of the
normalized force points -- p, mand m. The most accurate form for the equation was
determined by performing a least squares fit tasttteof cross-section analyses described
in Section 2.6.1 (for the CFTs of Table 2.2). Hog@ation consists of six terms: three
terms representing the normalized loads (p,amd m) and three cross-product terms
(m, [p, m, [p, andm, [m ). The normalized loads p, hand m are given by the
following equations:
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P., M,,, and M, are the respective axial compression, ultimateomaxis bending

yo’
moment, and major axis bending moment capacitiethéocross-section (see Section
2.6.7 for a description of their calculation), and the location in normalized force
space of the centroid of the three-dimensionalszeextion strength surface. The value
of ¢, which varies from 0 to 1, is required becausthefasymmetry of the three-
dimensional cross-section strength surface of a &#éut the moment axes (a typical
CFT cross-section strength diagram is shown inZE@4). As illustrated in Fig. 2.24, an
actual CFT cross-section strength surface is, hewapproximately symmetric about a
moment axis located at the axial load ragipproducing the maximum moment in the
section. Thus, by using the paramdtethe axial load is normalized with respect to this

shifted moment axis (the dotted line in the figur8gection 2.6.3 discusses the calculation

of the value of the centroid of the cross-sectinergjth surface).

Compression

1.0

P/R

Ptens /PO

Tension

Figure 2.24 Typical CFT Two-Dimensional Cross-Section Strerigihgram
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The equation for the cross-section strength sarfakes the following general
form (see Orbison et al. [1982] and Zhao [1993]datescription of steel wide-flange
cross-section strength surfaces of a similar f@amna, Duan and Chen [1990] for a

description of similar hollow tube cross-sectioresgth surfaces):

¢, ] +c, 0y +c, [p™ +c, [ﬁm;“ [p”5)+ Cs [ﬁm;‘6 o™ )+ Cs [ﬁm’y18 Dm;‘g): 10

(2.18)

where ¢, G, ..., ¢ are coefficients. The exponents of the termsgn(E.18) (, n,, ..., n)
must be even integers to insure that the behabioutahe coordinate axes is symmetric
(see Section 2.6.3). Because the 16 cross-secigmtsin the least squares analysis were
square, the properties in the y and z directioasdentical. Therefore, the rand m

terms and then, [p andm, [p terms are the same. This decreases the number of

coefficients in the surface equation to four, amelnumber of exponents to five:

C, [ﬁm;‘l + m;‘l)+ c, [p™ +c, [ﬁm& o™ +m* Cp™ )+ C, [ﬁm’y‘S l__ﬁn'}"): 10

(2.19)

The four coefficients of Eq. (2.19) are each fior of the two cross-section
parameters, thB/t ratio and the‘c'/fy ratio, rather than remaining constant for all CFT
sections. Figure 2.1 in Section 2.1.2 compare$wbedimensional cross-section
strength curves from the fiber analyses of sedifpas 96A and 96D (refer to Table 2.1

for this nomenclature). The surfaces are similaghape, but the section with the larger

fc'/fy ratio, 96D, produces a substantially larger s@fa& similar increase in the size of
the cross-section strength surface occurs aBtheatio increases from 24 to 96. This

comparison illustrates the necessity of using caefits in Eq. (2.19) that are functions
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of the section and material properties. Both efgbrfaces shown in Fig. 2.1 could not be
accurately described using fixed coefficient valuBiete that cross-section strength
surfaces which have been developed for similat stieke-flange sections [Orbison et al.,
1982; Zhao, 1993] use the same coefficient valagardless of section and material
properties, since the cross-section strengthsmfla range of steel I-beams are nearly
identical in normalized force space [Chen and Asli®76, 1977]. Section 2.6.4
discusses the development of the equations usgestibe the coefficients.

The general form of Eq. (2.19) was first optimiZedsection type 48B by
explicitly using different combinations of exponemadues. For each selected set of
exponents, the coefficientg c,, c,, and ¢ were determined by a least squares procedure
using the normalized axial load and moment data filee fiber analysis of this section.
The accuracy of the resulting expression with thenuzed coefficients was then
checked against the original fiber analysis d&averal different combinations of
exponents were tried using this procedure. Thedsf exponents was determined
based upon a combination of achieving the smadlestage error of all combinations of
m,, m,, and p generated by the fiber analysis, and artgethe smallest standard
deviation from the average.

Forms of the equation in which certain terms wexglected were also analyzed,
but it became clearly evident that every term of @dlL9) was necessary. The five or six
most accurate forms of the equation for section W@Be then checked using sections

with different combinations ob/t andfc'/fy From the least squares analyses of these

additional sections, the optimum form of the equatvas selected:

(o [ﬁm§ +m§)+c2 [p? +c, [ﬁmj p? +m? [pz)+c4 [in? O’ = 1.0 (2.20)
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2.6.3 Modeling the Asymmetry of the Cross-Section Strength Surface

As shown in Fig. 2.24, the typical CFT cross-setstrength surface is
unsymmetric about the moment axes. This is dileg@oncrete, which provides much
more strength in compression than in tension. &foeg, the largest moment capacity
occurs when the cross-section is subjected to a&mtelcompressive axial load.

As discussed in Section 2.6.2, the normalizedsesestion strength surface of all
CFTs was found by inspection to be nearly symmatomut an axis represented by the
axial load ratiog, producing the maximum moment capacity. The cahiof the
surfaceg, is a function of the relative ratio of concretesteel and the concrete strength,
f.. The most accurate formulation for determining sirface centroid was obtained by
using the normalized average of the tensile andocessive strengths of the concrete.

This calculated value is expressed as:

(A Of, + A OO, ) /2
P

o

D carc = (2.22)

where R is the ultimate axial load capacity of the seciiothe presence of no bending
(see Section 2.6.7) and the rupture strength ofdherete, f is given by Eq. (2.12). All
values in Eq. (2.21) are taken as positive exaapk,fwhich is negative, angl.,. is the
calculated position of the centroid on the compwesaxis of P/P

Table 2.3 compares the calculated value of thiasaicentroidg_,, with the

calc
centroid value obtained from the fiber analygis(i.e., the axial load ratio at the point of
maximum moment). The valuesf,. show excellent correlation with, --the

maximum error between these values for the 16 &ess8ons of Table 2.2 is 7.0 % and

the majority of the values are within an error di 2. These results indicate that usjng
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from Eq. (2.21) in EqQ. (2.17), as is done in thirky serves as an accurate method of

representing the asymmetry of the cross-secti@mgth surface.

Table 2.3 Errors in Calculation of Cross-Section Strengthf&we Centroids

Section O e b, % error

Type Eq. (2.21) (fiber analysis)

24A 0.125 0.133 -6.02 %
24B 0.193 0.200 -3.50 %
24C 0.247 0.250 -1.20 %
24D 0.297 0.300 -1.00 %
48A 0.201 0.200 0.50 %
48B 0.278 0.283 -1.76 %
48C 0.328 0.333 -1.50 %
48D 0.369 0.367 0.54 %
72A 0.248 0.250 -0.80 %
72B 0.322 0.317 1.58 %
72C 0.365 0.350 4.29 %
72D 0.399 0.400 -0.25 %
96A 0.279 0.300 -7.00 %
96B 0.348 0.350 -0.57 %
96C 0.386 0.383 0.78 %
96D 0.415 0.400 3.75%
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2.6.4 Development of the Coefficient Equations

For each of the 16 cross-sections of the date S&tble 2.2, the coefficients of
Eq. (2.20) were optimized using a least squaresegpiare, producing 16 values of each of
the four coefficients, ¢c, ¢, and ¢. These values are listed in Table 2.4. Thisetabl
reemphasizes the need for functional coefficieadsstressed in Section 2.6.2.
Coefficients ¢and ¢, for example, range from 0.2214 to 0.9379 anthfib03667 to

0.3962, respectively. Consequently, using fixeefiicents, or even using coefficients

that are linear functions @/t andfc'/fy, would introduce large errors into Eqg. (2.20).

For each coefficient,,ca least squares analysis was performed usintghe
respective coefficient values in Table 2.4 to ab@ipressions in terms of ti¥t ratio

and thef, /fy ratio of the cross-section. Two equation formsenexamined for the

optimization of the coefficients, a full quadrag¢iquation:

f f, i ()
R G RS SR Gl

and a full cubic equation:

)
S~ 1]

where @ ..., gand b, ..., b, are constant coefficients. The optimization céfticient ¢

(2.23)

using Egs. (2.22) and (2.23) produces the follgwgoadratic and cubic equations:
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Table 2.4 Optimum CFT Cross-Section Strength Surface Equaioefficients

D/t f. C, c, C; c
(ksi)
3.5 0.9379 1.598 1.961 0.3962
6.5 0.8671 1.890 1.875 0.3538
= 10 0.8130 2.187 1.771 0.3281
15 0.6994 2.542 1.492 0.2453
3.5 0.8322 1.917 2.324 0.3919
6.5 0.6962 2.381 2.143 0.3014
* 10 0.5684 2.812 1.804 0.2091
15 0.4521 3.287 1.420 0.1354
3.5 0.7297 2.160 2.146 0.3182
6.5 0.5589 2.686 1.866 0.2014
72 10 0.4255 3.123 1.544 0.1250
15 0.3025 3.573 1.149 0.06702
3.5 0.6568 2.350 1.966 0.2580
6.5 0.4648 2.893 1.650 0.1397
» 10 0.3301 3.320 1.307 0.07567
15 0.2214 3.749 0.9194 0.03667
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Table 2.5 shows the errors in the coefficigntlatained using Egs. (2.24) and (2.25) for

(2.24)

each of the CFT cross-sections. The errors arguated based upon a comparison to the
optimum values obtained from the least squaregsisadf each individual cross-
sections. These optimum coefficient values atedign Table 2.4 and repeated in
column 2 of Table 2.5. Equations similar to E@s24) and (2.25) were obtained for
coefficients g, ¢;, and ¢. The corresponding errors for these coefficianéstabulated in
Tables 2.6, 2.7, and 2.8, respectively.

The coefficients obtained from the quadratic faithe coefficient equation, Eq.
(2.22), produced errors in Eq. (2.20) of well ircess of 10% for force points of several
of the cross-sections, especially in the rangdsgtf D/t and highfc'/fy. This was due
to the large errors in the quadratic equation &mfficients ¢ and ¢ (shown in Tables 2.5
and 2.8, respectively) Therefore, the cubic ¢oeffit equations, which produced much
smaller errors in Eg. (2.20), were adopted inwuosk. For continuity, the cubic form
was used for all four coefficient equations, altilocoefficients cand ¢ particularly

required it. The final form of the CFT three-dinsemal cross-section
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Table 2.5 Errors in Coefficient ¢

Section Optimum Quadratic | % Error in Cubic % Error in
Type Value of ¢ Equation Quadratic Equation Cubic
(Table 2.4) | Value of ¢ Equation | Value of ¢ Equation
24A 0.9379 0.9513 -1.43% 0.9406 -0.29%
24B 0.8671 0.8819 -1.70% 0.8731 -0.69%
24C 0.813 0.8006 1.52% 0.7993 1.68%
24D 0.6994 0.6844 2.14% 0.7032 -0.54%
48A 0.8322 0.7894 5.14% 0.8210 1.34%
48B 0.6962 0.7024 -0.89% 0.6975 -0.19%
48C 0.5684 0.6006 -5.66% 0.5776 -1.62%
48D 0.4521 0.4549 -0.61% 0.4519 0.05%
72A 0.7297 0.6881 5.69% 0.7297 -0.00%
72B 0.5589 0.5836 -4.41% 0.5678 -1.59%
72C 0.4255 0.4612 -8.39% 0.4222 0.77%
72D 0.3025 0.2860 5.45% 0.2962 2.09%
96A 0.6568 0.6476 1.41% 0.6574 -0.09%
96B 0.4648 0.5254 -13.04% 0.4745 -2.09%
96C 0.3301 0.3825 -15.88% 0.3238 1.91%
96D 0.2214 0.1778 19.68% 0.2268 -2.45%
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Table 2.6 Errors in Coefficient ¢

Section Optimum Quadratic | % Error in Cubic % Error in
Type Value of ¢ Equation Quadratic Equation Cubic
(Table 2.4) | Value of ¢ Equation | Value of ¢ Equation
24A 1.598 1.510 5.52% 1.581 1.09%
24B 1.890 1.898 -0.44% 1.901 -0.56%
24C 2.187 2.256 -3.15% 2.188 -0.04%
24D 2.542 2.585 -1.70% 2.548 -0.24%
48A 1.917 1.961 -2.30% 1.943 -1.37%
48B 2.381 2.384 -0.13% 2.392 -0.45%
48C 2.812 2.782 1.06% 2.797 0.53%
48D 3.287 3.170 3.58% 3.265 0.66%
72A 2.160 2.236 -3.52% 2.146 0.63%
72B 2.686 2.694 -0.29% 2.667 0.71%
72C 3.123 3.132 -0.29% 3.124 -0.03%
72D 3.573 3.578 -0.13% 3.606 -0.91%
96A 2.350 2.335 0.65% 2.355 -0.21%
96B 2.893 2.827 2.28% 2.891 0.07%
96C 3.320 3.306 0.43% 3.334 -0.41%
96D 3.749 3.809 -1.61% 3.734 0.41%
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Table2.7 Errors in Coefficient ¢

Section Optimum Quadratic | % Error in Cubic % Error in
Type Value of ¢ Equation Quadratic Equation Cubic
(Table 2.4) | Value of ¢ Equation | Value of ¢ Equation
24A 1.961 2.066 -5.36% 1.964 -0.13%
24B 1.875 1.909 -1.82% 1.898 -1.23%
24C 1.771 1.729 2.37% 1.751 1.14%
24D 1.492 1.478 0.95% 1.488 0.24%
48A 2.324 2.211 4.85% 2.310 0.62%
48B 2.143 2.008 6.32% 2.109 1.61%
48C 1.804 1.773 1.74% 1.833 -1.61%
48D 1.420 1.443 -1.59% 1.445 -1.77%
72A 2.146 2.175 -1.34% 2.168 -1.03%
72B 1.866 1.924 -3.11% 1.885 -1.00%
72C 1.544 1.634 -5.84% 1.544 0.02%
72D 1.149 1.226 -6.66% 1.120 2.57%
96A 1.966 1.956 0.49% 1.964 0.09%
96B 1.650 1.659 -0.53% 1.652 -0.11%
96C 1.307 1.314 -0.54% 1.308 -0.05%
96D 0.919 0.827 10.08% 0.937 -1.92%
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Table 2.8 Errors in Coefficient ¢

Section Optimum Quadratic | % Error in Cubic % Error in
Type Value of g Equation Quadratic Equation Cubic
(Table 2.4) | Value of ¢ Equation | Value of g Equation
24A 0.3962 0.4356 -9.95% 0.4019 -1.44%
24B 0.3538 0.3579 -1.17% 0.3554 -0.46%
24C 0.3281 0.2923 10.91% 0.3187 2.87%
24D 0.2453 0.2458 -0.19% 0.2475 -0.89%
48A 0.3919 0.3642 7.06% 0.3827 2.35%
48B 0.3014 0.2819 6.48% 0.2937 2.56%
48C 0.2091 0.2107 -0.76% 0.2241 -7.17%
48D 0.1354 0.1563 -15.41% 0.1377 -1.699%
72A 0.3182 0.3033 4.67% 0.3212 -0.95%
72B 0.2014 0.2163 -7.39% 0.2080 -3.28%
72C 0.1250 0.1396 -11.68% 0.1270 -1.619%
72D 0.0670 0.0773 -15.29% 0.0562 16.219
96A 0.2580 0.2530 1.95% 0.2588 -0.32%
96B 0.1397 0.1612 -15.38% 0.1397 -0.00%4
96C 0.0757 0.0790 -4.41% 0.0688 9.14%
96D 0.0367 0.0088 76.07% 0.0442 -20.519
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strength surface equation and the four correspgndibic coefficient equations are
shown in Table 2.9.

Using the equations of Table 2.9, the errors oched the 16 cross-sections of
Table 2.2 were examined and documented. For a ginass-section, the 100 fiber
analysis data points were each substituted intdZg0) and the error was again
determined by checking the deviation of the solutmEq. (2.20) from a value of 1.0.
The cross-section strength errors (e.g., average &nd standard deviation of the error
for the 100 points, as well as the maximum posiéind negative errors) are compiled in
Table 2.10. The cumulative errors are very goadhlioof the sections. The average
error is never greater than 2.0 % and the largest between the results of the surface
equation and the fiber analysis for any pmj point of the 16 cross-sections is only
10.14 %.

Table 2.11 examines the accuracy of the crossesestrength equation in the
tensile region. Only the steel tube is assumeatdribute to the tensile capacity of a
CFT, which may be expressedRg, = A [[f , This value is normalized by Bnd
compared to the value predicted by Eq. (2.20)Herdase of pure axial tension,/P,.

The errors between the two values are quite aczesatept for the sections with a high
f.. These errors are, however, acceptable sindetisde region was modeled primarily
to maintain a symmetric and continuous equationiisdpresumed in this work that the
CFT beam-column for which the equation was developdl never be subjected to a

purely axial tensile load.
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Table2.9 CFT Cross-Section Strength Surface Equation

CFT Cross-Section Strength Surface Equation

o) Eﬁmf, +m§)+c2 [p” +c, [ﬁmj p* +m? Epz)+c4 [n} 0 = 1.0

P-¢I[P, M, M,
p= my: m, =
I:)0 |\/lyo Mzo
P Oof, + A CF, )/2
¢=;@Mmax:(’* tA J

Coefficient Equations

c, =1.08- 0 00265k + 0 000023%° - .11B T0x°*+ .0 3@ . 196
-0.0419y° - 0 069Ix ¥ + 0 00023&°> [y + .0 075MLy>

c, =0.628+ Q 0259% - 0 00036%&* + .199 10Xx*+ .4B0- 149
+22.40y° + Q164X [y - 0 00075&k* [y - 0 12& [}*?

c, =0.420+ Q 0892Zx - 0 0012X%*+ 513 1UX’+ .490- 168
+16.2[¥° - 0 165Xy + 0 00071X* ¥+ .0 128 Y2

c, =0.346+ Q 00912x - 0 00012Z%* + .4 98 T0x°- .0 39% . 455
-10.303° - 0 0592 [y + 0 00024%* [y + .0 065R />
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Table 2.10 Cumulative Errors in CFT Cross-Section Strengthf&er Equation (Surface
Equation vs. Fiber Element Analysis)

D/t f, Standard Average Maximum Maximum
(ksi) Deviation Error Positive Negative
Error Error
3.5 3.11 % -0.20 % 5.67 % -8.57 %
6.5 2.80 % 0.59 % 6.00 % -6.76 %
“ 10 2.75% -1.38 % 5.37 % -71.55 %
15 2.77 % 0.16 % 5.84 % -7.58%
3.5 2.59 % 0.88 % 5.18 % -6.35 %
6.5 255 % -0.25 % 4.63 % -6.48 %
* 10 3.33% 0.99 % 7.85 % -6.93 %
15 4.57 % -0.39 % 9.28 % -9.87 %
3.5 2.33% -0.22 % 4.92 % -5.90 %
6.5 2.29% 0.87 % 4.47 % -5.83 %
72 10 2.59 % -0.60 % 4.70 % -6.74 %
15 4.28 % -1.83 % 5.55% -9.05 %
3.5 2.19% -0.06 % 4.88 % -5.36 %
6.5 1.96 % 1.04 % 4.44 % -4.74 %
» 10 2.19% -1.46 % 3.70 % -5.97 %
15 4.01 % 1.89 % 10.14 % -7.00 %
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Table2.11 Cross-Section Strength Surface Equation Error§ émsion Region

D/t fc Pten!Po PeJPO % error
(ksi)
3.5 0.714 0.666 7.21 %
6.5 0.574 0.534 7.49 %
24
10 0.466 0.429 8.62 %
15 0.368 0.330 11.52 %
3.5 0.539 0.521 3.45%
6.5 0.386 0.370 4.32 %
48
10 0.290 0.268 8.21%
15 0.214 0.183 16.94 %
3.5 0.432 0.432 0.00 %
6.5 0.291 0.288 1.04 %
72
10 0.210 0.200 5.00 %
15 0.151 0.130 16.15 %
3.5 0.361 0.373 -3.22 %
6.5 0.233 0.240 -2.92 %
96
10 0.165 0.163 1.23%
15 0.117 0.101 15.84 %
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Two-dimensional graphical representations of fless-section strength surface
equation are shown in Figs. 2.25 to 2.36. Thegedis compare the equation results to
the p-m-m, data points obtained from the fiber analysis ef¢hoss-sections in Table 2.2.
Figures 2.25 to 2.28 show PA&. M/M, for each series as Varies from 3.5 to 15 ksi.
Figures 2.29 to 2.32 illustrate the same resultedostant values of fandD/t ratios
ranging from 24 to 96. Figures 2.33 to 2.36 shelected plots of MM, vs. M/M,, for
sections 24A, 48B, 72C, and 96D. In these lastréig, each graph shows contours of
M,/M,, vs. M/M,, for different constant values of axial load rafE,, varying from O to
1.

The accuracy of the three-dimensional cross-sesti@ngth surface equation was
checked by examining sections with combination®f andf, /fy ratios that are
different from the cross-sections in Table 2.2 eS#sections are all tubes that are
available from manufacturers [AISC LRFD, 1994]. eTdrrors between the surface
equation and the fiber analysis for these crossesexare tabulated in Table 2.12.
Sections having intermediate values pfihd D/t were chosen as well as sections with
the sameD/t as sections from the Table 2.2 but with a largesmoaller cross-sectional

area. All of these sections produced acceptabldtse
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Table2.12 CFT Cross-Section Strength Surface Equation Errors:
Additional CFT Cross-Sections

Section f, Standard Average Maximum | Maximum
(D/t ratio) (ksi) Deviation Positive Negative
Error Error
6x 6% 8.0 2.71 % 0.14 % 5.93% -6.74 %
(24)
16x16% 3 12.5 3.79% -0.39 % 7.45 % -9.67 9N
(32)
14x14%x 3 5.0 2.83% -1.03 % 5.57 % -7.59 %
(37.3)
24 % 24% 5 15.0 4.50 % -0.24 % 9.28 % -9.87 N
(48)
28x 28x 3 12.5 3.67 % 0.22% 7.49 % -7.70 99
(56)
24% 24x 3 5.0 2.27 % 0.50 % 4.74 % -5.61 %
(64)
30x 30% 3 8.0 211 % 0.34 % 4.24 % -5.95 %
(80)
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Figure2.25 Two-Dimensional Cross-Section Strength Diagrab4 (= 24)
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Figure2.26 Two-Dimensional Cross-Section Strength Diagrab4 (= 48)
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Figure 2.27 Two-Dimensional Cross-Section Strength Diagrab4 (= 72)
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Figure 2.28 Two-Dimensional Cross-Section Strength Diagrab4 (= 96)
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Figure 2.29 Two-Dimensional Cross-Section Strength Diagrams=(8.5 ksi)
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Figure 2.30 Two-Dimensional Cross-Section Strength Diagrams=(6.5 ksi)
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Figure 2.31 Two-Dimensional Cross-Section Strength Diagrams=(£0 ksi)
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Figure 2.32 Two-Dimensional Cross-Section Strength Diagrams=(15 ksi)
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Figure2.33 CFT Cross-Section Strength DiagramsAM,, vs. M/M,,
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Figure2.34 CFT Cross-Section Strength DiagramsAM|, vs. M/M,
Section 48B D/t =48, f. = 6.5 ksi)
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2.6.5 Rectangular CFTswith Aspect Ratios Greater Than 1:1

The cross-section strength surface equation dpedlabove for square CFT
cross-sections should be accurate for rectangetdioss as well. The equations of Table
2.9 may be used for rectangular cross-sectionsddifging the calculation of the
coefficient values to account for the differ@ft ratio in the major axis direction and the
minor axis direction. Each coefficient value fareatangular cross-section is computed
by averaging two coefficient values: the coefintigalue obtained using the major axis
D/t ratio in the coefficient equations of Table 2.9 #mel value obtained using the minor
axis D/t ratio. This approach produces slightly smalleoesthan averaging the major
axis and minor axi®/t ratios and using this avera@¢t value in the coefficient
equations of Table 2.9.

The errors using average coefficients for sevstetesections with aspect ratios
between 1:1 and 2:1 are shown in Table 2.13. Tioeseare greater for the larger aspect
ratios. Although some of the maximum errors exce@#o, the average error plus or
minus one standard deviation is, except for one,cdways less than 10%. Figures 2.37
to 2.45 illustrate a comparison of the surface ggndo the fiber analysis results for
selected sections. Figures 2.37, 2.38, 2.40, 2.48, and 2.44 show P/@’s. M/M,
(major axis) and P[R/s. M/M,, (minor axis) plots, and Figs. 2.39, 2.42, and ZH&w

plots of M/M,, vs. M/M,,,
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Table2.13 CFT Cross-Section Strength Surface Equation Errors:

Rectangular Cross-Sections

Section f, Standard Average Maximum | Maximum
(D/t ratios: (ksi) Deviation Positive Negative
major axis, Error Error
minor axis)

12x6x+ 3.5 4.80 % -3.83 % 7.17 % -14.14 %
(48, 24)

12x6x 4 10 5.02 % -5.17 % 5.74 % -16.16 9
(48, 24)

18x9x+ 6.5 4.48 % -4.26 % 573 % -13.49 %
(72, 36)

18x9x 4 15 5.10 % -2.06 % 7.90 % -14.40 9

(72, 36)
20x 12x = 15 5.14 % -1.69 % 7.59 % -14.38 9

(64, 38)

30% 24x 3 6.5 243 % 0.21% 4.20 % -7.07 %

(80, 64)
36x% 18x 3 10 4.38 % -3.47 % 4.54 % -12.88 9

(96, 48)
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Figure 2.37 Two-Dimensional Cross-Section Strength Diagram-avidjxis Moment
(Major Axis D/t = 48, Minor AxisD/t = 24, f = 3.5 ksi)
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Figure 2.38 Two-Dimensional Cross-Section Strength Diagram--diiAxis Moment
(Major Axis D/t = 48, Minor AxisD/t = 24, f = 3.5 ksi)
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Figure2.39 CFT Cross-Section Strength DiagramsAM|, vs. M/M,,
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Figure 2.40 Two-Dimensional Cross-Section Strength Diagram-avidjxis Moment
(Major Axis D/t = 72, Minor AxisD/t = 36, f = 15 ksi)
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Figure 2.41 Two-Dimensional Cross-Section Strength Diagram--dfiAxis Moment
(Major Axis D/t = 72, Minor AxisD/t = 36, f = 15 ksi)
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Figure2.42 CFT Cross-Section Strength DiagramsAM,, vs. M/M,,
(Major Axis D/t = 72, Minor AxisD/t = 36, f = 15 ksi)
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Figure 2.43 Two-Dimensional Cross-Section Strength Diagram-avidjxis Moment
(Major Axis D/t = 96, Minor AxisD/t = 48, f = 10 ksi)
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Figure 2.44 Two-Dimensional Cross-Section Strength Diagram--dfiAxis Moment
(Major Axis D/t = 96, Minor AxisD/t = 48, f = 10 ksi)
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Figure2.45 CFT Cross-Section Strength DiagramsAM,, vs. M/M,,
(Major Axis D/t = 96, Minor AxisD/t = 48, f = 10 ksi)

2.6.6 CFTswith Higher Strength Steel

Several sections were tested to check the valditie f, /fy ratio used as a

variable parameter in the formulation of the cresstion strength surface equation.

Specifically, the equation should accurately prethie cross-section strength surface for

a constant value of th‘(g'/fy ratio with an increasing value gf fTable 2.14 shows the

results of five tested sections with steel yielésgths of up to 70 ksi. The errors were

comparable to those obtained with the original faiation using 46 ksi steel.
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Table2.14 CFT Cross-Section Strength Surface Equation Errors:
CFT Cross-Sections with Higher Strength Steel

Section f, f, Standard Average Maximum | Maximum
(D/t ratio) | (ksi) (ksi) Deviation Positive Negative
Error Error
12x12%3 50 10.87 2.72% -0.84 % 5.13% -7.84 9
(24)
12x12%3 70 15.22 4.13 % 3.61 % 7.72% -7.309
(24)
18x18x 3 60 8.48 3.43 % -0.96 % 5.54 % -9.05 9
(48)
27%x 27%3 60 13.02 4.50 % 0.70 % 8.87 % -8.08 ¢
(72)
36x 36% 3 70 5.33 3.37% -0.73 % 4.52 % -8.17 9
(96)

2.6.7 Nominal Strength of CFTs

The final requirement necessary to complete theton to represent the three-

dimensional cross-section strength of a CFT mensb@method for calculating the

nominal axial and bending moment capacity of tletige. In the above procedure, these

values were calculated for each analysis by ther f#feement procedure. For

implementation into the concentrated plasticity eldd follow, however, these values

must be computed explicitly by a simple yet acausst of equations.

The nominal axial load capacity may be calculalieéctly as it is done in the

fiber analysis program. Thus, the axial load capas simply the sum of the strengths of

the two constituent materials [Tomii and Sakino/9®, 1979b]:
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P = ASEfy+AC[1T'C (2.26)

The calculation of the nominal moment capacityhef section (i.e., the maximum
moment in the presence of no axial load) requine®ee complicated formulation. In the
fiber element analysis, the nominal moment is dated iteratively by the moment-
curvature analysis procedure (Section 2.2) forcdse when the axial load ratio is zero.
In the simplified formulation that follows, the memt resistance of the concrete is
calculated by assuming stress blocks equal totir@&ss the compressive area and 0.50
times the tensile area, a procedure similar in s@spects to that used in the analysis of
reinforced concrete beams. The addition of thsilemoment capacity is included for
the following reason. For larger CFT sections withighD/t ratio and high concrete
strength, the neutral axis of the section will eeaclose to the top fiber of the section
and a large portion of the concrete will be in tens Although the concrete strength in
tension is only approximately one-tenth of the cospion strength, the large percentage
of concrete in tension will nevertheless have aigant effect on the moment resistance
of the CFT. Neglecting this effect produced sigmaiftly less accurate results. The
nominal moment resistance of the steel is compagsdming the entire cross-section has
reached the yield stress.

Because the concrete in tension and the conaretennpression have different
strengths, the neutral axis of the section will ln@tat the centroid and must be calculated
prior to the moment calculation. For a rectang@Bf cross-section with width b and
depth D, the neutral axis, gmeasured from the top fiber of the cross-sectisn)

computed by the following equation:
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_0.850, o1 -2042)+0.50, [{D ~t)fo-218)+f, (20D )

X 0.850, [{b - 2(1)+0.50, {b-20)+f, ({41)

n

(2.27)

The maximum tensile strength of the concretes given by Eq. (2.12). Given the

neutral axis, the nominal moment for a generalrggalar CFT cross-section may be

calculated by:

M, =0.850, Jo5 b~ 20)rfx, ~t)?|+0.50, fjosfb-20d) D - x, ~t)°|+
f, [ﬁ(z[n)tﬁ%zuﬁ +12 —DEﬂ—DD(n)+(bEﬂ)[ﬂD—t)}

(2.28)

The results of the moment computations were conaparéhe results from the fiber
element analysis for the 16 cross-sections of T2lleand to theoretical results
presented by Chen and Chen [1973]. The resulEgsf (2.27) and (2.28) are illustrated
in Table 2.15. The majority of the computed norhmaments are within 5.0 % of the

fiber element and the theoretical results.
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Table2.15 Nominal Moment Calculation Errors

Cross- f, f, f. M, M, %
Section (ksi) (ksi) (ksi) (Calc.) (Theory)* error

Chen, '73 47 5.9 0.58 84.6 81.5 3.85%
3x3x0.129

24A 46 35 0.44 5988 5018 -0.59%
12x12x %

24B 46 6.5 0.61 5215 5302 -1.64%
12x12%x 3

24C 46 10 0.75 5405 5669 -4.66%
12x12x %

24D 46 15 0.92 5598 5944 -5.82%
12x12%x 3

48A 46 35 0.44 9414 9466 -0.54%
18x18x3

48B 46 6.5 0.61 9997 10 275 -2.709
18x18x 3

48C 46 10 0.75 10 440 10 910 -4.28%
18x18x3

48D 46 15 0.92 10 880 11710 -7.07%
18x18x 3

72A 46 35 0.44 22 630 22 716 -0.38%
27x 27% 3

72B 46 6.5 0.61 24 230 24 949 -2.90%
27x 27%x 3

72C 46 10 0.75 25 440 26 762 -4.96%
27x 27%x 3

72D 46 15 0.92 26 640 28 316 -5.90%
27x 27%x 3

96A 46 35 0.44 42 290 42 814 -1.22%
36x 36x 3

96B 46 6.5 0.61 45 560 47 303 -3.68%
36x 36x 3

96C 46 10 0.75 48 070 50 564 -4.94%
36x 36x 3

96D 46 15 0.92 50 630 53 418 -5.22%
36x 36x 3

*Theoretical nominal moments refer to either morsgnbvided by other authors (e.g.
Chen, '73) or the moments computed using the élmment analysis (e.g. Section 24A).
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Chapter 3

Introduction to the CFT Nonlinear Model

This chapter presents an introduction to the meali analytical formulation to
model the load-deflection behavior of frame struesuicomposed of CFT beam-columns
and steel I-beams and subjected to either monotwragclic loading. The first section of
this chapter discusses the behavior of rectan@idr beam-columns, providing an
introduction to the characteristics modeled byahalytical procedure, which is discussed
in subsequent sections. The analytical proceduegamined with respect to each
component of the nonlinear beam-column model--thstie stiffness, the geometric
stiffness, and the plastic reduction stiffnesse $action on the plastic reduction stiffness

introduces the concentrated plasticity model, tipectof Chapter 4.

3.1 Behavior of Rectangular CFT Beam-Columns

The primary loads on a CFT beam-column in a framgcture will be a

combination of axial compression and uniaxial @xmal bending. The behavior of CFT
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beam-columns under a given set of loads will depgrah the member length, the
strength of the concrete and steel, and the rétioeoconcrete area to the steel area.
Additionally, the behavior of CFT beam-columnsaggely influenced by the pattern of
applied loading--monotonic or cyclic.

Chapter 2 examined the behavior of short beamamady members governed
exclusively by cross-section behavior. These sastare characterized by an ultimate
strength that is independent of the effect of mamistability. For longer beam-
columns, stability becomes an important factohm behavior of the member.

Depending upon the state of stresses at failuembmlumns may be further classified as
long (or slender)--beam-columns that reach thgacay when the column fails due
primarily to elastic instability [Shakir-Khalil andeghiche, 1989], or intermediate--beam-
columns that undergo partial plastification of thess-section at some point along the
length of the beam-column and fail due to a contimnaof geometric and material
nonlinearity [Bridge, 1976; Cederwall et al., 1990]

In most CFT applications, especially frame strieguthe CFT member will be of
a length sufficient to induce lateral instabilitynaedium to high axial loads. The
following sections investigate the monotonic andlicystrength and stiffness of
intermediate and long beam-columns typical of fratnectures. The discussion
highlights the behavioral characteristics of beatwmns that will be modeled by the

subsequent analytical formulation.

3.1.1 Monotonic Behavior of Rectangular CFT Beam-Columns

The behavior of CFT beam-columns is, in many retspaimilar to CFT cross-
section behavior (see Chapter 2). The main exaepithe aspect of length, which
imparts two primary effects on CFT beam-column beédra As the length increases,
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geometric nonlinearities such as thé Bffect (member curvature) and thé\Rffect
(member chord rotation) [Galambos, 1988] causddiees in the member to be
amplified. The length will also affect the degteavhich the concrete is confined by the
steel tube, directly affecting the material prosrof the CFT. For long beam-columns,
overall member buckling will occur at longitudirsdtains below the level at which
volumetric expansion of the concrete begins, prengrany increase in concrete strength
and ductility [Tomii et al., 1973]. Long CFT beasalumns are therefore undesirable in
practice because the material capacity of the GHargely underutilized due to early
failure by instability [Shakir-Khalil and Mouli, B®].

Failure of an intermediate length CFT beam-colganerally results from a
combination of steel yielding and concrete crushwigich leads to flexural buckling
[Bridge, 1976; Shakir-Khalil and Zeghiche, 1989)FT columns of intermediate length
undergo a transfer of the load resistance fronttimerete to the steel as the moment on
the section is increased. Bridge [1976] calculéitedpercent strength contribution of the
concrete core for a CFT with a D/t ratio of 20Xhe concrete core provides only 7.5% of
the capacity in a member subjected to pure bengingus 30% of the capacity of a
member subjected to pure axial load. Although @#3 contains a relatively large
proportion of steel, the results underscore theeemed usefulness of CFTs for members
subjected to moderate axial loads.

Figure 3.1 illustrates the axial load versus meight deflection curve for a
simply-supported CFT beam-column subjected to @ oad applied at an eccentricity,
e. The stiffness of the CFT, even under small lp&dsonlinear due to early tensile
cracking of the concrete, (A). The beam-columnaems fairly stiff, though, until the
steel tube begins to yield. (B). As yielding pregges to both the compression and

tension flanges of the beam-column, (C), the bealunen stiffness degrades severely
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and the concrete core begins to crush, eventuedhjihg to an instability failure, (D)
[Bridge, 1976; Shakir-Khalil and Mouli, 1990; Cedeil et al., 1990].

The interaction between the concrete and the atekthe inherently ambiguous
stiffness properties of concrete complicate theuwation of stiffness properties for
CFTs. The bending stiffnesE|[I, and the axial stiffnes& [A, are well known for steel,
but these properties are difficult to predict fd¥ kS because of the inhomogeneity of
concrete. Section 3.3 details the formulation$ wWexe used in this work for these elastic

stiffness parameters.
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Figure 3.1 Typical CFT Load-Deflection Curve
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3.1.2 Cyclic Behavior of Rectangular CFT Beam-Columns

Many of the benefits and advantages of CFTs alezezl when these members
are subjected to cyclic loading. The addition@farete to a hollow tube significantly
improves the cyclic behavior of the member [Matsud Tsuda, 1987]. The presence of
the concrete leads to an increase in the capddhesection and greater ductility
because the local buckling of the steel tube iay#®l [Kawaguchi et al., 1991]. This
ductility of CFTs is manifested in very full hysésis loops, indicating a capacity to
dissipate large amounts of energy. Additionalll,TGpecimens exhibit some cyclic
strain hardening, resulting in an increase in céypaefore degradation due to local
buckling and concrete crushing occurs [Sakino amahil; 1981].

The behavior of a CFT beam-column subjected tdcl@ading is most affected
by the D/t ratio and the applied axial load ratikhe significance of the D/t ratio lies in
the occurrence of local buckling of the steel tuld¢hile the presence of the concrete will
delay local buckling, tubes having high values éf@ tubes subjected to large plastic
displacements may undergo extensive local bucklidgmbined with crushing of the
concrete, local buckling will cause a degradatiostrength and lead to eventual member
failure [Sugano et al., 1992]. It has been obskhbyesome researchers, however, that
rectangular CFTs tend to behave as circular tuftesseveral cycles, as the buckling of
the steel tube at the point of maximum force tramst the critical regions from
rectangular to somewhat circular in shape [SakimbBomii, 1981; Kawaguchi et al.,
1993]. Circular members have more stable hystetesps and a greater ductility than
rectangular tubes due to confining effects. Thaeefthis transformation of the
rectangular tube geometry tends to stabilize tlygatkng hysteresis loops. As a result,
CFTs often exhibit tough behavior, maintaining ghhpercentage of their initial capacity,
even for relatively large cyclic displacements [&ug et al., 1992; Kawaguchi et al.,

1993].
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The effect of the axial load ratio on the cyclehlvior of CFTs is much the same
as the D/t ratio. For cyclically loaded specimsuabjected to moderate to high axial
loads, an increase in the axial load leads togetaand more rapid strength degradation
[Sakino and Tomii, 1981], resulting in less enedgsipation.

Experimental testing of cyclically-loaded rectalagueam-columns has been
primarily limited to low- to medium-strength mat@s. The variable parameters in most
tests have been member geometry of the specimeaxé@doad ratio. Sugano et al.
[1992], however, have examined CFTs with concreengths from 4.5 ksi to 12.8 ksi
and indicated that the hysteresis curves for sgu@enns will be fuller as the strength of
the concrete decreases. These results were basest® performed by Yamaguchi et al.

[1989], which were documented in Japanese and Uablefor this research.

3.2 CFT Element Formulation

3.2.1 Background on CFT Behavior Models

Much of the analytical research conducted on GbTate has focused on
computing the ultimate capacity of members. Int@ast, relatively few researchers have
examined the comprehensive load-deflection behafi@FTs. The numerical analysis
methods for CFTs fall into three general categorigste element "macro” model
analyses, fiber element analyses, and three-dimegstontinuum analyses. The former
two methods are formulations in which each membeepresented by one or more line

elements, each having a specified number of degriefrtsedom.
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Finite element macro model analysis, as refewead this work, is an analytical
method in which the structural member is dividet ione or more line elements along its
length and deflections and forces are monitoreg anthe centroids of the cross-sections
at the ends of each element. Macro models ofteorfrorate simplifying assumptions
such as perfect bond [Neogi et al., 1969; ChenGimeh, 1973; Bridge, 1976; Shakir-
Khalil and Zeghiche, 1989; Masuo et al., 1991] amadplified uniaxial stress-strain
curves for the steel and concrete [Neogi et ab91€hen and Chen, 1973; Bridge, 1976;
Shakir-Khalil and Zeghiche, 1989]. Load-deflectretationships may be formulated by
using moment-curvature-thrust relationships to com@pnelastic member response
[Bridge, 1976]; by assuming a deflected beam-colgimpe and iteratively computing
element forces to equilibrate the applied loadsfarcessive increments in displacement
[Neogi et al., 1969; Shakir-Khalil and Zeghiche829Masuo et al., 1991]; or by using a
parametric representation of moment and curvatimehwin turn, may be used to
compute deflections for a given loading [Chen aheI§ 1973].

The second type of analysis using line elemensiwes a finer discretization of
each CFT. Each member is composed of a numbéemkats along its length, each of
which are then, in turn, subdivided into a numiddongitudinal fiber elements. This
type of analysis allows stress and strain to beitod at select points along the cross-
section and along the member length, resultingnmoee accurate model but a
computationally more expensive model as well. Kgwehi et al. [1993] used such a
fiber element analysis to model the degrading stsésin and load-displacement
relationships due to local buckling of the stdébarmulation of this type of model for
three-dimensional CFT beam-columns is part of amgoesearch at the University of
Minnesota.

The third general method used to model CFT behawithree-dimensional
continuum, or micro analysis. In this type of asé&, the member is divided into a three-
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dimensional mesh of continuum finite elements, Wwharxilitates a detailed examination
of bond, initial imperfections, and residual stesssAdditionally, member inelasticity
may be explicitly modeled at the multiaxial stressin level throughout the member
using this method. Ge and Usami [1994] incorpatéités type of model into an elasto-

plastic finite displacement analysis of rectang@&iT stub columns.

3.2.2 Overview of the Finite Element Macro M odel

For computational speed and efficiency, and tdifate the analysis of entire
frame structures, a macro finite element modeticgoged in this work. The macro model
is based on a standard twelve degree-of-freedom lieée element (displacements for
the twelve degrees-of-freedom are shown in Fig. i8.2&vhich transverse displacement
are obtained assuming cubic Hermetian shape furcfMyeaver and Gere, 1990]. The
finite element computer program developed in tagearch to model the load-deflection
behavior of structures composed of a combinatioGfef and steel I-beam members is
based upon the direct stiffness approach and aenmental updated Lagrangian
formulation. Incremental nonlinear finite elemantlysis has been described by many
authors (see, for example, Bathe [1982]) and ig bnfly presented here. In this work,
for static analyses, the total applied load isakd into a series of increments, each
applied in a load step. For transient time hisamglyses, the loading is divided into a
series of time steps. While the program develapeldis work can execute both static
and dynamic time history analysis, the incremefoathulation is
presented in terms of static analysis, since tisdittle experimental evidence at present
to verify dynamic analysis of structures contain@igTs. Additional detail on the

computer implementation of the analytical procedsgrovided in the appendix.
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Figure 3.2 CFT Beam Element

The fundamental step in the analytical procedsitbe formulation of the total
stiffness matrix for each beam element of the stinec The stiffness{,ke], for a single

structural element may be expressed by the follgwiguation:
[ke]=[we] [k ]+ [x] (3.1)

The three components of the total element stiffigagsn by Eq. (3.1) are the elastic
stiffness,[kg], the geometric stiﬁnesﬁkg], and the plastic reduction stiffne%kf].

Obtaining accurate displacements from the givewfsapplied loads is entirely
dependent upon an accurate stiffness formulafidre following sections of this chapter
examine each of the three stiffness componentgof&E1) in turn. The elastic stiffness
matrix of a structural elemer[kg], has been very well documented for decades.
Nevertheless, effective elastic stiffness valuegwhonstitute the CFT stiffness matrix--
axial rigidity, E[A, bending rigidity,E [, and torsional rigidity( [ J--must be

determined to model the composite elastic stiffredghe steel and concrete in a CFT.
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The geometric stiffness matrid; |, incorporated in this research is based

primarily upon the work of Orbison [1982]. The clission of the geometric stiffness
matrix in Section 3.4 will focus first on the backgnd of the present formulation and
second, on the behavioral aspects which the mawoitels, namely the stiffness loss in a
element due to the action of external loads adhngugh element displacements.

The third component of the stiffness formulatithre plastic reduction stiffness,

[k?], forms the core of this research. Section 3/®thices the concentrated plasticity

model for the formulation of the plastic reductioatrix.

3.3 Elastic CFT Stiffness Properties

The standard »2 elastic stiffness matrix for a three-dimensidredm element
requires terms representing the element's axiatlihg and torsional rigidity. For a steel
element, these values are well known. For a CEmeht, however, the interaction of the
steel and the concrete obviates using a simplergagéion of stiffnesses, which may not
necessarily be an accurate representation of tieeldnent stiffness. This section
discusses the axial, bending, and torsional ssas composing the elastic CFT matrix
and presents formulas representative of the cordlstignesses of the steel and the
concrete. The formulation for each type of behag®veloped assuming the elastic
stiffness is decoupled from the nonlinear stiffniesms. The equations for the CFT
stiffness terms presented in this section are baged the results presented by Schiller et

al. [1994].
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3.3.1 Axial Rigidity

As discussed for CFT cross-sections in Chaptdre2concrete and the steel
sustain load independently of one another for swalles of axial strain [Gardner and
Jacobson, 1967; Neogi et al., 1969; Tsuji et &91]. Confinement effects generally do
not begin until near the point of steel yieldinghgles and Park, 1970]. Therefore, in
the elastic region, the behavior of a CFT (in tase, the axial stiffness of a CFT) may be
accurately represented by summing the individuihess components of the steel and

the concrete:

(E |}‘)cﬂ = Es |}‘s + Ec m& (32)

For CFTs under pure axial load, Eq. (3.2) is gdheragarded as the most accurate
model of axial rigidity [Neogi et al., 1969; Tondt al., 1973; Zhong and Miao, 1987].
For cyclic load applications, the axial stiffnegsa CFT will degrade due to
concrete cracking as evidenced by the test restltar and Goel [1988]. In this work, to
account for the reduction in elastic rigidity, #lastic modulus of the concrete,
reduced based on the amount of accumulated plastic The next section on flexural

rigidity explains the reduction of i more detail.

3.3.2 Flexural Rigidity

Tomii and Sakino [1979b] presented one of the fietailed formulations of a
composite flexural stiffness for rectangular CF3ase(also [Bridge, 1976]). They
presented a formula in which the flexural rigidifya CFT is a summation of the rigidity
of the steel tube and a reduced concrete rigiditickvaccounts for concrete cracking in

tension:
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(ED)cﬁ:Est-*_ﬁl:Ech (33)
The reduction factof, is a function of the applied axial load, andiigeg by:

2
[ =0.311+ 0.619[4; + 0.457[€3Pj (3.4)

(o] (o]

For a larger applied axial load ratfpand the corresponding stiffness given by Eq. (3.3)
are larger due to the greater inhibition of core@acking over the cross-section. Tomii
and Sakino conducted experimental tests for a rahgalues of D/, f; f,, and P/Pto
validate their theoretical formulation. For CFTespnens with axial load ratios, P/Pf
less than 0.5, Egs. (3.3) and (3.4) predicted gooaite stiffness within approximately
5% of the experimental results.

The matrix model contained in this work, howeveguires that the linear elastic
stiffness properties be independent of the loadiegglering Egs. (3.3) and (3.4)
inapplicable as expressed. Sificequals 0.3 (rounded to one significant digit)tfoe
case of no axial load, an expression for flexugadlity that is decoupled from axial force

may be expressed as:

(E D )cft = Es Ds + OBEEC Dc (35)

The results of using Eq. (3.5) in the finite eletnmodel in this work produced an
underestimation of the elastic stiffness exhibliganost experimental CFT beam-
column tests. The primary reason for this, asudised above, is the decreased concrete
cracking due to the presence of moderate axiaéfor¢the CFT beam-columns in this

study. In the Tomii and Sakino model, the preseari@xial force results in a larger value
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of B than was assumed in Eq. (3.5) for pure flexureer&fore, an alternate stiffness
formulation was employed in the elastic range oT ®Ehavior. This formulation
consists of using the full stiffness of both th@c®@te and steel and is given by the
following equation [Gardner and Jacobson, 1967;d\Webal., 1969; Tomii et al., 1973;
Liu and Goel, 1988]:

(EO), =E,O,+E 0O, (3.6)

Equation (3.6) neglects the detrimental effeataicrete cracking on the overall
CFT stiffness. In this work, extensive concretsckmg is assumed to become prevalent
and significantly influence the CFT stiffness oafier the onset of steel yielding. To
account for concrete cracking beyond this poirg,afastic modulus of the concrete, E
decreases toward a final value equal to 30% afritgnal value, resulting in a final CFT
flexural stiffness defined by Eq. (3.5). The ratehe decrease in ks a calibrated
parameter which is a function of the amount of anglated plastic work for a given
element. This calibration is explained in Chapter

A comparison of the initial elastic flexural stif'ss predicted by Eq. (3.6) and the
results of experimental tests may be found in Sahdt al. [1994]. The verification of
the nonlinear model for CFTs presented in Chaptds® confirms the accuracy of Eq.
(3.6) and better illustrates the effect of decregsine concrete elastic modulus on overall

CFT load-deflection behavior.

3.3.3 Torsional Rigidity

Rectangular CFTs provide excellent torsional tasrse, exhibiting both high
strength and large ductility [Bridge, 1976; Kitaalad Nakai, 1991]. Although this
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observation has been well established, there hexs tiedatively little experimental
research conducted to quantify the behavior ofaregilar CFTs in torsion. Kitada and
Nakai [1991] present the most comprehensive resiltese authors illustrate that, due
to the composite interaction of the steel and threerete, the ultimate torsional moment
of a rectangular CFT is about 1.2 times the sunonaif the ultimate torsional moments
of the steel tube and the concrete core. Withrcegmatorsional stiffness, their tests
showed that the torsional rigidity of a rectang@&T subjected to relatively low values
of torsion (as in this work) may be accuratelyrastied by assuming only the steel tube

contributes torsional resistance. This resulivergyby the formula:

(GED)cft =G DJS (37)

S

The rigidity of the CFT remains relatively high foroderate values of torsion due to the
benefit of the infilled concrete. The rigidity beg to decline once shear cracking of the
concrete core initiates. At the point of maximuwrstonal resistance of the section, the
CFT has undergone some nonlinear behavior andatbef twist is close to the value
that would be predicted using a secant stiffnessiletg the original elastic rigidity of the
steel alone [Kitada and Nakai, 1991]. Therefoirg;esnonlinear torsional stiffness is not
modeled in this work, Eq. (3.7) provides an acaiestimate of a secant stiffness.

The equations that were incorporated in this workhe axial, flexural, and
torsional rigidity of a CFT beam-column are showiTable 3.1. Two equations are
shown for flexural rigidity--the initial rigidity :ad the rigidity after the elastic modulus of

the concrete has been reduced to its final value.
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Table3.1 Equations for the Elastic Rigidity of CFT Beami@ans

Elastic Rigidity Equation(s) Equation Numbe
Axial (Em), =E.[A +E A (3.2)
Flexural (EO), =E. O, +E, 0O, (initial) (3.6)
(EO), =E. O, +03[E, O, (final) (3.5)
Torsional (Go), =G, I, (3.7)

3.4 Geometric Nonlinear Formulation

The second component of element stiffness, thengee stiffness, models the
reduction in element stiffness due to the amplifaraof internal forces resulting from
external applied loads acting through large disgtaents. Geometric nonlinearities may
include member chord rotation Peffect) and member curvature dreffect)

[Galambos, 1988]. The geometric stiffness mats&diin this work is taken from
Orbison [1982] and is based on the work of BatreeBolourchi [1979], Argyris et al.
[1979], and others (readers are referred to Orliigothe terms of the matrix). The
stiffness matrix is formulated based on the prilecgd minimum potential energy,
assuming a cubic polynomial variation of the trarse displacements along the element
length (i.e., cubic Hermetian shape functions)addition, small strains and large
displacements and rotations are assumed.

The geometric formulation is based on an updasgtdngian formulation, in

which equilibrium is formed on the deformed configion of the structure [Bathe,
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1982]. The nodal coordinates of the structurelaus updated at the end of each load
step based on the incremental displacements.elfotmulation oi[kg], the elements are
assumed to be straight at the beginning of eaachdtep and prismatic. Both CFT and
steel elements are modeled using the same forheajgometric stiffness matrix.

The accuracy of the geometric formulation is acfiom of the number of load
steps in the analysis and the number of elememntsipmber. It is possible, nonetheless,
to obtain excellent accuracy with a reasonable rarmabload steps and elements. The
analysis used in this work is a simple incremeapgdroach, in lieu of equilibrating the
forces for each load step (i.e., using a NewtonkRap or similar solution scheme) which
would require fewer load steps to obtain the saccaracy. For the tests contained in
this work, the number of load steps in the analysis doubled until the accuracy of the
solution did not noticeably change. The numbdoadl steps, although important for
modeling geometric nonlinearities, depended toeatgr extent on the requirements of
the material nonlinear analysis.

Based on the geometric nonlinear formulation, esakctural member in a frame

may be accurately modeled using one to three eleniéfite and Hajjar, 1991]. For
™ [EO

members subjected to an axial load ratio, Bfffess than 0.4, whete = X

, one

element sufficiently accounts for botheffects and -effects. The largest error in

any term of the geometric stiffness matrix in ttese is less than one percent. For axial
load ratios beyond this value, however, up to &elats may be required to accurately
model stiffness loss due to member curvature, &rd¥fects. Additionally, more than
one element is necessary if initial imperfectianghie beam-column are to be modeled
explicitly. The members in this work generally smted of 1 to 4 beam elements,
depending upon the structure and loading. Foumehs, rather than three, were used to

model beam-columns for which the displacement dtspian was desired.
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3.5 Material Nonlinear For mulation

The two line element formulations outlined in $&ct3.2 have different
approaches to modeling plasticity in a structulanent [White and Chen, 1993]. Macro
finite element analyses typically employ plastinde or concentrated plasticity
formulations, for which it is assumed that plasyics restricted to zero-length hinges at
the element ends. Material nonlinear fiber formatles, often referred to as plastic zone
or distributed plasticity analyses, account forspesad of plasticity along an element's
length as well as through the cross-section. Bgibs have advantages and
disadvantages. The distributed plasticity analyeigiires more computational effort but
provides a more detailed and often more accuralysia. The concentrated plasticity
model, on the other hand, is computationally effitiand easily incorporated into matrix
based analysis programs. This type of analysspecially appealing for unbraced frame
structures, in which the beam-columns are typidallgouble curvature and the
maximum moments are at the element ends. Additigrithe concentrated plasticity
analysis need not be confined to an elastic-payfptastic analysis, but may model strain
hardening, concrete crushing, and the gradualifitasion of an element end. This
method becomes less accurate, however, for merabelnsas columns subjected to high
axial loads or beams with uniform bending momentsere the plasticity may be

distributed along much of the member's length.

3.5.1 Concentrated Plasticity Models

The concentrated plasticity approach incorporatetis work is the bounding
surface model, first developed by Dafalias and Rgn675] to model the stress-strain
behavior of metals subjected to cyclic loading.isThrmulation is summarized briefly

here; the reader is referred to papers by Daffibaglias and Popov, 1975, 1976;
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Dafalias, 1986, 1992] and others [Krieg, 1975; Tsand Lee, 1983; Yang et al., 1985;
McDowell, 1985, 1987; Yoder and McDowell, 1989; 8&mnakis and Fardis, 1991] for in
depth discussions of the stress space boundingcguniodel.

Figure 3.3 illustrates a schematic representatigincipal stress-space of the
model proposed by Dafalias and Popov. The modw®ists of an inner loading surface
representing the locus of points in two-dimensiatigdss space at which the initiation of
yielding begins. The outer bounding surface regmessthe stress state at which a limiting
or bounding stiffness is attained. The two surdagenerally are of the same shape, but
have different radii, R and Rs. Three-dimensional stresses may also be repesbbmgt

this model.

Ras

Stress
R Path

Loading Surface
Bounding Surface

Figure 3.3 Bounding Surface Model
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The material remains elastic for stress pointkiwithe loading surface. When
the stress point contacts the loading surface-t@goin Fig. 3.3--the material undergoes
inelastic behavior. The plastic stress respongevsrned by a number of hardening
rules which determine subsequent inelastic behgwonen, 1978]. As the material is
stressed inelastically, the surfaces may trangkatematic hardening), or contract or
expand (isotropic hardening), to model parametgch as cyclic softening, cyclic
hardening, and cyclic creep [Dafalias and Popov519The degree of plasticity in the
material is a function of the relative distancenmsn the two surfaces, denoteddin
Fig. 3.3 (i.e., the distance betwekmandA', a point on the bounding surface whose
location depends on the particular kinematic hardgapproach that is selected
[McDowell, 1985]).

Figure 3.4 schematically illustrates kinematicdeaning of the loading surface.
Figure 3.5 shows a similar schematic representétioisotropic hardening of the loading
surface. While Fig. 3.5 illustrates an expansibthe loading surface, isotropic
hardening may entail a shrinking of the loadingaze as well (referred to as isotropic
softening). Additionally, the bounding surface nadso kinematically and isotropically
harden. Once the force point contacts the bounslinig.ce, the stress-strain curve

increases at a constant slope--the bounding, airigrsiope.
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Figure 3.5 Isotropic Hardening

The bounding surface model in stress space hes baen incorporated in
different forms by several authors [Krieg, 1975efig and Lee, 1983; Yang et al., 1985;
McDowell, 1985, 1987; Sfakianakis and Fardis, 199%pre recently, the stress space
model was extended to force space by Hilmy and At#85]. The force space model is

a macroscopic model consisting of surfaces reptiegeresultant stresses (or forces)--
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typically axial force and major and minor axis beigdmoment. Orbison [1982]
developed an empirical equation defining the sludpike surfaces for selected steel W-
sections which Hilmy and Abel implemented in tHeiice space bounding surface
model. Zhao [1993] later refined and improved Hilmrforce space formulation and used
it to model the plastification of steel elemeni$ie model proposed by Zhao has been
incorporated in this work to model the behaviostfel members. Additionally, the work
conducted by Hilmy and Zhao forms the basis for Imaoicthe CFT plasticity model

contained herein.

3.5.2 Introduction to the CFT Plasticity Model

The development of a bounding surface model fof Elements first requires
equations representing the loading surface anddogrsurface in three-dimensional
force space. Since element plasticity in the mszpic model is constrained to zero-
length hinges at the ends of the elements, the fetiate at an element end may be
examined irrespective of length, i.e., by examirtimg CFT cross-section strength. The
polynomial equation representing the three-dimeradioross-section strength surface of
a general CFT member developed in Chapter 2 thussfthe basic mathematical
expression of the loading and bounding surfacesth Burfaces have the same basic
shape and their respective sizes may be obtainegddwjifying appropriate surface radii
(see Chapter 4). The inner loading surface reptederces which cause the initiation of
yielding at some point on the element end crossesecThe outer surface, as in the
Dafalias and Popov model, represents the force atawhich a limiting stiffness of the
CFT element end is achieved [Hilmy and Abel, 198%0, 1993] (see Zhao [1993] for
further description of the bounding stiffness).eTtvo surfaces harden kinematically and
isotropically to model the monotonic and cyclicdedeflection characteristics of CFT
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beam-columns. The following section demonstrateg the cyclic and monotonic
behavioral characteristics of CFTs are modeleduiinasotropic and kinematic

hardening of the two surfaces.

3.5.3 Modeling of Inelastic CFT Behavior

Figure 3.6 illustrates a typical cyclic hysteresisve for a CFT beam-column
tested by Sakino and Tomii [1981]. The test sé&tighown along with the curve. The
loading pattern consists of a constant axial I6a@nd a cyclic shear, Q, applied over

three full cycles at increasing increments of maiight rotation from 0.5% to 2.5%.

15

Qmax

Shear, Q AT(
(k) 0

_15 1 1 1 1
Rotation, R (%)

Figure 3.6 Cyclic CFT Behavior (after Sakino and Tomii [1981

Figure 3.6 illustrates several key characterigifosyclic CFT behavior that must

be modeled by the concentrated plasticity formaitati The first noticeable characteristic
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of the curve is the decrease in the size of thatielaone with successive cycles of
plasticity. As a CFT specimen is cycled, the cetecrushes, leading to an early loss of
elastic strength. The elastic strength loss prafgsgfurther as the steel undergoes cycles
of local buckling (see Section 3.1.2). Line A-BRig. 3.6 represents the elastic zone for
the first cycle and line A'-B' represents the etasbne after several cycles of loading. It
is clearly evident that this region shrinks asrttember undergoes repeated cycles of
plasticity, but does not vanish completely. Byisking the size of the loading surface,
the decrease in the size of the elastic zone maydaeled. If the loading surface size is
decreased with plastic loading, for each successigie the force point will have a
smaller distance to traverse before plasticity caos, thus creating a smaller elastic zone.

A second behavioral characteristic that may beiesl in Fig. 3.6 is the change
in maximum strength as the specimen is cycled. sBagion initially exhibits an increase
in capacity due to cyclic strain hardening of thieet, and then the strength begins to
degrade (e.g., the strength degradation frqm @ Q. in the figure) due to concrete
crushing and local buckling of the steel [Sakind &omii, 1981; Sugano et al., 1992].
The nonlinear model accounts for these effectsgmilgnby first increasing and then
decreasing the size of the bounding surface, wiastlts in a corresponding change in
the load at which the bounding stiffness is reached

The concept of a bounding stiffness may be ilatett by examining the last three
cycles in Fig 3.6. As the specimen approaches 2d@&tion in the positive load region,
the value of shear force levels out, showing orglight increase with a further increase
in rotation. This steady, relatively shallow slalves due to the stabilizing effect of
the steel tube after significant local bucklinge(&ection 3.1) [Sakino and Tomii, 1981,
Kawaguchi et al., 1993]. This slope may be thougtas the bounding stiffness. In the

plasticity model, once the force point contactslibending surface, the force may
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increase at a relatively small but constant ragetan a calibrated parameter that models
the observed slope of the experimental curve.

A third characteristic of the cyclic behavior oFCspecimens, which is also
prominent in the cyclic behavior of metals, is Baeuschinger effect. If the specimen is
loaded inelastically into the positive quadranEaf. 3.6, upon unloading, less force will
be required to reinitiate plastic behavior in tlegative region than would be required if
the specimen were initially loaded into the negatiuadrant from its virgin state.
Modeling this characteristic is the prime reasarkioematic hardening of the loading
surface. The loading surface translates as th@mpa is loaded into the positive region.
Then upon unloading, the force point contacts tlagling surface earlier, i.e., at a smaller
magnitude of force, because the surface has ttadsl& his is illustrated in Fig 3.4.

CFT specimens also exhibit a gradual softenid@ber from the initiation of
plasticity to the point at which they reach the hding stiffness, as evidenced in each
cycle of the curve in Fig. 3.6. Modeling this guatisoftening is the chief advantage of
the bounding surface model. Once the force paintacts the loading surface at the
initiation of plasticity, the loading surface isadged toward the bounding surface. As the
loading surface translates, the distance betweenutfaces decreases, causing a
corresponding decrease in the element stiffnesspter 4 describes how this distance
between the surfaces correlates to a mathematicalfation of the element stiffness.

The above characteristics of CFT behavior varyesshat as the D/t ratio and
material strengths of the section change, whiclesstates variable calibration
parameters, as will be described in Chapter 5.h\fiese behavioral characteristics as a

base, however, the plasticity model is formulatedetail in Chapter 4.
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Chapter 4

CFT Force-Space Plasticity Formulation

This chapter presents the formulation of the cotreéed plasticity model for
CFTs. Portions of the formulation are based ontbek of Hilmy and Abel [1985] and
Zhao [1993] for steel members and are briefly sunmad. The CFT plasticity model,
however, has several unique characteristics, wdmetthe focus of this chapter. The first
section of the chapter describes the formulatiothefCFT limit surfaces, which are
based on the cross-section studies of ChaptepRowing this section, the plastic
reduction matrix for the CFT finite element is greed. The assumptions implicit in the
derivation of this matrix are outlined, followed ag description of the plastic stiffness
matrix, the main component of the plastic reductizatrix. The final two sections of the
chapter detail the isotropic and kinematic hardgmiodels, elaborating upon the
introduction presented in Chapter 3 by describmggrhathematical formulation of the

hardening rules.
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4.1 Definitionsand Assumptions of the Bounding Surface
M odel

4.1.1 Loading and Bounding Surfaces

As described in Section 3.5, the bounding surfaodel consists of two surfaces,
an inner loading surface and an outer boundingsarfwhich both translate and contract
in force space to model the load-deflection behavicCFT elements. The two surfaces
are each convex and continuous [Drucker, 1951]aaadf the same shape but have
different sizes. Figure 4.1a illustrates the alitinstressed state of the loading surface
and bounding surface for a CFT element end in timtedsional, normalized force space.
Figure 4.1b then shows an arbitrary configuratibthe bounding surface model. The
vector{s} denotes the normalized vector of internal for¢eh@element end. This
vector resides on the loading surface during mdstiding (point F in Fig 4.1b). The

normalized centroids of the loading surface anchdng surface are shown as the

vectors{a,.} and{a,}, respectively.

Bounding Surfac

Loading Surfac =
Fny,

Bounding Surfac

Uy s 10}
{s

TR
0.9 M/M M/M

(a) (b)

Figure4.1 CFT Bounding Surface Model
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The equation for the three-dimensional cross-sedirength of a CFT, as derived
in Chapter 2, may now be rewritten as the equateiming the loading or bounding
surface. Using the equation of Table 2.9, theilgadurface equation in three-
dimensional normalized force space may be rewrdtea function of the loading surface

“radius", Rg, and the vector from the normalized centroid efshrface to the

normalized force poings} —{a,.}:

M _amy 2 M _amz 2
fllst—1ash Rs)=¢ y LS] +( z LS] +
(4o ro)= o | o el

2 my \ 2 mz \ 2
cz[ﬁp_afs'MRLsEPOj +c, M, —as +(—MZ_aLSj 0
IQLS |:Po IQLS DM yo IQLS DM z0

p 2 M my\? mz \®
(P—aLS—¢ERLSEPOJ ‘e, y " s [EMZ—aLSJ _1=0 4.1)
RLS |:IF)o RLS M yo RLS l:Mzo

Equation (4.1) modifies the cross-section stresgtfiace equation developed in Chapter
2 by multiplying the nominal strengthB,( M,,, and M,.) by R 5. Although this value

is not a radius per se (i.e., the surface is moukr in shape), it serves as a convenient
representation of the size of the surface relatvibe full cross-section strength surface
developed in Chapter 2. With this modificatiorg tiormalized force vector with respect

to the loading surface for an element end in thieeensions becomes:

{9 ={ P_ M M } (4.2)

RLS |:|Po RLS DM yo RLS DM z0

The vector representing the normalized centroithefloading surface in three
dimensions{a .}, may be written as:
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T
{aLS} — aES + ¢ |:RLS |:Po alr_nsy aIr_nSZ (43)
Rsh, Rs M yo RsM,,

For an element that has not undergone any plastormation (i.e., the surfaces have not
moved), the normalized centroid of the loading acefgiven by Eq. (4.3) will lie on the

axial force axis a distange[R, ; above the moment axis (Fig. 4.1a) to accounttfer t
asymmetry of the surface (refer to Chapter 2). sTtie initial, normalized centroidal
coordinates of the loading surface, before anytipldeformation has occurred in the

CFT element, are:
{a}={pmRs 0 0 (4.4)

Although Egs. (4.1) to (4.4) provide a conciseespntation of the loading
surface, the ensuing CFT plasticity formulationsiders forces in unnormalized force
space (this simplifies many calculations). In umnalized force space, the force point is

written as:

M) (4.5)
and the centroid of the loading surface is represehy the vectofA .}, where:
— p my mz|T
{ALS} - {aLS + ¢ |:lRLS |:IPO aLS aLS} (46)

The unnormalized centroid of the loading surfagemby Eq. (4.6) is the

summation of two vectors{A .} ={a .} +{® .}, where{a .} represents the "backforce"
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vector, and{® .} represents the centroidal "offset" vector. Thesetors are expressed

as:

{as)=far aw am}' (4.7a)

{od={pmrsP, 0 (4.7b)

Previous stress-space and force-space boundirgcsuriodels [Dafalias and Popov,
1975; Hilmy and Abel, 1985; Zhao, 1993] identifgtlocation of the loading and
bounding surfaces by their respective backforcéovefa, .} and{a,.}, which both
equal the zero vector for a specimen that has et bbaded. For symmetric surfaces,
this backforce point coincides with the centroidhad surface, i.e., there is no initial

centroid offset from the origin. For asymmetricfanes, however, the additional offset

vector,{®}, must be added to the backforce to obtain theilmeaf the centroid (Eq.
(4.6)).

In the CFT plasticity formulation to follow, theirgace locations are effectively
identified by the backforce vector. However, toilitate a more succinct representation
of the plasticity equations, the formulation istiamn in terms of the surface centroids.
For clarity, the centroidal vectors should nonetkelbe thought of as the summation of

the two vectors--the backforca}, plus an offset{®}, to account for the asymmetry.

Similar equations to the loading surface equatgwen by Egs. (4.1) through

(4.7) may be written to describe the bounding swrfd ({s} —{a.<},Rss). The equation

for the bounding surface is identical to Eq. (€43ept for the radius and the centroidal
vector. The bounding surface is represented lbygef radius, B., and a normalized

centroid,{a,}, given by:
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p my mz

{aBS} - s + ¢ [Rys [F, Ags Aps (4.8)
Rgs [F, Rgs M yo Rgs M,

The initial value of the normalized bounding sugaentroid (Fig. 4.1a) is given by:
{aBS} = {¢ [(Rgs O O} (4.9)

The unnormalized centroid is expressed as the $uhe dounding surface backforce

vector and the centroidal offset of the boundindesie:

{As} ={auet +H{ood ={al +o R, Ay & (4.10)
where

{age =fag, am azf’ (4.11a)

{dl={pRsP, 0 0. (4.11b)

The values for the surface radii, Rand R,., are parameters that must be
calibrated. The discussion in Chapter 5 addretsesalibration of the surface radii and

specifies the actual values used in this work.

4.1.2 Basic Assumptions

When the force point contacts the loading surfdeeelement end undergoes
plastic deformation. Subsequent inelastic behasigoverned by several rules and

assumptions. First, the force point must remaithenloading surface whenever plastic
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loading occurs [Armen, 1978]. This rule is reférte as the consistency condition and
must be adhered to when the surfaces harden ismatypand kinematically (movement
of the surfaces is discussed further in Sectiofiadd 4.5) [Hilmy and Abel, 1985; Zhao,
1993].

Two additional conditions were postulated by Derckl951] for stress-space
plasticity models of work-hardening materials. ykesre adopted to force space
plasticity by Hilmy and Abel [1985] and are retaina this work. The first condition
states that, for work-hardening materials, thetmamtential surface is convex [Drucker,
1951]. This condition is satisfied by Eq. (4.13)/hile concrete exhibits strain-softening
behavior [Bazant, 1982], the load-deflection bebawf CFTs rarely exhibits softening
behavior except when subjected to extreme cyclidilg [Kawaguchi et al., 1993]. The
force-space plasticity model is thus treated agKvi@rdening" in this research. Figure
3.6 indicates the continual hardening behavior g by a typical CFT beam-column.

A second condition, the normality condition, statieat plastic deformations are
normal to the plastic potential surface [Hilmy aklgel, 1985; Zhao, 1993], i.e., in the
direction of the gradient of the surface. In thisrk, associated flow is assumed, such
that the initial yield (loading) surface is takenlte the same as the plastic potential
surface. The gradient vector equals the partiavatéve of the loading surfacg,with
respect to the current force point, and is denb;e{h}i , Where the subscriptdenotes the
hinge at the-end of the element. In three-dimensional foracspthe gradient for an

element end is given by:

_a _[a Al
{n}, = {O_P 000 — } (4.12)
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where the zero terms correspond to the shear isttbeg and weak axis directions and
the torsion. These terms remain zero since thatiplty model considers only axial force
and bending. The gradient vector to the loadintpsa is illustrated in two-dimensional
force space in Fig. 4.1.

For convenience in later calculations, the gradiector of the entire element
may be represented by a single matrix by combithiegrectors at both endsandj, of

the element:

{n}, {0}
[N] :{{O} {n}J} (4.13)

The gradient terms in Eq. (4.13) for an elastienelet end are zero and therefore do not

affect the calculation of the plastic reduction nxat

4.2 Derivation of the Plastic Reduction Matrix
The stiffness formulation presented in Chaptart®duced the plastic reduction
matrix, [kf], for a general element. This section briefly deses the derivation of this

matrix. This formulation is derived from incremahplasticity theory and is based on the
work of Zhao [1993]. The reader is referred thferea more extensive derivation.
In this approach, the relationship between incraaidorces and incremental

displacements may be expressed as:

{ag} = [k |+ [ke])dac} (4.14)
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where[ki] represents the elastic tangent stiffness matakisequal to the sum of the
elastic and geometric stiffness matridas, |+ [k |. The incremental displacement and

force vectors for endof an element are given by (see Fig. 3.2):

{dd}, ={du, du, du, d6, dg, da,}

1z

4.15
{d9, ={dF, dF, dF, dm, dm, dm,}" (*4.13)

iy iz iy

Similar expressions apply to epdf the element. The complete incremental

displacement and force vectors for the element are:

{dd}
{ds)

{od, {aa,J
fos, {ag,f (4.16)

Several assumptions are incorporated into theva®rin of the plastic reduction

stiffness matrix. First, it is assumed that therémental displacements can be

decomposed into elastic and plastic displacemefils{ and Abel, 1985; Zhao, 1993]:

{dq} ={dq.} +{da, | (4.17)

Then, by the normality condition [Drucker, 195Xciemental plastic displacements are

normal to the loading surface, i.e., in the dil@ctdf the gradient to the loading surface.

{da, } = [N] A}

(4.18)
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where{dA} :{d)li d)lj}T and d\; represents the magnitude of incremental plastic

displacement at element endin isotropic stress-space plasticity formulasiptinis
parameter may be calibrated directly. In multi-eitaional force space, however, the
behavior is orthotropic, and an additional constre required [Zhao, 1993]. This
orthotropic behavior is expressed in the relatietwieen the plastic stiffness matrix and

the incremental plastic displacements as follows:
(s }=[kc]efeta,} (4.19)

where[kg] is referred to as the plastic stiffness matrix.this work, it is diagonal but

not proportional to the identity matrix [Zhao, 1993 hus, the incremental force vector,
{dS*}, is not parallel tc{dqp}, as it would be if the force space behavior weotropic.

Zhao then related this vector to the actual increaidorce vector{ds}, by the

following constraint [Zhao, 1993]:
[N] dus’}=[N]" das} (4.20)
Through the use of this constraint, in the forcacgpformulation the element plastic

stiffness,[kﬁ], is calibrated rather thguld} (see Section 4.3).

The relationships from Egs. (4.17) to (4.20) mawrbe used to derive the plastic

reduction matrix. Substituting Egs. (4.18) and ®.into Eq. (4.20) results in:
NI dias) = [N]" dhc]clog,}=INT dicldn]dar} @)
Solving Eqg. (4.21) for the magnitude of the incramaéplastic displacement produces:
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{da} = IN]' ) (4.22)

~INT e ]
The elastic force-displacement relationship is gilog:
{9 = |7 |cfa.} (4.23)

By substituting Eq. (4.17) into Eq. (4.23), theatahcremental force vector may also be

expressed as:
{ds} = |k |cfic} - ¢ |, } (4.24)
or, substituting Eq. (4.18) into Eq. (4.24):

{ds} =[x |cida} - [k |cpn] i} (4.25)

Using Egs. (4.22) and (4.25) and rearranging tethesmagnitudes of the incremental

plastic displacements may be written in terms efttital incremental displacements:

_ NIk
A= I ey (429

Combining Egs. (4.25) and (4.26), the incremertdedd vector may be expressed as:

{as) =[ie]chach+{-fee dnT T e+ e DebnT) ™ dNT” e ol

(4.27)
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The bracketed expression represents the plastictied matrix as derived by Hilmy and

Abel [1985] and Zhao [1993]:
ie]= i ANTAINT” ]+ e i)™ T ] ca.28)

Since the plastic reduction matrix is negatives #tiffness is subtracted from the tangent
stiffness. Therefore, increasing its magnitudeltesn a decrease in the total stiffness.
For the case when the plastic stiffness matrirfigite (i.e., no plastic hinges), the plastic

reduction matrix is zero and the element stiffnsessjual to the elastic tangent stiffness,

k]

4.3 Calculation of Plastic Stiffness

The plastic stiffness matri%kz], is a diagonal matrix composed of twelve

independent terms, six at each element end. @lisplacements due to shear and
torsion are neglected in this model. Therefore, sthear and torsion terms will be
infinite, resulting in zero plastic displacemerds these components. The diagonal

matrix for a single element takes the form:

[ng:diag{(kgi)p ®© ® © (kgi)my (k:i)mz (kgj)p © 0 ® (k;i)my (kgi)mz)

(4.29)

The terms of the plastic stiffness matl[ikg], are determined by the bounding

surface model, and are thus computed based upatasiec stiffness, the distance
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between the loading surface and the bounding sesflor the current load ste,the
initial distance between the surfaces at the ¢iositact of the force point with the loading
surfaced,,, and calibrated plasticity coefficients, andk,. The general bounding

surface formula for a single plastic stiffness tésmepresented by [Dafalias and Popov,

1975; Hilmy and Abel, 1985]:

o
k, =K, EEKI +K, 5 - 5} (4.30)
Each plastic stiffness term will take the form af. £4.30) but may contain different
values of elastic stiffness and calibration cogfits, thus resulting in orthotropic

plasticity [Hilmy and Abel, 1985]. The elasticftesses in the three force directions are

calculated as follows:

The remaining variables of Eq. (4.30)--the calibdaplasticity coefficients and the

distances between the surfaces--are detailed ifollogving two sections.

4.3.1 Plasticity Coefficients

The plasticity coefficientss; andk,, are calibrated separately in each of the three

force space directions included in the plasticitydel. The details of the calibration of

these parameters are presented in Chapter 5. arbmpter ; represents the bounding

slope of the element stiffness (see Section 3Men the force point reaches the
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bounding surface, the distance between the surfaceszero and the plastic stiffness

reaches its bounding or limiting stiffness, given b

ko =k, [k (4.32)

e
The parametex, represents the rate of plastification, i.e., #ite at which the

element stiffness decreases from the elastic &tdatee bounding limit. Figure 4.2

illustrates the effect of increasing the valuaof A large value ok, results in a

relatively slow rate of degradation of stiffnesgilume force is close to the bounding

surface, at which point the stiffness decreaseslyapA small value ok ,, on the other

hand, results in a more gradual plastification.

Highk,

LOWK2

Load

Deflection

Figure4.2 Effect ofk, on the Rate of Element Plastification
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4.3.2 Distance Between the Surfaces

In this work, the distance between the two sudatds computed along a vector

from the beginning of step force point, denotedevector{S} in Fig. 4.3, which

resides on the loading surface, to the conjugatefpoint on the bounding surface,

denoted by{S}. This vector, referred to as the Mroz vectorralfeoz [1967], is given

by:
{u}={s}-{s} (4.33)

where the conjugate force point vect{:$:}, IS given by:
R
{s}= R st —{Ash)+{Axl (4.34)
S

and where, as discussed in Section 4{AL} ={a .} +{® .} (see Fig. 4.3), and
(A} ={as} +H{P.s} . (See Dafalias and Popov [1986] for a discusefaiternate

methods of measuring the distance between suriactess-space formulations for use
in Eq. (4.30)).
The distance between the two surfaces may theleteemined by taking the norm

of the Mroz vector:
o=l ) (39

The value of the distance between the two surfeebe load step at which the loading

surface is first contacted is denoteddgs This initial distance is updated each time the

force point moves from an elastic state (i.e.,daghe loading surface) to a plastic state

127



(i.e., on the loading surface). Therefore, if ag@ unloadsd,, is recalculated upon

reinitiation of contact between the force point #mel loading surface (see Hilmy [1984]

and Chaboche [1986] for a discussion on propertupglaf &, , e.g., for cases of

in?

unloading/reloading).

S,
5
' ~—Loading
{S1 Surface
A
(g B
{S} o i®st
@ Bounding Surface

S

Figure 4.3 Distance Between Loading and Bounding Surface

4.4 |sotropic Hardening

The isotropic hardening formulation presentechia work to change the size of
the loading surface and bounding surface is baged the accumulated amount of

plastic work for a given element end. As plastarkvaccumulates, the surfaces contract
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or expand at exponential rates based upon the ambancumulated plastic work and

based upon rate parameters that are calibrategtrienental results.

4.4.1 Calculation of Plastic Work

The incremental plastic work is computed for emdtastic element end and is
expressed as the dot product of the incremented feector and the incremental plastic

displacement vector for the element end:

dw, ={dg/ ddq,} (4.36)

wherei denotes theend of the element. The incremental force veist@nown for each
load step and the incremental plastic displacemector may be calculated as per the
discussion in Section 4.2. Expressing Eq. (4.48gims of a single element end, the

incremental plastic displacements are given by:

{da,} ={n} @A (4.37)

where the magnitude of incremental plastic disptaa® at an element end) ,d may be

written as:

{7 dus
o e (4.9
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where [k,‘j]i = diag{(k;)p © 0 0 (k;i )my (k;i )mZ}. The incremental plastic work
may be calculated using Egs. (4.36) to (4.38). ddmmulated plastic work is updated
for each plastic element end by integrating theemental plastic work:

Lhinal

w,, = [ dw, = 2w, (4.39)

The plastic work is continually updated from thisiah onset of plastification and is not
reset to zero upon unloading. Therefore, whenlement end reloads, the entire
previous plastic load history of that end is coasgdl in the formulation.

Sections having the same material properties dhcaflo but different
dimensions (e.g., @x 6x 4 section and 42 x12x 1 section) will produce different
values of plastic work for the same amount of @dispiment. Therefore, since the same
calibration parameters will be used for both ofthsections (see Section 5.2), the
accumulated work of Eq. (4.39) must be normalizgddime value. In this work, the
accumulated plastic work for a given element entbignalized by the axial and flexural
elastic strain energy present in the element afitbtanitiation of plastic behavior (i.e., at
the first contact of the force point with the loaglisurface). Once this elastic work for an
element is established, it remains constant foreh®inder of the analysis.

The axial strain energy for a single element jsregsed as:

L 2 2
u,=| S (4.40)
Pl 2Em 2[E A

The axial rigidity,E[A , and the axial load, P, are both constant oveeldment length

and therefore the strain energy is simply the iried multiplied by the element length,
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as shown in the latter portion of Eq. (4.40). Blrain energy for a single element due to
bending (shown here for the strong axis momehy), is given by:
M 2

L
U =[-M: gy 4.41
e -C[ZDED (4.41)

The flexural rigidity,E[I, is constant along the element length, but the emins a
function of the distance along the element andribenents at the andj-ends of the
element. With a linear relationship between endn@ats, the strain energy integral

becomes:

1 ?
Umz:ZEED ;([|:Mzzi+%[6Mzi_sz)z_ZDMziEEEﬁMzi_sz) mx

(4.42)

Integrating EqQ. (4.42) produces the expressiomifajor axis bending strain energy:

Umz= l
2[ED

[EM; D_+%[ﬁMzi M, F-mM,0im, —sz)} (4.43)

A similar expression may be written for the bendimgment in the minor axis direction.
The summation of the three strain energy termsymesi the elastic strain energy for the
element (note that the strain energy due to shehtasion is neglected):

Ur=U,+U, +U (4.44)

mz
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The accumulated plastic work for an element erides normalized by the elastic strain

energy to produce a normalized value of plastickw@r,, which now allows the same

calibration parameters to be used regardless afrrabstrength and section geometry:

WP
Q,= 5" (4.45)
T

p

4.4.2 |sotropic Hardening of the L oading and Bounding Surfaces

The size of the loading surface and bounding sarfeepresented by their
respective radii, R and R, are updated based upon the total amount of ncredl
plastic work represented by Eq. (4.45). The serfadlii are also functions of the initial
and final values of the respective surfaces, aadsibtropic hardening parametets,
and¢ .. The initial and final values of the surfaces #melisotropic hardening
parameters are all obtained based on a calibragierRperimental results (see Chapter 5).

The equation defining the updated loading surame may be represented by (see

Ricles and Popov [1994] for a related formula fmtiopic hardening of steel members):
(RLS )new = (RLS)final - l(RLS)finaI - (RLS )init J @_{Lsmp (446)

When the normalized plastic wor, , is zero, the exponent term equals one and the

loading surface equals the initial siz(RLS) As Q  becomes increasingly larger, the

init *

surface size asymptotically approaches the firzaaI,éRLS) at a rate dependent upon

final ?

ELS'
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Based upon the new radius, the magnitude of inen¢éah loading surface
translation due to isotropic hardening is expressethe ratio of the incremental change

in the loading surface size to the old loading acefsize:

dRs — (RLS )old B (RLS)neW
(Res)o (Res)o

Ns = (4.47)

The loading surface centroid moves in the directibthe vector from the centroid,
{A.} to the force point{S}, by an amounty, ¢:

{dA_S}iso =1s EQ{S} _{ALS}) (4.48)

This formulation contracts the loading surface aigeabout the force point, not the
surface centroid. By doing this, the consistermydition (see Section 4.1) is not
violated, i.e., the force point remains on the acef[Zhao, 1993]. Figure 4.4 illustrates
the contraction of the two surfaces.

The bounding surface initially hardens isotrogicéle., increases in size), and

then, at a calibrated value of normalized plastimkgv(Qp)imm , the bounding surface

isotropically softens in the same manner as théimgesurface (see Section 3.5.3). For
values of normalized plastic work less tl(éhp) , the bounding surface size increases

intm

by the formula:

(RBS)new = (R BS)intm - [(R BS)intm - (R BS)init ] EE_EBSKDP (449)
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where (R, ). denotes the intermediate, or maximum size of thending surface.

intm

Once the intermediate plastic work vall(t@,p )imm, is attained, the bounding surface

decreases according to the following formula:
(RBS)new = (R BS )final - [(R BS)ﬁnaI - (R BS)intm ] D"l_{BS[iDp_(Qp)imm] (450)

To avoid a discontinuity in the formulation for theunding surface size, the value of
(RBS)intm in EQ. (4.50) is updated to the actual boundinfpse size a(Qp)mm (the

original intermediate size(RBS)imm, is only asymptotically approached in Eq. (4.49) a
will not be reached). A second characteristic @f @&.50) to note is the base of the
exponential, which is set to 1.1 rather tleanThe latter value results in an undesirably
rapid decrease in the size of the loading surfabereas the value of 1.1 provides the

more moderate decrease necessary to model actlidb€favior (see Chapter 5).

" Final Loading
Surface

Initial Loading
Surface—

Initial Bounding Surface

1

Figure4.4 Isotropic Hardening of Loading and Bounding Scefa
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At no time during the analysis does the loadindese radius size exceed the size
of the bounding surface. If this occurred, theéates would overlap, thus violating the
bounding principle [Dafalias and Popov, 1975]. efsure that overlap does not occur,
the initial and final sizes of the bounding surfavest be larger than the respective sizes
of the loading surface, and the loading surfaceishgenerally contract at a faster rate
(the calibrated parameters given in Chapter 5 a&diwethis constraint). If experimental
results demand a faster bounding surface contrgdtien the user must ensure that the
bounding surface size does not decrease belovo#uinlg surface size.

The incremental movement of the bounding surfametd isotropic hardening is
given by:

__ORs

,735 = - (RBS)oId _(RBS)neW (451)

(Ros o (Ros)ae

The bounding surface contracts by moving the cahtsbthe bounding surface in the

direction of the vector pointing from the centréadthe force point{S} (Fig. 4.4):

{dABS}iso =1ss EG{S} - {ABS}) (4.52)

If the force point (and thus the loading surfa@edr contact the bounding surface,
the isotropic hardening formulation remains the sa@s shown in Eqs. (4.46) to (4.52).
Additionally, when the bounding surface increasesize (i.e.,(Rys)..., > (Res)yq )» EQ-
(4.51) produces a negative valuengf. In this case, the formulation in Eq. (4.52) m®ve
the centroid away from the force point. When tbarxling surface decreases in size, the

centroid moves toward the force point as shownign £4.
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4.5 Variation of K, and E,

As will be shown in Chapter 5, the values of khegparameters must increase as
plastic work accumulates in order to simulate expental results for cyclically loaded
CFT specimens. This is especially true for CFTisas with low D/t ratios, as will be

discussed in Chapter 5.

Alternately, the concrete elastic modulus, Bust decrease during plastic
loading to simulate the degrading behavior of CE&rb-columns as the concrete cracks
in tension and crushes in compression (Sectio2)3.Beginning with the initial contact
between the force point and the loading surfacegddereases to a final value equal to
0.3[E, as discussed in Section 3.3.2.

The rate at which both parameters change fromn ithiéal value to their final
value is based upon the same plastic work-baseahexpial equation used for isotropic

hardening (e.g., Eq. (4.40)), but with differenperential rates. The updated valuaof

for each step is given by:
(Kz )new = (Kz )final - [(Kz )final - (Kz )init ] [& % (4.53)

where¢,, denotes the calibrated rate of change.jn

For the concrete elastic modulus,, Ehe increase is given by a similar equation.

Using the initial and final values given in Secti®3.2:

(E.).., = 03[E, -[03[E_ -E,|@& = (4.54)

where &, denotes the calibrated rate of change in E
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4.6 Kinematic Hardening

In the bounding surface formulation presentedis work, the loading surface
and bounding surface are isotropically hardenexd, fand then the surfaces are hardened
kinematically. In this way, when the surfaces state, it is with respect to the surface
radii and the centroid location after isotropicdering, and the consistency condition
(which must also be enforced in the kinematic hairtig formulation) is not violated.
Consequently, the two hardening methods are eafigmecoupled (this approach was
first proposed by Zhao [1993] after determinatibattsatisfying the consistency
condition during simultaneous isotropic and kinemhardening is quite complex in
orthotropic force space).

The formulation for the kinematic hardening of tbading and bounding surfaces
requires both a magnitude and a direction of tedimsl. Both the loading surface and the
bounding surface are assumed to move in the sametidn in this work, but the
magnitude of their respective movement differs.ly@vhen the loading surface contacts
the bounding surface do the two surfaces moveeasdime rate.

The direction of kinematic hardening may be spediby a number of different
methods [Dafalias and Popov, 1975; Armen, 1978; Meéll, 1985; Hilmy and Abel,
1985]. One of the first methods was proposed bg&r[1956] for stress-space models.
In Prager's method, the loading surface translatdése direction of the normal to the
surface at the stress point. Ziegler [1959] medifPrager's hardening rule by specifying
that the loading surface move in the directionhef tector from the centroid of the
surface to the force point. These methods were pgmarily with single surface
models. In 1967, Mroz [1967], proposed finding te@jugate point on the bounding
surface and translating the loading surface irdirection of a vector pointing from the

force point to the conjugate bounding surface pokecall that the distance between the
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loading surface and the bounding surface (Secti8r2iwas calculated along this vector.
Additionally, Zhao [1993] used the Mroz kinematartiening rule in his bounding
surface model for steel elements. The Mroz dioectf surface movement is retained for
the steel elements contained in this work (see 7b@83] for further details on this
method).

Tseng and Lee [1983] provided an alternative tedims direction which has been
shown to produce superior results for stress-spksticity of both metals [McDowell,
1985] and concrete [Fardis et al., 1983]. Basedls®rvations of the experimental
results of Phillips [Phillips and Weng, 1975; Ppsl and Lee, 1979], Tseng postulated
that the loading surfaces generally translate katerally in the direction of the
incremental stress vector. For CFT elements, #eng rule of kinematic hardening is
adopted to three-dimensional force-space in thikWwbseng and Lee, 1983].

The Tseng method is illustrated schematicallyiqy #.5. The surfaces
kinematically harden in a direction that is obtai@e follows. The incremental force
vector,{dg, is extended to the bounding surface. The inttise of the extended
incremental force vector and the bounding surfagepresented by point F' in Fig. 4.5.
The conjugate point on the loading surface is theated--point F in Fig. 4.5. The vector
from point F to point F' denotes the Tseng direct{a?}, the direction in which the
surfaces kinematically translate. One featurénisfformulation is that this direction of
motion is optimal for insuring that the loadingfswe never overlaps the bounding
surface (presuming both are of the same shape).

Algebraically, the formulation for the Tseng kinatic hardening direction is
represented in force-space by the following equatior spherical loading surfaces
[Tseng and Lee, 1983]. First, the distance betviieeitbeginning of step force point and

the point F' on the bounding surface is computéaguhe law of cosines:
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1

pds{[({s}—{%s}r AR R

(4.55)

wherelf{ }| represents the magnitude of the vedtgr The unit vector{r}, denotes the

direction from the centroid of the bounding surfae@oint F', as shown in Fig. 4.5, and

is given by:

(5}+ 2 19T -{A)
{r}= ’ E{ds}” (4.56)

{S} * Pus E{TS}” _{ABS}

Bounding Surface

S,

Figure4.5 Kinematic Hardening by the Tseng Method
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Finally, the Tseng direction unit vectc{&?}, the vector denoting the direction of

kinematic hardening, is illustrated in Fig. 4.5 asidiven by:

{7} -(

_ (RBS B RLS) ABS})
= (R —R. ) - (4.57)

Ass—
Ais} -

In the above formulation, the radii of the loadargd bounding surfaces are used
in the equations. Because the CFT surfaces argphetical like the surfaces in the
model for which Tseng originally proposed theseagigus (isotropic metal plasticity),
the use of radii does not give appropriate resunligs. (4.55) to (4.57). Therefore, in
this work, a different approach is used to obthsTseng vectof9} .

In the computer implementation, the radii of thef@aces need not be used and the
calculations may be performed in unnormalized faqace. The first step in this
formulation entails locating the intersection of incremental force vector extension
with the bounding surface. Successive incremarta@ded to the incremental force
vector until the total vector length intersects bloeinding surface. The increment that
crosses the bounding surface is then bisectecc&tddhe point of intersection within a
tolerance. Given the intersection point, denota in vector notation{F}, the Tseng

vector may be calculated as the vector from thgugate point on the loading surface,

{F}, to the bounding surface intersection po{t} :
(o} ={F}-{F} (4.58)

where the conjugate point on the loading surféEé, is given by:

{F} = (F}-{Ad) %}{ALS} (4.59)
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. R . .
The ratio of the surface sizes>, is applicable regardless of the shape of thexsasf
BS

(i.e., EqQ. (4.59) holds for the non-spherical Ckififaces as well as spherical surfaces).
The amount of kinematic hardening that the loadiundace undergoes is a
function of the loading surface gradient, the inveatal force vector, and the Tseng

direction vector,{ﬂ}, and is obtained by satisfying the consistencyi@n [Zhao,

1993]:

{das}kf%tﬂa} (4.60)

The bounding surface moves in the same direc{i@h,as the loading surface, but by a

smaller amount, which is a function of the amourkinematic hardening the loading
surface undergoes and the terms of the plastioesi$ matrix (see Section 4.3 for their
derivation). The incremental bounding surface nmoset due to kinematic hardening is

given by [Zhao, 1993]:
{dAshn =[A]HoA S, (4.61)

where the magnitude of translation is given by:

(), ), (k)
[/\]=d|ag((kp)p o (kp)mj (4.62)

The k‘; terms represent the bounding stiffness terms endadculated by Eq. (4.32) as

presented in Section 4.3.1. The plastic stiffiesss will always be greater than or
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equal to these values, producing termf/ij that are less than one. Therefore, the

bounding surface will move at a slower rate thanlttading surface, and, with continued
loading in one direction, the loading surface wilentually contact the bounding surface.

At the point of contact, kwill equal kﬁ and the two surfaces translate at the same rate.

Once contact occurs, the surfaces move togetrhaeidirection of the normal to

the loading surface (this equation results fromatiag {} to {n} in Eq. (4.60)):

{dA_S}kin - {dABs}kin = {n}{Tn}TdS} [ﬂn} (4.63)

For plastic displacements beyond the contact pthietplastic stiffness remains equal to
the bounding stiffnes%kg].

The isotropic and kinematic hardening may be suna®a in a single expression

representing the total movement of the surfacercmist For the loading surface:
{dAs}={dA ., +{dA G, (4.64)
Similarly, for the bounding surface:
{dAse} ={dAshe, +{dA), (4.65)

To reiterate, the surfaces are referenced byahkforce vectors{a, .} and

{as}, corrected by the offset vectofs .} and{® .}, to account for the asymmetry of

the surfaces (see Section 4.1.1). Equations (4u6d)4.65) also presume that isotropic
hardening is performed first, followed by kinemdterdening, which is based upon the

updated radii and surface centroids.
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Following isotropic and kinematic hardening, fopment drift control is
performed to fulfill the consistency condition [hiY et al., 1987]. Using a bisection
algorithm, the force point is returned to the logdsurface (within a specified tolerance)
in the direction of the normal to the loading suefa Using a sufficiently small load step
size, the force point never drifts far from thedwey surface. This is, however, an
essential attribute of the plasticity formulatiaradysis, since the assumptions contained

within it require the consistency condition to baintained.
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Chapter 5

Verification and Calibration

Verification of the fully-nonlinear frame analygsogram developed in this
research will be presented in three sections. hEudetails of this program, CFTmacro,
are outlined in Appendix B and C. The steel ptatstformulation will be verified first.
The steel formulation, based on the work of Zh@9Rl, uses his calibrated parameters,
and the examples will be compared to his resdditionally, these examples verify the
geometric nonlinear formulation and general analggstem. The inelastic analysis of
CFT beam-columns will then be calibrated and vedlifi The CFT examples include both
monotonic and cyclic studies. A select group off @Eam-column sections with varying
material strength, D/t ratio, and method of applaatling will first be examined. The
CFT plasticity model is calibrated to these testg] the procedure and results are
documented. Additional monotonic examples are piresented to verify the model and
the calibration parameters. The final study cdas$a comparison of the analytical
results to experimental data for a cyclically-loddleree-dimensional subassembly

consisting of steel I-girders framing from fouresdnto a CFT beam-column.
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5.1 Verification of the Steel Plasticity Analysis

The main application of the program containecis work is the analysis of one-
way or two-way unbraced steel or composite framidss section examines the accuracy
of the program in modeling the material nonlinegindvior of steel beam-column
elements required for such frame studies. In amgithe results presented in this section
serve to verify the accuracy of the geometric madr formulation (which is the same for
the CFT beam-column element). The steel plastioitywulation is based on the work of
Zhao [1993]. The two examples presented in thiti@e were presented by Zhao [1993]

and use the calibration parameters that he reconhaslen his work.

5.1.1 Steel Cantilever Beam

The first steel example consists of a¥8& cantilever subjected to axial load,
major axis bending, and minor axis bending, eaal Epplied separately (Fig. 5.1). This
example served as a calibration study for Zhao319®nly kinematic hardening was
performed; the surfaces were not isotropically baedl. The parameters used in Zhao's
work are retained for the analyses performed hedeage as follows:

Rs=05 Rs=10 «k,=0.001 «kj;=8.0 KyY =5.0 Kk, =11.0

v W8 x 31
P E = 29, 000 ksi
M ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

j f, =36 ksi

g L=96in

Figure5.1 Cantilever Beam
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The program results shown in the Figs. 5.2 thrdughwere obtained using four
elements along the member length, as per Zhao [199% first load case, the results of
which are shown in Figure 5.2, consists of an dxiadl applied to the end of the member.
The beam-column is restrained in the minor axisaion, forcing buckling to occur in
the major axis plane of the member. Figures 5d3%a# illustrate a comparison of the
results of CFTmacro to Zhao's proposed model fgopnand minor axis bending of the

beam-column. In these cases, only the transveask V, is applied. All results match

Zhao's.
350
300+
250
Axial
Load 200
(k) 150}

100~

50

0 L L L
0 0.05 0.1 0.15 0.2

Axial Displacement (in)
. Zhao __ CFTmacro

Figureb5.2 Steel Cantilever: Axial Load vs. Displacement
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T

1000

T

800~
Major Axis

Moment gool-
(k-in)
400}~

2001

0 0.005 0.01 0.015
Rotation (rad)

. Zhao _—_ CFTmacro

Figure5.3 Steel Cantilever: Major Axis Moment vs. Rotation

600~

5001 v

Minor Axis 400

Moment

(kinm) 300"

2001

100+

0.02

O 1 1 1
0 0.01 0.02 0.03

Rotation (rad)

Zhao _—_ CFTmacro

Figure5.4 Steel Cantilever: Minor Axis Moment vs. Rotation
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5.1.2 Stedd Beam-Column

The second steel plasticity verification problexamines an axially-loaded beam-
column with varying end conditions [Zhao, 1993pr Each end condition (pinned-
pinned, pinned-fixed, and fixed-fixed) the beamuooh is alternately loaded in major
axis bending and minor axis bending. A ¥8& with an initial imperfection of L/1000 is
used for the beam-column (Fig. 5.5). Isotropiadeaing is not included; the beam-
column is divided into four elements; and the stefeadii and plasticity parametexs,

andk,, used in Example 5.1.1 are used in this exampleetidZhao, 1993].

W8x 31
p E=29,000Kksi
f, =36 ksi
‘ L =400 in
| | 0 =L/1000in

Figure5.5 Beam-Column

Figures 5.6 and 5.7 illustrate the excellent dati@n between the program results
and Zhao's results for major axis and minor axigdbey, respectively. Zhao, in turn,
demonstrated that his proposed model providescseriti accuracy when compared to a

more detailed finite element analysis [Zhao, 1993].
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150
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= Zhao __ CFTmacro

Figure5.6 Steel Beam-Column: Major Axis Bending

250 -
200 - . Fixed-Fixed Case
Applied
Load (k)
150 + _ _
Pinned-Fixed Case
100 +
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50 +
0 L | | | | )
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Transverse Displacement (in)
« Zhao __ CFTmacro

Figure5.7 Steel Beam-Column: Minor Axis Bending
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5.2 CFT Plasticity Analysis Calibration

The calibration of the CFT plasticity model wasfpamed by comparing the
analytical results of CFTmacro with several diffarexperimental studies of individual
CFT beam-columns. The experimental calibratiodisgiwere selected to provide the
widest range of test variables (e.g., materiahgfie, D/t ratio, and the method of applied
loading). Section 5.2.1 reviews the plasticitygmaeters that require calibration and
itemizes the CFT tests that were used in the proeedSection 5.2.2 discusses the

procedure of selecting the parameter values arskpte the final calibration values.

5.2.1 Calibration Parametersand Tests

The calibration parameters that were introducedhapter 4 are summarized in

Table 5.1. Each parameter is listed along witlcatsesponding symbol.

Table5.1 List of Calibration Parameters

Parameter Symbol
Initial Loading Surface Radius (Ris)i
Final Loading Surface Radius (Ris)
Isotropic Hardening Rate of L.S. &is
Initial Bounding Surface Radius (Res )i
Intermediate Bounding Surface Radfus (Res).ir,
Final Bounding Surface Radius (Res) fra
Isotropic Hardening Rate of B.S. &is
Normalized Plastic Work &Ry ), .. Q,)
K, Parameters KY, Ky, Ky”
i, Parameters 7. () W
Final K2 Parameters (KZp)final ! (Kgny)final ’ (Kgnz)final
Rate ofk, Increase €2
Rate of E Decrease & e
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For the calibration to CFT experimental testsyas desired to obtain a wide
range of beam-column test sections. Appendix Allatbs papers containing
experimental test results for rectangular CFTsbld®A.2 and A.3, respectively, list
monotonic and cyclic CFT papers and the numbeesittfor each paper; each table is
categorized by concrete strength,and D/t ratio. The tests that were used for the
calibration of the CFT element model are listedable 5.2 along with their salient
geometric and material parameters. The groupsté tacludes 3 cyclic tests and 8
monotonic tests, 4 of which were loaded proportigriacluding 3 uniaxial and 1
biaxial test), and 4 of which were loaded non-prépaoally (i.e., a constant axial load is
applied, followed by a gradual increase in the igoidbending load). The 3 cyclic tests
were all loaded non-proportionally. The figureargince given in column 2 of Table 5.2
refers to the appropriate figure, Fig. 5.8, 5.95410, illustrating the type of test. These
figures show the schematic representation of tiaéyacal structural model and the
applied loading for the three basic types of expernital tests used in the calibration.
Four elements per member were used for the tgatssented by Figs. 5.8 and 5.9. For
CFT members represented by Fig. 5.10, two elenpartenember were used in the
analytical model. For rectangular beam-columns Litd and D/t ratios are tabulated for
both the major and minor axis directions. Thetfmsmber denotes the D/t or L/D value
with respect to the dimension in the plane of ghgliad eccentric load and the second
number, in parentheses, denotes the out-of-plaue v&dditionally, tubes that were
annealed to remove residual stresses are noted ialble.

The sections in Table 5.2 represent the widesferah parameters currently
available in the CFT literature [Gourley and HajB993]. As mentioned in Chapter 1,
the applicability of the calibration parameterssaeted in this work is therefore

necessarily limited in scope to the range givethieysections in Table 5.2.
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Table5.2 CFT Calibration Tests

Test Type of Test*| Dimen-| L/D D/t f f, Other
(Notation) (Figure) sions (ksi) | (ksi) Data**
(in.)
Bridge, 1976 | Ecc. Load, Pr| 8.0x 10.5 20.0 5.0 454 e=1.5in.
(Br3) Monotonic 8.0x a=3C
(Fig-5.8) | 0.395
Cederwall et | Ecc. Load, Pr| 4.7x 25.0 24.0 6.7 63.5 e€=0.79)n
al., 1990 Monotonic 4.7 x
(Ced2) (Fig. 5.8) 0.20
Cederwall et | Ecc. Load, Pr| 4.7x 25.0 15.0 149 55.0 e=0.79]n
al., 1990 Monotonic 4.7 x
(Ced9) (Fig. 5.8) 0.32
Shakir-Khalil, | Ecc. Load, Pr| 5.9x 25,5 | 30.0 5.8 50.8| e=1.77ip
1991 Monotonic 3.9x | (38.3)| (20.0)
(SK91 _4) (Fig 5.8) 0.20
Tomiiand | Bm-Col, NPr| 3.9x 3.0 24.0 3.2 41.5 P[P
Sakino, 19794 Monotonic 3.9x 0.29
(Tom24_3) (Fig 5.9) 0.17 annealed
Tomiiand | Bm-Col, NPr| 3.9x 3.0 24.0 34| 415 P[P
Sakino, 19794 Monotonic 3.9x 0.57
(Tom24_6) (Fig 5.9) 0.17 annealed
Tomii and Bm-Col, NPr | 3.9x 3.0 44.0 | 3.75| 49.2 P/B
Sakino, 19794 Monotonic 3.9x 0.26
(Tom44_3) (Fig 5.9) 0.087 annealed
Tomiiand | Bm-Col, NPr,| 3.9x 3.0 440 | 3.75| 420 P/B
Sakino, 19799 Monotonic 3.9x 0.57
(Tom44_6) (Fig 5.9) 0.087 annealed
Sakino and | Cyclic Shear,| 3.9x 6.0 24.0 35| 427 PR
Tomii, 1981 NPr 3.9x% 0.20
(Sak24 _2) (Fig 5.10) 0.164 annealed
Sakino and | Cyclic Shear,| 3.9x 6.0 34.0 40| 427 PR
Tomii, 1981 NPr 3.9x% 0.30
(Sak34_3) (Fig. 5.10) 0.116 annealed
Sakino and | Cyclic Shear,| 3.9x 6.0 46.0 40| 427 PR
Tomii, 1981 NPr 3.9x% 0.50
(Sak46_5) (Fig 5.10) 0.086 annealed

*  Pr denotes proportional loadinyPr denotes non-proportional loading

** e denotes the applied load eccentricttygdenotes angle of applied load relative to
centroidal axis of cross-section for biaxially-le@idspecimens
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Figure5.10 Cyclically-Loaded Shear Specimen

5.2.2 Calibration Procedure and Results

Initial Loading Surface Size

The initial size of the loading surface was thistfparameter to be calibrated.
Recall that the initial loading surface represehéslocus of force points at which
inelastic behavior begins. To simplify the plagyidormulation and insure that the
surfaces do not overlap, the loading surface saded version of the surface representing
the CFT section's cross-section strength (seedpedtl.1). The initial yield surface of

an actual CFT, however, takes a different shap#iuatrated in Fig. 5.11 (only the
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positive force quadrant in two dimensions is showH)e initial loading surface, LS
represents one possible locus of force points attwsteel yielding or concrete crushing
initiates. This surface, LSwas obtained using a radius,;Requal to the ratio to the
yield moment of the steel tube to the nominal maneéthe CFT,M ,, /M. For pure
bending, the actual initial yield condition is repented well by this loading surface. For
mid-range values of axial load, however, the logdinrface overshoots the initial yield

surface, predicting higher forces than are actualipired to cause plasticity.
Additionally, for higherD/t ratios or highetfc'/fy ratios (Fig 5.11 illustrates a section

with D/t = 20.0 anol‘c'/fy = 0.1), the bulge in the loading surface is eveman

conspicuous (see Figs. 2.25 through 2.32 in Se@tie)y; while the initial yield surface
remains almost linear, since only the steel dist#te initial yield for nearly all cross-
sections. Since the objective of the CFT studis work focuses on beam-columns
existing in frame structures, these observatioggest that, for the mid-range axial load
values typical in frame applications, the loadingace should be further scaled back
from M, /M, based upon thB/t ratio and the‘c'/fy ratios of the section. The loading
surface labeled L3n Fig. 5.11 illustrates this result.

Based on the above discussion, the initial loadumface radius was calibrated by
optimizing the loading surface size for each oftdsts of Table 5.2 and then developing

a linear relation between the ratio of the radiug the relative axial capacity of the

concrete to the axial capacity of the entire segtiepresented b, /(P + P,,). This

term implicitly accounts for both the D/t ratio aﬂmbfc'/fy ratio. The calibrated

equation for the initial radius of the loading s is expressed as:

Myld P
- 0303 (5.1)
M P, +P

co SO

(RLS )init =

(o]
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where M is calculated by Egs. (2.27) and (2.28) in SecBdn7 andM , =f, [S, where

S is the section modulus of the steel tube in taegof bending. The axial compression
capacity of the steel and concrete, respectivetyPg = A ([f jand R, = A Of. For

CFT sections with a low D/t and a Id\{y/fy ratio (e.g., Tom24_3), the steel will
dominate the section behavior and a loading sudeaked taM ,, /M, will be accurate.

In this case, Eq. (5.1) produces a value very Megr/M, . As the D/t ratio and the

fc'/fy ratio increase, a larger value is subtracted fhé /M, effectively moving the

bulge in the surface for mid-range axial force eta® the actual initial yield surface.

P/R
Actual Initial
Yield Surface

~— Bounding Surface

My|d/Mo M/Mo

Figure5.11 Initial Loading Surface Size and Shape

Initial Value of K,

The initial values of th&, coefficients were calibrated based on the relative

strengths of the concrete and steel, thus accayimtiplicitly for both the D/t ratio and
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thefc'/fy ratio. Using a methodology similar to that use@btain Eq. (5.1), the initial
axialk, coefficient value is given as:

(K > )init - ECO (5.2)

SO

Thek, coefficient values for the moment terms are etuaklf of the axial value:

(KZp )init (53)

my —_ mz —_
(Kz )init - (Kz )init -

Initial Bounding Surface Size

After specifying an initial loading surface radiasdk, coefficients, the initial
bounding surface size was calibrated using prip#ng monotonic test results. The
bounding surface was set to an initial value oftt.Bepresent the cross-section strength

of a CFT; this value proves quite accurate fortésts of Table 5.2.

Valueof K,

A value ofk, (the bounding slope of the load-deflection curg)al to 0.0010

produces accurate results. The non-zero valugedbounding slope results from the

continued strength gain observed in CFTs due tdugtlastrain hardening of the steel tube

[Sakino and Tomii, 1981]. A constant valuexgficcurately portrays the observed
bounding slope of CFT specimens. This slope doesary substantially with continued

loading since strain hardening of the steel tulmicgradually over the cross-section.
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Final Loading Surface Size

Having established the initial calibration valuén cyclic tests were used to
calibrate the remaining parameters. Cyclic tesigcate that the radius of the loading
surface and the corresponding size of the elastie zlecrease to a very small value due
to extensive concrete crushing and steel local Ingkhowever, as discussed in Section

3.5.2, the elastic zone rarely vanishes completdfgy the plasticity model a minimum,

or final radius,(R ) of 0.10 was thus established. The isotropicesafg ratef, .,

final ?
was calibrated to be Q0. For the cyclic tests in Table 5.2, this ratardéty the

loading surface to its final size several cyclefteethe completion of the test.

Final Valueof K,

In conjunction with a decrease in the loadingatefsize, the, coefficients
simultaneously change from their initial to finalues. A calibrated rate of
€., =3.0x 10 provides the best results. The firalvalues are a function of the initig)
values and may be larger or smaller than thisaivialue depending upon the section
properties. The linear relationship between ihdiad final values is expressed by the

following calibrated equations:

(5.4)

For sections with a low D/t ratio or a Ioﬂ/('y/fy ratio, and therefore a low value @f, ). .
(see Egs. (5.2) and (5.3K, will increase. This simulates experimental CFado
deflection behavior which, despite the decreasbersize of the elastic zone, exhibits
relatively little strength degradation, due to stfaardening and confinement of the

concrete [Sakino and Tomii, 1981]. Reexamining Big in Section 4.3.1 illustrates that
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a higher value ok, results in less strength degradation for low talerate magnitudes of
displacement.

If the CFT section has a higher D/t ratio or lowtgel strength, less strain
hardening and concrete confinement will occur dredsiection will exhibit a more severe
degradation. In this case, will decrease with continued plasticity, resultinga lower

strength for low to moderate magnitudes of displa=et (refer again to Fig. 4.2).

I nter mediate and Final Bounding Surface Sizes

As discussed in Section 4.4.2, the bounding sefiest increases to model cyclic
strain hardening and then decreases at a calibvated of plastic work to model
concrete crushing and steel local buckling. Theeefinitial, intermediate, and final
bounding surface sizes are required, as well asoaropic hardening rate and a value of
normalized plastic work at which the bounding scefaegins to decrease. The same rate

of isotropic hardening .. =5.0x 10, was used for the isotropic hardening and isatrop

softening. This value was constant for all tegsswere the intermediate bounding

surface size(R,), ., and the normalized plastic work at which the bangdurface

intm
begins to shrink(Qp)imm. These two values were calibrated to be 1.4 ad200
respectively. Upon reaching the maximum size piliending surface decreases toward a

final size, which is given by the following calilbea equation:

(Res) sy =13 0885;@ (5.5)

The final bounding surface size becomes smalléna®/t ratio increases or the strength
of the steel decreases. This models the decredffead of strain hardening and concrete
confinement and the increased severity of locaklag corresponding to a smaller

guantity of steel or a lower steel strength.
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Rate of Change of E_

The final calibrated parameter is the rate of éase of the elastic concrete

modulus from its initial value (Eqg. (3.6)) to itedl reduced value (Eqg. (3.5)). This

value,§ .., must rapidly decrease to model the early temséeking of the concrete and

the degradation of concrete stiffness. A relayivegh rate of 3.810° was thus

established. This results in a degradation ottrerete elastic modulus,, even at low

magnitudes of plastic displacement.

Table 5.3 summarizes the calibration values anddas presented above. Note

that these equations apply only to sections withérange of experimental studies

incorporated in this work (see Section 1.3).

Table 5.3 Final Calibrated Parameters

Parameter Initial Value Intermediate Final Value Rate,¢
Value
RLS Myld —0.300 PCO -- 0.10 ELS =10x 10
o] PCO + F)SO
Ras 1.0 1.4 13-0, ssﬁpm €sc =5.0x 10
@,) 0.020 -- 0.020 -
intm
KP, KI”, KI” 0.0010 - 0.0010 --
K& Peo - 50-450{}),, | & =30x10
PSO
K3, K" (sz )init - (sz)fineu €, =30x10
2.0 2.0
E. E. -- 0.3E, €. =3.0x10
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Results of Calibration Studies

The following figures illustrate the comparisoriveen the analytical and
experimental load-deflection curves for each ofdalkgration tests listed in Table 5.2.
Each test is referenced by the notation given larna 1 of Table 5.2. As a whole, these
figures illustrate the applicability of the calibed parameters of Table 5.3 to a wide
range of experimental tests. Figure 5.12 illussat biaxially-loaded specimen, which
was as accurate as the uniaxial tests. The mghhdeflection shown in Fig. 5.12
denotes the deflection in the plane of the apgbading. Both proportional (Figs. 5.12
to 5.15) and non-proportional tests (Figs 5.16.1®bproduced equally accurate results.

The cyclic tests shown in Figs. 5.20 to 5.22 tHate the accuracy of the rate
parameters and the final values of the loadingaserfbounding surface, ard
parameters. Better results could have been oltdanehese tests had they each been
calibrated individually. The objective of this ikpihowever, is to establish calibration
parameters of general applicability. The equatlsted in Table 5.3 (Egs. (5.4) and
(5.5) specifically) were developed as linear fumas of the optimum results from these
three tests. This reemphasizes the need to reatalith sections with properties beyond
this range of tests are analyzed, but also thatG@RT formulation is quite accurate within

this wide range of CFT sizes and strengths.
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Figure5.12 Eccentrically-Loaded Beam-Column (Br3)
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Figure5.13 Eccentrically-Loaded Beam-Column (Ced2)
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Figure5.14 Eccentrically-Loaded Beam-Column (Ced9)
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Figure5.15 Eccentrically-Loaded Beam-Column (SK91_4)
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Figure5.17 Axially-Loaded Beam in Bending (Tom24_6)
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Figure5.21 Cyclically-Loaded Shear Specimen (Sak34_3)
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5.3 CFT Plasticity Analysis Verification

The verification of the CFT element involves comipg the analytical results to
the results of a number of additional CFT beam-+wwidests without deviating from the
calibration parameters of Table 5.3. This sectiomtains additional monotonic tests,
which together reflect a thorough range of tesapaaters within the bounds established
by the tests of Table 5.2. Table 5.4 presentE&HiE verification tests in the same format
as Table 5.2. The figure number given in colunagain refers to the appropriate
analytical structural model illustrated in the poais section (i.e., Fig. 5.8, 5.9, or 5.10).

Figures 5.23 through 5.43 illustrate each testiin, showing the analytical results
versus the experimental results. Figures 5.23tir®.28 contain eccentrically-loaded
tests by Bridge [1976]. The maximum percent eimdhe axial load, P, for these tests
was 12.7 % for specimen Br8 (Fig 5.28). The bilydaaded specimens--Br4, Br5, and
Br6--are modeled well by the analytical formulatishowing a maximum error in the
axial load of only 7.3 %.

Figures 5.29 through 5.33 illustrate eccentrickdded tests performed by
Cederwall et al. [1990]. These tests, along widlZand Ced9 in Section 5.2, illustrate
the accuracy of the model for a range of concrieémgths. The maximum error in the
axial load was 8.9 % (specimen Ced10--Fig. 5.32).

Figures 5.34 through 5.37 illustrate the analytieaults versus the results from
tests performed by Shakir-Khalil et al. [1989, 1P9The maximum error between the
analytical and experimental results was 10.5 %digpen SK91 10--Fig 5.37). These
tests provide the only rectangular (as opposeduarg) sections in the verification, and
they include relatively long members. Specimen8%K and SK91_9 are loaded in the
minor axis direction and specimens SK89 5 and SKO1n the major axis direction.

The analytical results for these tests producesorbly accurate results.
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Table5.4 CFT Verification Tests

Test Type of Test*| Dimen-| L/D D/t f f, Other
(Notation) (Figure) sions (ksi) | (ksi) Data**
(in)
Bridge, 1976 | Ecc. Load, Pr| 8.0x 10.5 20.0 4.4 4221 e=15i
(Brl) Monotonic 8.0x
(Fig. 5.8) 0.392
Bridge, 1976 | Ecc. Load, Pr| 7.9x 10.5 20.0 4.9 454 e=15i
(Br4) Monotonic 7.9x a=45
(Fig-5.8) | 0.394
Bridge, 1976 | Ecc. Load, Pr| 7.9x 15.0 20.0 55 454 e=15i
(Br5) Monotonic 7.9% a=30
(Fig-5.8) | 0.394
Bridge, 1976 | Ecc. Load, Pr| 8.0x 15.0 20.0 4.7 454 e=25i
(Br6) Monotonic 8.0x a=45
(Fig. 5.8) 0.385
Bridge, 1976 | Ecc. Load, Pr| 6.0x 20.0 23.5 5.1 36.8 e=15i
(Br7) Monotonic 6.0x
(Fig. 5.8) 0.256
Bridge, 1976 | Ecc. Load, Pr| 6.0x 20.0 23.5 5.1 36.8 e=25i
(Br8) Monotonic 6.0x
(Fig. 5.8) 0.392
Cederwall et | Ecc. Load, Pr| 4.7 x 25.0 24.0 6.8 441 e=0.79
al, 1990 Monotonic 4.7 %
(Cedl) (Fig. 5.8) 0.20
Cederwall et | Ecc. Load, Pr| 4.7 x 25.0 15.0 6.7 435 e=0.79
al, 1990 Monotonic 4.7 %
(Cedb) (Fig. 5.8) 0.32
Cederwall et | Ecc. Load, Pr| 4.7x 25.0 15.0 6.8 545 e=0.79
al, 1990 Monotonic 4.7 %
(Ced7) (Fig. 5.8) 0.32
Cederwall et | Ecc. Load, Pr| 4.7 x 25.0 15.0 57 55.00 e=0.79
al, 1990 Monotonic 4.7 %
(Ced10) (Fig. 5.8) 0.32
Cederwall et | Ecc. Load, Pr| 4.7 x 25.0 15.0 11.6| 56. e=0.79]
al, 1990 Monotonic 4.7 %
(Ced13) (Fig. 5.8) 0.32
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Table 5.4 (cont'd)

Test Type of Test*| Dimen-| L/D D/t f. f, Other
(Notation) (Figure) sions (ksi) | (ksi) Data**
(in)
Shakir-Khalil | Ecc. Load, Pr| 4.7x 23.0 | 240 5.2 56.0| e=0.95i1
and Zeghiche| Monotonic 3.2x | (34.5)| (16.0)
'89 (SK89_2) (Fig 5.8) 0.18
Shakir-Khalil | Ecc. Load, Pr| 4.7x 345 | 16.0 5.6 49.8| e=1.571if
and Zeghiche| Monotonic 3.2x | (23.0)| (24.0) minor axis
‘89 (SK89_5) (Fig 5.8) 0.18 bending
Shakir-Khalil, | Ecc. Load, Pr| 5.9x 31.6 | 30.0 5.5 50.8| e=2.95ii
1991 Monotonic 3.9x | (47.4)| (20.0)
(SK91_9) (Fig 5.8) 0.20
Shakir-Khalil, | Ecc. Load, Pr| 5.9x 40.0 | 20.0 5.9 534 | e=1.18Ii
1991 Monotonic 3.9x | (26.6)| (30.0) minor axis
(SK91_10) (Fig 5.8) 0.20 bending
Tomii and Bm-Col, NPr | 3.9x 3.0 24.0 3.2 41.5 P[P
Sakino, 19799 Monotonic 3.9x 0.19
(Tom24_2) (Fig 5.9) 0.17 annealed
Tomiiand | Bm-Col, NPr| 3.9x 3.0 24.0 3.2 41.5 P[P
Sakino, 19799 Monotonic 3.9x 0.38
(Tom24_4) (Fig 5.9) 0.17 annealed
Tomiiand | Bm-Col, NPr| 3.9x 3.0 24.0 34| 415 P[P
Sakino, 19799 Monotonic 3.9x 0.48
(Tom24_5) (Fig 5.9) 0.17 annealed
Tomii and Bm-Col, NPr | 3.9x 3.0 440 | 3.75| 49.2 P/B
Sakino, 19799 Monotonic 3.9x 0.18
(Tom44_2) (Fig 5.9) 0.087 annealed
Tomii and Bm-Col, NPr | 3.9x 3.0 440 | 3.75| 42.0 P/B
Sakino, 19799 Monotonic 3.9x 0.38
(Tom44_4) (Fig 5.9) 0.087 annealed
Tomii and Bm-Col, NPr | 3.9x 3.0 440 | 3.75| 42.0 P/B
Sakino, 19799 Monotonic 3.9x 0.48
(Tom44_5) (Fig 5.9) 0.087 annealed

*  Pr denotes proportional loadinyPr denotes non-proportional loading

** e denotes the applied load eccentricetydenotes angle of applied load relative to
centroidal axis of cross-section for biaxially-legdspecimens
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Figures 5.38 to 5.43 show the results of the festlrmed by Tomii and Sakino
[1979a, 1979b] for a wide range of applied axialds. The maximum percent error
between the experimental and analytical momentthfse tests was -8.1 % (specimen
Tom24_2--Fig. 5.38). These tests, in which thespens were loaded
nonproportionally, illustrate the accuracy of tbhenulation for the initial loading surface
size. The mid-range axial loads result in veryuaate results while the low range tests
produce slightly less accurate results. For avalue of axial load, the loading surface,
LS,, in Fig. 5.12 predicts a lower yield moment, prodg premature yielding in the

analytical results.
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Figure5.23 Eccentrically-Loaded Beam-Column (Brl)
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Figure5.24 Eccentrically-Loaded Beam-Column (Br4)
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Figure5.26 Eccentrically-Loaded Beam-Column (Br6)
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Figure5.28 Eccentrically-Loaded Beam-Column (Br8)
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Figure5.30 Eccentrically-Loaded Beam-Column (Ced6)
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Figure5.32 Eccentrically-Loaded Beam-Column (Ced10)
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Figure 5.33 Eccentrically-Loaded Beam-Column (Ced13)
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Figure5.36 Eccentrically-Loaded Beam-Column (SK91 9)
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Figure5.38 Axially-Loaded Beam in Bending (Tom24_2)
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Figure5.39 Axially-Loaded Beam in Bending (Tom24_4)
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Figure5.40 Axially-Loaded Beam in Bending (Tom24_5)
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Figure5.42 Axially-Loaded Beam in Bending (Tom44_4)
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5.4 Verification of the Nonlinear Beam-Column M odel

The final verification problem consists of a thidimensional subassembly of
steel I-girders framing into a CFT beam-column [Moret al., 1993]. Figure 5.44
illustrates the structure configuration and theli@pdoading (Morino's test labeled
SCC20 was used for this study). For the cyclidiog test that is examined, a constant
axial load, P=0.150p (P =292.5 k for this specimen), is applied to theT®@eam-
column and a constant load, = 4.72¢ k, is applied to one end of the steel beam in the
y-z plane. The cyclic loading, Q, is then appliethsversely to the ends of the beams in
the x-z plane as shown in Fig. 5.44. The load/cted by applying anti-symmetric beam
loads, Q, for increasing increments of rotationado 0.005, 0.01, and 0.02, and 0.03
radians. Two full cycles are performed at eachement in rotation. This CFT beam-

column is thus subjected to unsymmetric, cyclixiabbending, plus axial force.

i

,— CFT Beam-
Column

Steel Bea
;/WT/ Steel Beam
X T o

Z I |
= i 68.5 in. |
y 46.75 in.
X

Figure5.44 Three-Dimensional Subassembly (after Morino ef1&93])
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The CFT beam-column consists of a square tubeasitbs-section dimensions
4.92 x4.92 x 0.22€ (inches) and material strengths g')f:fz. 91 keid § =57.3 ksi
The steel I-beams are built-up sections consisifrftanges measuring.92 x 0.354 and
a web measuring.13x 0.23€ (all dimensions in inches). The yield strengthhef beams
is f, =58.0 ksi. The lengths of the members are given in ¥i¢gd and 5.45.

Figure 5.45 illustrates a schematic representatiadhe analytical model of the
subassembly. The rotation was obtained in a masmmabgous to the experimental
method [Morino et al., 1993]. The displacementsaid D at locationsA andB,
respectively, in Fig 5.45 were summed and dividgthle length between these points,
which is denoted as the lendth This method, like the measurement technique ursed
the experiment, accounts for rotation of the stitecait the connection as well as
additional rotation due to beam flexure betweencttrnection and the measuring points,
A andB. The beam shear shown in the results is an aw@fite shears at the ends of
each beam. These shears are not equal due trithéiaplacement of the column. For
the analysis, the structure was divided into tleleenents per CFT beam-column (to
account for geometric nonlinearity with great aecy), and two elements per beam (one
spanning from the connection to the measurement,gmoint A or B in Fig. 5.45, and
the other continuing to the point of the appliedath Q). The connection is designed to
remain fully restrained and the beams are desigmeginain elastic throughout the entire
analysis. In addition to the boundary conditiongven at the ends of the CFT beam-
column in Fig. 5.45, each beam is restrained fr@ndlating in its out-of-plane direction
(i.e., the beams in the x-z plane--the beams stdgjdo the applied cyclic loads, Q--are
restrained from translating sideways in the x-ynpleand the beams in the y-z plane are

restrained from translating in the x-y direction).
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Figure5.45 3D Subassembly: Analytical Model

The analysis of the structure was performed usiegalibration parameters of
Table 5.3. Figure 5.46 illustrates the analytresults compared to the experimental
results provided by Morino et al. [1993]. The atiahl results produce excellent
accuracy for the entire hysteresis curve. Thénssk of the analytical curve matches the
experimental curve well. The maximum shear atatien of 0.02 rad is slightly low in
the analytical model (approximately 8.0 %), but shear at a final rotation of 0.03 rad is

nearly identical to the experimental shear for bntties at this rotation level.
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Figure5.46 3D Subassembly: Shear-Rotation Hysteresis Curve
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Chapter 6

Conclusions

The research contained in this work examineshreetdimensional, inelastic
behavior of concrete-filled steel tube beam-columAsalytical methods are developed
for determining the cross-section strength of C&fd the behavior of single member
CFT beam-columns and CFT beam-columns containedrirposite frame structures.
The main impetus of the research focuses on thela@went of a compact and efficient
concentrated plasticity bounding surface modehree-dimensional force-space to
analyze the inelastic behavior of CFT beam-columitss chapter presents a discussion
of the results of this research on the behavi&€lBTs. Several aspects of the work are
highlighted, comments are made regarding the acgwfthe analytical model, and
general conclusions are drawn about the behaviGFdts. Following the conclusions,
the final section of this chapter presents suggestior possible future CFT research

topics.
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6.1 Conclusions

As background work for the analytical model depeld herein, an extensive
literature review was undertaken, in which the ntous advantages of CFT members
became evident [Gourley and Hajjar, 1993]. CFTwiole a flexible, efficient, and
economic alternative to traditional structural memsb They offer high strength and
stiffness, and exhibit excellent seismic load tesise. The experimental results used for
the calibration and verification of the analytioabdel further demonstrate this highly
favorable behavior of CFTs.

The first main topic of this research--the develept of an expression for the
three dimensional cross-section strength surfaeeC@# T--introduces uniaxial stress-
strain formulations for the steel and the concrdtieese formulations are implemented
into a fiber element analysis of CFT cross-sectiolise comparison of the fiber analysis
to experimental moment-curvature-thrust data ingdra2 illustrates that these uniaxial
stress-strain expressions accurately represemtdgractive multiaxial behavior of the
two materials due to confinement of the concrdtiee use of uniaxial stress-strain
relationships for the steel and concrete greathpkfies the analysis, yet contributes no
substantial loss of accuracy in the predicted mdraoervature-thrust behavior of the
section.

A second important aspect of the cross-sectiattystancerns the shape of the
cross-section strength surface, since this suftaocgs an integral part of the bounding
surface model. Due to the disparity in the comgivesand tensile strengths of the
concrete, the bending capacity of a CFT is highn the section is subjected to low to
moderate axial compression loads. This behavsult®in a cross-section strength
surface that is asymmetric about the moment axesdposed to strength surfaces for

steel members, which have presumed symmetry alidat@e axes). This research
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presents an empirical equation for the three-dim@as CFT cross-section strength
surface that models this asymmetry and demonsteatedlent accuracy for a wide range
of CFT cross-section sizes and material strengtlins equation, although containing

four coefficients represented by cubic polynomissasily implemented into the
analytical model and is based on only the D/t ratid the ratio of the concrete strength to
the steel strengtHf, /f .

The concentrated plasticity model for CFTs incogpes a number of significant
features, particularly with respect to the hardgrohthe loading and bounding surfaces.
First, to model the complicated behavior of CFIahithe loading surface and the
bounding surface harden isotropically and kinenadlyic The Tseng kinematic hardening
method is used in the CFT model as opposed to tioe Method, which has been used in
previous force-space plasticity models for steanbe&olumns, since the Tseng method
has been shown to work best for non-proportioradlilog in stress space plasticity. The
CFT isotropic hardening approach utilizes a plastick-based equation, in which the
plastic work is normalized by an elastic work vabaéculated at the onset of initial yield
to account for the material and geometric propeuiethe section.

Cyclic CFT behavior mandates an expansion of thending surface to model the
strength increase due to cyclic strain hardenirtgcamcrete confinement, followed by a
contraction of the bounding surface to model tiftnsss degradation due to concrete
crushing and local buckling of the steel tube. ICyCFT behavior also requires a
variablek , coefficient, representing the rate of plastifioatiand a decreasing concrete
elastic modulus. The initial and final valuesloé k , coefficients, the final bounding
surface size, and the initial loading surface sizeall calibration parameters that are
presented as functions of the material strengtdgladimensions of the CFT. In this

way, the formulation is generalized for all of thenotonic and cyclic tests examined in
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this research, and is thus generally applicabiewide range of CFT sections and
material strengths.

The results of the verification studies of Chaptelemonstrate that the bounding
surface model may be used with excellent accu@ayddel the nonlinear behavior of
both monotonically and cyclically-loaded beam-cotuspecimens. The model itself
requires a relatively small number of calibratethpseters to provide accuracy over a
wide range of steel tube geometries and steel ancrete strengths. The final structure
that is analyzed and compared to experimentaltesalthree-dimensional subassembly
consisting of both CFT and steel I-beam elememismonstrates an accurate
representation of both stiffness and strengthHwr ¢complex cyclically-loaded structure.
This study verifies that this compact and effici®/T finite element is ideal for use in

static and transient dynamic analysis of compd3ke& frame structures.

6.2 Suggestionsfor Future Research

The research contained in this work representsady step in the analysis of CFT
member behavior and a number of additional CFTaresetopics naturally follow this
research. This section suggests future topices#arch that explore new areas of CFT
behavior or expand upon the results presentedrherei

The first immediate research need is additionpkerental work. A more
comprehensive scope of cross-section geometriematetial strengths should be
investigated. Studies of cross-section strengtimatonic behavior, and cycle behavior--
both static and dynamic, warrant further experiraestiudy. The results presented in this
work indicate a deficiency of experiments for CRiith high-strength steel and high-
strength concrete. A particularly beneficial, gethaps prohibitively expensive, set of

188



experimental tests might include a study of threeethsional CFT/steel frames having
rigid connections and incorporating a range of cetecstrengths and tube thicknesses.
Cyclic biaxial lateral loads could be applied te 8tructure along with gravity loads.
Less elaborate tests, especially using high-stnemgiterials, would, however, serve to
refine and expand the results presented here.

A number of aspects of the CFT concentrated pigsformulation warrant
further investigation. First, an initial loadingrgace in the shape of the actual initial
yield surface (as discussed in Chapter 5) wouldideoa more accurate representation of
CFT behavior over a wide range of axial load ratidkis modified surface could, by
some mathematical formulation, gradually transfarta the shape of the bounding
surface as the two surfaces approach one anothsecond potential modification of the
current plasticity model involves computing a ve rather than a scalar, distance
between the loading and bounding surfaces to deterthe extent of plastic loading in
the member. The result of using different kinembhardening approaches might also be
examined. Initial exploration of the differenceéween the Tseng and Mroz hardening
methods produced similar results for both methbdsfurther studies would be required
to state any definitive conclusions regarding tingesiority of one method over the other.

A more thorough examination of the local bucklptgenomenon in CFTs is also
required. A fiber element analysis would work well examining this characteristic of
the infilled steel tube. An accurate local bucgliormulation based on the material
strengths and the D/t ratio of the CFT section @dad implemented into both the cross-
section strength formulation (i.e., in the deteration of the failure criteria) and the
plasticity model (e.g., in establishing the pointvhich the strength of a cyclically-loaded
specimen begins to degrade).

There are a number of additional CFT researcltsahiat should be addressed in
the future. Some possibilities include: 1) reskam CFT/steel connections, including
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topics such as steel/concrete bond at the conmethie development of economic and
efficient connections, and the development of ayesis method to model partially-
restrained connections; 2) parametric studiesFai/€teel frame structures to develop
improved design formulations; and 3) developmérmnoanalytical macro model for

circular CFTs similar to the one developed in thask for rectangular CFTs.
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Appendix A

CFT Experimental Tests

This appendix is composed of three tables whittplpers containing
experimental test results for rectangular CFTsly @ sts published in sufficient detail to
use for calibration are included in the tables, &stls are considered only for CFTs
which are completely filled with concrete and makeuse of reinforcing bars or shear
connectors to improve the concrete/steel bond.leTAl contains cross-section tests,
i.e., monotonic tests of specimens having L/D sal&ss than 10. Tables A.2 and A.3
contain beam-column tests for monotonically- anclicglly-loaded CFT specimens,
respectively. The papers in each table are catsgbby D/t ratio and concrete strength,
f.. Tests in which the experimental setup consisfadore than one member (e.g.,
subassemblies) are noted in the tables. Comm@éteences for each paper are shown in
the list of references following the Appendix. Bdabular entry is presented in the
following format:

Author(s), Year(Number of Tests)
[L/D; DIt; f, f]
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Table A.1 Rectangular CFT Cross-Section Te@l;éD < 10)

Low D/t Medium D/t High D/t
(5-24) (24 - 50) (50 -)

Low ', | Tomii, Sakino, '79al7) Furlong, '67(13)
(2-5) [3; 24; 2.7-2.9; 41.4] | [9.0; 32, 48; 3.4, 4.2; 4§]

Tomii, Sakino, '79al21)
[3; 33-44; 3-5.5; 28-49]

Medium f. Furlong, '67(4)
(5-9) [7.2; 26; 6.5; 70.3]
High f.

9-)
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TableA.2 Monotonic Rectangular Beam-Column TeltgD > 10)

Low D/t
(5-24)

Medium D/t
(24 - 50)

High D/t
(50 -)

Low f'_
(2-5)

Bridge, '76(4)

[10.5, 15; 20, 24; 4.6; 44] [21-37; 30; 4.4-4.9;

Shakir-Khalil, '90(4)
50-56]

Matsui et al., '9316)
[12-30; 33.3; 4.6]

Medium f,
(5-9)

Knowles, Park '694)
[11, 18.7; 23; 5.9; 47, 5¢

Bridge, '76(4)
[11-20; 20, 24; 5; 37-45

Shakir-Khalil, '89(7)
[23, 35; 16, 24; 5.4; 53]

Cederwall et al,. '9@4)
[25; 15; 5.7-6.8; 44-64]

Shakir-Khalil, '90(12)
[23; 24; 4.9-5.4; 49-53]

Shakir-Khalil, '91(11)
53]

| Cederwall et al,. '9q2)
[25; 24; 6.8; 44-64]

8][21-32; 30; 5.4-6.2; 48;

High f.
9-)

Cederwall et al,. '9q10)
[25; 15; 11.6-14.9;
44-64]

Cederwall et al., '9@2)
[25; 24; 13.9; 44-64]
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Table A.3 Cyclic Rectangular Beam-Column Tests

Low D/t
(5 - 24)

Medium D/t
(24 - 50)

High D/t
(50 -)

Low f',
(2-5)

Sakino, Tomii, '814)
[6; 24; 2.9; 42-45]

Sakino,Ishibashi, '8%4)
[2; 24; 3.1-3.7; 42-46]

Kawaguchi, '91, '9%14)

Morino et al '93(5--2D

[14.3; 21.3; 2.9; 57]

[10; 22, 31; 3.1-3.6; 49]

and 3D subassemblies

Sakino, Tomii, '‘8111)
[4, 6; 34-46; 3.5; 42-45

Sakino,lIshibashi, '88)
[2; 34, 45; 2.4-3.7,
42-46]

Liu, Goel, '88(2)
[23, 45; 30; 4; 54, 60]

Matsui, Tsuda, '876)
| [5.0;47-94; 5.7-6.0;
71.5]

Medium f, Matsui, '86(2--2D 1 bay Matsui, '86(1--2D 1-
5-9) frames) bay frame)
[6.7; 33,47;5.4;42,60] [6.7;68;5.5; 42]
Liu, Goel, '88(4)
[23-68; 14, 30; 6-8;
54-60]
Sugano et al., '9f1)
[6.8; 31.3; 5.5; 54]
High f',
9-)

194



Appendix B

Key Features of the Computer
Implementation

This section summarizes some of the key featurdsecsoftware implementation
of the nonlinear analysis presented in this wakksample data input file for the program
CFTmacro is also presented, along with a descnpifdhe salient characteristics of the
file.

The program accesses the AISC database of mamdddtructural shapes.
Therefore, the user need only input a section design, e.g., W1453, and the section
properties are automatically input. Additionalyach element of the structure may be
oriented in any direction in three-dimensional spbyg specifying the three components
of a unit vector{u}, in global coordinates. For a steel member thiswector is oriented
parallel to the web at theend of the element (Fig. B.1a). For a CFT memier unit

vector lies along the major axis of the elemerthat-end, as illustrated in Fig. B.1b. In

both elements shown in Fig B.1, the unit vec{u},, Is given by the globat -y -z
coordinatedu} ={0 0 1}.
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{u}

j-end

X BN

i-end i-end
a) Steel Element b) CFT Element

FigureB.1 Unit Vectors Denoting Global Orientation of Steaed CFT Elements

Table B.1 illustrates a sample input file to exeaau static cyclic analysis of a two-
dimensional portal frame. The program reads tpatidata in blocks; each block of data
is prefaced by a starred keyword (e.g., *A_JT)e Pprogram searches for each
keyword, then begins reading data at the first plamk, non-comment (denoted with a #)
line following this keyword until the complete sdétdata has been read. Therefore, the
keywords, each with their corresponding data, npgear in any order in the input file.
The keywords *A_START and *A_END signal the begimgiand end of the file. All of
the units in the input file are in kips and incl@snatch the units in the AISC database.

The first group of data sets shown in Table Bférrto the joints or nodes of the
structure. The section *A_JTS defines each nodbestructure in globat -y -z
coordinates. The next section, *A_JT_RF, spectfesrestraint conditions for each
nodal degree-of-freedom (DOF)--0 denotes a resaPOF and 1 denotes a free DOF-.
The final joint-based category of input for a stanalysis is the load data, which is listed
under the keyword *A_JT_LOAD. Loads are input goiat and DOF basis and each
load is assigned a load history, which is defimed subsequent data set and explained
below.

The input sections for the CFT and steel eleméAtsCFT_ELS and

*A_STL_ELS, respectively, define the connectivityientation, and properties of each
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element in the structure. The first three numbersote the element numbeend, and
j-end, respectively, of the element. The next timgmbers define the global coordinates
of the element orientation vector (see Fig. Bhe remaining values define the material
and section properties of the element. In addifotnese parameters, the plasticity
parameters are also input on an element by elebasd under the headings
*A_CFT_PLAST and *A_STL_PLAST. These input secsatefine the calibrated
parameters for the CFT and steel elements (seet@Hgp

Section *A_LOAD_HIST defines each load historyheluser first inputs the
number of load histories, the time step, and tked tone of the analysis, and then
specifies the time versus load fraction coordifi@teeach point in each load history. The
input file shown illustrates non-proportional loagj specifying a constant load (load
history 1) and a variable cyclic load (load hist@)y These load histories are illustrated
in Fig. B.2. Note that the load fraction is theltiple of the joint/DOF load specified
under *A_JT_LOAD. For example, for load historyHig. B.2a), a non-proportional
load of -35.7 kips (1.8 -35.7) is applied to joint 3, DOF 2 for the fuliaysis (0 to 6
sec.). For load history 2 (Fig. B.2b), a cycligaticreasing load is applied to joint 3,
DOF 1--11810 kips (1.8 11810) at 0.5 sec., -11810 kips (-¥.@1810) at 1.5 sec.,
23620 kips (2.6¢ 11810) at 2.5 sec., and so on. For static arglylse magnitude of
time has no influence on the analysis per serueseonly as a means of incrementing the
load. A time history is incorporated in the pragrio accommodate dynamic analyses, in

which accelerations and velocities directly depepdn the value of time.
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Load Load

i Fraction
Fraction 30 -

2.0+

1.0 1.0

Ti 6.0 Time
6.0 Time [

-1.0

-2.0

a) Load History 1 b) Load History 2

Figure B.2 Sample Load Histories

The section *A_TOLS defines the loading and boogdiurface tolerance. This
value is used in the determination of force poonttact with either surface and for force
point drift control (Section 4.6). The final sewxtiof the input file, *A_FLAGS, contains
flags to activate or deactivate certain aspecth@program. For example, the user may
specify an elastic or second-order elastic analy&aditionally, either the Mroz or Tseng

method of kinematic hardening may be specifiedtierCFT and steel elements.
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TableB.1 Sample Input File for CFTmacro

*A_START
#SAMPLE INPUT FILE

#2-D PORTAL FRAME W/ CFT BEAM-COLUMNS (FIXED AT BAS E) AND A STEEL BEAM

*A_JTS
#Input of the joint coordinates
#Format: Joint number, x coord, y coord, z coord (i

10.00.00.0
20.0100.00.0
3100.0 100.0 0.0
4100.00.00.0

*A_JT_RF
#List of joint restraints ( 1 = free, 0 = restraine
#Format: Joint num., 6 joint directions (x, y, z tr

1000000

AwWN

11111
11111
00000

oOrk

*A_CFT_ELS

#CFT elements (all data must be in kips and inches)
#Choose either user input format or AISC rectangula
# line 1: CFT element number, i-end, j-end, i-en

# fy, Es, Gs, fc, Ec, nu_c, wt_c

# line 2 (user input format): tube depth, tube w

# line 2 (AISC rectangular tube format): section

1121.00.00.046.029000.0 11500.0 5.0 3500.0 0
6.0 6.0 0.25

2341.00.00.046.029000.0 11500.0 5.0 3500.0 0
6.06.00.25

*A_CFT_PLAST
#CFT plasticity coefficients and parameters

#Each CFT element must have separate input, i.e., 3
# (line 1: elem num and surface radii, line2: initi
# line 3: isotropic params):

# line 1: elem #, init LS rad, fin LS rad, init BS

# line 2: pk1, myk1, mzk1, pk2i, myk2i, mzk2i, pk2

# line 3: Is_iso, bs_iso, k2_iso, ec_iso, intmBS_w

10.6620.11.01.40.503
0.001 0.001 0.001 0.572 0.286 0.286 2.43 1.21 1.21
10.0 50.0 30.0 3000.0 0.02

20.6620.11.01.40.503
0.001 0.001 0.001 0.572 0.286 0.286 2.43 1.21 1.21
10.0 50.0 30.0 3000.0 0.02

*A_STL_ELS
#Steel elements (all data must be in kips and inche
#Choose either user input format or AISC W-section
# line 1: Steel elem #, i-end, j-end, web-vector

# line 2 (user input format): area, J, Iminor, |

# line 2 (AISC W-section format): section design

1230.01.00.036.029000.0 11500.0
W10x45

nches)

d)
anslation, x, y, z rotation)

r tube format
d unit vector (x, Y, ),

idth, tube thickness
designation (e.g., TS6x6x1/2)

.20.086

.2 0.086

lines for each element
al and final coeffs,

rad, intm BS rad, fin BS rad
f, myk2f, mzk2f
ork

S)

format

coords (x, Y, z), fy, E, G
major, Sy, Sz, Zy, Zz, kpi_s
ation (e.g., W14x53)
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TableB.1 (cont'd)

*A_STL_PLAST

#Steel plasticity coefficients and parameters

#Each steel element requires a separate line

#Format (1 line):

# Element number, 6 coeffs (pk1, mykl, mzk1, pk2,
# 2 radii (init L.S., init B.S.)

10.001 0.001 0.0018.011.05.00.51.0

*A_JT_LOADS

#Joint loads

#Format: Joint number, joint direction, load (kips)
-30.01
-30.01
3.

N WN
P NN
S OoOOo
Noo

*A_LOADHIST

#Load history

#

#Format:

# Number of load histories, time step, total time,
#Format for each load history:

# First line: Load history number, number of point
# Successive lines: Load history pts (load fractio

myk2, mzk?2),

, load history number

output every __ steps

s
n, time)

# (Note: maximum of 50 (load, time) points per history)

20.011.010

12
1.00.0
1.01.0

26
0.00.0
0.21.0
0.4-1.0
0.62.0
0.8-2.0
1.00.0

*A_TOLS
#Tolerances used throughout the program
#Loading and bounding surface tolerance:

0.0001

*A_FLAGS

#Program flags

#Include geometric nonlinearities? (Y or N)

Y

#Include material nonlinearities? (Y or N)

Y

#Perform force point drift control? (Y or N)

Y

#Include isotropic hardening? (Y or N)

Y

#Use Mroz or Tseng kinematic hardening for steel? (
Mroz

#Use Mroz or Tseng kinematic hardening for CFTs? (M
Tseng

#Should element masses be applied to joints? (Y or
N

*A_END
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Appendix C

CFTmacro Source Code

This appendix presents a major portion of the s®aode for the program
CFTmacro developed in this work. Table C.1 shdwesmain driver function followed
by an alphabetical listing of selected corollamdtions as they appear in the complete
program. Although the program has capabilitiesobeythose utilized in this work, only
the routines specifically pertinent to the analysesgormed in this work have been
included. Therefore the functions relating to dwi@analysis, distributed loading, and
member releases, which may appear as functioninadlsme of the routines in Table
C.1, are not shown. Additionally, to prevent undegundancy, only the functions
specific to CFTs are shown; the steel routinesciviare nearly identical, have not been
included. Functions pertaining to input/outputtigization, memory allocation, skyline
storage and solution, and general administratime latgso been omitted.

Table C.2 contains an alphabetical listing oflibader files accessed by the
program functions. The files shown contain extevasiable definitions, macro
definitions, and the definitions of all of the datauctures that are used throughout the

program.
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TableC.1 CFTmacro Source Code

K*kkkkkkkkkk

MINNESOTA *

K*kkkkkkkkkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF

*  FUNCTION- cftmacro
@(#) CFT MACRO model beam-column program

*  ABSTRACT- This program performs a fully nonli
analysis of three-dimensional frame structures co mposed of
concrete- filled steel tube and/or steel elements . Material
nonlinearity is modeled using the bounding surfac e
concentrated-plasticity approach.

near static or dynamic

#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stddef.h>

#include "a_mac.h"
#include "a_extern.h"

/* C MATH FUNCTIONS
/* C I/O FUNCTIONS
/* C STRING FUNCTIONS
/* C STANDARD HEADER FILE

/* MACRO DEFINITIONS
/* EXTERNAL VARIABLES

*
*

*

#include "a_jt.h" /* DATA STRUCTURE DEFINING JOINT PROPS. */
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT MA CRO ELEMENT
#include "a_stl_el.h" /* DATA STRUCTURE FOR STEEL MACRO ELE. *
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS

#include "a_global.h"

/* DATA STRUCTURE OF DOF-BAS

ED VARIABLES

*
*

void main ( argc, argv )

int argc; /* NUMBER OF COMMAND LINE ARGUMENTS *

char *argv[]; /* COMMAND LINE ARGUMENTS */

long status = 1L; /* RETURN STATUS */
long *diag =(long* )O /* INDEX OF K MATRIX DIA GONAL */
double *kt =( double )0;/* SKYLINE GLOBAL K MAT RIX */
A_MODEL_SIZE size; /* GLOBAL STRUCTURE SIZES */
A _TIME time; /* TIME PARAMETERS */
A_NEW_RAPH nr; /* NEWTON-RAPHSON PARAMETERS */

A_TOLERANCE tol;

/* PROGRAM TOLERANCES

*

A_FLAGS flag; /* PROGRAM FLAGS ¥
A_DYNAMIC dyn; /* DYNAMIC ANALYSIS PARAMETERS %
A_ACCEL acclg[ 3L J; /* ACCELEROGRAM PARAMETERS ¥
A_EIGEN *eigen = ( A_EIGEN *)0; /* EIGEN-ANALYSIS DATA *
A_LOADHIST *lhist = (A_LOADHIST *)0; /* LOAD HIST ORY PARAMS %/
A_JT_JOINT %t =(A_JT_JOINT *)0; /*SINGLE JOI NT *
A_CFT_BC *cft =(A_CFT_BC*)0; /*CFT BEAM-COL UMN *
A_STL BC *stt  =(A_STL_BC*)0; /* STEEL BEAM-C OLUMN *
A_GLOBAL *global = (A_GLOBAL *)0;  /* DOF-BASED VA RIABLES ¥

/

/

/* DEFINE AND INITIALIZE EXTERNAL VARIABLES */

/
if (!a_mem_init_extern() )

status = OL;
printf(

/

"\nInitialization of external variables failed. E

}

/

!
/* READ FILE NAMES FROM COMMAND LINE */
/

/
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else if (! a_io_filenames( argc, argv, "cftmacro.i

"cftmacro.plot”, "cftmacro.max" ) )

status = OL;
printf( "\nFailure to establish file names. Exit
}

/ /

/* OPEN AISC SECTION TABLE DATABASE */

/ /

else if (! a_io_aisc_open( argc, argv ) )
status = OL;

printf(
"\nOpening the AISC section database failed. Exit

/**************/

/* OPEN FILES */

/**************/

elseif (! (A_fp_in =fopen( A_in_file,"r"))
{
status = OL;
printf( "\nOpening input file failed. Exit progra
}
else if (! (A_fp_out =fopen( A_out_file, "w"
status = OL;
printf( "\nOpening output file failed. Exit progr
}
else if (! (A_fp_plot = fopen( A_plot_file, "w"
{

status = OL;
printf( "\nOpening plot file failed. Exit program
}

/ /
/* INITIALIZE NON-ARRAY VARIABLES */
/ /

else if (! a_mem_init( &size, &time, &nr, &tol, &f

status = OL;
printf( "\nInitializaion of variables failed. Exi

/ /
/* DETERMINE SIZE OF MODEL */
/ /

else if (! a_io_model_size( &size))

status = OL;
printf( "\nCounting model size failed. Exit progr

}

/ /
/* ALLOCATE DYNAMIC MEMORY FOR MODEL */
/ /

else if (! a_mem_alloc_model( size, &lhist, &jt, &

status = OL;
printf( "\nAllocating memory for model failed. Ex

/ /
/* INITIALIZE STRUCTURE SIZE BASED ARRAYS */
/ /
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)* OPEN INPUT FILE */
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)) /* OPEN OUTPUT FILE */

am.\n");

)) /* OPEN PLOT FILE */

An");

lag, &dyn))

t program.\n");

am.\n");

cft, &stl) )

it program.\n");



else if (! a_mem_init_array( size, acclg, lhist, j t, cft, stl))

status = OL;
printf( "\ninitialization of arrays failed. Exit program.\n");
}
/ /
/* INPUT STRUCTURAL MODEL, LOADS, ETC. */
/ /
else if (! a_io_input_model( &size, &time, &nr, &t ol, &flag, &dyn, acclg,
Ihist, jt, cft, stl))
status = OL;
printf( "\nInput of data failed. Exit program.\n" );
}

******************/

!
/* DETERMINE NUMBER OF DOFS IN MODEL AND MAP TO JOI NTS AND ELEMENTS */

/ ******************/

else if (! a_jt_dof_map( &size, jt, cft, stl))
{

status = OL;
printf( "\nCounting of DOFs failed. Exit program. \n");
}
/ *******/
/* ALLOCATE DYNAMIC MEMORY FOR DOF-BASED DATA STRUQURES */
/ *******/
else if (! a_mem_alloc_dof( &diag, size, &eigen, & global ) )
status = OL;
printf( "\nAllocating memory for dofs failed. Exi t program.\n");
}
/ /
/* INITIALIZE DOF-BASED ARRAYS */
/ /
else if (! a_mem_init_dofarray( diag, size, eigen, global ))
status = OL;
printf( "\ninitialization of arrays failed. Exit program.\n");
}
! *********/
/* CALCULATE TIME- AND LOAD-INDEPENDENT ELEMENT PAR AMETERS */
! *********/
else if (! a_el_calcs( size, flag, cft, stl ) )
status = OL;
printf( "\nPlastic calculations failed. Exit prog ram.\n");
/ ***************/
/* SET UP SKYLINE STORAGE, ALLOCATE MEMORY FOR GLOB AL K MATRICES */
/ ***************/
else if (! a_eq_skyline( diag, &kt, &size, cft, st I, global ) )
status = OL;
printf( "\nSetup of skyline storage failed. Exit program.\n");
/********************/
/* ANALYSIS ROUTINE */
/********************/
else if ( flag.analysis == STATIC )
if (! a_drv_static( diag, kt, &size, &time, &nr, tol, &flag,
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acclg, lhist, jt, cft, stl, global ) ) status =0

else if ( ( flag.analysis == DYNAMIC) || ( flag.an

if (! a_drv_dynamic( diag, kt, &size, &time, &nr,

acclg, eigen, lhist, jt, cft, stl, global ) ) sta
}

/ /
/* FREE DYNAMIC MEMORY */
/ /

cfree( diag );
cfree( kt);
cfree( eigen);
cfree( lhist);
cfree(jt);
cfree( cft);
cfree( stl);
cfree( global );

/***************/

/* CLOSE FILES */

/***************/

if (A_fp_in ) fclose( A_fp_in );

if (A_fp_out ) fclose( A_fp_out );

if (A_fp_plot) fclose( A_fp_plot );

if (A_fp_max ) fclose( A_fp_max );

L;

alysis == EIGEN ) )

tol, &flag, &dyn,

if ( status )
printf( "\n\n\nDONE!!!.\n\n" );
}
else
printf( "\n\n\nError encountered / Structure faile d.\n\n");
exit( 1L );
}
!
*kkkkkkkhkk
* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

*  FUNCTION- a_cft_frecovery
@(#) CFT Force RECOVERY
* CALLED FROM- a_drv_dynamic, a_drv_static
*  ABSTRACT- This function computes the incremen

members based upon the incremental displacements
from the solution procedure.

*kkkkkhkhkk

tal forces for the CFT

obtained

/* C MATH FUNCTIONS
/* C I/O FUNCTIONS
/* C STRING FUNCTIONS

#include <math.h>
#include <stdio.h>
#include <string.h>

/* MACRO DEFINITIONS
/* EXTERNAL VARIABLES & PROT
/* DATA STRUCTURE DEFINING JOINT
/* DATA STRUCTURE FOR CFT BE
/* DATA STRUCTURE OF VARIOUS
/* DATA STRUCTURE OF DOF-BAS

#include "a_mac.h"
#include "a_extern.h"
#include "a_jt.h"
#include "a_cft_el.h"
#include "a_param.h"
#include "a_global.h"

long a_cft_frecovery( size, flag, jt, cft, global )
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*
OTYPES
PROPS
AM-COLUMN
PARAMETERS
ED VARIABLES

tus = OL;

*
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*
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A_MODEL_SIZE *size; /* DATA STRUCTURE OF GLOBAL ST RUCT SIZE

A_FLAGS *flag; /* DATA STRUCTURE OF PROGRAM FLAGS
A_JT_JOINT itl; /* DATA STRUCTURE FOR SINGLE JOIN T
A_CFT_BC cft[]; /* DATA STRUCTURE FOR CFT BEAM-COL UMN
A_GLOBAL globalfl; /* DATA STRUCTURE OF DOF-BASED V ARIABLES
{

long  status =1L; /* RETURN STATUS *
long n =0L; /* ELEMENT COUNTER *
long ctrl =0L; /* COUNTER */
long ctr2  =0L; /* COUNTER */
long  dof =0L; /* DEGREE-OF-FREEDOM COUNTER *
long | =0L; /* TEMP STORAGE OF CURRENT DOF NUMBER

double |_tmp =0.0; /* TEMPORARY ELEMENT LENGTH

double temp_du[ A_CFT_NUM_DOF + 1L ]; /* STORAGE OF GLOBAL ELM DISPLS*/
/ ****************/

/* LOOP OVER ELEMENTS AND RECOVER LOCAL INCREMENTALMEMBER FORCES */

/ ****************/

for (n = 1L; n <= size->num_cft_elems; n++)

I{ *****/
/* MAP GLOBAL INCREMENTAL DISPLACEMENTS TO MEMBER DBOFS */
/ *****/

for ( dof = 1L; dof <= A_CFT_NUM_DOF; dof++)
{
temp_du[ dof ] = 0.0;
j = cft[ n ].mcode[ dof ];
if(j!=0)

temp_du[ dof ] = global[ j ].dqj;
}

}
/ **************/
/* ROTATE INCREMENTAL MEMBER DISPLACEMENTS FROM GLBAL TO LOCAL */
/ **************/

for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)
cftfn]dufctrl] =0.0;
for (ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++)
{
cftfn].du[ctrl] +=temp_du[ ctr2 ] *
cft[ n J.lambda[ ctrl ][ ctr2 J;
cftfn].u2[ctrl] +=temp_du[ ctr2 ] *
cft[ n J.lambda[ ctrl ][ ctr2 J;
}

}

/ /
/* COMPUTE LOCAL INCREMENTAL MEMBER FORCES */
/ /

for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)
f:ft[ n].df_if ctrl]=0.0;
for (ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++)
{cft[ nldf ifctrl]+=cft{n].du[ ctr2 ] *

(cftfn]kt[ctrd][ctr2]-
cftfn]krfctrl][ctr2]);

}
}
/ *****************/
/* FOR 2ND ORDER ELASTIC ANALYSIS, CALC INCR AXIAL FORCES DIRECTLY */
/ *****************/
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if ((flag->kg ) && (! flag->kp))
/* CALCULATE UPDATED MEMBER LENGTH */
|_tmp = sqrt(
pow( (jtlcfifn]jl.cox-jtfcft[n]i].c
pow( (jtf cftfn].j].co.y -jt[ cft[n
pow( (jtfcftfn].jl.co.z-jt[cft[n
/* CALCULATE NEW AXIAL FORCES (OVERWRITE ABOVE AXI

cftfn]df_i[1L]=-cftfn].ea* (I_tmp/cf
cftfn]df_if7L]= cft{n].ea* (I_tmp/cf
}

/ /
/* COMPUTE END-OF ITERATION FORCES */
/ /

for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)
cftfn]f2[ctrl]+=cft[n].df_i[ctrl ];
}

} [* for (n = 1L; n <= size->num_cft_elems; n++)

return( status );

0.X),2)+
Ji]coy), 2)+
]ilco.z),2));
AL CALCS) ¥/

tffn]l-1L);
tfn]l-1L);

*

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF

*  FUNCTION- a_cft_plastic

@(#) calculation of CFT PLASTIC stiffness matrix
* CALLED FROM- a_pl_cft_state
*  ABSTRACT- This function calculates the cft pl

*kkkkkkkhkk

MINNESOTA *

*kkkkkkkhkk

astic stiffness terms

comprising the kp matrix which is used in turn to calculate
the plastic reduction matrix.
/

#include <math.h> /* C MATH FUNCTIONS *
#include <stdio.h> /* C I/O FUNCTIONS *
#include <string.h> /* C STRING FUNCTIONS */
#include "a_mac.h" /* MACRO DEFINITIONS */
#include "a_extern.h" /* EXTERNAL VARIABLES */
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN *
long a_cft_plastic_k( n, end, cft)
long n; /* CURRENT ELEMENT *
long end; /* CURRENT ELEMENT END *
A_CFT_BC cft[l; /* DATA STRUCTURE FOR CFT BEAM-COL UMN *
long  status =1L; /* RETURN STATUS */
long i =0L; /* ELEMENT END INDEX *
/ *****/
/* CALCULATE INDEX, i, TO REFERENCE PROPER ELEMENT  END */
/ *****/

i=6L*end;
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/ /
/* COMPUTE PLASTIC AND BOUNDING STIFFNESS TERMS */
/ /

/* AXIAL */
cftfn]lkp[end].p =cftfnleal/cft[n].l*
(cftfn]kl[end].p +cft{n].k2[end ].p *
(cft[ n].dist[ end ]/ ( cft[ n].dist_in[ end ]1-
cftfn].distfend])));
cftfn].kpb[end ].p =cftfn].ea/cftfn].l*
cftf n]1.k1[ end ].p;

/* WEAK AXIS BENDING */
cftfn].kp[end ].my =cft[ n].eiy/cft[n].l*
(cftf n].k1[ end ].my + cft[ n ].k2[ end ].my *
(cft[ n].dist[ end ]/ ( cft[ n].dist_in[ end ]1-
cftfn].distfend])));
cft[ n ].kpb[ end ].my=cft[ n ].eiy / cft[ n ].I *
cftf n 1.k1[ end ].my;

/* STRONG AXIS BENDING */
cftfn].kp[end].mz =cft[ n].eiz/cft[n].l*
(cftf n].k1[ end ].mz + cft[ n ].k2[ end ].mz *
(cft[ n].dist[ end ]/ ( cft[ n].dist_in[ end ]1-
cftfn].distfend])));
cft[ n ].kpb[ end .mz=cft[n].eiz/ cft[n].l *
cftf n1.k1[ end ].mz;

return( status );

*kkkkkkkhkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

*kkkkkkkkkk

*  FUNCTION- a_cft_reduction_k
@(#) CFT plastic REDUCTION stiffness matrix
* CALLED FROM- a_cft_stiffness
*  ABSTRACT- This function computes the CFT elem ent plastic reduction

stiffness terms. This function is only called if a hinge
exists at one or both of the elelment ends.

/

#include <math.h> /* C MATH FUNCTIONS *
#include <stdio.h> /* C I/O FUNCTIONS */
#include "a_mac.h" /* MACRO DEFINITIONS */
#include "a_extern.h" /* EXTERNAL VARIABLES */
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN

long a_cft_reduction_k( n, cft)

long n; /* CURRENT ELEMENT NUMBER *
A_CFT_BC cft[l; /* DATA STRUCTURE FOR CFT BEAM-COL UMN
{

long  status = 1L; /* RETURN STATUS */
long ctrl = OL; /* COUNTER */
long ctr2 = OL; /* COUNTER */
long ctr3 = 0L; /* COUNTER */
double a=0.0; /* STORAGE FOR INVERTING MATRIX *
double b =0.0; /* STORAGE FOR INVERTING MATRIX *
double ¢ =0.0; /* STORAGE FOR INVERTING MATRIX *
double d =0.0; /* STORAGE FOR INVERTING MATRIX *
double inverse[3L][3L]; /* TEMPORARY MATRIX STO RAGE
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double
double
double
double
double
double
double
double

kp[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF + 1L
grad[A_CFT_NUM_DOF + 1L ][A_CFT_NUM_DOF +

gradif A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF +

templ[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF +
temp2[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF +
temp3[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF +
temp4[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF +
temp5[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF +

/*********************/

/* INITIALIZE ARRAYS */

/*********************/

for (ctrl = OL; ctrl < 3L; ctrl++)

for (ctr2 = OL; ctr2 <= 3L; ctr2++)
{
inverse[ ctrl ][ ctr2]=0.0;
}

}

for (ctrl = OL; ctrl < A_CFT_NUM_DOF + 1L; ctrl++

{
for (ctr2 =0L; ctr2 < A_CFT_NUM_DOF + 1L; ctr2++

kp[ctrl ][ ctr2 ]
grad[ ctrl ][ ctr2 ]
gradt[ ctrl ][ ctr2]
templ[ctrl ][ ctr2 ]
temp2[ ctrl ][ ctr2 ]
temp3[ ctrl ][ ctr2 ]
temp4[ ctrl ][ ctr2 ]
temp5[ ctrl ][ ctr2 ]
cftfn]krfctrl][ctr2] =0.0;
}

1
2o
Lo

LT
o

CO00004
ooooo

/

/

/* FILL TEMP kp MATRIX */

/

/

kp[ 1L ][1L] =cft[n]Lkp[OL ].p;
kp[5L][5L] =cft[ n].kp[ OL ].my;
kp[6L][6L] =cft[n].kp[OL].mz;
kp[ 7L ][ 7L] =cft{n].kp[ 1L ].p;
kp[ 11L ][ 11L ] = cft[ n ].kp[ 1L ].my;
kp[ 12L ][ 12L ] = cft[ n ].kp[ 1L ].mz;

!
/* COMPUTE GRADIENT AND GRADIENT TRANSPOSE ARRAYS

/

/* GRADIENT */

if ((cft{n].state[OL]==PL) && (cft[n].
{

/* HINGE AT BOTH ENDS */

a_pl_cft_grad( n, OL, F1, cft);
a_pl_cft_grad(n, 1L, F1, cft);

grad[ 1L J[1L] =cft[ n].grad[ OL ].p;
grad[ 5L [ 1L] = cft n].grad[ OL ].my;
grad[ 6L ][ 1L ] =cft[ n].grad[ OL ].mz;
grad[ 7L ][ 2L] =cft{n].grad[ 1L ].p;
grad[ 11L ][ 2L] = cft[ n ].grad[ 1L ].my;
grad[ 12L ][ 2L ] =cft{ n].grad[ 1L ].mz;
}

else if (( cft[ n ].state[ OL ] == PL ) && (( cft]

], *PLASTIC K *
1L ]; /* GRADIENT *
1L ]J;/* GRAD TRANSP*/
1L [;/* TEMP MATRIX*/

1L J;/* TEMP MATRIX*/

1L [;/* TEMP MATRIX*/

1L J;/* TEMP MATRIX*/

1L [;/* TEMP MATRIX*/

/

ki

/

state[ 1L]==PL))

nl.state[ 1L ]==EL) ||

(cft[ n].state[ 1L ]==PL_IN)))

{ /* HINGE AT END | */
a_pl_cft_grad( n, OL, F1, cft);
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grad[ 1L J[ 1L ] =cft{n].grad[ OL ].p;

grad[ 5L ][ 1L] =cft[ n ].grad[ OL ].my;
grad[ 6L J[ 1L ] =cft{ n].grad[ OL ].mz;
}
else if (( cft[ n ].state[ 1L ] == PL ) && (( cft] n].state[OL ] ==EL) ||

(cft[ n].state[ OL]==PL_IN)))
{ /* HINGE AT END J */
a_pl_cft_grad(n, 1L, F1, cft);

grad[ 7L ][ 2L ] =cft{n].grad[ 1L ].p;
grad[ 11L ][ 2L] =cft[ n ].grad[ 1L ].my;
grad[ 12L ][ 2L ] =cft{ n].grad[ 1L ].mz;
}

/* GRADIENT TRANSPOSE */
for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)
Eor (ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF,; ctr2++)
E}radt[ ctr2][ctrl ] =grad[ ctrl ][ ctr2 ];
y }

/ /
/* CALC. PLASTIC REDUCTION K ( -kt*grad*(gradt*(kt+ kp)*grad)™(-1)*gradt*kt ) */
/

/

[** templ = gradt * (kt + kp ) **/
for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)

{
for (ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++)

templ[ 1L ][ ctrl ] +=gradt[ 1L J[ctr2 ] *
(cftfn]kt[ctr2 ][ ctrl ]+
kp[ctr2 ][ ctrl]);
templ[ 2L ][ ctrl ] +=gradtf 2L ][ ctr2 ] *
(cftfn]kt[ctr2][ctrd ] +
kp[ctr2 ][ ctrl]);

}

[** temp2 = templ * grad **/
for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)

{
for (ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++)

EempZ[ 1L ][ ctrl ] +=templ[ 1L ][ ctr2]*
grad[ ctr2 ][ ctrl ];
temp2[ 2L ][ ctrl ] +=templ[ 2L J[ ctr2 ] *
grad[ ctr2 ][ ctrl ];
}

}

/**inverse = (gradt * (kt + kp ) *grad ) " (-1) =temp2 ~ (-1) **/
a=temp2[1L [ 1L];
b=temp2[1L][2L];
c=temp2[2L][ 1L ;
d=temp2[2L][2L];

/* TAKE PROPER INVERSE DEPENDING ON HINGE LOCATION( S) */

if ((cft{n].state[OL]==PL) && (cft[n]. state[ 1L]==PL))
/* HINGE AT BOTH ENDS */
if((a!=0.0)&&((a*d-b*c)!=0.0) )
inverse[ 1L][1L]=(c*b)/(a*(a*d- b*c))+
1/a;

inverse[ 1L][2L]=-b/(a*d-b*c);
inverse[2L][1L]=-c/(a*d-b*c);
inverse[2L][2L]=a/(a*d-b*c);
}

else
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printf( "\nDivide-by-zero error in a_cft_reductio n_k.\n");

status = OL;
}

}

else if ((cft[ n].state[ OL ] == PL ) && ( cft[ n]state[ 1L]==EL))
/* HINGE AT END | */

if(a!=0.0)
{
inverse[1L][1L]=1/a;

else
printf( "\nDivide-by-zero error in a_cft_reductio n_k.\n");
status = OL;
}

}

else if ((cft[ n].state[ OL ] == EL ) && ( cft[ n].state[1L]==PL))
/* HINGE AT END J */

if(d!=0.0)
{
inverse[2L][2L]=1/d;

else
printf( "\nDivide-by-zero error in a_cft_reductio n_k.\n");
status = OL;
}

}

/** temp3 = kt * grad **/
for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)

{
for (ctr2 = 1L; ctr2 <= 2L; ctr2++)
{
for (ctr3 = 1L; ctr3 <= A_CFT_NUM_DOF; ctr3++)
{
temp3[ ctrl ][ ctr2 ] += cft[ n ].kt[ ctrl ][ ct r3]*
grad[ctr3 ][ ctr2 ];
}

}

[** temp4 = temp3 * inverse **/
for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)

{
for (ctr2 = 1L; ctr2 <= 2L; ctr2++)
for (ctr3 = 1L; ctr3 <= 2L; ctr3++)
{
temp4[ ctrl ][ ctr2 ] +=temp3[ ctrl ][ ctr3 ] *

inverse[ ctr3 ][ ctr2 ];
}

}

[** temp5 = temp4 * gradt **/
for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)

{
for (ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++)
{
for (ctr3 = 1L; ctr3 <= 2L; ctr3++)
{
temp5[ ctrl [ ctr2 ] +=temp4[ ctrl ][ ctr3] *
gradt[ ctr3][ ctr2 ];
}

}

[** cft[ n ].kr = temp5 * kt **/
for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)
{
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for (ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++)
for (ctr3 = 1L; ctr3 <= A_CFT_NUM_DOF; ctr3++)
{
cftfn]krfctrl][ctr2] +=

temp5[ctrl J[ctr3] *
cftf n].kt[ ctr3 ][ ctr2 J;

}

return( status );

Kkkkkkkkkkkk
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* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF

*  FUNCTION- a_cft_rotate

@(#) CFT member force ROTATE fromnton+1

* CALLED FROM- a_drv_dynamic, a_drv_static

*  ABSTRACT- This function takes the forces obta

ined from the structural
configuration at time n and rotates them to the s tructural
configuration at time n + 1. The global joint fo rces are
then calculated. Also, the function which update s the

CFT members (i.e., lengths, etc.) is called in th is routine.
/
#include <math.h> /* C MATH FUNCTIONS *
#include <stdio.h> /* C /O FUNCTIONS */
#include <string.h> /* C STRING FUNCTIONS */
#include "a_mac.h" /* MACRO DEFINITIONS */
#include "a_extern.h" /* EXTERNAL VARIABLES */
#include "a_jt.n" /* DATA STRUCTURE DEFINING JOINT PROPS *
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN *
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS */

#include "a_global.h"

/* DATA STRUCTURE OF DOF-BAS ED VARIABLES *

long a_cft_rotate( size, nr, flag, lhist, jt, cft, global )

A_MODEL_SIZE *size; /* DATA STRUCTURE OF GLOBAL ST RUCTURE SIZE*/
A_NEW_RAPH *nr; /* DATA STRUCTURE OF NEWTON-RAPHSO N PARAMS*/
A_FLAGS *flag; /* DATA STRUCTURE OF PROGRAM FLAGS */
A_LOADHIST Ihist[]; /* DATA STRUCTURE OF LOAD HISTO RY PARAMS */

A_JT_JOINT itl;

A_CFT_BC cft[]; /* DATA STRUCTURE FOR CFT BEAM-COL UMN *
A_GLOBAL globalfl; /* DATA STRUCTURE OF DOF-BASED V ARIABLES */
long  status =1L; /* RETURN STATUS */

long i =0L; /* TEMP VARIABLE *

long | =0L; /* TEMP VARIABLE *

long Kk =0L; /* TEMP VARIABLE *

long n =0L; /* ELEMENT COUNTER *

long  dof =0L; /* DOF COUNTER */

long ctrl  =0L; /* COUNTER */

long ctr2  =0L; /* COUNTER */

double | =0.0; /* SHORTENED VARIABLE FOR STEEL ME MBER LENGTH */
double m2 =0.0; /* SHORTENED VARIABLE FOR DOF 2 M ULTIPLIER */
double m6 =0.0; /* SHORTENED VARIABLE FOR DOF 6 M ULTIPLIER */
double m8 =0.0; /* SHORTENED VARIABLE FOR DOF 8 M ULTIPLIER */
double m12 =0.0; /* SHORTENED VARIABLE FOR DOF 12 MULTIPLIER */
double r2 =0.0; /* RATIO OF df_i / f2 FOR DOF 2

double r6 =0.0; /* RATIO OF df_i / f2 FOR DOF 6

double r8 =0.0; /* RATIO OF df_i / f2 FOR DOF 8

double r12 =0.0 /* RATIO OF df_i/ f2 FOR DOF 12 *

/* DATA STRUCTURE FOR SINGLE JOIN
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double wi =0.0; /* INCREMENTAL DISTRIBUTED LOAD
double temp_df i[ A_CFT_NUM_DOF + 1L ]; /* TEMP GLO BAL INCR FORCES  */
double temp_f2[ A_CFT_NUM_DOF + 1L ;" /* TEMP GLO BAL FORCES AT STEP n + 1 %

*

/ /
/* LOOP OVER ELEMENTS; COMPUTE GLOBAL JOINT FORCES & ROTATED MEMBER FORCES */
/

/

for (n = 1L; n <= size->num_cft_elems; n++)
{ **/
!

/* UPDATE ELEMENT GEOMETRY, ROTATION MATRICES, ETC. */

/ *x[

if (flag->kg )
if (! a_cft_update( n, jt, cft, global ))

status = OL;
printf(
"\nMember calculations failed. Exit program.\n" );
}
}

******/

!
/* ROTATE LOCAL ELEMENT FORCES TO GLOBAL W/ C2 MATR ICES */

/ ******/

for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)

{
temp_df_i[ ctrl] =0.0;
temp_f2[ ctrl ] =0.0;
for (ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++)
{
temp_df_i[ ctrl ] += cft[ n ].lambda] ctr2 ][ ctr 1]+
cftfn].df_i[ ctr2 J;
temp_f2[ ctrl] +=cft[ n ].lambda[ ctr2 ][ ctr 1]+

cftfn].f2[ ctr2 ;
}
}

/ /
/* ASSEMBLE THE FORCES FOR EACH JOINT DOF */
/ /

for (dof = 1L; dof <= A_JT_DOF; dof++)

j{t[ cftf n 1 1.df_i[ dof ] += temp_df_i[ dof ;
t[ cftf n 1.j ].df i dof ] += temp_df_i[ dof + 6 L]
}

*HK |

!
/* ROTATE FORCES FROM GLOBAL TO LOCAL W/ C2 MATRICE S*/

/ *HK [

for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)

f:ft[ n].df_ifctrl]=0.0;
cftfn]f2[ctrl] =0.0;

for (ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++)
{
cftfn].df_i[ctrl]+=temp_df_i[ctr2]*
cft n ].lambda[ ctrl ][ ctr2 ];

cftfn]f2[ctrl] +=temp_f2[ctr2]*
cft n ].lambda[ ctrl ][ ctr2 ];
}

}

/ /
/* COMPUTE INCREMENTAL ADJUSTED FORCES */
/

/
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for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)
{
cftfn].fl i[ctrl] =cft[n].f2_i[ ctrl];
cftfn]f2_i[ctrl]+=cft[ n].df_i[ctrl];
}

} [* for (n = 1L; n <= size->num_cft_elems; n++) */

return( status );

*kkkkkkkkkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

*kkkkkkkkkk

*  FUNCTION- a_cft_stiffness
@(#) CFT element STIFFNESS matrix formulation
* CALLED FROM- a_drv_dynamic, a_drv_static

*  ABSTRACT- This function calls the subroutines to compute the cft member

elastic, geometric, and plastic reduction matrice S.

/

#include <stdio.h> /* C I/O FUNCTIONS *
#include <math.h> /* MATH FUNCTIONS */
#include "a_mac.h" /* MACRO DEFINITIONS *
#include "a_extern.h" /* EXTERNAL VARIABLES *
#include "a_jt.n" /* DATA STRUCTURE FOR JOINTS * /
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN */
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS *

long a_cft_stiffness ( n, size, flag, jt, cft)

long n; /* CURRENT ELEMENT NUMBER */
A_MODEL_SIZE *size; /* DATA STRUCTURE OF GLOBAL ST RUCT PARAMS*/
A_FLAGS *flag; /* DATA STRUCTURE OF PROGRAM FLAGS *
A_JT_JOINT itl; /* DATA STRUCTURE FOR JOINTS *
A_CFT_BC cft[l; /* DATA STRUCTURE FOR CFT BEAM-COL UMN *
{

long  status =1L; /* RETURN STATUS */

long ctrl  =0L; /* COUNTER */

long ctr2  =0L; /* COUNTER */

long end =0L; /* COUNTER FOR CURRENT ELEMENT END */

/ /
/* COMPUTE TANGENT STIFFNESS TERMS */
/ /

if (! a_cft_tangent_k( n, flag, cft))

status = OL;
printf( "\nTangent stiffness computation failed. Exit program.\n");
! ***********/
/* ALTER THE TANGENT K MATRIX TO ACCOUNT FOR MEMBER RELEASES */
! ***********/
if (cft[ n].release)
a_k_mem_rel( A_CFT_NUM_DOF, cft[ n ].release, cft[ n].kt);
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/ *****************/

/* COMPUTE CFT PLASTIC REDUCTION STIFFNESS TERMS (O NLY IF PLASTIC) */

/ *****************/

if (flag->kp )
for (ctrl = 1L; ctrl <= A_CFT_NUM_DOF; ctrl++)
/* ZERO kr FOR ALL ELEMS (THIS IS ESPECIALLY FOR UNLOADING) */
for (ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++)

f:ft[ n]krfctrl ][ ctr2]=0.0;
}

}
if ((cftfn].statefOL]==PL) || (cft[n].s tate[ 1L]==PL))
{
if (! a_cft_reduction_k(n, cft))
status = OL;
printf( "\nPlastic reduction stiffness computatio n failed." );
printf( "Exit program.\n" );
}
}
} /*if (flag->kp ) */

return( status );

K*kkkkkkkkkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

Kkkkkkkkkkkk

*  FUNCTION- a_cft_tangent_k
@(#) CFT TANGENT stiffness (K) matrix
* CALLED FROM- a_cft_stiffness

*  ABSTRACT- This function computes the local CF T element tangent stiffness
terms (elastic + geometric).

/

#include <math.h> /* C MATH FUNCTIONS *

#include <stdio.h> /* C I/O FUNCTIONS *

#include "a_mac.h" /* MACRO DEFINITIONS */

#include "a_extern.h" /* EXTERNAL VARIABLES & PROT OTYPES *
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS */
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN *

long a_cft_tangent_k ( n, flag, cft)

long n; /* CURRENT ELEMENT NUMBER */
A_FLAGS *flag; /* DATA STRUCTURE OF PROGRAM FLAGS *
A_CFT_BC cft[l; /* DATA STRUCTURE FOR CFT BEAM-COL UMN *
{

long  status = 1L; /* RETURN STATUS */

long ctrl = OL; /* COUNTER */

long ctr2 = OL; /* COUNTER */

long ctr3 = 0L; /* COUNTER */

long  initl =0L; /* COUNTER FOR INITIALIZATIN OF A RRAYS *
long  init2 =0L; /* COUNTER FOR INITIALIZATIN OF A RRAYS */
/*****************/

/* INITIALIZE kt */

/*****************/
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for (initl = OL; initl < A_CFT_NUM_DOF + 1L; init1 ++)

{
for (init2 = OL; init2 < A_CFT_NUM_DOF + 1L; init 2++)
{
cft[ n J.kt[ initl ][ init2 ] =0.0;
}
}
/ /
/* UPDATE CONCRETE ELASTIC STIFFNESS PARAMETERS */
/ /
cftfn].gmod_c =cftfn]J.emod_c/(2.0*(1+c ftin].nu_c));
cftfn].ely =cftfn]l.emod_s*cftfnliy_s+
cftf n].emod_c * cft[ n ].iy_c;
cftfn].eiz =cftfn].emod_s*cft[n].iz_s +
cftf n].emod_c * cft[ n ].iz_c;
cft{n].ea =cft{n].emod_s * cft[ n ].a_stl +
cftf n].emod_c * cft[ n ].a_conc;
cft{ n].gj = cft[ n J.gmod_s * cft[ n L.ix;
/ **********/
/* GENERATE ELASTIC TERMS IN UPPER TRIANGULAR PORTI ON OF kt */
/ **********/
cftfn].kt{1][1] = cftfn].ea/cft{n].l;
cftfn]kt{1][7]=-cftn]k{1][1];
cftfn].kt{2][2] = 12.0 * cft[ n ].eiz / pow (cftfn]l, 3);
cftfn]kt{2][6] = 6.0*cft[n].eiz/ pow( cftfn]l 2);
cftfn].kt{2][8]=-cftin]kt[2][2];
cftfn].kt{2][12] = cftfn]kt{2][6];
cftfn].kt{3][3] = 12.0 * cft[ n ].eiy / pow (cftin]l, 3);
cftfn].kt{3][5] =-6.0*cft[ n].eiy / pow( cftin]l 2);
cftfn].kt{3][9]=-cftin].kt[3][3];
cftfn].kt{3][11] = cftfn]kt{3][5];
cftfn].kt{4][4] = cft{n].gj/cft[n].l;
cftfn].kt{4][10] =-cftfn]kt{4][4]
cftfn].kt{5][5] = 4.0 *cft[ n].eiy / cft] nll;
cftfn]kt{5][9]=-cftin]k{3][5];
cftfn].kt{5][11]= 2.0 *cft[ n].eiy / cft [n]l;
cftfn]kt{6][6] = 4.0*cft[n].eiz/cft] nll
cftfn].kt{6][8]=-cftfn].kt[2][6];
cftfn]kt{6][12]= 2.0 *cft[ n].eiz/cft [n]l
cftin]kt{7][7]= cftin]kt{1][1];
cftfn].kt{8][8]= cftfn]kt[2][2];
cftfn].kt{8][12] =-cftfn]kt{2][6];
cftfn].kt{9][9]= cftfn]kt{3][3];
cftfn].kt{9][11] =-cftfn].kt{3][5];
cftfn].kt{10][10]= cft[n]kt[4][4];
cftfn].kt{11][11]= cftfn]kt{5][5];
cftfn].kt{12][12]= cftfn]kt[6][6];
/ ************/
/* GENERATE GEOMETRIC TERMS IN UPPER TRIANGULAR PORTION OF kt */
/ ************/

if (flag->kg )
{

cftfnlkti{2][2] += 1.2*cft[n]f2[7]/ cftfn].l;
cftfn].kt{2][6] += cft{n].f2[7]/10.0;

cftfn]kt{2][8] +=-12*cft[n].f2[7]/ cftfn].l;
cftfn].kt{2][12 += cft{n].f2[ 7]/ 10.0 ;
cftfn]kt{3][3] += 1.2*cftfn]f2[7]/ cftfn].l;
cftfn].kt{3][5] +=-cft{n].f2[ 7]/ 10.0;

cftfn]kt{3][9] +=-12*cft[n].f2[7]/ cftfn].l;
cftfn].kt{3][11 +=-cft{n].f2[ 7]/ 10.0 ;
cftfn]kt{5][5] += 2.0*cftfn].f2[7]* cft{n].1/15.0;
cftfn].kt{5][9] += cft{n].f2[7]/10.0;

cftfn]kt{5][ 11 [+=-cft[ n ].f2[ 7 ] * cft[ n].1/30.0;
cftfn].kt{6][6] += 2.0*cft{n]f2[7]* cftfn].l/15.0;
cftin].kt{6][8] +=-cft[n].f2[ 7]/ 10.0;

cftfn].kt{6 ][ 12 [+=-cft[ n ].f2[ 7 ] * cft] n].l/30.0;
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c{n]k8][8] += 1.2*cf[n]f[7]/ cfnl.l;

cftf n J.kt[ 8 ][ 12 J+= - cft[ n |.f2[ 7 ] / 10.0 ;

cffn]k[9][9] += 1.2*cf[n]f2[7]/ cfn].l;

cffn k9] 11 ]+= cf{n].f2[7]/10.0 ;

cftf n ]k 11 ][ 11] += 20*cfi{n]f2[7] *cft n 1.1/ 15.0;
cftf n ]k 12][12] += 2.0*cf{n]f2[7] *cftfn 1.1/ 15.0;

/* HIGHER ORDER GEOMETRIC STIFFNESS TERMS */

if ( flag->order == HIGHORDER )
f:ft[n].kt[l][Z] = (cft[n]f2[6] +cft

cftfn].kt{1][3] =-(cft{n].f2[ 5]+ cft [n]f2[11])/
pow( cftfn]l, 2);

cftfn].kt{1][8] =-(cft{n].f2[ 6]+ cft [n]f2[12])/
pow( cftfn]l, 2);

cftfn]kt{1][9] = (cf[n]f2[5] +cft [n]f2[11])/
pow(cftfn]l, 2);

cftfn]kt{2][4] = cft{n]f2[5]/cft(n 1.0

cftfn].kt{2][5] = cft[n].f2[ 10 ]/ cft] nl.l;

cftfn]kt{2][7] =-(cft{n].f2[ 6]+ cft [n]f2[12])/
pow( cftfn]l, 2);

cftfn]kt{2][10]= cf{n].f2[ 11 ]/ cft nll

cftfn].kt{2][11]=-cft[ n ].f2[ 10 ] / cft[ nll;

cftfn]kt{3][4] = cft{n]f2[6]/cft[n 1.0

cftfn].kt{3][6] = cft[n].f2[ 10 ]/ cft] nl.l;

cftfn]kt{3][7] = (cf[n]f2[5]+cft [n]f2[11])/
pow( cftfn]l, 2);

cftfn]kt{3][10]= cft{n].f2[12]/cft] nll

cftfn].kt{ 3][12 ]=-cft[ n ].f2[ 10 ] / cft[ nll;

cftfn]kt{4][4] += cft[n]f2[7]* (cft [nlip)/
((cftfn].a_stl +cft{ n].a_conc)
*cftfn]l);

cftfn].kt{4][5] = cft{n].f2[12]/6.0 - cftfn].f2[6]/3.0;

cftfn]kt{4][6] = cftfn].f2[5]/3.0- cftfn].f2[11]/6.0;

cftfn].kt{4][8] =-cftfn].f2[5]/cft[ n 11

cftfn]kt{4][9] =-cft[n].f2[6]/cft[ n 1.0

cftfn]kt{4][10+=-cft[n].f2[ 7] * (cf tfnlip)/
((cftfn].a_stl+cftfn].a_conc)
*cft(n].l);

cftfn]kt{4][11]=- (cft[n].f2[ 6]+ cft [n].f2[12])/6.0;

cftfn].kt{4][12]= (cftin].f2[5] + cft [n].f2[11])/6.0;

cftfn]kt{5][8] =-cftf{n].f2[ 10 ]/ cft[ nll

cftfn].kt{5][10]=- (cft{n].f2[ 6 ] + cft [n].f2[12])/6.0;

cftfn]kt{5][12]= cftfn].f2[10]/2.0;

cftfn].kt{6][9] =-cft{n].f2[ 10 ]/ cft] nl.l;

cftfn]kt{6][10]= (cftfn].f2[5]+cft [n].f2[11])/6.0;

cftfn].kt{6][11]=-cft{n].f2[10]/ 2.0;

cftfn]kt{7][8] = (cf[n]f2[6] +cft [n]f2[12])/
pow( cftfn]l, 2);

cftfn]kt{7][9] =-(cft{n].f2[ 5]+ cft [n]f2[11])/
pow( cftfn]l, 2);

cftfn]kt{8][10]=-cft{n].f2[ 11 ]/ cft] nll

cftfn].kt{8][11]= cft{n].f2[ 10 ]/ cft] nll;

cftfn]kt{9][10]=-cft[n].f2[ 12 ]/ cft] nll

cftfn].kt{9][12]= cft{n].f2[ 10 ]/ cft] nll;

cftfn].kt{10][10] += cftfn]f2[7]*(c ftinlip)/
((cftfn].a_stl +cft{ n].a_conc)
*cftfn]l);

cftfn].kt{10][11] = cftfn]f2[6]/6.0 -cftfn].f2[12]/3.0;

cftfn].kt{10][12] = cftfn].f2[11]/3.0 -cftfn].f2[5]/6.0;

} /% if ( flag->order == HIGHORDER ) */

} I if ( flag->kg ) */

/

[n]f2[12])/
pow( cftfn]l, 2);

***********/

/* GENERATE TERMS IN LOWER TRIANGULAR PORTION OF cf t[n].kt*

/

for (ctrl = 1L; ctrl <= 11L; ctrl++)
{

***********/
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for (ctr2 = (ctrl + 1L ); ctr2 <= 12L; ctr2++)

cftfn]kt[ctr2][ctrl ] =
cftf n].kt[ ctrl ][ ctr2 ];
}

return( status );

K*kkkkkkkkkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

K*kkkkkkkkkk

*  FUNCTION- a_cft_update
@(#) CFT member properties UPDATE
* CALLED FROM- a_drv_dynamic, a_drv_static, a_cft_ frecovery

*  ABSTRACT- This function computes CFT member | engths, direction cosines,
and transformation matrices

/

#include <math.h> /* C MATH FUNCTIONS *
#include <stdio.h> /* C I/O FUNCTIONS *
#include "a_mac.h" /* MACRO DEFINITIONS */
#include "a_extern.h" /* EXTERNAL VARIABLES & PROT OTYPES
#include "a_jt.n" /* DATA STRUCTURE DEFINING JOINT PROPS
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS
#include "a_global.h" /* DATA STRUCTURE OF DOF-BAS ED VARIABLES

long a_cft_update ( n, jt, cft, global )

long n; /* CURRENT ELEMENT NUMBER

A_JT_JOINT itl; /* DATA STRUCTURE FOR JOINT *
A_CFT_BC cft[]; /* DATA STRUCTURE FOR CFT BEAM-COL UMN
A_GLOBAL globalfl; /* DATA STRUCTURE OF DOF-BASED V ARIABLES
{

long  status = 1L; /* RETURN STATUS */
long ctrl =0L; /* COUNTER */
long ctr2  =0L; /* COUNTER */
long i =0L; /* INDEX */
double xI =0.0; /* ELEMENT LENGTH IN GLOBAL X-DI RECTION
double vyl =0.0; /* ELEMENT LENGTH IN GLOBAL Y-DI RECTION
double zI =0.0; /* ELEMENT LENGTH IN GLOBAL Z-DlI RECTION
double cx =0.0; /* X-DIRECTION COSINE OF MEMBER

double cy =0.0; /* Y-DIRECTION COSINE OF MEMBER

double cz =0.0; /* Z-DIRECTION COSINE OF MEMBER

double theta_i = 0.0; /* MEMBER TORSIONAL ROTATION OF i-END
double theta_j=0.0; /* MEMBER TORSIONAL ROTATION OF J-END
double theta =0.0; /* AVERAGE OF INCR. TORSIONAL ROTATIONS
double iendx =0.0; /* TEMP I-END VECTOR (GLOBAL X COMP)
double iendy =0.0; /* TEMP I-END VECTOR (GLOBAL Y COMP)
double iendz =0.0; /* TEMP I-END VECTOR (GLOBAL Z COMP)
double outp  =0.0; /* LENGTH OF OUT-OF-PLANE VECTO R

double outpx =0.0; /* GLOBAL X-DIRECTION COMPONE NT

double outpy =0.0; /* GLOBAL Y-DIRECTION COMPONE NT

double outpz =0.0; /* GLOBAL Z-DIRECTION COMPONE NT

/ /
/* STORE OLD MEMBER LENGTH; COMPUTE NEW */
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/ /
cftfn].l_last=cft{n].l;

Xl =jt[ cft[ n ].j ].co.x - jt[ cft[ n ].i ].co.x;
yl =jt[ cft[ n ].j].co.y - jt[ cft[ n ].i ].co.y;
zl =jt[ cft{n]j].co.z-jt[ cft[n].i ].co.z;

cft[ n 1.1 = sqrt( pow( xl, 2) + pow(yl, 2) + po

/ /
/* COMPUTE DIRECTION COSINES OF MEMBER */
/ /

cx=xl/cft[n].l;
cy=yl/cftfn]l;
cz=zl/cft[n]l;

!
/* CALCULATE TEMPORARY I-END UNIT VECTOR: {CURRENT

I* {RELATIVE MEMBER ROTATION} * {LAST STEP OUT-OF-

/

w(zl,2));

*******************/

I-END VECTOR} + */
PLANE VECTOR} */

*******************/

/* CALCULATE RELATIVE LOCAL ROTATION OF MEMBER ENDS */

theta_i = global[ cft[ n ].mcode[ 4 ] ].dqi * cft]
global[ cft[ n ].mcode[ 5] ].dqi * cft[ n ].lam
global[ cft[ n ].mcode[ 6 ] ].dqi * cft[ n ].lam
theta_j = global[ cft[ n ].mcode[ 10 ] ].dqi * cft[
global[ cft[ n ].mcode[ 11 ] ].dqi * cft[ n ].la
global[ cft[ n ].mcode[ 12 ]].dqgi * cft[ n ].la
theta = (theta_i+theta_j)/2.0;

/* COMPUTE TEMPORARY I-END VECTOR */

iendx =cft[n].iend_x + tan(theta ) * cft{ n ].o
iendy =cft[n].iend_y + tan(theta) *cft{n].o
iendz =cft[n].iend_z + tan(theta ) * cft{ n J.o

/
/* COMPUTE OUT-OF-PLANE VECTOR: {outp} = {c} x {ien

/

outpx =(cy*iendz) - (cz *iendy);
outpy =(cz*iendx)-(cx*iendz);
outpz =(cx*iendy) - (cy *iendx);
outp = sqrt( pow( outpx, 2 ) + pow( outpy, 2) +

cft[ n J.outp_x
cft[ n J.outp_y
cft{ n ].outp_z

= outpx / outp;
= outpy / outp;
= outpz / outp;

!
/* CALCULATE NEW I-END VECTOR AS CROSS PRODUCT: {ie
!

cft[ n J.iend_x =cftfn].outp_y*cz-cftfn].o
cft{ n].iend_y =cftfn].outp_z *cx - cft[ n ].0
cft{ nliend_z =cftfn].outp_x*cy-cftfn].o

/ /
/* INITIALIZE LAMBDA MATRICES */
/ /

for (ctrl = OL; ctrl <= A_CFT_NUM_DOF; ctrl++)
{
for (ctr2 = 0OL; ctr2 <= A_CFT_NUM_DOF; ctr2++)

cft[ n ].lambda[ ctrl ][ ctr2 ] = 0.0;
}

/

nllambda[4][4]+
bda[4][5]+
bda[4][6 ;

n]lambda[10][10] +
mbda[ 10 ][ 11 ] +
mbda[ 10 ][ 12];

utp_x;
utp_y;
utp_z;

Kk |

d} */

Kk |

pow( outpz, 2));

********************/

nd} = {outp} x {c} */

********************/
utp_z * cy;

utp_x * cz;
utp_y * cx;

********/

/* COMPUTE LAMBDA (GLOBAL TO LOCAL TRANSFORMATION MATRIX) */
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/ ********/

for (ctrl = OL; ctrl <= 3L; ctrl++)

{

i=3L*ctrl;

cftf n J.lambda[ 1+i ][ 1+i ] = cx;

cft{ nJ.lambda[ 1+i ][ 2+i ] = cy;

cftf n J.lambda[ 1+i ][ 3+i ] = cz;

cft[ n ].lambda[ 2+i ][ 1+i ] = cft[ n ].iend_x;
cft[ n J.lambda[ 2+i ][ 2+i ] = cft[ n ].iend_y;
cft[ n ].lambda[ 2+i ][ 3+i ] = cft[ n ].iend_z;
cft[ n J.lambda[ 3+i ][ 1+i ] = cft[ n J.outp_x;
cft[ n ].lambda[ 3+i ][ 2+i ] = cft[ n ].outp_y;
cft[ n J.lambda[ 3+i ][ 3+i ] = cft[ n J.outp_z;
}

return( status );

*kkkkkkkhkk

MINNESOTA *
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* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF

*  FUNCTION- a_drv_static
@(#) analysis DRiVer--STATIC

* CALLED FROM- cftmacro

*  ABSTRACT- This function calls the subroutines which perform the
non-linear static analysis of the structure based on

the present time step which is incremented in thi s
function.

#include <math.h>
#include <stdio.h>
#include <string.h>

#include "a_mac.h"

/* C MATH FUNCTIONS
/* C I/O FUNCTIONS
/* C STRING FUNCTIONS

/* MACRO DEFINITIONS

*
*/

*

#include "a_extern.h" /* EXTERNAL VARIABLES & PROT OTYPES
#include "sstmatch.h" /* TOLERANCE COMPARISONS

#include "a_jt.h" /* DATA STRUCTURE DEFINING JOINT PROPS
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN
#include "a_stl_el.h" /* DATA STRUCTURE FOR STEEL BEAM-COLUMN
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS

#include "a_global.h"

long a_drv_static ( diag, kt, size, time, nr, tol, flag, acclg, lhist, jt,

cft, stl, global )
long diag[]; /* INDEX OF SKYLINE K MATRIX DIAG TE RMS
double kt[l; /* SKYLINE GLOBAL STIFFNESS MATRIX
A_MODEL_SIZE *size; /* DATA STRUCTURE OF GLOBAL ST RUCT SIZE
A_TIME *time; /* DATA STRUCTURE FOR TIME PARAMETE RS
A_NEW_RAPH *nr; /* DATA STRUCTURE--NEWTON-RAPHSON PARAMS
A_TOLERANCE tol; /* DATA STRUCTURE OF PROGRAM TOLE RANCES
A_FLAGS *flag; /* DATA STRUCTURE OF PROGRAM FLAGS
A_ACCEL acclgf]; /* DATA STRUCTURE OF ACCELEROGRAM PARAMS
A_LOADHIST Ihist[]; /* DATA STRUCTURE OF LOAD HISTO RY PARAMS
A_JT_JOINT it0; /* DATA STRUCTURE FOR SINGLE JOIN T
A_CFT_BC cft[]; /* DATA STRUCTURE FOR CFT BEAM-COL UMN
A_STL_BC sti]; /* DATA STRUCTURE FOR STEEL BEAM-C OLUMN
A_GLOBAL global[]; /* DATA STRUCTURE OF DOF-BASED V ARIABLES
{
char  *calloc(); /* SYSTEM MEMORY ALLOCATOR */
long  status =1L; /* RETURN STATUS */
long ctr =0L; /* COUNTER */
long n =0L; /* ELEMENT COUNTER */

/* DATA STRUCTURE OF DOF-BAS ED VARIABLES
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double t =0.0; /* CURRENT TIME
double displ_y[ 4L ]; /* STORY YIELD DISPLACEMENT
double *soln = ( double *)0; /* VEC PASSED TO AND

/* USER SCREEN INFO */
printf( "\n\n**** Beginning Static Analysis ****" )

!
/* ALLOCATE MEMORY FOR SOLUTION VECTOR; INITIALIZE

/

soln = (double *) calloc ( (unsigned) (s

(‘unsigned ) ( sizeof(*soln) ) );
for (ctr = OL; ctr < size->num_dofs + 1L; ctr++)
soln[ ctr] = 0.0;
for (ctr= }OL; ctr < 4L; ctr++)

displ_y[ ctr ] = 0.0;
}

!
/* CALC LENGTHS, DIR. COSINES, AND ROTATION MATRICE

/

[*** CFT ELEMENTS ***/
for (n =1L; ( n <= size->num_cft_elems ) && ( sta

{
if (! a_cft_update( n, jt, cft, global ) )

status = OL;
printf( "\nCFT element calculations failed.\n" );

}
}

[*** STEEL ELEMENTS ***/
for (n=1L; ( n <= size->num_stl_elems ) && ( sta

{
if (! a_stl_update( n, jt, stl, global ) )
{

status = OL;
printf( "\nSteel element calculations failed.\n"

}

/ /
/* ADD ELEMENT LOADS TO JOINTS */
/

/

[*** CFT ELEMENTS ***/
for (n=1L; ( n <= size->num_cft_elems ) && ( sta

{
if (!a_cft_distr(n, flag, jt, cft))

status = OL;
printf( "\nCFT element load calcs failed.\n" );

}
}

[*** STEEL ELEMENTS ***/
for (n=1L; ( n <= size->num_stl_elems ) && ( sta

{
if (!a_stl_distr(n, flag, jt, stl))
{

status = OL;
printf( "\nSteel element load calcs failed.\n" );

}

/ /
/* PRINT STRUCTURAL INFORMATION */
/

/
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if (!a_io_output(t, displ_y, size, time, nr, fla

global ) && ( status ) )

status = OL;
printf( "\nOutput of structural information failed

/

g, acclg, jt, cft, stl,

\n");

*********************/

/********************* B EG I N STATI C ANALYSI S *k *********************/

/

t = time->step;

while ( (t <= (time->total + .01 * time->step ) )

printf( "\N\N\N*F**EFFEEREE Time = %6|f **********"’
printf( "\n

nr->conv = 0L;

/ /
/* SET BEGINNING OF STEP VALUES */
/ /

if (!a_nr_init_step(t, size, flag, acclg, Ihist
global ) && ( status ) )

status = OL;
printf( "\nFailure in step initialization routine

/

*********************/

&& (status))

t);

**\n");

, Jt, cft, stl,

An");

**********************/

/******************* N EWTO N - RAP H SO N ITE RAT I O N ********************/

/

for ( nr->iter_ct = 1L; ( nr->iter_ct <= nr->ite

(!'nr->conv ) && ( status ); nr->iter_ct++)
if (nr->iter_max > 1L )

printf( "\pxxkkkkkkk|targtion Y|k

/* STIFFNESS CALCULATION */

/ /
/* CALCULATE ELEMENT STIFFNESS MATRICES */
/ /

/*** CFT ELEMENTS ***/
for (n = 1L; ( n <= size->num_cft_elems ) && ( st

if (! a_cft_stiffness( n, size, flag, jt, cft)

status = OL;
printf( "\nMember stiffness calcs failed.\n" );
}

}

/*** STEEL ELEMENTS ***/
for (n = 1L; ( n <= size->num_stl_elems ) && ( st

if (! a_stl_stiffness( n, size, flag, jt, stl)
status = OL;

printf( "\nMember stiffness calcs failed.\n" );

}

/ /
/* ASSEMBLE GLOBAL STIFFNESS MATRIX, kt */
/ /
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if (! a_k_assemble( diag, kt, size, cft, stl ) &&

status = OL;
printf( "\nAssembly of global matrix failed.\n" )
}
/* GLOBAL MATRICES */

/ /

/* FACTOR GLOBAL STIFFNESS MATRIX */

/ /

if (status)

printf( "\n** Factoring Global Stiffness Matrix *
if (! a_eq_factor( diag, kt, size))

status = OL;
printf( "\nFactorization of K matrix failed.\n"

/* LOADS */

}
/ /
/* ASSEMBLE THE GLOBAL INCREMENTAL LOAD VECTOR */
/ /

if (! a_load_static( size, nr, lhist, jt, global

status = OL;
printf( "Assembly of global load vector failed. \
}

/ /

/* COMPUTE DISTRIBUTED LOAD MULTIPLIERS */

/ /

else if (! a_load_distr( size, nr, jt, cft, stl,

status = OL;
printf( "\nCalc of distributed load multipliers f

/* SOLVE */

!
/* PASS {dR} TO SOLVER; SOLVE THE SYSTEM OF EQUATI
!

for (ctr = 1L; ( ctr <= size->num_dofs ) && ( sta

{
soln[ ctr ] = global[ ctr ].dr;

printf( "\n** Solving for Displacements ** \n" );
if (! a_eq_solve( diag, kt, soln, size ) )

status = OL;
printf( "\nSolution for displacements failed.\n"

}
for ( ctr = 1L; ( ctr <= size->num_dofs ) && ( sta

global[ ctr ].dqi = soln[ ctr J;
}

I* UPDATE */

/ /
/* UPDATE NODAL COORDINATES AND DISPLACEMENTS */
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/ /
if (! a_jt_update( size, nr, flag, jt, global ) )
{

status = OL;
printf( "\nUpdate of joints failed.\n" );
}

/* RECOVER FORCES */

/ /
/* RECOVER LOCAL MEMBER FORCES */
/ /

if ( status )
printf( "\n** Recovering Forces **\n" );

[*** CFT ELEMENTS ***/

if (! a_cft_frecovery( size, flag, jt, cft, glob al))
status = OL;
printf( "\nCFT force recovery failed.\n" );
}

[*** STEEL ELEMENTS ***/

else if (! a_stl_frecovery( size, flag, jt, stl, global))
status = OL;

printf( "\nSteel force recovery failed.\n" );

}
/ /
/* UPDATE MEMBERS; ROTATE FORCES */
/ /
if (status)
[*** CFT ELEMENTS ***/
if (! a_cft_rotate( size, nr, flag, lhist, jt, c ft, global ) )
{ /* a_cft_update CALLED INSIDE THIS FUNCTION */
status = OL;

printf( "\nCFT member rotation failed.\n" );

[** STEEL ELEMENTS ***/

else if (! a_stl_rotate( size, nr, flag, lhist, jt, stl,
global ) )
/* a_stl_update CALLED INSIDE THIS FUNCTION */
status = OL;
printf( "\nSteel member rotation failed.\n" );
}
}
/* PLASTICITY */
/ *********************/
/* DETERMINE THE PLASTICITY STATE AT EACH MEMBER E  ND; UPDATE SURFACES */
/ *********************/

if ((flag->kp ) && (' status))
printf( "\n** Plasticity Analysis **\n" );

[*** CFT ELEMENTS ***/
if (! a_pl_cft_state( size, nr, tol, flag, cft, global ) )

status = OL;
printf( "\nCFT hinge check failed.\n" );

}

[*** STEEL ELEMENTS ***/
else if (! a_pl_stl_state( size, nr, tol, flag, stl, global ) )
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status = OL;
printf( "\nSteel hinge check failed.\n");
}

}

/* CONVERGENCE CHECK */

/ /
/* CHECK FOR ITERATION CONVERGENCE */
/ /

if (status)
if (! a_nr_conv( size, nr, tol, flag, jt, global ))

status = OL;
printf( "\nConvergence check failed.\n" );

}
} [* for ( nr->iter_ct = 1L; ...; nr->iter_ct++) */
/***************** END NEWTON_RAPHSON ITERATIO N LOOP *****************/

/* PRINT RESULTS */

/ /

/* OUTPUT TIME STEP RESPONSE */
/ /

if (status)

printf( "\n** Writing Output of Step **\n");

if (! a_io_output( t, displ_y, size, time, nr, f lag, acclg,
jt, cft, stl, global ) )

status = OL;
printf( "\nOutput of time step failed.\n" );

}
/ *************/
/* UPDATE MAX AND MIN DISPLS AND FORCES (FOR OUTPU T PURPOSES) */
/ *************/
if ( flag->maxmin )
if (! status)
{ /* STRUCTURE HAS FAILED OR AN ERROR OCCURRED * [/
t = time->total; /* This assures values are pri nted */
}
if (! a_io_maxmin(t, size, time, flag, jt, cft, stl, global ))
status = OL;
printf( "\nCalculation of max/min values failed. \n");
}
}
/ /
/* INCREMENT TIME; EMPTY INTERNAL BUFFER */
/ /
t += time->step;
fflush( stdout );
} /* while (t <= time->total ) */
/ END TIME STEP LOOP ** /
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/ /
/* FREE DYNAMICALLY-ALLOCATED MEMORY */
/ /

cfree(soln);

return( status ); /* RETURN TO cftmacro.c */

Kkkkkkkkkkkk

MINNESOTA *

Kkkkkkkkkkkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF

*  FUNCTION- a_el_calcs
@(#) miscellaneous ELement CALCulationS
* CALLED FROM- cftmacro

*  ABSTRACT- This function performs the calculat ion of variables that are

independent of the time or load, including plas ticity
variables, and effective CFT stiffness paramete rs.
/

#include <math.h> /* C MATH FUNCTIONS *
#include <stdio.h> /* C 1/0 FUNCTIONS */
#include "a_mac.h" /* MACRO DEFINITIONS */
#include "a_extern.h" /* EXTERNAL VARIABLES & PROT OTYPES
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN
#include "a_stl_el.h" /* DATA STRUCTURE FOR STEEL BEAM-COLUMN
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS
long a_el_calcs( size, flag, cft, stl )
A_MODEL_SIZE  size; /* DATA STRUCTURE OF GLOBAL STR UCT SIZE
A_FLAGS flag; /* DATA STRUCTURE OF PROGRAM FLAGS
A_CFT_BC cft[]; /* DATA STRUCTURE FOR CFT BEAM-COL UMN
A_STL_BC stif]; /* DATA STRUCTURE FOR STEEL BEAM-C OLUMN
{
long  status =1L; /* RETURN STATUS *
long n =0L; /* ELEMENT COUNTER */
double na_z =0.0; * MAJOR NEUTRAL AXIS OF CROSS SECTION
double na_y =0.0; /* MINOR NEUTRAL AXIS OF CROSS SECTION
double dt =0.0; /* CFT MAJOR AXIS D/t RATIO */
double bt =0.0; /* CFT MINOR AXIS D/t RATIO */
double fcy =0.0; /* RATIO OF fc TO fy */
double d_c =0.0; /* DEPTH OF CONCRETE */
double b_c =0.0; /* WIDTH OF CONCRETE *
double dt_cl1 =0.0; /* COEFFICIENT c1 USING MAJOR AXIS D/t
double bt_cl1 =0.0; /* COEFFICIENT c1 USING MINOR AXIS D/t
double dt_c2 =0.0; /* COEFFICIENT c2 USING MAJOR AXIS D/t
double bt_c2 =0.0; /* COEFFICIENT c2 USING MINOR AXIS D/t
double dt_c3 =0.0; /* COEFFICIENT ¢3 USING MAJOR AXIS D/t
double bt_c3 =0.0; /* COEFFICIENT ¢3 USING MINOR AXIS D/t
double dt_c4 =0.0; /* COEFFICIENT c4 USING MAJOR AXIS D/t
double bt_c4 =0.0; /* COEFFICIENT c4 USING MINOR AXIS D/t

/ /
[**** STEEL ELEMENTS ****/
/

/

for (n = 1L; n <= size.num_stl_elems; n++)
{
/ /
/* COMPUTE POLAR MOMENT OF INERTIA */
/ /
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stif n ].i_p = sqrt( pow( stil n ].i_y, 2') + pow(

/ /

/* COMPUTE NOMINAL STRENGTHS */
/ /

stifn].po  =stl[n].area * stl[ n ].fy;

stin]l.myo =stl[n].z_y*stl[n].fy;
stifn].mzo =stl[n].z_z* st n].fy;
stin].myy =stin]s_y*stl[n]fy;
stifn].mzy =stl[n].s_z*stl[ n].fy;

/**********************/

[¥***% CET ELEMENTS ****/

/**********************/

for (n =1L; n <= size.num_cft_elems; n++)

/
/* CALCULATE AREAS, MOMENTS OF INERTIA, AND SECTIO

/

d_c = cft[ nld-20*cft{n]t /*CONCR DEP
b_c cftfn]lb-2.0*cft{n]t /*CONCR WIDT
cft{ n].a_conc =d_c*b_c;
cftfnl.a_sti=cft[n].d*cf{n].b-cft[ n

cft{nliy_c =pow(b_c,3)*d_c/12.0;

cftfnliz_c =pow(d_c,3)*b_c/12.0;

if (! cft[ n].section) /* USER INPUT SECTION *

cftfnliz_s=(cftfn].b*pow(cftfn]d, 3
b_c*pow(d_c,3))/12.0;
cft[n].iy_s:(cft[n]d*pow(cft[n]b 3
d_c*pow(b_c,3))/12.0;
cft{n].s_z =cft{nliz_s/(cft[n].d/2.
cftfnl]s_y =cftfn]iy_s/(cftfn]b/2.
cftfn].ix =4.0*cft[ n].t* pow( (cftn
cftfn]t)*(cftfn]d-cftfn]t), 2)
(20*(cftfn].b-cftfn].t)+
20*(cftfn]d-cftffn]t));
cft[ n ].kpi_s= cft[ n ].a_stl * 0.284;

cftfnlip = sqrt( pow( cft[ n L.iy_s, 2) + pow(

cft{ n].gmod_c =cftfn].emod_c/(20*(1+

/ /

/* COMPUTE EFFECTIVE CFT STIFFNESS PARAMETERS */
/ /

cft{ n].ec_in = cft[ n ].emod_c;

cftfnleiy =cftfn].emod_s*cft{n]iy_s+
(cftfn].emod_c*cft[ n].iy_c);

cftfn]eiz =cftfn].emod_s*cft{nl.iz_s+
(cftfn].emod_c *cft[ n].iz_c);

cftfn].ea =cft{n].emod_s * cft{ n].a_stl +
cft[ n J.emod_c * cft[ n ].a_conc;
cftfn].gj =cft{ n].gmod_s * cft[ n L.ix;

cft[ n ].kpi_c = cft{ n J.wt_c * cft{ n ].a_conc;
cftfn].kpi =cft[ n].kpi_s + cft[ n ].kpi_c;

/ /
/* COMPUTE NOMINAL STRENGTHS */
/ /

cftfn].fct =7.5*sqrt( 1000*cft[n]f )/
cftfn].po =(cftfn].a_stl* cft[n]fy )+
(cftf n].a_conc * cft[ n ].fc );
cft{ n].ptens = (cft[ n J.a_stl * cft[ n ].fy )
(cft{n].a_conc * cft[ n ].fct);
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cftfn].phi = (cft{n].po-cft{n].ptens)/
(2.0*cftfn].po);

na_z =(0.85*cft[n].fc*(cft{n].b*cfi nlt-20*
cftfn]t*cftin].t) +
0.5*cftfn]fet* ((cftfn].d-cft[n Jt)*
(cftfn].b-2.0*cftfn].t))+
cftfn]fy*(2.0*cftfn]d*cft{n].t ))/
(0.85*cftfn].fc* (cftfn].b-2.0*cft njt)+
0.5*cft{n]fet* (cft{n].b-2.0*cft [n]t)+
cftfn]fy*(4.0*cft{n].t));
nay =(0.85*cft[n].fc*(cft{n].d*cfi nlt-20*
cftfn]t*cftin].t) +
0.5*cftfn]fet*((cftfn].b-cft[n Jt)*
(cftfn].d-2.0*cftfn].t))+
cftfn]fy*(2.0*cftfn]l.b*cft{n].t ))/
(0.85*cftfn].fc* (cft{n].d-2.0*cft [n]t)+
0.5*cft{n].fet* (cft{n].d-2.0*cft [n]t)+
cftfn]fy*(4.0*cft{n].t));
cftfn]mzo=0.85*cftfn]fc*(cftfn]b- 20*cft{n]t)*
0.5*pow((na_z-cftfn]t),2)+05*c ft[ n ].fct *
(cftfn]b-2.0*cftfn].t)*0.5* pow( (cftfn]d-
na_z-cftfn].t),2)+cftfn].fy* (2.0 *cftfn]t*
(0.5*pow(cftfn].d, 2)-cftfn].d*cft [n]t+
pow(na_z,2)+pow(cftfn].t,2)-cftfn ld*na_z)+
(cftfn]b*cftfn]t)*(cftfn]d-cf tffn]t));
cftfn].myo=0.85*cft{n].fc* (cftfn].d- 20*cftfn]t)*
0.5*pow((na_y-cftfn].t),2)+05*c ftin].fet*
(cftfn].d-2.0*cftfn].t)* 0.5 * pow( (cftfn].b-
na_y-cftfn]t),2)+cftfn]fy*(2.0 *cftfn]t*
(0.5*pow(cftfn].b,2)-cft{n].b*cft [n]t+
pow(na_y,2)+pow(cftfn].t 2)-cft[n lb*na_y)+
(cftfn]d*cftfn].t)*(cftfn].b-cf tfnl]t));

cft{n].myy =cft{ n].s_y * cft[ n ].fy;
cftf n ].myy = cft{ n ].s_y * cft[ n ].fy;
cftfn]mzy =cftfn].s_z *cft[ n ].fy;

/ ***********/

/* COMPUTE COEFFICIENTS FOR MAJOR AND MINOR AXIS D /t RATIOS */

/ ***********/

dt =cftfn]d/cft{n]t;

bt =cftfn].b/cft[n].t;

fey =cft[n].fc/cft[ n].fy;

dt_ c1 =1.077 - 0.002646 * dt + 0.00002304 * pow( dt, 2)-1.128e-7 *
pow( dt, 3) + 0.3745 * fcy - 1.299 * pow( fcy, 2)-0.04193
* pow( fcy, 3) - 0.06913 * dt * fcy + 0.000233 9*
pow( dt, 2) * fcy + 0.07542 * dt * pow( fey, 2 );

bt c1 =1.077 - 0.002646 * bt + 0.00002304 * pow( bt,2)-1.128e-7 *
pow( bt, 3) + 0.3745 * fcy - 1.299 * pow( fcy, 2)-0.04193
* pow( fcy, 3) - 0.06913 * bt * fcy + 0.000233 9*
pow( bt, 2) * fcy + 0.07542 * bt * pow( fey, 2 );

dt_ c2 =0.6277 +0.0259 * dt - 0.0003673 * pow( dt ,2)+1.989%-6 *
pow( dt, 3) + 4.496 * fcy - 14.89 * pow( fcy, 2)+2244+*
pow( fcy, 3) + 0.1644 * dt * fcy - 0.0007564 * pow(dt,2)*
fcy - 0.1263 * dt * pow( fey, 2 );

bt c2 =0.6277 +0.0259 * bt - 0.0003673 * pow( bt ,2)+1.989%-6 *
pow( bt, 3) + 4.496 * fcy - 14.89 * pow( fcy, 2)+2244+*
pow( fcy, 3) + 0.1644 * bt * fcy - 0.0007564 * pow( bt,2) *
fcy - 0.1263 * bt * pow( fey, 2 );

dt_c3 =0.4204 +0.08921 * dt - 0.001216 * pow( dt , 2)+0.000005128
* pow( dt, 3) + 4.897 * fcy - 16.51 * pow( fcy ,2)+16.22*
pow( fcy, 3) - 0.1645 * dt * fcy + 0.0007135 * pow(dt,2)*
fcy +0.1199 * dt * pow( fcy, 2);

bt c3 =0.4204 + 0.08921 * bt - 0.001216 * pow( bt , 2)+0.000005128
* pow( bt, 3) + 4.897 * fcy - 16.51 * pow( fcy ,2)+16.22*
pow( fcy, 3) - 0.1645 * bt * fcy + 0.0007135 * pow( bt,2) *
fcy +0.1199 * bt * pow( fcy, 2);

dt_ c4 =0.3456 +0.009121 * dt - 0.000127 * pow( d t,2)+4.979e-7*
pow( dt, 3) - 0.3912 * fcy + 4.545 * pow( fcy, 2)-103*
pow( fcy, 3) - 0.05924 * dt * fcy + 0.0002449 * pow(dt, 2)
*fcy + 0.06592 * dt * pow( fcy, 2);

bt c4 =0.3456 +0.009121 * bt - 0.000127 * pow( b t,2)+4.979e-7*
pow( bt, 3) - 0.3912 * fcy + 4.545 * pow( fcy, 2)-103*
pow( fcy, 3) - 0.05924 * bt * fcy + 0.0002449 * pow( bt, 2)
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*fcy + 0.06592 * bt * pow( fcy, 2);

/ /
/* COMPUTE AVERAGE COEFFICIENT VALUES */
/ /

cftfn].cl =(dt_cl+bt cl)/2.0;
cftfn].c2 =(dt_c2+bt_c2)/2.0;
cftfn].c3 =(dt_c3+bt c3)/2.0;
cftfn].c4 =(dt_c4+bt_c4)/2.0;
} /* for (n = 1L; n <= size.num_cft_elems; n++)

return( status );
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* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

K*kkkkkkkkkk

*  FUNCTION- a_jt_update
@(#) JOINT parameters UPDATE
* CALLED FROM- a_drv_dynamic, a_drv_static
*  ABSTRACT- Calculate new nodal coordinates, di splacements, velocities,

and accelerations based upon the calculated globa
displacements.

/

#include <math.h> /* C MATH FUNCTIONS */

#include <stdio.h> /* C 1/0 FUNCTIONS */

#include "a_mac.h" /* MACRO DEFINITIONS */

#include "a_extern.h" /* EXTERNAL VARIABLES & PROT OTYPES */
#include "a_jt.h" /* DATA STRUCTURE DEFINING JOINT PROPS */
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS */
#include "a_global.h" /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */

long  a_jt update( size, nr, flag, jt, global )

A_MODEL_SIZE *size; /* DATA STRUCTURE OF GLOBAL ST RUCTURE SIZE*/
A_NEW_RAPH *nr; /* DATA STRUCTURE OF NEWTON-RAPHSO N PARAMS*/
A_FLAGS *flag; /* DATA STRUCTURE OF PROGRAM FLAGS *
A_JT_JOINT itl; /* DATA STRUCTURE FOR SINGLE JOIN T */
A_GLOBAL globalfl; /* DATA STRUCTURE OF DOF-BASED V ARIABLES */
{

long  status =1L; /* RETURN STATUS */

long joint =0L; /* JOINT COUNTER *

long ki1 =0L; /* VARIABLE TO STORE X-TRANSLATION D OF *
long k2 =0L; /* VARIABLE TO STORE Y-TRANSLATION D OF *
long k3 =0L; /* VARIABLE TO STORE Z-TRANSLATION D OF *
long  dof =0L; /* DEGREE-OF-FREEDOM COUNTER *

/ /
/* CALCULATE NEW JOINT COORDINATES */
/ /

if (flag->kg ) /* UPDATE COORDS ONLY IF PERFRMING GEOM NONL ANALYSIS */
for (joint = 1L; joint <= size->num_jts; joint++ )

k1 = jt[ joint ].jcode[ 1 ];
if (k1!=0L)

jt[ joint ].co_i.x = jt[ joint ].co.x;
jt[ joint J.co.x += global[ k1 ].dqi;

k2 = jt[ joint ].jcode[ 2 ];
if (k2!=0L)

{
jt[ joint ].co_i.y =jt[ joint].co.y;
jt[ joint J.co.y += global[ k2 ].dqi;

k3 = jt[ joint ].jcode[ 3 ];
if (k3!=0L)

jt[ joint ].co_i.z =jt[ joint ].co.z;
jt[ joint J.co.z += global[ k3 ].dqi;
}

}

return( status );
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* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *
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*  FUNCTION- a_load_static
@(#) assembly of the LOAD vector -- STATIC portio n
* CALLED FROM- a_drv_dynamic, a_drv_static

*  ABSTRACT- This function obtains the amount of applied load as a fraction
of the total load. This is obtained by determini ng the
current position on the load history curve and co mputing the

load fraction based upon the current time.

/

#include <math.h> /* C MATH FUNCTIONS */

#include <stdio.h> /* C 1/0 FUNCTIONS */

#include <string.h> /* C STRING FUNCTIONS */

#include "a_mac.h" /* MACRO DEFINITIONS */

#include "a_extern.h" /* EXTERNAL VARIABLES & PROT OTYPES */
#include "a_jt.h" /* DATA STRUCTURE DEFINING JOINT PROPS */
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS */
#include "a_global.h" /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */

long a_load_static( size, nr, lhist, jt, global )

A_MODEL_SIZE *size; /* DATA STRUCTURE OF GLOBAL ST RUCT SIZE *
A_NEW_RAPH *nr, /* DATA STRUCTURE OF NEWTON-RAPHSO N DATA *
A_LOADHIST Ihist(]; /* DATA STRUCTURE OF LOAD HISTO RY PARAMS */
A_JT_JOINT il /* DATA STRUCTURE FOR SINGLE JOIN T */
A_GLOBAL globall]; /* DATA STRUCTURE OF DOF-BASED V ARIABLES *
{

long  status = 1L; /* RETURN STATUS */

long jnt =0L; /* JOINT COUNTER *

long  dof =0L; /* JOINT DOF COUNTER *

long |hnum =0L; /* LOAD HISTORY NUMBER *

long Kk =0L; /* CURRENT GLOBAL DEGREE-OF-FREEDOM */

/* USER SCREEN INFO */
printf( "\n** Assembling Load Vector **\n" );

/ *******/
/* CALCULATE THE ITERATIVE GLOBAL LOAD VECTOR, glob al.dr*/
/ *******/

for (jnt = 1L; jnt <= size->num_jts; jnt++)
{
for (dof = 1L; dof <= A_JT_DOF; dof++)
{
if ( jt[ jnt ].jcode[ dof ] 1= OL )

{

k = jt[ jnt ].jcode[ dof ;
lhnum = jt[ jnt ].Ihist[ dof ];

x%[

/
/* COMPUTE TOTAL GLOBAL LOAD VECTOR--1ST ITERATION  */
/ *x/

if (nr->iter_ct==1L)

global[ k ].r2 = lhist[ lhnum ].Idfrac2 * jt[ jnt ].load[dof] +
Ihist[ 1L ].Idfrac2 * jt[ jnt ].load1[ dof ] +
Ihist[ 2L ].Idfrac2 * jt[ jnt ].load2[ dof ];

jt[ jnt 1.r2[ dof ] = global[ k ].r2;

}
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/* COMPUTE ITERATIVE GLOBAL LOADS */
/ /

global[ k ].dr = global[ k ].r2 + global[ k ].dyn
+ (jt[jnt].ma[ dof])
- (jt[ jnt ].fA[ dof ] + jt[ jnt ].f2_i[ do f1);

/* INITIALIZE INCREMENTAL JOINT FORCE--MUST BE 0 EN TERING rotate */

jt[ jnt ].df_i[ dof ] = 0.0;

} *if (jt[ jnt ].jcode[ dof ] 1=0L ) */
} [* for ( dof = 1L; dof <= A_JT_DOF; dof++ ) */
} [* for (jnt = 1L; jnt <= size->num_jts; jnt++) */

return( status );

*kkkkkkkkkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *
*kkkkkkkkkk
*  FUNCTION- a_nr_init_step
@(#) Newton-Raphson iteration--INITialization of first STEP

* CALLED FROM- a_drv_dynamic, a_drv_static

*  ABSTRACT- This function sets the beginning-of
displacements for the current time (load) step.

-step forces and

/

#include <math.h> /* C MATH FUNCTIONS *
#include <stdio.h> /* C /O FUNCTIONS */
#include <string.h> /* C STRING FUNCTIONS */
#include "a_mac.h" /* MACRO DEFINITIONS */
#include "a_extern.h" /* EXTERNAL VARIABLES */
#include "sstmatch.h" /* TOLERANCE COMPARISONS *
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN
#include "a_stl_el.h" /* DATA STRUCTURE FOR STEEL BEAM-COLUMN
#include "a_global.h" /* DATA STRUCTURE OF DOF-BAS ED VARIABLES

long a_nr_init_step(t, size, flag, acclg, lhist, | t, cft, stl, global )
double t; /* CURRENT TIME *
A_MODEL_SIZE *size; /* DATA STRUCTURE OF GLOBAL ST RUC. SIZE
A_FLAGS *flag; /* DATA STRUCTURE OF PROGRAM FLAGS

A_ACCEL acclg[]; /* DATA STRUCTURE OF ACCELEROGRAM PARAMS
A_LOADHIST Ihist[]; /* DATA STRUCTURE OF LOAD HISTO RY POINTS
A_JT_JOINT il /* DATA STRUCTURE FOR SINGLE JOIN T
A_CFT_BC cft[]; /* DATA STRUCTURE FOR CFT BEAM-COL UMN
A_STL_BC stif]; /* DATA STRUCTURE FOR STEEL BEAM-C OLUMN
A_GLOBAL globalfl; /* DATA STRUCTURE OF DOF-BASED V ARIABLES
{

long  status =1L; /* RETURN STATUS *
long i =0L; /* ELEMENT END INDEX */
long | =0L; /* ELEMENT END INDEX *
long n =0L; /* ELEMENT COUNTER *
long joint =0L; /* JOINT COUNTER *
long  dof =0L; /* DOF COUNTER *
long  lhnum =0L; /* LOAD HISTORY NUMBER */
long acclnum= OL; /* ACCELEROGRAM NUMBER */
long  coord =0L; /* VARIABLE DETERMINING CURRENT SEGMENT
long  curve =0L; /* VARIABLE DETERMINING CURRENT SEGMENT
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/* OF TIME HISTORY OR ACCELEROGRAM CURVE *

/ /
/* SET BEG-OF-STEP CFT FORCE VALUES */
/ /

for (n = 1L; n <= size->num_cft_elems; n++)

{
for (dof = 1L; dof <= A_CFT_NUM_DOF; dof++)

{
cftfn].df_i[ dof] =0.0;
cfffn].fl_i[dof] =0.0;
cftfn].f2_i[dof] =0.0;

= cft[ n ].f2[ dof ];

cft[ n ].f1[ dof ]
}

/ /
/* SET BEG-OF-STEP STEEL FORCE VALUES */
/ /

for (n =1L; n <= size->num_stl_elems; n++)
{
for (dof = 1L; dof <= A_STL_NUM_DOF; dof++ )
stif n].df_i[ dof] =0.0;
stiin].fl_ifdof] =0.0;

stif n].f2_i[dof] =0.0;
sti[ n ].f1[ dof ] =stl[ n ].f2[ dof ];
}

}

/ /
/* SET BEG-OF-STEP JOINT FORCES */
/ /

for (joint = 1L; joint <= size->num_jts; joint++ )
for (dof = 1L; dof <= A_JT_DOF; dof++ )
{
jt[ joint ].df_i[ dof ] = 0.0;
jt[ joint ].f2_i[ dof ] = 0.0;
jt{ joint ].f1[ dof ] = jt[ joint 1.f2[ dof ];
}

}

/ /
/* UPDATE GLOBAL PARAMETERS */
/

/

for ( dof = 1L; dof <= size->num_dofs; dof++)

{

global[ dof ].dr =0.0;

global[ dof ].r1 = global[ dof ].r2;
global[ dof ].g2i =0.0;

global[ dof ].q1 = global[ dof 1.92;
global[ dof ].v1 = global[ dof ].v2;
global[ dof ].v1_i = global[ dof ].v2;
global[ dof ].al = global[ dof ].a2;
global[ dof J.al_i = global[ dof ].a2;
}

***********************/

!
/* FIND LOCATIONS ON LOAD CURVES AND ACCELEROGRAMS FOR CURRENT TIME STEP */

***********************/

/

/* GET LOCATION ON LOAD HISTORY CURVES */
for (Thnum = 1L; lhnum <= size->num_lhs; Ihnum++)

for ( coord = 1L; coord <= Ihist[ Ihnum ].num_lhpt s; coord++ )

{
if (t <= lhist[ Ihnum ].time_pt[ coord ] + 0.000 0001)
{
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Ihist[ Ihnum ].curve = coord;

break;
}
}
}
/ *********/
/* CALCULATE THE LOAD FRACTION FOR EACH LOAD HISTOR Y CURVE */
/ *********/
for (Thnum = 1L; ( lhnum <= size->num_lhs ) && sta tus; Ihnum++)
{
curve = lhist[ lhnum ].curve;
Ihist[ Ihnum ].Idfracl = Ihist[ Ihnum ].ldfrac2;
if (! SS_TOL_SAME( ( Ihist[ Ihnum ].time_p t[ curve] -
Ihist[ Ihnum ].time_pt[ curve - 1L ]), 0. 0))
{
Ihist[ Ihnum ].Idfrac2 = Ihist[ Ihnum ].load_pt[ curve - 1L ] +
(t- Ihist[ Ihnum ].time_pt[ curve - 1L ]) *
('Ihist[ Ihnum ].load_pt[ curve ] -
Ihist[ Ihnum ].load_pt[ curve - 1L )/
('Ihist[ Ihnum ].time_pt[ curve ] -
Ihist[ Ihnum ].time_pt[ curve - 1L ]);
else
status = OL;
printf( "\n\nDivide by zero error for load histor y %Id", lhnum)
printf( "\nCheck input under *A_LOADHIST for erro rs.\n\n");
}

return( status );

*

*

*
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* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

Kkkkkkkkkkkk

FUNCTION- a_pl_cft_dist.c

@(#) for CFT element ends: calc. DISTance between surfaces

CALLED FROM- a_pl_cft_state

ABSTRACT- This function calculates the distan ce between the loading
surface and the bounding surface by using the Mro Z vector.
If the end became plastic for the first time this step, din is

calculated; otherwise d is calculated.

/

#include <math.h> /* C MATH FUNCTIONS *
#include <stdio.h> /* C I/O FUNCTIONS *
#include <string.h> /* C STRING FUNCTIONS */
#include "a_mac.h" /* MACRO DEFINITIONS */
#include "a_extern.h" /* EXTERNAL VARIABLES */
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS

long a_pl_cft_dist( n, end, tol, cft)

long n; /* CURRENT ELEMENT */
long end; /* CURRENT END: OL =I-END */

I* 1L = J-END *
A_TOLERANCE tol; /* DATA STRUCTURE OF PROGRAM TOLE RANCES
A_CFT_BC cft[]; /* DATA STRUCTURE FOR CFT BEAM-COL UMN
{
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long  status =1L;
long ctrl  =0L;

long i =0L;
long neg =1L;
double rho =0.0;
double rl =0.0;
double rb =0.0;
double al[4];

double ab[4];
double s[4];

/*********************/

/* INITIALIZE ARRAYS */

/*********************/

/* RETURN STATUS *
/* COUNTER */
/* FORCE INDEX *
/* AXIAL FORCE MULTIPLIER
POS = 1L (DO NOT CHANGE SIGN)
NEG = -1L (NEGATE FORCE VALUE) *
/* RATIO OF B.S. RADIUS TO L.S. RADIUS
/* LOADING SURFACE RADIUS *
/* BOUNDING SURFACE RADIUS *
/* VECTOR CONTAINING L.S. CENTROID S
/* VECTOR CONTAINING B.S. CENTROID S
/* VECTOR OF END OF STEP FORCES *

for (ctrl = OL; ctrl < 4L; ctrl++)

al[ ctr1 1 =0.0;
ab[ ctrl1 ] =0.0;
s[ctrl ] =0.0;
}

/

!
/* CALCULATE FORCE INDEX */

/ /

i=6L*end;

!
/* IF J-END, THEN NEGATE THE FORCE SUCH THAT A COMP

/

/

/

(i==0L)?(neg=POS):(neg=NEG);

/

!
/* SET SHORTENED VARIABLES */

/ /

rho =cft[ n].rho[ end J;

rl =cft{n].Is_rad[end ];

rb =cft{n].bs_rad[ end ];

al[ 1]=cft[ n ].Is_cent[ end ].p + cft[ n ].phi * 1l * cft[ n ].po;

al[ 2 ]= cft[ n ].Is_cent[ end ].my;
al[ 3 ]=cft[ n ].Is_cent[ end ].mz;

ab[ 1 ]= cft[ n ].bs_cent[ end ].p + cft[ n ].phi *rb * cft[ n ].po;
ab[ 2 J= cft[ n ].bs_cent[ end ].my;
ab[ 3 ]= cft[ n ].bs_cent[ end ].mz;

s[1] =cft{n].f2[1 +i]* neg;
s[2] =cft{n].f2[5+i];
s[3] =cftfn]f2[6+i];

/

!
/* CALCULATE MROZ VECTOR */

/ /

cftfn].mroz[end ].p =(rho-1L)*s[1]-( rho*al[1]-ab[1]);
cftf n].mroz[ end ].my = (rho-1L)*s[2]-( rho*al[2]-ab[2]);
cftfn].mroz[end ].mz=(rho-1L)*s[3]-( rho*al[3]-ab[3]);

/**********************/

/* CALCULATE DISTANCE */

/**********************/

/* IF THE FORCE POINT IS ON THE B.S., SETd EQUAL T O ZERO */

if (cft{n].surffend ] ==BS)

cftfn].distfend] =0.0;
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}

/* OTHERWISE COMPUTE ACCORDING TO THE MROZ VECTOR #
else if (cft[ n ].state[ end ] == PL_IN)) /% INIT IAL BREACH */
cft[ n ].dist_in[ end ] = sqrt( pow( cft[ n ].mroz [end].p,2)+

pow( cft[ n ].mroz[ end ].my, 2 ) +
pow( cft[ n l.mroz[ end ].mz, 2) );

cftfn].distfend] =cftfn].dist_infend]-t ol.surf;
}

elseif (cft[ n].statefend ] == PL ) /* END WAS PLASTIC AT THE BEG OF STEP */
cft[ n ].dist[ end ] = sqrt( pow( cft[ n ].mroz[ e ndl.p,2)+

pow( cft[ n ].mroz[ end ].my, 2 ) +
pow( cft[ n l.mroz[ end ].mz, 2));

if (cft[ n].dist[ end ] == cft[ n ].dist_in[ end 1

cft[ n ].dist[ end ] = cft[ n ].dist_in[ end ] - tol.surf;
}

return( status );

Kkkkkkkkkkkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *
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*  FUNCTION- a_pl_cft_drift.c
@(#) CFT element force point DRIFT control

* CALLED FROM- a_pl_cft_state

*  ABSTRACT- This function moves the end of step force point (which may lie
either beyond or beneath the L.S.) back to the lo ading surface
by moving normal to the axial force axis. The pr ocedure
entails finding the vector that crosses the L.S., then
performing the bisection algorithm on this vector until the
force point is on the L.S. w/in a tol.

Following drift control back to the LS, the shear s are
adjusted to equilibrate the moments that may have been alter
by the drift control. Except for torsion, tis pr ocedure
ensures element equilibrium, since axial forces a re not altered.
Note: if the force point is beyond the bounding s urface, other
functions have already ensured that the two surfa ces are
touching. Therefore moving to the L.S. will put the force

point on or w/in a tolerance of the B.S.

/

#include <math.h> /* C MATH FUNCTIONS *

#include <stdio.h> /* C 1/0 FUNCTIONS */

#include <string.h> /* C STRING FUNCTIONS *

#include "a_mac.h" /* MACRO DEFINITIONS */

#include "a_extern.h" /* EXTERNAL VARIABLES */

#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN */
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS *
#definelN oL

#define OUT 1L

long a_pl_cft_drift( n, end, tol, cft)
long n; /* CURRENT ELEMENT *
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long end, /* CURRENT ELEMENT END

*

A_TOLERANCE tol; /* DATA STRUCTURE OF TOLERANCES *
A_CFT_BC cft[l; /* DATA STRUCTURE FOR CFT BEAM-COL UMN *
{

long  status =1L; /* RETURN STATUS */

long i =0L; /* FORCE INDEX *

long done =0L; /* FLAG TO INDICATE COMPLETION OF BISEC *
long  fpt =0L; /* LOCATION OF FORCE PT RELATIVE TO L.S.

OL = IN (inside L.S.)

1L = OUT (outside L.S.) */
long  neg =1L; /* AXIAL FORCE MULTIPLIER

POS = 1L (DO NOT CHANGE SIGN)

NEG = -1L (NEGATE FORCE VALUE) *
double eqn =0.0; /* VALUE OF SURFACE EQUATION * /
double eqn_i =0.0; /* VALUE OF LAST STEP SURFACE EQUATION */
double 11 =0.0; /* LOWER AXIAL FORCE PT OF BISECT VEC *
double 12 =0.0; /* LOWER Y-MOMENT FORCE PT OF BIS ECT VEC *
double 13 =0.0; /* LOWER Z-MOMENT FORCE PT OF BIS ECT VEC *
double m1 =0.0; /* MID AXIAL FORCE PT OF BISECT V EC *
double m2 =0.0; /* MID Y-MOMENT FORCE PT OF BISEC TVEC *
double m3 =0.0; /* MID Z-MOMENT FORCE PT OF BISEC T VEC *
double ul =0.0; /* UPPER AXIAL FORCE PT OF BISECT VEC *
double u2 =0.0; /* UPPER Y-MOMENT FORCE PT OF BIS ECT VEC *
double u3 =0.0; /* UPPER Z-MOMENT FORCE PT OF BIS ECT VEC *
double moment =0.0 /* NORMAL OF STRONG AND WK AX IS BENDING *

/ /
/* CALCULATE FORCE INDEX */
/ /

i=6L*end;

!
/*IF J-END, THEN NEGATE THE FORCE SUCH THAT A COMP
!

(i==0L)?(neg=POS):(neg=NEG);

!
/* IF DRIFT IS ALONG AXIAL FORCE AXIS, DO NOT PERFO
!

moment = sqrt( pow( cftfn].f2[5+i]/cft[n]
pow( cftfn1.f2[ 6 +i]/ cft[ n ].mzo, 2

if (moment > tol.surf )

!
/* SET INITIAL ENDPOINTS OF BISECTION VECTOR TO F2

/

ul=(neg*cftfn].f2[1+i]-cft{n].Is_cen
cft{ n].Is_rad[ end ] * cft[ n ].phi * cft[
(cftfn].Is_rad[ end ] * cft{ n].po );
u2=(cftfn].f2[5+i]-cft[n].Is_cent] end
(cftfn].Is_rad[ end ] * cftf n ].myo );
ud=(cftfn].f2[6 +i]-cft[ n].Is_cent[ end
(cftfn].Is_rad[ end ] * cftf n ].mzo );

11 =ul,;
12 =0.0;
13=0.0;

!
/* DETERMINE WHETHER FORCE POINT IS ON THE INSIDE O

/

/* CALL SURFACE EQN ROUTINE; CALCULATES VALUE OF L.
egn =a_pl_cft_surf( n, cft, ul, u2, u3);
(egn< (1.0 +tolsurf))? (fpt=1IN): (fpt
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RM DRIFT CONTROL */

******************/
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/
FORCE PT AND L.S. CENTROID */
/
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nlpo)/

Jmy)/
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*******************/

R OUTSIDE OF L.S. */

*******************/

S. EQN FOR 11, 12, AND I3 */
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/ /
/* IF THE END-OF-STEP POINT IS INSIDE THE L.S., MOV E OUTWARD ALONG THE VECTOR?*/
/* FROM THE CENTROID OF THE L.S. TO THE FORCE POINT IN INCREMENTS EQUAL TO 10%/

/* TIMES THE L.S. TOLERANCE UNTIL THE L.S. IS CROSS ED */
/ /

if (fpt==1IN)
while (egn < (1.0 + tol.surf))
{

u2 +=10.0 * tol.surf * (u2 - 12);
u3 +=10.0 * tol.surf * (u3 - I13);

eqn = a_pl_cft_surf( n, cft, ul, u2, u3d);
}

}
/ ****/
/* PERFORM BISECTION ON VECTOR WITH ENDPOINTS u AND | */
/ ****/

/* COMPUTE INITIAL MIDPOINT OF BISECTION VECTOR */
ml=(l1+ul)/2.0;
m2=(12+u2)/2.0;
m3=(I13+u3)/2.0;

egn =a_pl_cft_surf( n, cft, m1, m2, m3);

/* CHECK MIDPOINT OF VECTOR AGAINST L.S. IF NOT ON L.S. W/l A TOLERANCE, *
/* BISECT THE SEGMENT OF THE VECTOR CROSSING THE L. S AND REPEAT STEPS WITH *
/* THE NEW MIDPOINT *

while (! done)
eqn_i = eqn;

if (eqn > (1.0 + tol.surf) )
{

u2 =mz2; /* ASSIGN UPPER FORCE POINT TO MIDPT * /
u3 =ma3;
m2=(12+u2)/2.0; /* BISECT VECTOR */

m3=(13+u3)/2.0;
eqn = a_pl_cft_surf( n, cft, m1, m2, m3);

}
elseif (eqn<1.0)

12 =m2; /* ASSIGN LOWER FORCE POINT OT MIDPT */
13=m3;
m2=(12+u2)/2.0; /* BISECT VECTOR */

m3=(13+u3)/2.0;
eqn = a_pl_cft_surf( n, cft, m1, m2, m3);
else

{
done = 1L;

if ((!done) && (eqn_i==eqn))
Ejone =1L;

}
} /* while (! done ) */

/ /
/* COMPUTE NEW f2 AND INCREMENTAL FORCES */
/ /

cftfn].f2[5+i]=m2* (cft[ n].Is_rad[ end ]*cftfn].myo) +
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cft[ n ].Is_cent[ end ].my;

cftfn].f2[6 +i]=m3* (cft[ n ].Is_rad[ end

]*cftfn].mzo) +

cft[ n ].Is_cent[ end ].mz;

cffn ]2 i[5 +i]=cf[n ][5 +i]-cft
cffn ]2 i[6+i]=cf[n].f2[6+i]-cft

cf{nl.df i[5+i]=cf{n]f2i[5+i]-c
cffn].dfi[6+i]=cf[n]f2 i[6+i]-cC

/ /

/

cftfn]f2[2L]=(cft{n].f2[6L] +cft[n].
cftfn].f2[3L]=(cft{n].f2[5L] +cft[n].
cftfn]f2[8L]=-cftfn].f2[2L];
cftfn].f2[9L] =-cft{n].f2[ 3L ];
cftfn]f2_i[2L] =cftfn].f2[2L] - cft[n].
cftfn]f2_i[3L]=cft{n].f2[3L]-cft[n].
cftfn].f2_i[8L]=cftfn].f2[8L]-cft[n].
cftfn]f2_i[9L]=cft{n].f2[9L ] - cft[n].
cftfnldf_if2L]=cft{n].f2_i[2L]-cft[ n
cftfn].df_i[3L]=cftfn].f2_i[3L]-cft[n
cftfn].df_i[8L]=cftfn].f2_i[8L]-cft[n
cftfn].df_i[9L ] =cft{n].f2_i[9L] - cft[ n
} /* if ( moment > tol.surf ) */

return( status );

[n]f[5+i];
[n]f[6+i];

fiin]fLi[5+i];
fiin]fi[6+i];

/* ADJUST SHEARS TO EQUILIBRATE MOMENTS */
/

f2[12L 1)/ cft[ n].;
f2[ 11L 1)/ cf[ n].;

fi2L];
f[3L];
fi[8LT;
fl[oL];

fLi[2L];
TFL3LT;
fi[8L;
TfL[oLT;

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF

*kkkkkkkkkk

MINNESOTA *

*  FUNCTION- a_pl_cft_grad.c

@(#) calculation of the CFT loading surface GRADI

* CALLED FROM- a_pl_cft_state

*kkkkkkkkkk

ent

*  ABSTRACT- This function calculates the gradie nt to the loading surface

for the current element end. It changes the flag
the end is loading or unloading.

signaling if

Note that a positive j-end axial force will be te nsile although

in the plastic formulation a positive force is al ways
compressive. Therefore, before computing the gra dient, the
j-end axial force is negated using the 'negate’ v ariable to
rectify this.
/
#include <math.h> /* C MATH FUNCTIONS *
#include <stdio.h> /* C I/O FUNCTIONS *
#include <string.h> /* C STRING FUNCTIONS */
#include "a_mac.h" /* MACRO DEFINITIONS */
#include "a_extern.h" /* EXTERNAL VARIABLES */
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN
long a_pl_cft_grad( n, end, force, cft)
long n; /* CURRENT ELEMENT *
long end; /* CURRENT ELEMENT END (OL =i, 1L =})
long force; /* FORCES TO USE IN EVAL. OF GRADIENT

F1 =1L (beg of step forces)
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F2 = 2L (end of step forces) */

A_CFT_BC cft[]; /* DATA STRUCTURE FOR CFT BEAM-COL UMN */
{
long  status =1L; /* RETURN STATUS *
long i =0L; /* FORCE INDEX */
long  neg =1L, /* AXIAL FORCE MULTIPLIER

POS = 1L (DO NOT CHANGE SIGN)

NEG = -1L (NEGATE FORCE VALUE) *
double product= 0.0; /* DOT PRODUCT OF GRADIENT A ND INCR FORCE*/

/* VECTOR, IF < 0, UNLOADING HAS OCCURRED*/

double p =0.0 /* AXIAL FORCE - AXIAL BACK FORCE -

PHI * RADIUS * NOM. AXIAL FORCE */
double my =0.0; /* Y-MOMENT FORCE - Y-MOMENT BACK FORCE */
double mz =0.0; /* Z-MOMENT FORCE - Z-MOMENT BACK FORCE */
double po =0.0; /* L.S. RADIUS * NOM. AXIAL FORCE */
double myo =0.0; /*L.S. RADIUS * NOM. Y-MOMENT F ORCE */
double mzo =0.0; /*L.S. RADIUS * NOM. Z-MOMENT F ORCE */
/ /
/* CALCULATE FORCE INDEX */
/ /
i=6L*end;

/ /
/* IF J-END, THEN NEGATE THE FORCE SUCH THAT A COMP RESSIVE LOAD IS POSITIVE */
/ /

(i==0L)?(neg=POS):(neg=NEG);

/ /
/* COMPUTE CURRENT GRADIENTS */

/ /

/* LOADING SURFACE EQUATION: */
FF=cl*(mz/mzo)*2+cl*(my/myo)'2+ c2*(p/po)r2+ */
I* c3*(mz/mzo)2*(p/po )2+

I* c3*(my/myo)2*(p/po )2+

I* ¢4 *(mz/ mzo )2 * (my/myo )2

if (force ==F1)

{ /* USE BEGINNING OF ITERATION FORCES */
p =neg*(cftfn].fl[1+i]+cft[n].fL_i[ 1+i])-
cftfn].Is_cent[end ].p -
cft{ n].phi * cft{ n ].Is_rad[ end ] * cft[ n ]-po;
po =cft{n].Is_rad[ end ] * cft[ n ].po;
my =cft{n]fl5+i]+cftfn]fl_i[5+i] -
cft n].Is_cent[ end ].my;
myo =cft{n].Is_rad[ end ] * cft[ n ].myo;
mz =cftfn]fl[6+i]+cftfn].fl_i[6+i] -
cft n].Is_cent[ end ].mz;
mzo =cft{n].Is_rad[ end ] * cft[ n ].mzo;

else if (force == F2)
/* USE END OF ITERATION FORCES */

=neg*cftfn].f2[1+i]-cftfn].Is_cent [end].p -
cftf n].phi *cft[ n].Is_rad[ end ] * cft[ n ]-po;
po =cft[n].Is_rad[ end ] * cft[ n ].po;
my =cftfn].f2[5+i] - cft[ n ].Is_cent] end ].my;
myo =cft{n].Is_rad[ end ] * cft[ n ].myo;
mz =cft{n].f2[6 +i] - cft[ n ].Is_cent[ end ]-mz;
mzo =cft[ n].Is_rad[ end ] * cft[ n ].mzo;

}

cftfn].grad[end ].p=2.0*p/(po*po)*
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(cftfn].c2 + cft[ n].c3 * pow( my / myo, 2)
cftf n].c3 * pow( mz/mzo, 2));

cft n ].grad[ end ].my =2.0*my/(myo*myo) *
(cftfn].cl +cft{n].c3*pow(p/po,2)+
cftf n].c4 * pow( mz/ mzo, 2));

cft{ n].grad[ end ].mz =2.0*mz/(mzo*mzo) *
(cftfn].cl +cft{n].c3*pow(p/po,2)+
cftf n].c4 * pow( my/ myo, 2));

/ /
/* COMPUTE DENOMINATOR OF NORMAL TO L.S. */
/

/

cftfn].norm[ end] = sqrt( pow( cft[ n].grad[ e nd].p,2)+
pow( cft{ n].grad[ end ].my, 2 ) +
pow( cft[ n ].grad[ end ].mz, 2));

/ /
/* CHECK FOR UNLOADING */
/ /

product= cft[ n ].grad[ end ].p * neg * cft[ n ].d fif1+i]+
cftfn].grad[end .my *cftfn].df i[5 +i] +
cftfn].grad[ end Jmz * cft{n ].df_i[ 6 +i ]
if (product <0.0)
cft[ n ].status[ end ] = UNLOAD;
}

else

f:ft[ n ].status[ end ] = LOAD;
}

return( status );

K*kkkkkkkkkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

K*kkkkkkkkkk

*  FUNCTION- a_pl_cft_iso_hard.c
@(#) PLasticity routine for CFT 1SOtropic HARDeni ng

* CALLED FROM- a_pl_cft_state

*  ABSTRACT- This function performs the isotropi ¢ hardening calculations for

movement of the CFT loading surface and bounding surface.

/

#include <math.h> /* C MATH FUNCTIONS *
#include <stdio.h> /* C I/O FUNCTIONS *
#include <string.h> /* C STRING FUNCTIONS */
#include "a_mac.h" /* MACRO DEFINITIONS */
#include "a_extern.h" /* EXTERNAL VARIABLES */
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS

long a_pl_cft_iso_hard( n, end, cft)

long n; /* ELEMENT NUMBER */
long end; /* ELEMENT END */
A_CFT_BC cft[]; /* DATA STRUCTURE FOR CFT BEAM-COL UMN

{
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long status = 1L; /* RETURN STATUS

*

long i =0L; /* FORCE AND STIFFNESS TERM INDEX */
long ctrl =0L; /* COUNTER */
long  neg =1L; /* AXIAL FORCE MULTIPLIER

POS = 1L (DO NOT CHANGE SIGN)

NEG = -1L (NEGATE FORCE VALUE) *
double grad[ 7L ]; /* GRADIENT VECTOR STORED IN AR RAY */
double temp  =0.0; /* TEMPORARY PRODUCT STORAGE *
double num =0.0; /* {dF/dS}T * [Kt] * {dq} *
double denom =0.0; [* {dF/dS}T * [Kt + Kp] * {dF/ ds} */
double dlambda = 0.0; /* SCALAR RELATING PLASTIC A ND TOTAL DISPLS*/
double dgp_p =0.0; /* INCR OF PLASTIC AXIAL DISPL ACEMENT *
double dgp_my =0.0; /* INCR OF PLASTIC Y-MOMENT D ISPLACEMENT *
double dgp_mz =0.0; /* INCR OF PLASTIC Z-MOMENT D ISPLACEMENT *
double dwork =0.0; /* INCR OF PLASTIC WORK */
double work_norm=0.0; /* PLASTIC WORK NORMALIZED B Y STRAIN ENERGY*/
double old_Isr=0.0; /* BEGINNING OF STEP L.S. RA DIUS */
double old_bsr=0.0; /* BEGINNING OF STEP B.S. RA DIUS *
double eta_Is =0.0; /* AMOUNT OF L.S. MOVEMENT */
double eta_bs =0.0; /* AMOUNT OF B.S. MOVEMENT *
double al[4]; /* VECTOR CONTAINING L.S. CENTROID S *
double ab[4]; /* VECTOR CONTAINING B.S. CENTROID S *
double ds[4]; /* VECTOR OF INCREMENTAL FORCES * /
double s[4]; /* VECTOR OF BEGINNING OF STEP FOR CES *

/*********************/

/* INITIALIZE ARRAYS */

/*********************/

for (ctrl = OL; ctrl < 7L; ctrl++)

grad[ ctrl]=0.0;
}

for (ctrl = OL; ctrl < 4L; ctrl++)

{

alfctrl 1=0.0;
ab[ctrl1]1=0.0;
ds[ctrl] =0.0;
s[ctrl] =0.0;
}

/ /
/* CALCULATE FORCE AND STIFFNESS TERM INDEX */
/ /

i=6L*end;

!
/* IF J-END, THEN NEGATE THE FORCE SUCH THAT A COMP

/

(i==0L)?(neg=POS):(neg=NEG);

/ /
/* SET SHORTENED VARIABLES */
/ /

al[ 1]=cft[ n ].Is_cent[ end ].p + cft[ n ].phi
cft[ n ].po;

al[ 2 ]= cft[ n ].Is_cent[ end ].my;

al[ 3]=cft[ n ].Is_cent[ end ].mz;

ab[ 1 ]=cft[n].bs_cent[ end ].p + cft[ n ].phi
cft{ n].po;

ab[ 2 J= cft[ n ].bs_cent[ end ].my;

ab[ 3 ]= cft[ n ].bs_cent[ end ].mz;

ds[1]=cftfn].df_i[1+i]*neg;
ds[2]=cftfn].df_i[5+i];
ds[3]=cftfn].df_i[6+i];

s[1] =(cftn]fl[1+i]+cftfn]fl_i[1
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RESSIVE LOAD IS POSITIVE */
/

*cft{n].Is_rad[end ] *

*cft[ n].bs_rad[ end ] *

+i]) * neg;



s[2] =cf{n]f[5+i]+cf[n]fL_i[5+ il
S[3] =cf[n]f[6+i]+cf[n]fLi[6+ il

/ /
/* CALCULATE INCREMENT OF PLASTIC DISPLACEMENT */
/ /

/* ASSIGN VALUES TO TEMPORARY ARRAYS */

grad[ 1] =cft[ n].grad[ end ].p;
grad[ 5] =cft[ n].grad[ end ].my;
grad[ 6] = cft[ n].grad[ end ].mz;

/* CALCULATE NUMERATOR OF DLAMBDA: num = {dF/dS}T *{dS}*/

num=grad[1]*ds[1]+grad[5]*ds[2]+g rad[6]*ds[3];

/* CALCULATE DENOMINATOR OF DLAMBDA: denom = {dF/d S}T * Kp * {dF/dS} */

denom =grad[ 1] *cft{ n].kp[end ].p * grad[ 1 1+
grad[ 5] *cft{ n ].kp[ end ].my * grad[ 5] +
grad[ 6] * cft{ n ].kp[ end ].mz * grad[ 6 ];

/* CALCULATE DLAMBDA AND INCREMENTAL PLASTIC DISPLA CEMENTS */

dlambda= num / denom;

dgp_p =dlambda * grad[ 1 J;
dgp_my = dlambda * grad[ 5 J;
dgp_mz = dlambda * grad[ 6 ];

/ /
/* CALCULATE STEP AND ACCUMULATED PLASTIC WORK */
/ /

dwork =neg*cftfn]df i[1+i]*dgp_p+
cftfn].df_i{5+i]*dgp_my +
cftfn].df_i[6 +i]* dgp_mz;

cft[ n ].pl_work[ end ] += dwork;

work_norm =cftfn].pl_work[ end ]/ cft[ n ].el_w ork;

/ /

/* CALCULATE NEW L.S. AND B.S. RADII */

/ /

old_lIsr=cft[ n ].Is_rad[ end ];

old_bsr=cft[ n ].bs_rad[ end ];

cftfn].Is_rad[end ]=cft[ n ].Isr_fn[end ] - ( cftfn].sr_fn[end] -

cftfn].Isr_in[end]) * exp(
-cft[ n ].Is_iso[ end ] * work_norm );

/*B.S. RADIUS FORMULATION */
if (work_norm <= cft[ n ].iso_work[ end ])
cft{ n].bs_rad[ end |=
cft{ n ].bsr_intm[ end ] - (cft[ n ].bsr_intm[ e

cftfn].bsr_in[end ]) * exp( -cft[ n ].bs_iso[
work_norm);

cft[ n ].bsr_upd[ end ] =cft{n].bs_rad[ end ];
}

else

{

cftf n].bs_rad[ end |=
cft{n].bsr_fn[end] - (cft{n].bsr_fn[ end]
cftfn].bsr_upd[end]) * pow( 1.1, -cft[ n].b
(work_norm - cft[ n ].iso_work[ end ]) );

}
/* CALCULATE NEW RATIO OF SURFACE RADII */
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cft{ n].rho[ end ] = cft[ n ].bs_rad[ end ] / cft[ nl.ls_rad[end];

/ ***********/

/* CALCULATE UPDATED k2 PARAMETERS, CONCRETE ELASTI C MODULUS */

/ ***********/

cft{ n ].emod_c =0.3*cftfn].ec_in + (0.689 * cftfn].ec_in)*

exp( -cft[ n ].ec_iso[ end ] * work_norm);

cftfn]k2[end].p =cftfn].k2ffend].p- (cf t{n].k2f[end].p -
cftfn].k2ifend].p)*
exp( -cft[ n 1.k2_iso[ end ] * work_norm);

cft{ n].k2[ end ].my = cft[ n ].k2f[ end ].my - ( cft[ n ].k2f[ end ].my -
cftf n].k2i[end ].my ) *
exp( -cft[ n ].k2_iso[ end ] * work_norm );

cftfn].k2[ end ].mz =cft[ n].k2f[ end ].mz - ( cft[ n ].k2f[ end ].mz -
cftf n]1.k2i[ end ].mz ) *
exp( -cft[ n ].k2_iso[ end ] * work_norm);

/ *****************/
/* CALCULATE INCREMENTAL SURFACE CENTROID MOVEMENTDUE TO ISO HARD */
/ *****************/

/* CALCULATE DISTANCE TO MOVE CENTROIDS */

eta_Is =1.0-(cft{n].Is_rad[ end ]/ old_lIsr) ;
eta_bs =1.0-(cft{n].bs_rad[ end ]/ old_bsr) ;

/* CALCULATE VECTORS OF CENTROID MOVEMENT */

cftfn].dls_iso[end ].p =eta_Is*(s[1]-al [1]);
cft{ n].dls_iso[ end ].my =eta_Is* (s[2]- al [21);
cftfn].dls_iso[ end ].mz =eta_Is* (s[3]-al [31);
cft{n].dbs_iso[end ].p =eta_bs*(s[1]-ab [1]);
cftf n].dbs_iso[ end ].my =eta_bs*(s[2]-ab [21);
cft{ n ].dbs_iso[ end ].mz = eta_bs * (s[3] - ab [3]);

/* COMPUTE SURFACE CENTROIDS AFTER ISOTROPIC HARDENNG */

cft{n].Is_cent[ end ].p +=cft[ n].dIs_iso[ end 1-p;
cft[ n ].Is_cent[ end ].my += cft[ n ].dIs_iso[ end 1-my;
cft n ].Is_cent[ end ].mz += cft[ n ].dIs_iso[ end ].mz;
cft{ n].bs_cent[ end ].p += cft[ n ].dbs_iso[ end .p;
cft[ n ].bs_cent[ end ].my += cft[ n ].dbs_iso[ end 1-my;
cft n ].bs_cent[ end ].mz += cft[ n ].dbs_iso[ end ].mz;

return( status );

*kkkkkkkkkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

*kkkkkkkkkk

*  FUNCTION- a_pl_cft_kin_hard
@(#) PLasticity routine for CFT KINematic HARDeni ng
* CALLED FROM- a_pl_cft_state

*  ABSTRACT- This function performs the kinemati ¢ hardening calculations for
movement of the CFT loading surface and bounding surface.
In the input file, the user may specify whether t he loading
surface should move in the Mroz direction or the Tseng
direction. Both of these routines are contained herein.
Additionally, if the force point is on the boundi ng surface,
the surfaces move in the direction of the increme ntal force
vector.
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/
#include <math.h> /* C MATH FUNCTIONS *

#include <stdio.h> /* C /O FUNCTIONS */
#include <string.h> /* C STRING FUNCTIONS *
#include "a_mac.h" /* MACRO DEFINITIONS */
#include "a_extern.h" /* EXTERNAL VARIABLES */
#include "a_cft_el.h" /* DATA STRUCTURE FOR CFT BE AM-COLUMN
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS

long a_pl_cft_kin_hard( n, end, tol, flag, cft)

long n; /* ELEMENT NUMBER */
long end; /* ELEMENT END */
A_TOLERANCE tol; /* DATA STRUCTURE OF PROGRAM TOLE RANCES
A_FLAGS *flag; /* DATA STRUCTURE OF PROGRAM FLAGS
A_CFT_BC cft[]; /* DATA STRUCTURE FOR CFT BEAM-COL UMN
{
long  status =1L; /* RETURN STATUS */
long ctrl =0L; /* COUNTER */
long i =0L; /* FORCE INDEX *
long done =0L; /* FLAG TO INDICATE COMPLETION OF BISECT
long  neg =1L; /* AXIAL FORCE MULTIPLIER

POS = 1L (DO NOT CHANGE SIGN)

NEG = -1L (NEGATE FORCE VALUE) *
double rl =0.0; /* LOADING SURFACE RADIUS *
double rb =0.0; /* BOUNDING SURFACE RADIUS *
double rho =0.0; /*RATIO OF B.S. SIZETO L.S. SI ZE
double num =0.0; [*{grad}T * df */
double denom =0.0; /*{grad}T * MROZ OR TSENG VEC TOR
double al[4]; /* VECTOR CONTAINING L.S. CENTROID S
double ab[4]; /* VECTOR CONTAINING B.S. CENTROID S
double s1[47]; /* VECTOR OF f1 FORCES *
double ds[4]; /* VECTOR OF INCREMENTAL FORCES *
/* TSENG VARIABLES */
double 11 =0.0; /* LOWER VALUE OF BISECTION VECT OR
double 12 =0.0; /* LOWER VALUE OF BISECTION VECT OR
double 13 =0.0; /* LOWER VALUE OF BISECTION VECT OR
double ul =0.0; /* UPPER VALUE OF BISECTION VECT OR
double u2 =0.0; /* UPPER VALUE OF BISECTION VECT OR
double u3 =0.0; /* UPPER VALUE OF BISECTION VECT OR
double m1 =0.0; /* MID VALUE OF BISECTION VECTOR
double m2 =0.0; /* MID VALUE OF BISECTION VECTOR
double m3 =0.0; /* MID VALUE OF BISECTION VECTOR
double eqn =0.0; /* VALUE OF B.S. EQUATION (BISEC TION)
double ds_norm = 0.0; /* NORMAL OF THE INCR. FORCE VECTOR
double s1_norm = 0.0; /* NORMAL OF THE f1 FORCE VE CTOR
double incrl =0.0; /* INCREMENTAL VECTOR ADDED TO fl
double incr2 =0.0; /* INCREMENTAL VECTOR ADDED TO fl
double incr3 =0.0; /* INCREMENTAL VECTOR ADDED TO fl

/*********************/

/* INITIALIZE ARRAYS */

/*********************/

for (ctrl = OL; ctrl < 4L; ctrl++)

alf ctr1 ]1=0.0;
ab[ ctrl ] =0.0;
s1[ctrl]=0.0;
ds[ctrl ] =0.0;

/ /
/* CALCULATE FORCE INDEX */
/ /

i=6L*end;
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/ /

/*IF J-END, THEN NEGATE THE FORCE SUCH THAT A COMP  RESSIVE LOAD IS POSITIVE */

/ /
(i==0L)?(neg=POS):(neg=NEG);

/ /
/* SET SHORTENED VARIABLES */
/ /

rl =cft{n].Is_rad[end ];

rb =cft{n].bs_rad[ end ];

rho =cftfn].rho[end ];

all 1]=cft[ n ].Is_cent[ end ].p + cft[ n ].phi *rl * cft[ n ].po;

al[ 2 ]=cft[ n ].Is_cent[ end ].my;
al[ 3]=cft[ n ].Is_cent[ end ].mz;

ab[ 1 ]=cft[n].bs_cent[ end ].p + cft[ n ].phi *rb * cft[ n ].po;
ab[ 2 ]= cft[ n ].bs_cent[ end ].my;

ab[ 3 J= cft[ n ].bs_cent[ end ].mz;

si[1]=(cftin]fl1+i]+cft[n]fLi[1 +i])* neg;
sl[2]=cftfn].fA[5+i]+cftfn].fl_i[5+ i];
si[3]=cftfn]fl[6+i]+cft[n].fL_i[6+ i
ds[1]=cft{n].df_i[1+i]*neg;

ds[2]=cftn].df i[5+i];

ds[3]=cft{n].df_i[6+i];

/ **********************/

/* MOVE SURFACES FOR CASE WHERE THE SURFACES TOUCHAND THE FORCE POINT
I* IS ON OR BEYOND THE BS. MOVE BOTH SURFACES INT HE DIRECTION OF
I* THE NORMAL TO THE SURFACES. */

/ **********************/

if (cft{n].surffend ] ==BS)
num =cftfn].grad[end ].p *ds[1]+
cftfn].grad[end .my *ds[ 2] +
cftfn].grad[end ] mz *ds[ 3 ];

denom =cft[ n].norm[ end ];

*
*

cft{ n].dls_kin[end ].p = (num /denom ) * cft [n].grad] end ].p;

cft[ n J.dls_kin[ end ].my = ( num / denom ) * cft [n].grad[ end ].my;

cft[ n ].dIs_kin[ end ].mz = ( num / denom ) * cft [n].grad] end ].mz;

cft[ n ].dbs_kin[ end ].p = cft[ n].dIs_kin[ end 1-p;

cft[ n J.dbs_kin[ end ].my = cft[ n ].dIs_kin[ end ].my;

cft[ n ].dbs_kin[ end ].mz = cft[ n ].dIs_kin[ end ]-mz;

}
/ /
/* KINEMATICALLY HARDEN THE L.S. AND B.S. USING THE MROZ DIRECTION VECTOR */
/ /

else if (flag->cft_kin ==1L)
{

/* CALCULATE MROZ VECTOR */

cftfn].mroz[end].p =(rho-1L)*s1[1]- (rho*al[1]-ab[1]);
cftfn].mroz[ end ].my=(rho-1L)*s1[2]- (rho*al[2]-ab[2]);
cft{ n].mroz[ end ].mz = (rho-1L)*s1[3]- (rho*al[3]-ab[3]);

/* CALCULATE VECTOR OF INCREMENTAL L.S. CENTROID MO VEMENT DUE TO KIN HARD */

num =cftfn].grad[end ].p *ds[1]+
cftfn].grad[end .my *ds[ 2] +
cftfn].grad[end lmz *ds[ 3 ];

denom =cft[n].grad[ end ].p *cft[ n].mroz[ en dlp +
cft{ n].grad[ end ].my * cft[ n ].mroz[ end ].m y+
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cft[ n ].grad[ end ].mz * cft[ n ].mroz[ end ].m

cftf n].dls_kin[end ].p = ( num/denom) * cft[
cft[ n ].dIs_kin[ end ].my = ( num / denom ) * cft
cft[ n ].dIs_kin[ end ].mz = ( num / denom ) * cft[

/* CALCULATE VECTOR OF INCREMENTAL B.S. CENTROID MO

(cftfn]kp[end].p==0.0)? (cft[ n].dbs_ki
(cft{ n].dbs_kin[ end ].p = cft[ n ].kpb[ end ].
cft{ n].dls_kin[end ].p );

(cftfn]kp[end].my==0.0) ? (cft{ n].dbs_k
(cft[ n ].dbs_kin[ end ].my = cft[ n ].kpb[ end ].
cft[ n ].dIs_kin[ end ].my );

(cftfn]kp[end].mz==0.0) ? (cft{n].dbs_k
(cft[ n ].dbs_kin[ end ].mz = cft[ n ].kpb[ end ].
cft[ n ].dIs_kin[ end ].mz );

} /* else if (flag->cft_kin==1L) */

!
/* KINEMATICALLY HARDEN THE L.S. AND B.S. USING THE
!

else if ( flag->cft_kin == 2L )
{

/* CALCULATE TSENG VECTOR */

/* FIND INTERSECTION OF THE PROJECTION OF INCR FORC
/* ADD df VECTORS TO f1 UNTIL B.S. IS CROSSED, THEN

/* CALCULATE INCREMENTAL VECTOR. BY NORMALIZING TH
MULTIPLYING BY THE s1 NORMAL, THE VECTOR THAT IS
OF THE PROPER MAGNITUDE. OTHERWISE, ds MAY BE V
INCRS WOULD NEED TO BE ADDED TO s1 TO REACH THE

ds_norm = sqrt( pow(ds[1],2) + pow(ds[2], 2
s1_norm =sqrt( pow(s1[1],2) + pow(s1[2], 2
incrl =sl1 norm*ds[1]/ds_norm;
incr2  =sl1_norm*ds[2]/ds_norm;
incr3  =s1_norm *ds[ 3]/ ds_norm;

/* SET INITIAL ENDPOINTS OF VECTOR TO BE BISECTED *
ul=s1[1];

u2=s1[2];

u3=s1[3];

I1=ul-ds[1];

12=u2-ds[2];

13=u3-ds[3];

egn = a_pl_cft_surf( n, cft,

(ul-ab[1])/(rb*cft{n].po),
(u2-ab[2])/(rb*cftfn].myo),
(u3-ab[3])/(rb*cftfn].mzo));

/* ADD df INCRS. TO f1 UNTIL THE B.S. IS CROSSED */
while (egn < (1.0 + tol.surf))

{

11 =ul;

12 =u2;

13 =u3;

ul +=incrl;

u2 +=incr2;

u3 +=incr3;

eqn = a_pl_cft_surf( n, cft,
(ul-ab[1])/(rb*cftfn].po),
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Z,
n ].mroz[ end ].p;
n ].mroz[ end ].my;
n ].mroz[ end ].mz;
VEMENT DUE TO KIN HARD */
nfend].p=0.0):
p /cftfn]lkp[end].p*

infend].my=0.0):
my / cft n ].kp[ end ].my *

infend].mz=0.0):
mz / cft{ n ].kp[ end ].mz *

/
TSENG DIRECTION VECTOR */
/

E VECTOR WITH THE B.S. */
PERFORM BISECTION  */

E INCR. FORCE VECTOR AND
ADDED TO THE s1 FORCES IS
ERY SMALL AND THOUSANDS OF
B.S. *

) + pow(ds[ 3],
) + pow(s1[3],

2))
2));

/



(u2-ab[2])/(rb*cftfn].myo),
(u3-ab[3])/(rb*cftfn].mzo));
}

/* BISECT INCR VECTOR (u - ) THAT CROSSED THE B.S.

ml=(l1+ul)/2.0;
m2=(12+u2)/2.0;
m3=(13+u3)/2.0;

eqgn =a_pl_cft_surf( n, cft,
(ml-ab[1])/(rb*cftfn].po),
(m2-ab[2])/(rb*cftfn].myo),
(m3-ab[3])/(rb*cftfn].mzo));
while (! done)

i{f (egn > (1.0 +tol.surf))
{

TO GET INTERSECTING PT. */

ul =mi; /* ASSIGN UPPER FORCE POINT TO MIDPT *

2+u2)/2.0;
3+u3)/2.0;
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eqgn = a_pl_cft_surf( n, cft,

1+ul)/2.0; /* BISECT VECTOR */

(ml-ab[1])/(rb*cftfn].po),
(m2-ab[2])/(rb*cftfn].myo),
(m3-ab[3])/(rb*cftfn].mzo))

}

elseif (eqn<1.0)

{

11 =mi,; /* ASSIGN LOWER FORCE POINT OT MIDPT */

12 =m2;

13=m3;

ml=(l1+ul)/20; /* BISECT VECTOR */

m2=(12+u2)/2.0;

m3=(13+u3)/2.0;

egn = a_pl_cft_surf( n, cft,

rb * cft{ n].po),

rb *cftfn].mzo))

(ml-ab[1])/(
(m2-ab[2])/(rb*cftfn].myo),
(m3-ab[3])/(
else
{
done = 1L;
} llwhile(!done)*/

/* COMPUTE COMPONENTS OF THE TSENG VECTOR */

cftfn].tseng[end].p =m1-ml/rho+ab[1]
cftf n ].tseng[ end ].my =m2-m2/rho + ab[ 2]
cft{ n].tseng[ end ].mz =m3 - m3/rho + ab[ 3]

/* CALCULATE VECTOR OF INCREMENTAL L.S. CENTROID MO
[* (da)kin =[ (gradT *dS )/ (gradT *tseng ) ]

num =cftfn].grad[end ].p *ds[1]+
cftfn].gradfend l.my *ds[2] +
cftfn].grad[ end .mz * ds[ 3 ];

denom =cft{n].grad[end ].p *cft[ n].tseng[ e
cft[ n ].grad[ end ].my * cft[ n ].tseng[ end ].
cft{ n].grad[ end ].mz * cft[ n ].tseng[ end ].

cft{ n].dls_kin[ end ].p = ( num / denom ) * cft[
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/rtho-al[1];
/rho-al[2];
/rtho-al[3];

VEMENT DUE TO KIN HARD
*(tseng)

ndlp +
my +
mz;

n ].tseng[ end ].p;

*

*



cft[ n ].dIs_kin[ end ].my = ( num / denom ) * cft[ n ].tseng[ end ].my;
cft[ n ].dIs_kin[ end ].mz = ( num / denom ) * cft n ].tseng[ end ].mz;

/* CALCULATE VECTOR OF INCREMENTAL B.S. CENTROID MO VEMENT DUE TO KIN HARD */

cft[ n ].dbs_kin[ end ].p = cft[ n ].kpb[ end ].p /cftfn].kp[end].p *
cft[ n ].dIs_kin[ end ].p;

cft[ n ].dbs_kin[ end ].my = cft[ n ].kpb[ end ].my [ cft[ n ].kp[ end ].my *
cft[ n ].dIs_kin[ end ].my;

cft[ n ].dbs_kin[ end ].mz = cft[ n ].kpb[ end ].mz [ cft[ n ].kp[ end ].mz *

cft[ n ].dIs_kin[ end ].mz;
} /* else if (flag->cft_kin==2L) */
/* COMPUTE SURFACE CENTROIDS AFTER KINEMATIC HARDENNG */

cftfn]Is_cent[end ].p +=cft[ n ].dIs_kin[ end 1-p;
cft[ n ].Is_cent[ end ].my += cft[ n ].dIs_kin[ end ].my;
cft[ n ].Is_cent[ end ].mz += cft[ n ].dIs_kin[ end ]-mz;
cftf n].bs_cent[ end ].p += cft[ n ].dbs_kin[ end 1-p;
cft n ].bs_cent[ end ].my += cft[ n ].dbs_kin[ end ].my;
cft[ n ].bs_cent[ end ].mz += cft[ n ].dbs_kin[ end ]-mz;

return( status );

*kkkkkkkhkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

*kkkkkkkkkk

*  FUNCTION- a_pl_cft_state.c
@(#) CFT element end plasticity STATE
* CALLED FROM- a_drv_dynamic, a_drv_static

*  ABSTRACT- This function determines the state of each CFT element end
and calls the appropriate functions to perform th e plasticity
calculations. The comments below in the code exp lain this
procedure in greater detail.
Note that a positive j-end axial force will be te nsile although
in the plastic formulation a positive force is al ways
compressive. Therefore, before computing the gra dient, the
j-end axial force is negated using the 'negate’ v ariable to
rectify this.
/
#include <math.h> /* C MATH FUNCTIONS *
#include <stdio.h> /* C /O FUNCTIONS */
#include <string.h> /* C STRING FUNCTIONS *
#include "a_mac.h" /* MACRO DEFINITIONS */
#include "a_extern.h" /* EXTERNAL VARIABLES */
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS */
#include "a_cft_el.h" /* DATA STRUCTURE FOR STEEL BEAM-COLUMN *
#include "a_global.h" /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */
long a_pl_cft_state( size, nr, tol, flag, cft, glob al)
A_MODEL_SIZE *size; /* DATA STRUCTURE OF GLOBAL ST RUCT SIZE *
A_NEW_RAPH *nr; /* DATA STRUCTURE FOR NEWTON-RAPHS ON *
A_TOLERANCE tol; /* DATA STRUCTURE FOR PROGRAM TOL ERANCES *
A_FLAGS *flag; /* DATA STRUCTURE OF PROGRAM FLAGS *
A_CFT_BC cft[]; /* DATA STRUCTURE FOR CFT BEAM-COL UMN *
A_GLOBAL globalfl; /* DATA STRUCTURE OF DOF-BASED V ARIABLES */
{
long  status =1L; /* RETURN STATUS */
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long ctrl  =0L; /* COUNTER

long ctr2  =0L; /* COUNTER

long end =0L; /*END: 0 =i-end, 1 =j-end
long i =0L; /* FORCE INDEX

long n =0L; /* ELEMENT COUNTER

long neg =1L, /* AXIAL FORCE MULTIPLIER

*
*/
*
*
*

POS = 1L (DO NOT CHANGE SIGN)
NEG = -1L (NEGATE FORCE VALUE) */

/ /
/* LOOP OVER CFT ELEMENTS */
/ /

for (n =1L; n <= size->num_cft_elems; n++)

{

/

/* IF ELEMENT HAS NOT PLASTIFIED, UPDATE INITIAL EL
/* .E., CALCULATE THE STRAIN ENERGY DUE TO AXIAL A
/*U = Up + Umy + Umz = (PA2*L)/(2EA) +

I* LIEIHMyir2*L+(Myi+Myj)A2*L/3 - Myi*L*(Myi+My

I* 1(2EI*(MZir2*L+(Mzi+Mzj)"2*L/3 - Mzi*L*(Mzi+Mz

/

if (((cftfn].statefOL]==EL) && (!cft[n
((cftfn].state[1L]==EL ) && (! cft[ n

cft[ n ].el_work =
(pow(cftfn]f2[1],2)*cft[n].l/
(2.0*cftfn]ea))+
(pow(cftfn]f2[5],2) *cftfn].l+
pow(cftfn]f2[5]+cft{n].f2[11],2)
cftfn].l/3.0-cftfn].f2[5]*cft[n].
(cftfn]f2[5]+cft{n].f2[11]))/
(2.0*cftfn].eiz) +
(pow(cftfn].f2[6],2) *cftfn]l+
pow(cftin].f2[6]+cft{n].f2[12],2)
cftfn]l/3.0-cftfn].f2[6]*cft[n].
(cftfn]f2[6]+cft{n].f2[12]))/
(2.0*cftfn].eiz);
}

!
/* CHECK THE PLASTICITY STATE OF EACH ELEMENT END *

/

for (end = OL; end <= 1L; end++)

/ /
/* CALCULATE FORCE INDEX */
/ /

i=6L*end;

/

/*IF J-END, THEN NEGATE THE FORCE SUCH THAT A COMP

/

(i==0L)?(neg=POS):(neg=NEG);

*******************/

ASTIC ENERGY  */
ND BENDING FORCES */
*/

n+ */
j)) + */
***-k***************/
]-hinge ) ) ||
]-hinge ) ))

*

*

/
RESSIVE LOAD IS POSITIVE */
/

/ ************/

/* END WAS PLASTIC LAST STEP */
I* |. CHECK GRADIENT FOR UNLOADING *
I* A. NEG: SET FLAG TO UNLOADING */
I* 1. CHECK IF RELOADING (ISF2 > L.S.?) *

I* a. NO: SET FLAG TO ELASTIC *
I* b. YES: SET FLAG TO LOADING */
I* DO STEP B. *
I* B. POS: SET FLAG TO LOADING *

I* 1. MOVE SURFACES (KIN & ISO) *

I* 2. DRIFT CONTROL BACK TO L.S. */
I* 3. CALCULATE DISTANCE */
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/*

4. CALCULATE NEW GRADIENT FOR USE IN Kr

/

if ((cft{n].statefend]==PL) || (cft[n].

cft[ n ].state[ end ] = PL;

/

/
/* CHECK IF HINGE UNLOADED THIS STEP */

/

/

a_pl_cft_grad(n, end, F2, cft);

/
/* NEGATIVE GRADIENT: CHECK IF HINGE TRULY UNLOAD

/

if ( cft[ n].status[ end ] == UNLOAD )
{

/

************/

Kk |

ED */

Kk |

/* DETERMINE STATE OF FORCE POINT AND SET FLAGS *

/

cftfn].ls_ eqn[end]—a pl_cft_surf( n, cft,
(neg* cft[n]f2[ 1+i]- cft[n]ls centlen
cft]

n ].phi * cft[n]ls rad[end] * cft[ n ]
(cftfn].ls_rad[end ] *cft[ n].po),
(cftfn]f2[5+i]-cftfn]ls_cent[end]
(cftfn].Is_rad[ end ] * cft n ].myo ),
(cftfn]f2[6+i]-cftfn]ls_cent[end]
(cftfn].ls_rad[end ] *cftfn].mzo));

cftf n].bs_egn[ end ] = a_pl_cft_surf( n, cft,
(neg * cft[ n ].f2[ 1+i ] - cft[ n ].bs_cent[en

cft[ n ].phi * cft[ n ].bs_rad[end] * cft[ n ]
(cftfn].bs_rad[ end ] * cft[ n].po),
(cftfn].f2[5+i]-cft[ n].bs_cent[ end ]
(cftf n].bs_rad[ end ] * cft{ n ].myo),
(cftfn].f2[ 6 +i]-cft[ n].bs_cent[ end ]
(cftfn].bs_rad[ end ] *cftfn].mzo));

if (cftfn].Is_egn[end]>=1.0)
cft[ n ].status[ end ] = LOAD;
cft{ n].state[end] =PL;
cftfn]surffend] =LS;
if (cftfn].bs_eqn[end]>=1.0)

cftfn].surffend] =BS;
}

/ /
/* HINGE UNLOADED, SET END TO ELASTIC */
/ /

else
{
cft[ n ].status[ end ] = UNLOAD;
cft{ n].state[end] =EL;
cftfn].surffend] = NONE;
cftfn].ductfend] =0.0;
}
} [*if ( cft[ n ].status[ end ] == UNLOAD ) */
/******************/
/* END IS PLASTIC */
/******************/

if (cft[ n].status[ end ] == LOAD )
{
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.po)/
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/* CHECK IF B.S. HAS BEEN BREACHED */

cft{ n].bs_eqn[ end ] = a_pl_cft_surf( n, cft,

(neg * cft[ n ].f2[ 1+i ] - cft[ n ].bs_cent[en
cft[ n ].phi * cft[ n ].bs_rad[end] * cft[ n ]

(cftfn].bs_rad[ end ] * cft{ n].po),

(cftin]f2[5+i]-cftfn].bs_centfend]

(cftfn].bs_rad[ end ] * cft{ n ].myo ),

(cftfn]f2[6+i]-cft{n].bs_cent[end]

(cftfn].bs_rad[ end ] * cft{n].mzo));

if (cftfn].bs_egn[end]>=1.0)
cftfn].surffend] =BS;
}

/* MOVE SURFACES USING KINEMATIC AND ISOTROPIC HA
if (flag->iso )

a_pl_cft_iso_hard( n, end, cft);
a_pl_cft_kin_hard( n, end, tol, flag, cft);

/* PERFORM FORCE POINT DRIFT CONTROL IF NEEDED */

cftfn].Is_eqn[end ] =a_pl_cft_surf( n, cft,

(neg *cft[ n ].f2[ 1+i ] - cft[ n ].Is_cent[en
cft[ n ].phi * cft[ n ].Is_rad[end] * cft[ n ]

(cftfn]ls_rad[end]*cft{n].po),

(cftfn].f2[5+i]-cft{n].Is_cent] end ]

(cftfn].ls_rad[end]* cft n].myo),

(cftfn].f2[6 +i]-cft[n].Is_cent] end ]

(cftfn]ls_rad[end]*cftfn].mzo));

if (((cftfn]ls_egn[end]<1.0)]
(cftfn].s_eqgn[end]> (1.0 + tol.sur
(flag->drift ) )

{
a_pl_cft_grad(n, end, F2, cft);
a_pl_cft_drift( n, end, tol, cft);

/* CALCULATE NEW DISTANCE BETWEEN SURFACES */

a_pl_cft_dist( n, end, tol, cft);

/* CALCULATE PLASTIC STIFFNESS TERMS */
a_cft_plastic_k( n, end, cft);

}

/

} [* if ((cftfn].statefend]==PL) || ...
************/
/* END WAS ELASTIC LAST STEP
I* I. CHECK IF LOADING SURFACE WAS BREACHED
1* A. YES: END IS NOW PLASTIC */
I* 1. SET STATE FLAG TO PL_IN */
1* 2. DRIFT CONTROL BACK TO L.S. */
I* 3. CALCULATE INITIAL DISTANCE */
1* 4. CALCULATE GRADIENT FOR USE IN Kr */
I* B. NO: END REMAINS ELASTIC -- DO NOTHING *
***-k********/

/

else if (cft[ n].state[ end ] == EL )
{
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/ /
/* DETERMINE STATE OF FORCE POINT AND SET FLAGS */
/ /

cftin].Is_eqgn[end ] = a_pl_cft_surf( n, cft,

(neg * cft[ n ].f2[ 1+i ] - cft[ n ].Is_cent[end
cft[ n ].phi * cft[ n ].Is_rad[end] * cft[ n ].

(cftfn].Is_rad[ end ] * cft{ n ].po ),

(cftfn]f2[5+i]-cftfn].Is_cent[end].

(cftfn].Is_rad[ end ] * cft{ n ].myo ),

(cftfn]f2[6+i]-cftfn].Is_cent[end].

(cftfn].Is_rad[end ] * cftf n].mzo) );

/ /
/* IF END BECAME PLASTIC THIS STEP */
/ /

if (cft{n].Is_egn[end]>=1.0)
cft[ n ].state[ end ] = PL_IN;
cft[ n ].hinge =VYES;
/* PERFORM FORCE POINT DRIFT CONTROL */
if (((cftfn]s_egn[end]<1.0) ||
(cftfn].ls_egn[end]> (1.0 + tol.surf
(flag->drift ) )

{
a_pl_cft_drift( n, end, tol, cft);
}

lp-
po)/

my )/

mz)/

))) &&

/* CALCULATE THE INITIAL DISTANCE BETWEEN SURFACE  S*/

a_pl_cft_dist( n, end, tol, cft);

* CALCULATE PLASTIC STIFFNESS TERMS */

a_cft_plastic_k( n, end, cft);

}
} [* else if (cft[ n].state[ end ] == EL ) */
else
status = OL;
printf( "\nError. Flag not set to elastic or plas tic. \n");
} /*for (end = 0L; end <= 1L; end++) */
} /* for (n = 1L; n <= size->num_cft_elems; n++) */
return( status );
/
K*kkkkkkkkkk
* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *
K*kkkkkkkkkk
*  FUNCTION- a_pl_cft_surf.c
@(#) CFT loading and bounding SURFace equation c alculation
* CALLED FROM- a_pl_cft_state, a_pl_cft_kin_hard, a_pl_cft_drift
*  ABSTRACT- This function computes and returns the value of the surface
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equation. It receives normalized values which co
force and the radius of the surface (either L.S.

ntain the back
orB.S.))

/* C MATH FUNCTIONS
/* C I/O FUNCTIONS
/* C STRING FUNCTIONS

#include <math.h>
#include <stdio.h>
#include <string.h>

/* MACRO DEFINITIONS
/* EXTERNAL VARIABLES

#include "a_mac.h"
#include "a_extern.h"

double a_pl_cft_surf( n, cft, p, my, mz)

long n; /* CURRENT ELEMENT NUMBER

A_CFT_BC cft[]; /* DATA STRUCTURE FOR CFT BEAM-COL

double p; *(P-a-phi*R*Po)/(R*Po

double my; *(My-a)/(R*Myo) */

double mz; *(Mz-a)/(R*Mzo) */
/* where R = surf rad, a = surf centroid */

double equation = 0.0; /* VALUE OF THE SURFACE EQU

/* COMPUTE VALUE OF SURFACE EQUATION FOR CURRENT FARCE POINT */

equation=cftfn].cl*(my*my+mz*mz) +
cftfn].c2*p*p+
cfifnl.e3*(my*my*p*p+mz*mz*p*
cftfn].c4 * my * my * mz * mz;

p)+

return( equation );
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TableC.2 CFTmacro Header Files

Kkkkkkkkkkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

Kk kkkkkkk

*  FUNCTION- a_cft_el.h
@(#) Concrete-Filled Tube ELement data structures
*  ABSTRACT- This include file contains the data structure definitions

pertaining to the CFT macro beam-column finite el ement
/

#ifndef A_CFT_EL_H
#define A_ CFT_EL_H

#include "a_mac.h"

typedef struct
double p; /* AXIAL FORCE *
double my; /* BENDING MOMENT ABOUT Y AXIS */
double mz; /* BENDING MOMENT ABOUT Z AXIS *
} A_CFT_FORCES;

typedef struct

{
/* ELEMENT AND JOINT NUMBERS, FLAGS */

long el; /* ELEMENT NUMBER *
long i; /*1 JOINT */
long i; /*J JOINT */
long mcode[A_CFT_NUM_DOF+1L]; /* ELEMENT DOF CODE *
long release; /* FLAG TO SIGNAL MEMBER DOF RELEAS E
(ALL 12 DOFS ST ORED BY BIT IN 1 long)
OL = NO RELEASE
1L = RELEASE *
long section; /* FLAG TO SIGNAL AISC SHAPE READ
OL = NO (user input)
1L = YES (AISC section) */
long ei_status;  /* FLAG TO SIGNAL Elc IS UPD ATED
OL = FULL (full Elc)
1L = REDUCED (0.311*Elc) */
long hinge; /* FLAG TO SIGNAL IF HINGE HAS FORMED

/* SECTION PROPERTIES */
d;

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

OL = NO (hinge not yet formed)

1L = YES (hinge formed)

/* TUBE DEPTH

b; /* TUBE WIDTH

t; /* TUBE THICKNESS

a_stl; /* AREA OF THE STEEL TUBE

a_conc; /* AREA OF THE CONCRETE CORE
area, /* EFFECTIVE AREA OF CFT

iX; /* TORSIONAL CONSTANT

iy_c; /* Y-AXIS CONC MOMENT OF INERTIA
iz_c; [* Z-AXIS CONC MOMENT OF INERTIA
iy_s; /* STL Y-AXIS MOMENT OF INERTIA
iz_s; [* STL Z-AXIS MOMENT OF INERTIA
ip; /* POLAR MOMENT OF INERTIA

eiy; /* Y-AXIS BENDING STIFFNESS

eiz; /* Z-AXIS BENDING STIFFNESS

ea; /* AXIAL STIFFNESS

ai; /* TORSIONAL STIFFNESS

S_Y,; /* Y-AXIS SECTION MODULUS

S_7; /* Z-AXIS SECTION MODULUS

/* LENGTH AND DIRECTION COSINES */

double

l; /* ELEMENT LENGTH
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double I_last; /* PREVIOUS ITER ELEMENT LENGTH * /

double iend_x; /* GLOBAL X COMP. OF I-END VECT *
double iend_y; /* GLOBAL Y COMP. OF I-END VECT *
double iend_z; /* GLOBAL Z COMP. OF I- END VECT *
double outp_x; /* GLOBAL X COMP. OF O UT-OF-PLANE VECT?*/
double outp_y; /* GLOBAL Y COMP. OF O UT-OF-PLANE VECT*/
double outp_z; /* GLOBAL Z COMP. OF O UT-OF-PLANE VECT?*/
/* MATERIAL PROPERTIES */

double fy; /* YIELD STRENGTH OF THE STEEL *

double fc; /* CONCRETE STRENGTH */

double fet; /* CONCRETE TENSILE STRENGTH *

double emod_s; /* STEEL ELASTIC MODULUS *

double gmod_s; /* STEEL SHEAR MODULUS */

double kpi_s; /* WEIGHT OF STEEL (K/in) */

double ec_in; /* INITIAL CONCRETE ELASTIC MOD *

double emod_c; /* UPDATED CONCRETE ELASTIC MOD * /
double nu_c; /* CONCRETE POISSON'S RATIO *

double gmod_c; /* CONCRETE SHEAR MODULUS */
double wt_c; /* WEIGHT OF CONCR. (k/in"3) *

double kpi_c; /* WEIGHT OF CONCR. (k/in) */

double kpi; /* EFFECTIVE MEMBER WEIGHT *

double mass; /* TOTAL MASS OF MEMBER */

double wi; /* DISTRIB DEAD LOAD ON MEMBER *

double w2; /* DISTRIB LIVE LOAD ON MEMBER */

double multf A_CFT_NUM_DOF + 1L]; /* DISTRIB LOA D MULT*/

/* LOADING AND BOUNDING SURFACE PROPERTIES */

long Is[2L1]; /* LOADING SURFACE TYPE *

long bs[2L]; /* BOUNDING SURFACE TYPE *

long state[ 2L ]; /* STATE OF PLASTICITY MODEL

OL = EL (elastic)

1L = PL (plastic)

2L = PL_IN (init plast.)
long status[ 2L ]; /* FLAG TO SIGNAL UNLOADING

OL = LOAD (loading)

*

1L = UNLOAD (unloading) */

long surf[ 2L ]; /* FLAG - SURFACE EQN TO CHECK
OL = NONE (elastic)
1L = LS (loading surf)
2L = BS (bounding surf)
3L = BOTH (both surfs)

*

double Is_rad[ 2L ]; /* RADIUS OF LOADING SURFACE *
double bs_rad[ 2L ]; /* RADIUS OF BOUNDING SURFAC E */
double Is_eqn[2L]; /* VALUE OF L.S. EQUATION * /
double bs_eqn[2L]; /* VALUE OF B.S. EQUATION * /
double rho[ 2L J; /* RATIO: bs_rad/ls_rad */

double dist[ 2L ]; /* DISTANCE BETWEEN SURFACES */
double dist_in[ 2L ]; /* INITIAL DISTANCE */

double norm[ 2L ]; /* NORMAL TO LOADING SURFACE */
A_CFT_FORCES Is_cent[ 2L ]; /* CENTROID OF L.S. */
A_CFT_FORCES bs_cent[ 2L |; /* CENTROID OF B.S. */
A_CFT_FORCES conj2L]; /* CONJUGATE FORCE POINT ONB.S. *
A_CFT_FORCES grad[2L]; /* GRADIENT VECTOR OF FOR CE PT. */
/* KINEMATIC HARDENING PARAMETERS */

A_CFT_FORCES mroz[ 2L ]; /* DIRECTION OF MROZ VECT OR *
A_CFT_FORCES tseng[2L]; /* DIRECTION OF TSENG VE CTOR */
A_CFT_FORCES dis_kin[ 2L ]; /* LS RAD CHANGE DUE T O KIN HARD *
A_CFT_FORCES dbs_kin[ 2L ]; /* BS RAD CHANGE DUE T O KIN HARD */
A_CFT_FORCES Kki[2L]; /* HARDENING COEFFICIENT * /
A_CFT_FORCES k2[2L]; /* UPDATED HARDENING COEFFI CIENT */
A_CFT_FORCES Kk2i[2L]; /* UPDATED HARDENING COEFF ICIENT *
A_CFT_FORCES k2f[ 2L ]; /* UPDATED HARDENING COEFF ICIENT */
A_CFT_FORCES kp[2L]; /* PLASTIC STIFFNESS *
A_CFT_FORCES  kpb[2L]; /* BOUNDING PLASTIC STIFFN ESS */
/* ISOTROPIC HARDENING PARAMETERS */

double el_work; /* MEMBER STRAIN ENERGY *

double pl_work[ 2L ]; /* ACCUMULATED PLASTIC WORK */
double Isr_in[2L]; /*INITIAL RADIUS OF L.S. * /
double Isr_fn[2L]; /* FINAL (MAX OR MIN) LS RAD */
double bsr_in[2L]; /* INITIAL RADIUS OF B.S. * /
double bsr_intm[ 2L ]; /* PEAK OF B.S. RAD CURVE */
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double bsr_fn[2L]; /* FINAL (MAX OR MIN) BS RAD */
double bsr_upd[ 2L ]; /* INITIAL B.S. RAD FOR DES CENT *
double Is_iso[ 2L ]; /*L.S. SOFTENING PARAMETER */
double bs_iso[2L]; /*B.S. SOFTENING PARAMETER *
double k2_iso[ 2L ]; /* k2 SOFTENING PARAMETER * /
double ec_iso[ 2L ]; /* RATE OF CONCR. EMOD DECRE ASE *
double iso_work[ 2L ];/* % OF ELASTIC WORK AT INT M BS */
A_CFT_FORCES dis_iso[ 2L ]; /* LS RAD CHANGE DUE T O ISO HARD *
A_CFT_FORCES dbs_iso[ 2L |; /* BS RAD CHANGE DUE T O ISO HARD *
/* PROPERTIES FOR SURFACE EQN AND PLASTIC LENGTHC ALCS */

double cl; /* EQUATION COEFFICIENT *

double c2; /* EQUATION COEFFICIENT */

double c3; /* EQUATION COEFFICIENT *

double c4; /* EQUATION COEFFICIENT */

double phi; /* CENTROID OF LOADING SURFACE *

double po; /* NOMINAL AXIAL LOAD CAPACITY *

double ptens; /* NOMINAL TENSILE CAPACITY *

double myy; /*Y-AXIS YIELD MOMENT */

double mzy; * Z-AXIS YIELD MOMENT *

double myo; /* NOMINAL Y-MOMENT CAPACITY *

double mzo; /* NOMINAL Z-MOMENT CAPACITY *

/* MEMBER DISPLACEMENTS */

double du[A_CFT_NUM_DOF+1L]; /* INCR DISPLS */
double u2[A_CFT_NUM_DOF+1L]; /* END-OF-STEP DISP LS *

double rz_y[2L]; /* MAJOR AXIS 'YIELD' ROTATION */
double duct[ 2L ]; /* ELEMENT END DUCTILITY RATIO *
/* MEMBER FORCES AND DISPLACEMENTS */

double sratio[ 2L ; /* STRESS RATIOS *

double df_i[A_CFT_NUM_DOF+1L];/* ITERATION FORCES *

double f1_i[A_CFT_NUM_DOF+1L];/* BEG-OF-ITER FORC ES ¥

double f2_i[A_CFT_NUM_DOF+1L];/* END-OF-ITER FORC ES ¥

double f1[A_CFT_NUM_DOF+1L]; /* FORCES AT STEP n */

double f2[A_CFT_NUM_DOF+1L]; /* FORCES AT STEP n +1 %

/* MAXIMUM AND MINIMUM VALUES */

double sratio_max[ 2L ]; /* MAX STRESS RATIO */

double t_sratio[ 2L ; /* TIME OF MAX STRESS * /
double duct_max[ 2L ]; /* MAX DUCTILITY RATIO * /
double t_duct[ 2L ]; /* TIME OF MAX DUCT *

double f_max[A_CFT_NUM_DOF+1L]; /* MAX FORCES */
double f_min[A_CFT_NUM_DOF+1L]; /* MIN FORCES *
double t_max[A_CFT_NUM_DOF+1L]; /* TIME STEP OF M AX F'S*
double t_min[A_CFT_NUM_DOF+1L]; /* TIME STEP OF M IN F'S*/

/* TRANSFORMATIN MATRIX */

double

lambda[A_CFT_NUM_DOF+1L]]A_CFT_NUM_DOF+1L] ;
/¥ GLOBAL TO LOCAL TRANSFORM %/

/* ELEMENT STIFFNESS MATRICES */

double

double

}
#endif

kif A_CFT_NUM_DOF + 1L ] A_CFT_NUM_DOF + 1LY
/* LOCAL ELEMENT TANGENT K %/

krf A_CFT_NUM_DOF + 1L ][A_CFT_NUM_DOF + 1LY
/* LOCAL PLASTIC REDUCTION K %

A_CFT_BC; /* CFT BEAM-COLUMN ELEMENT *

*kkkkkkkhkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

*kkkkkkkkkk

*  FUNCTION- a_extern.h

@(#) Generic EXTERNal variables

*  ABSTRACT- Declaration of generic external var iables
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#ifndef A_EXTERN_H
#define A_EXTERN_H

#include <stdio.h> /* C 1/0 FUNCTIONS */

#include "a_mac.h" /* MACRO DEFINITIONS */

#include "a_jt.h" /* DATA STRUCTURE DEFIN ING JOINT PROPS */
#include "a_cft_el.h" /* DATA STRUCTURE FOR C FT BEAM-COLUMN */
#include "a_stl_el.h" /* DATA STRUCTURE FOR S TEEL BEAM-COLUMN */
#include "a_param.h" /* DATA STRUCTURE OF VARIOUS PARAMETERS */
#include "a_global.h" /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */
#include "aisc.h" /* DATA STRUCTURE FOR AISC DATAB ASE */
#include "aiscpriv.h" /* AISC PRIVATE INCLUDE FILE --AISC MACROS*/

#ifndef EXTERN
#define EXTERN extern
#endif

/* FILE POINTERS */

EXTERN FILE* A_fp_in; /* INPUT FILE POINTER */

EXTERN FILE* A_fp_out; /* OUTPUT FILE POINTER */
EXTERN FILE* A_fp_plot; /* PLOT FILE POINTER */

EXTERN FILE* A_fp_max; /* MAXIMUM VALUE FILE POINT ER *
EXTERN FILE* A_fp_accl, /* ACCELEROGRAM INPUT POIN TER */

/* CHARACTER STRINGS */

EXTERN char  A_in_file [ A_FILE_NAME_LEN J; /* INP UT FILENAME */
EXTERN char A out_file[ A_FILE_NAME_LEN J; /* OUTPU T FILENAME */
EXTERN char A _plot_file[ A_FILE_NAME_LEN J; /* PLOT FILENAME */
EXTERN char  A_max_file[ A_FILE_NAME_LEN J; * MAX V ALUE FILENAME */
EXTERN char A _accel_file [A_FILE_NAME_LEN J; /* AC CEL INPUT FNAME  */
#endif

*kkkkkkkkkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

*kkkkkkkhkk

*  FUNCTION- a_global.h

@(#) data structure of GLOBAL degree-of-freedom-b ased variables
*  ABSTRACT- This include file contains the data structure containing

global arrays having size equal to the number of degrees-of-

freedom in the structure. These include global f orces,

displacements, mass, damping, and others.

/

#ifndef A_GLOBAL_H
#define A_GLOBAL_H

typedef struct{ /*'global' */
long  col_ht; /* GLOBAL K MATRIX COLUMN HEIGHTS
/* LOADS */
double dr; /* INCREMENTAL GLOBAL LOAD VECTOR
double r1; /* BEGINNING OF STEP LOAD VECTOR
double r2; /* END OF STEP LOAD VECTOR */
double dyn; /* DYNAMIC LOAD (ma + NEWMARK EFFECT S)
/* DISPLACEMENTS */
double dqi; /* GLOBAL ITERATIVE DISPLACEMENTS
double dqgl; /* GLOBAL 1ST ITERATION DISPLACEMENT S
double q1; /* BEGINNING OF STEP DISPLACEMENTS
double qg2; /* END OF STEP DISPLACEMENTS
double q2i; /* END OF ITERATION DISPLACEMENT

/¥ MASS AND DAMPING */
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double
double
double

mass, /* GLOBAL MASS MATRIX (DIAGONAL)
cvl; /* PRODUCT OF DAMPING MATRIX AND v1
cvli; /* PRODUCT OF DAMPING MATRIX AND v1

I* ACCELERATIONS AND VELOCITIES */

*
i *

double ai; /* BEGINNING OF STEP ACCELERATION *
double al_i; /* BEGINNING OF ITERATION ACCELERAT ION */
double a2; /* END OF STEP ACCELERATION *
double v1; /* BEGINNING OF STEP VELOCITY *
double v1_j; /* BEGINNING OF ITERATION VELOCITY *
double v2; /* END OF STEP VELOCITY */
} A_GLOBAL; /* GLOBAL STRUCTURAL PARAMETERS */
#endif
/
K*kkkkkkkkkk
* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *
K*kkkkkkkkkk
*  FUNCTION- a_jt.h
@(#) JoinT data structures
*  ABSTRACT- This include file contains the data structures pertaining to
the joints
/
#ifndef A_JT_H
#define A_JT_H
#include "a_mac.h" /* MACRO DEFINITIONS */
typedef struct{
double X; /* X COORDINATE *
double y; /*Y COORDINATE *
double z; /*Z COORDINATE */
} A_JT_COORD; /* GLOBAL CARTESIAN COORDINATES *
typedef struct{
long it; /* JOINT NUMBER *
long jcode[ A_JT_DOF + 1L ]; /* DOFS MAPPED ONTO LOCAL JT */
long rf{ A_JT_DOF +1L]; /*VECTOR OF JOINT RES TRAINTS *
/* 0 = restrained, 1 = free */
/* LOADS */
long lhist{ A_JT_DOF + 1L ]; /* ASSIGNED LOAD HI STORY NUM */
double load[ A_JT_DOF + 1L J; /* TOTAL JOINT LOA D *
double load1[ A_JT_DOF + 1L ]; /* TOTAL JOINT LOA D (LHIST 1) */
double load2[ A_JT_DOF + 1L ]; /* TOTAL JOINT LOA D (LHIST 2) */
double r2[ A_JT_DOF + 1L J; /* TOTAL END OF STEP LOAD *
double ma[ A_JT_DOF + 1L ]; /* GROUND ACCELERATI ONLOAD ¥/
double dyn[ A_JT_DOF + 1L ]; /* JOINT LOAD DUE T O DYNAMICS */

/* FORCES */

double
double
double
double

df i[A_JT_DOF +1L];
2 i[ A_JT_DOF + 1L ];
f1I[A_JT_DOF + 1L ];
f2[ A_LJT_DOF + 1L ];

/* MASS AND DAMPING */

double
double

mass[ A_JT_DOF + 1L J;
damp[ A_JT_DOF + 1L ];

/* MAX AND MIN DISPLACEMENTS */

double
double
double
double

u_max[ A_JT_DOF + 1L J;

u_min[ A_JT_DOF + 1L ];
t max[ A_JT_DOF + 1L J;
t_minfA_JT_DOF + 1L ];

/* COORDINATES */

/* INCREMENTAL JOI

/* JOINT FORCE AT
/* JOINT FORCE AT ST
/* JOINT FORCE AT ST

/* JOINT LUMPED MA
/* JOINT LUMPED DA

/* MAXIMUM DISPLAC
/* MINIMUM DISPLAC
/* TIME OF MAXIMUM
/* TIME OF MINIMUM
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Cco; /* JOINT COORDINATES

JT_COORD
J /* INITIAL JOINT COORDINATES

A
A_JT_COORD co_i;
} A_JT_JOINT; /* JOINT DATA STRUCTURE */

#endif

*kkkkkkkkkk

MINNESOTA *

*kkkkkkkkkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF

*  FUNCTION- a_mac.h
@(#) MACro definitions

*  ABSTRACT- This include files includes all the

model program

macros in the macro

#ifndefA_MAC_H
#defineA_MAC_H

/

!
/* DEFINE JOINT AND ELEMENT DOFS */

/

#define A_JT_DOF

/
6L

#define A_CFT_NUM_DOF_END 6L

#define A_CFT_NUM_DOF 12L
#define A_STL_NUM_DOF_END 6L
#define A_STL_NUM_DOF 12L

/

!
/* DEFINE SIZE OF DATA ARRAYS */
/

/

#define A_NUM_ACCLG_PTS 4200L
#define A_NUM_LH_PTS 50L

/

/

/* DEFINE MISCELLANEOUS MACROS */

/

/

#define PI 3.1415926536
#define POS 1L

#define NEG -1L

#define NO oL

#define YES 1L

#define STATIC 1L

#define DYNAMIC 2L

#define EIGEN 3L

#define LOWORDER oL
#define HIGHORDER 1L
#define SMALL 0.0000000001

/

/

/
/* CHARACTER STRING MACROS */
/

#define A_FILE_NAME_LEN 65L

/* LENGTH OF FILE NAMES

#define A_KEYWORD_LEN 16L

#define A_DESIG_LEN

/* LENGTH OF KEYWORDS
20L
/* LENGTH OF SHAPE DESIGNATION

/

!
/* CONSTANT ACCELERATION MACROS */

/

#define A_BETA

/

0.25
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#define A_GAMMA 0.5

/ /
/* CONCRETE STIFFNESS MACROS */
/ /

/* STATUS OF THE CONCRETE STIFFNESS (FULL OR REDUCE D DUE TO CRACKING) */
#define FULL oL
#define REDUCED 1L

/ /
/* PLASTICITY FLAG MACROS */
/ /

/* TYPE OF KINEMATIC HARDENING: MROZ OR TSENG */

#define MROZ 1L

#define TSENG 2L

/* STATE: ELASTIC, PLASTIC, OR PLASTIC FOR FIRST ST EP */

#define EL oL

#define PL 1L

#define PL_IN 2L

/* HINGE STATUS: LOADING OR UNLOADING */

#define LOAD oL

#define UNLOAD 1L

/* SURFACE FORCE PT LIES ON: NONE, LOADING SURF, B OUNDING SURF, OR BOTH */
#define NONE oL

#define LS 1L

#define BS 2L

#define BOTH 3L

/* FORCES TO USE: BEGINNING OF STEP FORCES, END OF STEP FORCES */
#define F1 1L

#define F2 2L

#endif

*kkkkkkkhkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

*kkkkkkkkkk

*  FUNCTION- a_param.h
@(#) various structural PARAMeters
*  ABSTRACT- This include file contains the data structure for the

the size of the structural model, the global stif fness matrix,
time, and tolerances.

/

#ifndefA_ PARAM_H
#defineA_PARAM_H

#include "a_mac.h"

typedef struct { [*'accel' */
long  num_pts; /* NUMBER OF ACCELEROGRAM POINTS
long  curve; /* CURRENT PORTION OF ACCELEROGRAM
double ag; /* CURRENT GLOBAL BASE ACCELERATION
double angle; /* ORIENTATION OF EQKE LOADING
double a_pt[ A_NUM_ACCLG_PTS + 1L ]; /* ACCLGRM A CCEL COORDS
double t_ptf A NUM_ACCLG_PTS + 1L ]; * ACCLGRM T IME COORDS
} A_ACCEL; /* ACCELEROGRAM DATA ¥/

typedef struct { [*'dyn' */
long  d_option; /* INPUT DAMPING OPTION */
double a[8L]; /* VECTOR OF INTEGRATION CONSTANT S
double damp; /* DAMPING RATIO */
double dcoeff_k; /* STIFFNESS PROPORTIONAL DAMPIN G COEF
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typedef struct {

typedef struct{

typedef struct{

typedef struct{

typedef struct{

typedef struct{

typedef struct{

double dcoeff_m; /* MASS PROPORTIONAL DAMPING COE FF.
} A_DYNAMIC; /* DYNAMIC ANALYSIS DATA */
/* 'eigen' */
double freq; /* MODAL FREQUENCY *
double period; /* MODAL PERIOD */
} A_EIGEN; /* EIGENANALYSIS DATA */
[* 'flag' */
long analysis; /* TYPE OF ANALYSIS (1 = STATIC,
2 = DYNAMIC, 3 = EIGEN) */
long  test_num; /* CODE FOR 'cftmacro.plot' OUTPUT
long  elem_wt; /* ADD ELEMENT WEIGHTS AS JOINT LOA DS?
long  stl_kin; /* STEEL KINEMATIC HARDENING METHOD
long  cft_kin; /* CFT KINEMATIC HARDENING METHOD
long  kg; /* INCLUDE GEOMETRIC STIFFNESS?
long  order; /* ORDER OF Kg (0 = LOW, 1 = HIGH)
long  kp; /* INCLUDE MATERIAL NONLINEARITIES?
long  scaleback; /* SCALE BACK CURRENT STEP
long  iso; /* INCLUDE ISOTROPIC HARDENING?
long  drift; /* PERFORM FORCE PT DRIFT CONTROL?
long  echo_input; /* ECHO SELECTED INPUT PARAMETER S?
long  suppress; /* SUPPRESS OUTPUT OF SELECT PARA MS?
long  maxmin; /* PRINT MAX AND MIN F'S AND DISPLS ?
} A_FLAGS; /* PROGRAM FLAGS */
* 'lhist' */
long  num_lhpts; /* NUMBER OF LOAD HISTORY POINTS
long  curve; /* CURRENT SEGMENT OF LOAD-HIST CURV E
double Idfracl; /* % TOTAL APPLIED LOAD LAST STEP
double ldfrac2; /* % TOTAL APPLIED LOAD CURRENT S TEP
double time_pt[ A_NUM_LH_PTS ]; /* LOAD HISTORY T IME POINTS
double load_pt[ A_NUM_LH_PTS ]; /* LOAD HISTORY L OAD POINTS
} A_LOADHIST; /* LOAD HISTORY PARAMETERS */
[*'nr ¥/
long  conv; /* FLAG TO SIGNAL CONVERGENCE
OL = SOLUTION HAS NOT CONVERGED
1L = SOLUTION CONVERGED *
long iter_ct; /* CURRENT ITERATION NUMBER
long iter_max; /* MAXIMUM NUMBER OF ITERATIONS
double dq_last; /* TOTAL INCR DISPL FOR LAST ITER ATION
double dq_curr; /* TOTAL INCR DISPL FOR CURRENT | TER.
} A_NEW_RAPH; /* NEWTON-RAPHSON PARAMETERS  */
[*'size" */
long  num_jts; /* NUMBER OF JOINTS IN THE STRUCTUR E
long  num_dofs; /* NUMBER OF GLOBAL DEGREES-OF-FRE EDOM
long  num_elems; /* NUMBER OF ELEMENTS IN THE MODE L
long num_cft_elems; * NUMBER OF CFT MACRO ELEMEN TS
long  num_stl_elems; /* NUMBER OF STEEL MACRO ELEM ENTS
long num_jt_loads; /* NUMBER OF JOINT LOADS
long  num_lhs; /* NUMBER OF LOAD HISTORIES
long  max_lhpts; /* MAX NUMBER OF LOAD HISTORY POI NTS
long num_acclgms; /* NUMBER OF ACCELEROGRAMS
long max_acclpts; /* MAX NUMBER OF ACCELEROGRAM P OINTS
long  num_sky; /* NUMBER OF SKYLINE K TERMS
long num_modes; /* NUMBER OF MODES DESIRED
} A_MODEL_SIZE; /* SIZE OF STRUCTURAL MODEL */
* 'time" */
long  prstep; /* PRINT RESULTS EVERY __ STEPS *
long count; /* OUTPUT COUNTER */
double a_step; /* SCALED BACK (APPLIED) TIME STE P
double x_step; /* UNAPPLIED PORTION OF INPUT T S TEP
double step; /* INPUT TIME STEP */
double total; /* TOTAL AMOUNT OF TIME */
} A_TIME; /* TIME PARAMETERS */
* 'tol" */
double conv; /* NEWTON-RAPHSON CONVERGENCE TOL.
double eigen; /* EIGENSOLVER CONVERGENCE TOL.
double surf; /* LOADING AND BOUNDING SURFACE TOL S.
} A_TOLERANCE; /* PROGRAM TOLERANCES */
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#endif

K*kkkkkkkkkk

* DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA *

K*kkkkkkkkkk

*  FUNCTION- a_stl_el.h
@(#) STeeL ELement data structures

*  ABSTRACT- This include files contains the dat a structure definitions
pertaining to the steel macro beam-column finite element
/

#ifndef A_STL_EL_H
#define A_STL_EL_H

#include "a_mac.h"

typedef struct{
double p; /* AXIAL FORCE */
double my; /* BENDING MOMENT ABOUT Y AXIS */
double mz; /* BENDING MOMENT ABOUT Z AXIS *
} A_STL_FORCES;
typedef struct{
/* ELEMENT AND JOINT NUMBERS */
long el; /* ELEMENT NUMBER *
long i, /*1 JOINT *
long /*J JOINT */
long mcode[A STL_NUM_DOF+1L]; /* ELEMEN T DOF CODE */
long release; *FLAG TO SIGNAL MEMBER RELEASE
OL = RELEASE
1L = RELEASE *
/* SECTION PROPERTIES */
double area; /* GROSS AREA OF STEEL SECTION *
double i_X; /* TORSIONAL CONSTANT *
double iy; /* Y-AXIS MOMENT OF INERTIA */
double i_z; /* Z-AXIS MOMENT OF INERTIA *
double i_p; /* POLAR MOMENT OF INERTIA *
double S Y; /* Y-AXIS SECTION MODULUS *
double S_7; /* Z-AXIS SECTION MODULUS */
double zZ_y; /* Y-AXIS PLASTIC MODULUS *
double z_7; /* Z-AXIS PLASTIC MODULUS *
/* LENGTH AND DIRECTION COSINES */
double l; /* ELEMENT LENGTH */
double |_last; /* PREVIOUS ITER ELEMENT LENGTH * /
double iend_x; /* GLOBAL X COMP. OF I-END VECT *
double iend_y; /* GLOBAL Y COMP. OF I-END VECT *
double iend_z; /* GLOBAL Z COMP. OF I-END VECT */
double outp_x; /* GLOBAL X COMP. OF OUT-OF-PLANE VECT?*/
double outp_y; /* GLOBAL Y COMP. OF OUT-OF-PLANE VECT?*/
double outp_z; /* GLOBAL Z COMP. OF OUT-OF-PLANE VECT?*/
/* MATERIAL PROPERTIES */
double fy; /* YIELD STRENGTH OF THE STEEL */
double emod,; /* ELASTIC MODULUS */
double gmod; /* SHEAR MODULUS *
double kpi; /* WEIGHT OF STEEL MEMBER *
double mass; /* TOTAL MASS OF MEMBER */
double wi; /* DISTRIB DEAD LOAD ON MEMBER *
double w2; /* DISTRIB LIVE LOAD ON MEMBER */
double multf A_STL_NUM_DOF + 1L]; /* DISTRIB LOA D MULT*/

/* PLASTICITY PARAMETERS */
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long Is[2L]; /* LOADING SURFACE TYPE
long bs[2L]; /* BOUNDING SURFACE TYPE
long state[ 2L ]; /* STATE OF PLASTICITY MODEL
OL = EL (elastic)
1L = PL (plastic)
2L = PL_IN (init plast.)
long status[ 2L ]; /* FLAG TO SIGNAL UNLOADING
OL = LOAD (loading)

1L = UNLOAD (unloading)

long surf[ 2L ]; /* FLAG - SURFACE EQN TO CHECK
OL = NONE (elastic)
1L = LS (loading surf)

2L = BS (bounding surf)

3L = BOTH (both surfs)

double Is_rad[ 2L ]; /* RADIUS OF LOADING SURFACE
double bs_rad[ 2L ]; /* RADIUS OF BOUNDING SURFAC
double Is_eqn[2L]; /*VALUE OF L.S. EQUATION

double bs_eqgn[2L]; /* VALUE OF B.S. EQUATION

double rho[ 2L J; /* RATIO: bs_rad/ls_rad

double dist[ 2L ]; /* DISTANCE BETWEEN SURFACES
double dist_in[ 2L ]; /* INITIAL DISTANCE

double norm[ 2L ]; /* NORMAL TO LOADING SURFACE

A_STL_FORCES Is_cent] 2L ]; /* CENTROID OF L.S.
A_STL_FORCES  bs_cent[ 2L ]; /* CENTROID OF B.S.
A_STL_FORCES conj[2L];  /* CONJUGATE FORCE POINT
A_STL_FORCES grad[2L];  /* GRADIENT VECTOR OF FOR

/* KINEMATIC HARDENING PARAMETERS */

A_STL_FORCES mroz[2L];  /* DIRECTION OF MROZ VECT
A_STL_FORCES tseng[2L]; /* DIRECTION OF TSENG VE
A_STL_FORCES dis_kin[ 2L ; /* LS RAD CHANGE DUE T

A_STL_FORCES  dbs_kin[ 2L ]; /* BS RAD CHANGE DUE T
A_STL_FORCES  ki[2L]; /* HARDENING COEFFICIENT
A_STL_FORCES k2[2L]; /* HARDENING COEFFICIENT
A_STL_FORCES  kp[2L]; /* PLASTIC STIFFNESS
A_STL_FORCES  kpb[2L]; /* BOUNDING PLASTIC STIFFN

/* NOMINAL STRENGTHS */
double po; /* NOMINAL AXIAL LOAD CAPACITY

double myy; /* Y-AXIS YIELD MOMENT
double mzy; * Z-AXIS YIELD MOMENT
double myo; /* NOMINAL Y-MOMENT CAPACITY
double mzo; /* NOMINAL Z-MOMENT CAPACITY
/* MEMBER DISPLACEMENTS */

double du[ A_STL_NUM_DOF + 1L ]; /* INCR DISPLS
double u2[ A_STL_NUM_DOF + 1L ]; /* END-OF-STEP D
double rz_y[2L]; /* MAJOR AXIS 'YIELD' ROTATION
double duct[ 2L ]; /* ELEMENT END DUCTILITY RATIO
/* MEMBER FORCES */

double sratio[ 2L J; /* STRESS RATIOS

double df_i[A_STL_NUM_DOF+1L];/* ITERATION FORCES
double f1_i[A_STL_NUM_DOF+1L];/* BEG-OF-ITER FORC
double f2_i[A_STL_NUM_DOF+1L];/* END-OF-ITER FORC
double f1[A_STL_NUM_DOF+1L]; /* FORCES AT STEP n
double f2[A_STL_NUM_DOF+1L]; /* FORCES AT STEP n
/* MAXIMUM AND MINIMUM VALUES */

double sratio_max[ 2L ]; /* MAX STRESS RATIO
double t_sratio[ 2L ]; /* TIME OF MAX STRESS
double duct_max[ 2L ]; /* MAX DUCTILITY RATIO
double t_duct[ 2L ]; /* TIME OF MAX DUCT
double f_max[A_STL_NUM_DOF+1L]; /* MAX FORCES
double f_min[A_STL_NUM_DOF+1L]; /* MIN FORCES
double t_max[A_STL_NUM_DOF+1L]; /* TIME STEP OF M
double t_min[A_STL_NUM_DOF+1L]; /* TIME STEP OF M

/* TRANSFORMATION MATRIX */

double lambda] A_STL_NUM_DOF + 1L J[A_STL_NUM_DO

*/

*
*

*

*

ON B.S.
CE PT.

OR
CTOR
O KIN HARD
O KIN HARD
*

*

*

/* GLOBAL TO LOCAL TRANSFORM

/* ELEMENT STIFFNESS MATRICES */
double kif A_STL_NUM_DOF + 1L ][ A_STL_NUM_DOF +
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*
*/
ESS

*/
*

ISPLS

*
ES ¥
ES *

*
+1 %

*

AX F'S*
IN F'S*/

F+1L];
*/

1Ly

*
*

*

*

*

*
*
*

*
*/

*

*

*

*

*
*

*
*
*
*

*
*



#endif

double

/* LOCAL ELEMENT TANGENT K

krf A_STL_NUM_DOF + 1L ][A_STL_NU M_DOF + 1L ];
/* LOCAL PLASTIC REDUCTION K %/
A_STL_BC; /* STEEL BEAM-COLUMN ELEMENT
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Appendix D
List of Symbols

abe, age, &z = coordinates of bounding surface backforce veotéorce-space

{aBS} = unnormalized bounding surface backforce vector

{A.s} = unnormalized bounding surface centroidal vector

a, = constant coefficients for quadratic form of ar@®ction strength surface equation
als, 'y, a'e = coordinates of loading surface backforce veictdorce-space

{a,s} = unnormalized loading surface backforce vector

{

ALS} = unnormalized loading surface centroidal vector

A = area of concrete

A, = area of fiber elemenmt
A, = area of steel

A, =total area of CFT

b = width of rectangular CFT

b, = coefficients for cubic form of cross-sectioresigth surface equation
c, = coefficients of cross-section strength surfapea¢ion

CFT = concrete-filled steel tube
{da}, {das} = incremental loading and bounding surface cedtnoovement

{da}.., {da},, = incremental surface centroid movement due twapix hardening
{da .}, {da,},, =incr. surface centroid movement due to kinemadidening
{da}

{da.}
dqp} = incremental plastic element displacements

: {dq}j, {ddg} =i-end,j-end, and total incremental element displacemectove
= incremental elastic element displacements

dR s, dR;s = incremental change in loading surface and bawnsurface radii

266



dW, = incremental plastic work
{d5};, {05}, {dS} =i-end,j-end, and total incremental element force vectors

{dS*} = incr. force vector relating plastic stiffnesdiwplastic displacement vector
dA;, dA; = magnitude of incremental plastic displacememri@mnent endsand;

{d/1} = vector of incremental plastic displacement magtas

D = depth of rectangular CFT

DOF = degree-of-freedom

e = eccentricity of applied load

e, = eccentricity of applied load in y-direction

e, = eccentricity of applied load in z-direction
E[A = axial rigidity

E DB\)Cft = effective axial rigidity of CFT section

= concrete modulus of elasticity
.)..., = updated value of concrete modulus of elasticity
| = flexural rigidity

(E a )cft = effective flexural rigidity of CFT section

E. = steel modulus of elasticity

E,. = steel strain hardening modulus
f = normalized loading or bounding surface function

f. = concrete stress (compression)

f. = characteristic 28-day concrete cylinder strength

f., = final concrete compressive stress

f, = concrete stress (tension)
f. = concrete rupture (tensile) strength

f. = longitudinal stress in steel tube

f, = ultimate strength of steel tube

f, = yield strength of steel tube

F = total internal cross-section force; transvéosee

{F} = conjugate vector t§F} on loading surface

{F} = vector at intersection of bounding surface amémental force vector extension
G [J = torsional rigidity

(G ED)cft = torsional rigidity of CFT section

G. = shear modulus of elasticity of steel

i = cross-section fiber element; finite element end

I, = moment of inertia of concrete

I, = moment of inertia of steel
j = finite element end

J, = torsional moment of inertia of steel
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[ke] = total element stiffness matrix

[kg] = element elastic stiffness matrix

(), (K)o (ko). = elastic stiffness terms--axial, minor and majeis bending
[kg = element geometric stiffness matrix

[k‘; = element plastic stiffness matrix

Ko )y (kp)my, (kp)mZ = plastic stiffness terms--axial, minor and majris bending

p
= element plastic reduction stiffness matrix

)
]
)
)p, (kb)my, (k'f’)mZ = bounding stiffness terms--axial, minor and majis bending
)
)

element elastic tangent stiffness matrix

L = member length; element length

m, = normalized minor axis (y-direction) bending marpev /M, ,

m, = normalized major axis (z-direction) bending momé1,/M,,

M = resultant bending moment

M, = ultimate bending moment in presence of no drid

M, = minor axis (y-direction) bending moment

M,y = yield moment

M,, = ultimate minor axis bending moment in preserfagocaxial load
M, = major axis (z-direction) bending moment

M, = ultimate major axis bending moment in preserfeeoaxial load
n = parameter for ascending branch of concretesstain curve

n. =it exponent of cross-section strength surface equatio

{n},, {n}, = gradient vectors &t andj-end of element

= parameter for strain hardening curve of steeks-strain curve
N} = element gradient vector

NPr = non-proportional applied loading

p = normalized axial load

P = applied axial load; axial force

P.. = ultimate axial strength of concrete core of CFT

P, = Euler buckling load

P., = axial strength of CFT in tension using crossisecstrength surface equation
P, = ultimate axial load in the presence of no begdin

Pr = proportional applied loading

P,. = ultimate axial strength of steel tube of CFT
Pen. = axial strength of CFT in tension
Q = applied shear

Q... Q.. =maximum cyclic shears

R = rotation
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Rgs = bounding surface "radius”
(RBS)m, (RBS)intm (RBS)final = initial, intermediate, and final bounding sudaadii

(Rs).r (Res),, = updated and previous step bounding surface radii

R s = loading surface "radius"
Rs)ur (Rs)aa = initial and final loading surface radii

(
(Rs)..., (Rs),q =updated and previous step loading surface radii
{

s} = normalized force vector
S = section modulus of steel tube
S,, S, = force axes in two-dimensional force-space
{S} = end-of-step force vector
{S} = conjugate force vector {8}
SRC = steel-reinforced concrete
t = thickness of steel tube
t.a = time at end of load step
u = displacement
{u} = unit vector denoting element orientation
U;,uU,,U,, .U, = elastic strain energy--total, axial, minor andjon axis bending
V= transverse applied load
W, = total accumulated plastic work
X, = distance from top fiber of cross-section to reuaxis
y, = y-distance from fiber elemento neutral axis
z, = z-distance from fiber elemento neutral axis
{a.s} = normalized loading surface centroid
{a.s} = normalized bounding surface centroid
a = angle of load eccentricity {& major axis bending, 93= minor axis bending)
3 = concrete flexural rigidity reduction factor
0 = member mid-height deflection; distance betweaadling and bounding surfaces
d,, = initial distance between loading and boundingeses
A = member end deflection
Ae = fiber analysis strain increment
Ag = fiber analysis curvature increment
AB = fiber analysis increment in neutral axis ori¢iota
€, = concrete strain (compression)
€, = concrete strain (tension)
€, = strain at which local buckling of the steel tuweurs
€., = Maximum strain in the steel
g, = concrete strain at.f
€. = steel strain
€, = strain at the onset on strain hardening of teels
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€,p = Strain at top fiber of cross-section
g, = strain at yield stress of steel tube
N Nes = Magnitude of centroid movements due to isotryairdening

8 = angle between neutral axis and centroidal axesass-section; rotation

¢ = normalized axial force coordinate of CFT surfaeatroid

¢ ., = calculated normalized axial force coordinat€6fl surface centroid
¢, = fiber analysis normalized axial force coordinet€FT surface centroid
s} = unnormalized bounding surface offset vector

b=

{
{(DLS = unnormalized loading surface offset vector

{9} = Tseng kinematic hardening vector

K,, K, = calibrated plasticity coefficients

Ky )ir (K3) s (K3). ., = initial, final, and updated values iof

[/\ = diagonal matrix of magnitude of bounding surfare@slation

¢ .. = rate of concrete elastic modulus decrease

§,, = rate of change ir,

s &as = Isotropic softening rates of loading and bougdinrfaces
Pq = distance between surfaces in Tseng kinematubeimamg formulation

0,, 0, = stress axes in two-dimensional stress-space

0, = stress in fiber element

r} temporary vector in Tseng kinematic hardeningidation
U} Mroz kinematic hardening vector

@ = curvature
Q_ = normalized accumulated plastic work

(@,). = normalized plastic work at point of maximum bdiny surface radius

Ec
K2

—

{'} = vector
[ ] = matrix

[{'}| = magnitude of given vectof, }
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