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Abstract 

 

 Concrete-filled steel tubes (CFTs) are being used in an increasing number of 

structural engineering applications.  One particular application which exploits the many 

advantages a CFT offers is a moment-resisting frame consisting of steel I-beams framing 

rigidly into CFT beam-columns.  This research examines the load-deflection relationship 

of CFT beam-columns in detail, with the final objective of modeling the cyclic nonlinear 

behavior of CFT beam-columns in frame structures.  An analytical model is presented to 

simulate both the monotonic and cyclic behavior of single member CFTs and composite 

frame structures composed of both CFT and steel members.  

 The first part of this research examines the cross-section strength of a CFT 

member.  Uniaxial stress-strain curves are developed to model the multiaxial stress 

behavior of the CFT due to the steel tube confining the concrete.  These stress-strain 

curves are incorporated into a fiber element analysis system, which is used to generate 

accurate CFT cross-section strength surfaces.  The cross-section study culminates with 

the development of an empirical polynomial expression for the three-dimensional (P-My-

Mz) cross-section strength surface of a CFT.  This expression is verified against the fiber 

model results and is generalized for CFTs having a wide range of material strengths and 

cross-section dimensions.  

 The expression for the three-dimensional cross-section strength of a CFT forms 

the basis for the second part of the research--the development of a compact and efficient 

macro analytical model to accurately simulate the second order inelastic behavior of a 

CFT beam-column.  This model is incorporated into a finite element analysis computer 

program, developed for this work, to analyze single members and composite frame 

structures.  The material nonlinear behavior of CFTs is modeled using a concentrated 

plasticity two-surface bounding surface approach implemented in three-dimensional 

force-space.  The loading and bounding surfaces in the model are asymmetric for CFTs 
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due to the infilled concrete.  A formulation is presented for the kinematic and isotropic 

hardening of these asymmetric surfaces to model the complex cyclic load-deformation 

behavior of the CFT beam-columns. 

 The CFT inelastic beam element formulation includes a number of 

experimentally-calibrated parameters which model behavioral characteristics such as 

stiffness degradation, strength degradation, and the decrease in the size of the elastic zone 

as a CFT is subjected to cyclic loading.  A number of monotonic and cyclic experimental 

tests with varying material and geometric properties are examined to calibrate these 

parameters of the model.  Several additional monotonic and cyclic tests are then 

presented as verification of the accuracy and broad scope of applicability of the nonlinear 

CFT beam-column model, including a final example consisting of a cyclically-loaded 

three-dimensional subassembly of steel I-beams framing into a CFT beam-column.  



 iii

 
Acknowledgments 

 
 

The authors would like to thank Professor Gregory G. Deierlein of Cornell University 

for providing source code that was modified for incorporation into a portion of this 

research. Additionally, the authors would like to thank Professors Chiaki Matsui of 

Kyushu University, Fukuoka, Japan and Shosuke Morino of Mie University, Tsu, Japan 

for their generous response to requests for further information on their concrete-filled 

steel tube research.  The author thank Paul Schiller, Dan Flemming, Mike Kannel, Jane 

Lundberg, and Chris Earls for their assistance with this research.  This research was 

funded by the University of Minnesota.  Any opinions, findings, and conclusions or 

recommendations expressed in this material are those of the authors and do not 

necessarily reflect the views of the University of Minnesota. 

 



iv 

Table of Contents 
 
 

Abstract...........................................................................................................................i 

Acknowledgments ..........................................................................................................iii 

Table of Contents ...........................................................................................................iv 

List of Figures.................................................................................................................vii 

List of Tables ..................................................................................................................x 

1 Introduction ...............................................................................................................1 
1.1 Concrete-Filled Steel Tubes in Frame Structures.........................................2 
1.2 Research Objectives .....................................................................................6 
1.3 Scope of Research ........................................................................................8 
1.4 Organization of Thesis .................................................................................10 

2 Analysis of CFT Cross-Section Strength.................................................................12 
2.1 CFT Cross-Section Behavior........................................................................14 

2.1.1 Axially-Loaded Cross-Sections.....................................................14 
2.1.2 Combined Axial Load and Bending ..............................................16 
2.1.3 Other Cross-Section Effects ..........................................................18 

2.2 Fiber Element Method for Computing CFT Cross-Section Strength...........21 
2.2.1 Background on Methods for Cross-Section Strength 

Computation ..................................................................................21 
2.2.2 Fiber Element Analysis .................................................................21 
2.2.3 Discretization of the Cross-Section...............................................22 
2.2.4 Moment-Curvature-Thrust Analysis..............................................24 
2.2.5 Analysis Parameters ......................................................................27 

2.3 Steel and Concrete Constitutive Models ......................................................28 
2.3.1 Concrete Constitutive Model.........................................................29 
2.3.2 Steel Constitutive Model ...............................................................33 

2.4 Criteria for Terminating the Moment-Curvature-Thrust 
Computation ..............................................................................................35 
2.4.1 Discussion of the Termination Criteria .........................................36 
2.4.2 Values Used for the Termination Criteria .....................................38 

2.5 Comparison to Experimental Results ...........................................................39 
2.6 Equation for the Three-Dimensional Cross-Section Strength Surface.........51 

2.6.1 Selection of CFT Cross-Sections ..................................................51 
2.6.2 Development of the CFT Cross-Section Strength Equation 

Form ..............................................................................................53 
2.6.3 Modeling the Asymmetry of the Cross-Section Strength 

Surface...........................................................................................57 
2.6.4 Development of the Coefficient Equations ...................................59 
2.6.5 Rectangular CFTs with Aspect Ratios Greater Than 1:1 ..............78 



v 

2.6.6 CFTs with Higher Strength Steel ..................................................84 
2.6.7 Nominal Strength of CFTs ............................................................85 

3 Introduction to the CFT Nonlinear Model..............................................................89 
3.1 Behavior of Rectangular CFT Beam-Columns ............................................89 

3.1.1 Monotonic Behavior of Rectangular CFT Beam-Columns...........90 
3.1.2 Cyclic Behavior of Rectangular CFT Beam-Columns ..................93 

3.2 CFT Element Formulation............................................................................94 
3.2.1 Background on CFT Behavior Models..........................................94 
3.2.2 Overview of the Finite Element Macro Model..............................96 

3.3 Elastic CFT Stiffness Properties................................................................98 
3.3.1 Axial Rigidity ................................................................................99 
3.3.2 Flexural Rigidity............................................................................99 
3.3.3 Torsional Rigidity..........................................................................101 

3.4 Geometric Nonlinear Formulation ...............................................................103 
3.5 Material Nonlinear Formulation...................................................................105 

3.5.1 Concentrated Plasticity Models.....................................................105 
3.5.2 Introduction to the CFT Plasticity Model......................................109 
3.5.3 Modeling of Inelastic CFT Behavior.............................................110 

4 CFT Force-Space Plasticity Formulation................................................................113 
4.1 Definitions and Assumptions of the Bounding Surface Model....................114 

4.1.1 Loading and Bounding Surfaces....................................................114 
4.1.2 Basic Assumptions ........................................................................118 

4.2 Derivation of the Plastic Reduction Matrix..................................................120 
4.3 Calculation of Plastic Stiffness.....................................................................124 

4.3.1 Plasticity Coefficients....................................................................125 
4.3.2 Distance Between the Surfaces......................................................127 

4.4 Isotropic Hardening ......................................................................................128 
4.4.1 Calculation of Plastic Work ..........................................................129 
4.4.2 Isotropic Hardening of the Loading and Bounding Surfaces ........132 

4.5 Variation of κ2 and Ec ...................................................................................136 
4.6 Kinematic Hardening....................................................................................137 

5 Verification and Calibration ....................................................................................144 
5.1 Verification of the Steel Plasticity Analysis.................................................145 

5.1.1 Steel Cantilever Beam ...................................................................145 
5.1.2 Steel Beam-Column ......................................................................148 

5.2 CFT Plasticity Analysis Calibration .............................................................150 
5.2.1 Calibration Parameters and Tests ..................................................150 
5.2.2 Calibration Procedure and Results ................................................153 

5.3 CFT Plasticity Analysis Verification............................................................167 
5.4 Verification of the Nonlinear Beam-Column Model....................................181 

 

 



vi 

6 Conclusions ................................................................................................................185 
6.1 Conclusions ..................................................................................................186 
6.2 Suggestions for Future Research ..................................................................188 

Appendix.........................................................................................................................191 
A CFT Experimental Tests...............................................................................191 
B Key Features of the Computer Implementation............................................195 
C CFTmacro Source Code ...............................................................................201 
D List of Symbols.............................................................................................264 

List of References ...........................................................................................................269 
 



vii 

List of Figures 
 
 
1.1 Medium Rise CFT Theme Structure (after Yamanouchi, et al [1993]) ..................3 
 
2.1 Cross-Section Strength Curves for Typical CFT Cross-Sections ...........................17 
2.2 CFT Geometry and Typical Meshing Scheme........................................................23 
2.3 Fiber Element Analysis Definitions (after Sanz-Picon [1992]) ..............................25 
2.4 Uniaxial Stress-Strain Curve for Concrete in Rectangular CFTs ...........................29 
2.5 Uniaxial Stress-Strain Curve for Steel in Rectangular CFTs..................................34 
2.6 Moment-Curvature-Thrust Diagram (Tom44a); P/Po = 0.13..................................41 
2.7 Moment-Curvature-Thrust Diagram (Tom44a); P/Po = 0.27..................................42 
2.8 Moment-Curvature-Thrust Diagram (Tom44a); P/Po = 0.58..................................42 
2.9 Moment-Curvature-Thrust Diagram (Tom44b); P/Po = 0.0....................................43 
2.10 Moment-Curvature-Thrust Diagram (Tom44b); P/Po = 0.26..................................43 
2.11 Moment-Curvature-Thrust Diagram (Tom44b); P/Po = 0.57..................................44 
2.12 Moment-Curvature-Thrust Diagram (Tom33); P/Po = 0.0......................................44 
2.13 Moment-Curvature-Thrust Diagram (Tom33); P/Po = 0.47....................................45 
2.14 Moment-Curvature-Thrust Diagram (Tom24); P/Po = 0.0......................................45 
2.15 Moment-Curvature-Thrust Diagram (Tom24); P/Po = 0.29....................................46 
2.16 Moment-Curvature-Thrust Diagram (Tom24); P/Po = 0.57....................................46 
2.17 Two-Dimensional Cross-Section Strength Diagram (Tom44a)..............................47 
2.18 Two-Dimensional Cross-Section Strength Diagram (Tom44b) .............................47 
2.19 Two-Dimensional Cross-Section Strength Diagram (Tom33) ...............................48 
2.20 Two-Dimensional Cross-Section Strength Diagram (Tom24) ...............................48 
2.21 Two-Dimensional Cross-Section Strength Diagram (Furl1) ..................................49 
2.22 Two-Dimensional Cross-Section Strength Diagram (Furl2) ..................................50 
2.23 Two-Dimensional Cross-Section Strength Diagram (Furl3) ..................................50 
2.24 Typical CFT Two-Dimensional Cross-Section Strength Diagram .........................54 
2.25 Two-Dimensional Cross-Section Strength Diagrams (D/t = 24) ............................72 
2.26 Two-Dimensional Cross-Section Strength Diagrams (D/t = 48) ............................72 
2.27 Two-Dimensional Cross-Section Strength Diagrams (D/t = 72) ............................73 
2.28 Two-Dimensional Cross-Section Strength Diagrams (D/t = 96) ............................73 
2.29 Two-Dimensional Cross-Section Strength Diagrams (f'c = 3.5 ksi) .......................74 
2.30 Two-Dimensional Cross-Section Strength Diagrams (f'c = 6.5 ksi) .......................74 
2.31 Two-Dimensional Cross-Section Strength Diagrams (f'c = 10 ksi) ........................75 
2.32 Two-Dimensional Cross-Section Strength Diagrams (f'c = 15 ksi) ........................75 
2.33 CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo ; Section 24A 

(D/t = 24, f'c = 3.5 ksi).............................................................................................76 
2.34 CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo ; Section 48B 

(D/t = 48, f'c = 6.5 ksi).............................................................................................76 
2.35 CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo ; Section 72C 

(D/t = 72, f'c = 10 ksi)..............................................................................................77 



viii 

2.36 CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo ; Section 96D 
(D/t = 96, f'c = 15 ksi)..............................................................................................77 

2.37 Two-Dimensional Cross-Section Strength Diagram--Major Axis Moment; 
(Major Axis D/t = 48, Minor Axis D/t = 24, f'c = 3.5 ksi) ......................................80 

2.38 Two-Dimensional Cross-Section Strength Diagram--Minor Axis Moment; 
(Major Axis D/t = 48, Minor Axis D/t = 24, f'c = 3.5 ksi) ......................................80 

2.39 CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo ; (Major Axis D/t 
= 48, Minor Axis D/t = 24, f'c = 3.5 ksi) .................................................................81 

2.40 Two-Dimensional Cross-Section Strength Diagram--Major Axis Moment; 
(Major Axis D/t = 72, Minor Axis D/t = 36, f'c = 15 ksi) .......................................81 

2.41 Two-Dimensional Cross-Section Strength Diagram--Minor Axis Moment; 
(Major Axis D/t = 72, Minor Axis D/t = 36, f'c = 15 ksi) .......................................82 

2.42 CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo ; (Major Axis D/t 
= 72, Minor Axis D/t = 36, f'c = 15 ksi) ..................................................................82 

2.43 Two-Dimensional Cross-Section Strength Diagram--Major Axis Moment; 
(Major Axis D/t = 96, Minor Axis D/t = 48, f'c = 10 ksi) .......................................83 

2.44 Two-Dimensional Cross-Section Strength Diagram--Minor Axis Moment; 
(Major Axis D/t = 96, Minor Axis D/t = 48, f'c = 10 ksi) .......................................83 

2.45 CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo; (Major Axis D/t 
= 96, Minor Axis D/t = 48, f'c = 10 ksi) ..................................................................84 

 
3.1 Typical CFT Load-Deflection Curve ......................................................................92 
3.2 CFT Beam Element.................................................................................................97 
3.3 Bounding Surface Model ........................................................................................106 
3.4 Kinematic Hardening ..............................................................................................108 
3.5 Isotropic Hardening.................................................................................................108 
3.6 Cyclic CFT Behavior (after Sakino and Tomii [1981]) ..........................................110 
 
4.1 CFT Bounding Surface Model................................................................................114 
4.2 Effect of κ2 on the Rate of Element Plastification ..................................................126 
4.3 Distance Between Loading and Bounding Surface.................................................128 
4.4 Isotropic Hardening of Loading and Bounding Surfaces........................................134 
4.5 Kinematic Hardening by the Tseng Method ...........................................................139 
 
5.1 Cantilever Beam......................................................................................................145 
5.2 Steel Cantilever:  Axial Load vs. Displacement .....................................................146 
5.3 Steel Cantilever:  Major Axis Moment vs. Rotation ..............................................147 
5.4 Steel Cantilever:  Minor Axis Moment vs. Rotation ..............................................147 
5.5 Beam-Column.........................................................................................................148 
5.6 Steel Beam-Column:  Major Axis Bending ............................................................149 
5.7 Steel Beam-Column:  Minor Axis Bending............................................................149 
5.8 Eccentrically-Loaded Beam-Column......................................................................153 
5.9 Axially-Loaded Beam in Bending...........................................................................153 
5.10 Cyclically-Loaded Shear Specimen ........................................................................153 



ix 

5.11 Initial Loading Surface Size and Shape ..................................................................155 
5.12 Eccentrically-Loaded Beam-Column (Br3) ............................................................161 
5.13 Eccentrically-Loaded Beam-Column (Ced2)..........................................................161 
5.14 Eccentrically-Loaded Beam-Column (Ced9)..........................................................162 
5.15 Eccentrically-Loaded Beam-Column (SK91_4) .....................................................162 
5.16 Axially-Loaded Beam in Bending (Tom24_3) .......................................................163 
5.17 Axially-Loaded Beam in Bending (Tom24_6) .......................................................163 
5.18 Axially-Loaded Beam in Bending (Tom44_3) .......................................................164 
5.19 Axially-Loaded Beam in Bending (Tom44_6) .......................................................164 
5.20 Cyclically-Loaded Shear Specimen (Sak24_2).......................................................165 
5.21 Cyclically-Loaded Shear Specimen (Sak34_3).......................................................165 
5.22 Cyclically-Loaded Shear Specimen (Sak46_5).......................................................166 
5.23 Eccentrically-Loaded Beam-Column (Br1) ............................................................170 
5.24 Eccentrically-Loaded Beam-Column (Br4) ............................................................171 
5.25 Eccentrically-Loaded Beam-Column (Br5) ............................................................171 
5.26 Eccentrically-Loaded Beam-Column (Br6) ............................................................172 
5.27 Eccentrically-Loaded Beam-Column (Br7) ............................................................172 
5.28 Eccentrically-Loaded Beam-Column (Br8) ............................................................173 
5.29 Eccentrically-Loaded Beam-Column (Ced1)..........................................................173 
5.30 Eccentrically-Loaded Beam-Column (Ced6)..........................................................174 
5.31 Eccentrically-Loaded Beam-Column (Ced7)..........................................................174 
5.32 Eccentrically-Loaded Beam-Column (Ced10)........................................................175 
5.33 Eccentrically-Loaded Beam-Column (Ced13)........................................................175 
5.34 Eccentrically-Loaded Beam-Column (SK89_2) .....................................................176 
5.35 Eccentrically-Loaded Beam-Column (SK89_5) .....................................................176 
5.36 Eccentrically-Loaded Beam-Column (SK91_9) .....................................................177 
5.37 Eccentrically-Loaded Beam-Column (SK91_10) ...................................................177 
5.38 Axially-Loaded Beam in Bending (Tom24_2) .......................................................178 
5.39 Axially-Loaded Beam in Bending (Tom24_4) .......................................................178 
5.40 Axially-Loaded Beam in Bending (Tom24_5) .......................................................179 
5.41 Axially-Loaded Beam in Bending (Tom44_2) .......................................................179 
5.42 Axially-Loaded Beam in Bending (Tom44_4) .......................................................180 
5.43  Axially-Loaded Beam in Bending (Tom44_5) ......................................................180 
5.44 Three-Dimensional Subassembly (after Morino et al. [1993]) ...............................181 
5.45 3D Subassembly:  Analytical Model.......................................................................183 
5.46 3D Subassembly:  Shear-Rotation Hysteresis Curve ..............................................184 
 
B.1 Unit Vectors Denoting Global Orientation of Steel and CFT Elements.................196 
B.2 Sample Load Histories ............................................................................................198 
 



x 

List of Tables 
 
 
2.1 Rectangular CFT Cross-Section Tests ....................................................................40 
2.2 CFT Cross Sections Used for Determining the Cross-Section Strength 

Surface Equation.....................................................................................................52 
2.3 Errors in Calculation of Cross-Section Strength Surface Centroids .......................58 
2.4 Optimum CFT Cross-Section Strength Surface Equation Coefficients..................60 
2.5 Errors in Coefficient c1............................................................................................62 
2.6 Errors in Coefficient c2............................................................................................63 
2.7 Errors in Coefficient c3............................................................................................64 
2.8 Errors in Coefficient c4............................................................................................65 
2.9 CFT Cross-Section Strength Surface Equation.......................................................67 
2.10 Cumulative Errors in CFT Cross-Section Strength Surface Equation 

(Surface Equation vs. Fiber Element Analysis) ......................................................68 
2.11 Cross-Section Strength Surface Equation Errors for Tension Region....................69 
2.12 CFT Cross-Section Strength Surface Equation Errors:  Additional CFT 

Cross-Sections.........................................................................................................71 
2.13 CFT Cross-Section Strength Surface Equation Errors:  Rectangular Cross-

Sections...................................................................................................................79 
2.14 CFT Cross-Section Strength Surface Equation Errors:  CFT Cross-Sections 

with Higher Strength Steel......................................................................................85 
2.15 Nominal Moment Calculation Errors......................................................................88 
 
3.1 Equations for the Elastic Rigidity of CFT Beam-Columns ....................................103 
 
5.1 List of Calibration Parameters ................................................................................150 
5.2 CFT Calibration Tests.............................................................................................152 
5.3 Final Calibrated Parameters ....................................................................................159 
5.4 CFT Verification Tests ...........................................................................................168 
 
A.1 Rectangular CFT Cross-Section Tests ...................................................................192 
A.2 Monotonic Rectangular Beam-Column Tests ........................................................193 
A.3 Cyclic Rectangular Beam-Column Tests ................................................................194 
 
B.1 Sample Input File for CFTmacro ............................................................................199 
 
C.1 CFTmacro Source Code .........................................................................................202 
C.2 CFTmacro Header Files .........................................................................................254 



 

 

 

 

Chapter 1 

 

Introduction 

 
 

 Composite members have long been recognized as efficient means of resisting 

loads in structures.  These structural elements combine the beneficial qualities of steel 

and concrete to form a member with qualities superior to the individual components 

themselves.  The steel provides high stiffness and tensile strength; the concrete provides 

compressive strength and economy.  A composite beam-column may take one of two 

basic forms:  1)  a steel-reinforced concrete member (SRC), which consists of a steel W-

section encased in reinforced or unreinforced concrete, or 2)  a concrete-filled steel tube 

(CFT), which may be either a circular or a rectangular structural steel tube filled with 

reinforced or unreinforced concrete.   

 Steel-reinforced concrete members have been used with increasing regularity in 

the past decade.  Only recently, however, have CFT members become more prevalent in 

structural framing systems.  For building structures, CFTs have been used primarily as 

columns, most notably forming the primary columns in braced lateral load-resisting and 

gravity load-resisting systems in high-rise structures [Bode, 1976; Griffis, 1992].  Two 

unique examples are the 62-story Two Union Square building in Seattle [Godfrey, 1987] 

and Casselden Place, a high-rise structure in Melbourne [Bridge and Webb, 1993; Webb, 
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1993].  The Two Union Square building utilizes four 10 foot diameter CFT super-

columns with 19 ksi concrete as the primary lateral load-resisting element and additional 

CFT perimeter columns to resist gravity loads.  Casselden Place incorporates CFTs as the 

gravity load-resisting system into which composite beams frame.  The use of CFTs in this 

structure minimized the required construction labor and maximized the speed of 

construction.  Concrete-filled steel tubes have also been used in seismic applications, in 

particular for bridge piers [Bode, 1976; Kitada, 1992; Priestley et al., 1994].  Recent 

trends indicate an increase in the use of CFT members, not only in applications similar to 

those discussed above, but as beam-columns in new and innovative applications that take 

advantage of the many benefits a CFT offers [Goel and Yamanouchi, 1993].  The 

research reported herein presents a computational model for simulating the behavior of 

CFT beam-columns used in frames subjected to monotonic or cyclic loading. 

 

 

1.1  Concrete-Filled Steel Tubes in Frame Structures 

 Concrete-filled steel tubes provide manifold benefits and advantages by exploiting 

the beneficial properties of steel and concrete and the interaction between the two 

materials.  CFTs offer high strength and stiffness, excellent seismic properties, economy, 

and efficiency [Tomii et al., 1973; Bode, 1976; Kitada, 1992; Webb, 1993].  The 

advantages of using CFT members become especially apparent when CFTs are used in 

braced and unbraced frames.  When used as beam-columns in these types of structures, 

CFTs demonstrate superior economy and strength over traditional steel or reinforced 

concrete members [Matsui, 1986; Morino et al., 1993].   
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 The usefulness, economy, and efficiency of CFT systems has been recognized by 

engineers across the world, especially in Japan.  The Japanese Planning Group for the 

1992 US-Japan Workshop on Hybrid and Composite Structures [Yamanouchi et al., 

1993] has identified several CFT structural systems for future large-scale testing.  One 

theme structure presented by this group consists of a two-way unbraced frame structure 

composed of steel beams and CFT beam-columns (Fig. 1.1).  This unbraced composite 

frame represents one type of structure whose monotonic and cyclic behavior may be 

assessed using the analytical formulation to be presented in this work.  

 

 

CFT Beam-Column

Steel Girder

21.0 ft

21.0 ft

21.0 ft

21.0 ft

21.0 ft

31.5 ft

Not to scale

21.0 ft 21.0 ft 21.0 ft 21.0 ft  

 
Figure 1.1  Medium Rise CFT Theme Structure (after Yamanouchi et al. [1993]) 

 

 CFT members perform efficiently under a variety of loading conditions, providing 

excellent compressive strength, as well as superior flexural and axial stiffness.  The 

orientation of the steel and the concrete in a CFT takes advantage of the properties of 

both materials.  The steel tube forming the exterior of the member, has a much larger 
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modulus of elasticity and ultimate strength than the concrete and provides a large moment 

of inertia, leading to high stiffness and flexural capacity [Bridge, 1976].  The concrete, on 

the other hand, forms an ideal core to withstand the compressive loading typical in beam-

column applications.     

 When a CFT member is subjected to compressive loading, further benefits arise 

due to the interaction of the steel and concrete.  Many authors have recognized that CFTs 

under compressive loads provide strength in excess of the sum of the individual material 

strengths of the steel and concrete [Gardner, 1968; Tomii et al., 1973; Ichinohe et al., 

1991; Tomii, 1991].  As a CFT undergoes compressive loading, the concrete begins to 

rapidly expand at a strain of approximately 0.002, inducing an outward pressure on the 

steel tube [Gardner and Jacobson, 1967; Knowles and Park, 1969].  The steel tube, in 

turn, exerts a confining pressure on the concrete, resulting in added concrete strength and 

ductility.  Spalling of the concrete, often a problem in reinforced concrete members, is 

inhibited by the steel tube.  Concrete, normally a relatively brittle material, becomes 

ductile when combined with the steel, resulting in a member with favorable seismic 

properties [Matsui, 1986; Tomii, 1991]. 

 While the steel improves the properties of the concrete, the concrete contributes to 

the performance of the steel tube.  The presence of the concrete core significantly delays 

local buckling of the tube by forcing all buckling modes outward [Tomii et al., 1973; 

Kitada and Nakai, 1991].  The delayed local buckling and increased concrete ductility 

contribute to the toughness of CFTs--the ability of CFTs to sustain a high proportion of 

their capacity even after local buckling of the steel and crushing of the concrete has 

occurred [Bridge, 1976]. 

 In addition to their efficient load resistance on a single member level, CFTs 

provide a number of economic benefits and additional advantages specific to frame 

structures.  Frame structures composed of CFT beam-columns and wide flange beams, 
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with proper connection design, provide high energy absorption characteristics and, in 

turn, very good seismic load resistance [Matsui, 1986].  The symmetry of circular or 

square CFT cross-sections produces a beam-column with equal resistance to bi-

directional moments, a distinct advantage in three-dimensional moment-resisting frames 

(e.g., Fig. 1.1).  In moderate- to high-rise construction, a building with CFT beam-

columns can ascend much more quickly than a comparable reinforced concrete structure 

since the steelwork can precede pouring of the concrete by several floors [Webb, 1993].  

The steel tubes also serve as the formwork for the wet concrete during construction, 

which decreases both material and labor expenses [Bode, 1976; Prion and Boehme, 

1989].  The cost of a CFT member on a strength per dollar basis is much less than steel 

and roughly equivalent to reinforced concrete for low to medium strength concrete.  With 

the use of high-strength concrete, though, CFTs are stronger per square foot than 

conventional reinforced concrete columns [Webb, 1993].   Finally, in high-strength 

applications, a smaller column size may be used, increasing the amount of usable floor 

space in office buildings.   

 The disadvantages of using CFTs in frame structures should be considered as well 

as the advantages.  The exposed bare steel tube requires expensive fire-protection.  The 

disadvantage of the low fire-resistance of the steel is somewhat mitigated by the concrete 

core, which provides a larger thermal capacity than air inside a hollow tube, thus 

decreasing the amount of necessary fire-proofing material [Tomii et al., 1973; Lie and 

Stringer, 1994].  A CFT, however, still remains more susceptible to fire damage than a 

reinforced concrete or steel-reinforced concrete member and, at present, must be fire-

proofed accordingly.   

 Another potential drawback of CFTs in frame structures, particularly unbraced 

frames, is the difficulty and expense of providing rigid beam-to-column connections 

[Prion and Boehme, 1989].  Tube connections have been studied by a number of 
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researchers and industry experts, however, and the results are now starting to be 

synthesized into comprehensive design specifications [Matsui, 1986; Prion and McLellan, 

1992; Azizinamini and Prakash, 1993; BMTC, 1994].   

 Current design specifications for CFTs for both connections and single members 

provide only limited guidance for the engineer, especially with the use of high strength 

materials.  Lundberg [1993] has compared the AISC LRFD [1994] calculation for beam-

column capacity to experimental results and found that the code is inconsistent and may 

even be unconservative in some cases.  The shortcomings of the current design 

specifications stem in large part from the limited base of experimental and analytical 

research to quantify CFT behavior.   

 Despite the potential drawbacks of CFTs, their advantages over traditional 

structural members promise to establish an expanding role for this versatile structural 

element in modern construction.  With continued analytical and experimental research, 

many of the current disadvantages of CFTs may be overcome, leading to a more thorough 

understanding of CFT beam-column behavior and more comprehensive design 

specifications.  

 

 

1.2  Research Objectives 

 The trend toward the use of CFT structural members in frames has presented the 

need for more comprehensive experimental and analytical research to better understand 

the complicated behavior of CFTs [Goel and Yamanouchi, 1993].  The analytical 

requirements for studying CFT frame behavior consist of developing an efficient method 

to study the overall frame load-deflection behavior in both static and seismic loading 
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situations.  The purpose of this research is to develop an analytical procedure which 

examines CFT member and frame behavior at the macroscopic level, i.e., each structural 

member is usually modeled by one to three discrete beam-type finite elements.  In 

particular, the nonlinear finite element model developed in this work will be used to study 

three-dimensional unbraced moment-resisting frames composed of steel I-girders framing 

rigidly into rectangular CFT beam-columns and subjected to either monotonic or cyclic 

loading. 

 The development of an analytical procedure capable of modeling the nonlinear 

load-deflection behavior of CFT frames requires a number of tasks.  These tasks may be 

summarized by examining the three primary objectives of this research: 

 1)  Formulate a polynomial expression representing the cross-section strength of a 

rectangular CFT.  This expression should be applicable to a wide range of cross-section 

sizes and material strengths.  Modeling CFT cross-section strength--the capacity of a 

zero-length CFT section under combined axial and bending loads--requires the 

development of accurate stress-strain relationships which account for the interaction 

between the concrete and the steel.  Also, conditions must be identified, such as local 

buckling or concrete crushing, which cause the section to lose its capacity to sustain 

additional load.  The representation of cross-section strength forms the basis for the 

plasticity model contained in the next objective.  

 2)  Develop a macro finite element beam-column model to reproduce accurately 

the nonlinear load-deflection behavior of CFT specimens loaded monotonically and 

cyclically.  The beam-column model consists of a concentrated plasticity formulation in 

which plasticity is confined to the element ends.  The plasticity state at either end of the 

element is modeled using a two-surface, bounding surface model in three-dimensional 

force space (P-My-Mz)1.  An inner loading surface represents the locus of force points at 

                                                 
1All symbols are defined in Appendix D. 
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which inelastic behavior initiates and an outer bounding surface represents the locus of 

force points that cause full plastification of an element end.  The two surfaces translate 

kinematically and contract or expand isotropically to model load-deflection 

characteristics such as strength and stiffness degradation.  A further objective of the 

concentrated plasticity model formulation entails calibrating the size of the surfaces, the 

rate of surface contraction or expansion, and the rate of plastic hardening, such that the 

set of fixed calibration parameters are applicable to a wide range of CFT cross-section 

sizes and material strengths.    

 3)  Implement the concentrated plasticity model for CFT beam-columns along 

with existing formulations for steel beam-columns into a finite element program to 

analyze the behavior of complete composite moment-resisting frame structures.   

 

 

1.3  Scope of Research 

 To achieve the main goals of this research, a general purpose frame analysis 

computer program was developed based on the use of a standard three-dimensional beam 

finite element, having a total of twelve degree-of-freedom per element, for both steel and 

CFT elements.  The program performs a fully nonlinear analysis, accounting for both 

geometric and material nonlinearities.  Element stiffness is formulated using a 

superposition of elastic, geometric, and plastic reduction stiffness matrices.  Either single 

members or entire frame structures in three-dimensional space may be analyzed statically, 

with loads applied either monotonically or cyclically.  In addition, the program has the 

capability to perform a transient dynamic analysis of single members and frames, 

although this research concentrates on cyclic static behavior. 
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 As mentioned in Section 1.2, the CFT formulation pertains strictly to rectangular 

CFT members.  The analysis is restricted to member behavior only; the behavior of CFT 

connections is not included in this work.  In the analyses of frame structures, fully 

restrained connections are assumed.  The scope of this research is limited to CFTs which 

are completely filled with concrete and make no use of reinforcing bars or shear 

connectors to improve the concrete/steel bond.  Additionally, it is assumed that perfect 

bond between the steel and the concrete is maintained. 

 Local buckling of the steel tube is not modeled directly in this macro model 

formulation, although indirect account of local buckling is made in the computation of the 

cross-section strength of a CFT, and in the isotropic hardening model.  Because CFTs 

rarely exhibit torsional or lateral-torsional buckling, these failure modes are not modeled.  

Also, since shear and torsional forces are expected to be small, material nonlinearity due 

to these forces is neglected. 

 The general CFT beam-column formulation presented in this work is a 

comprehensive and flexible macro model that is appropriate for modeling a wide range of 

rectangular CFT cross-sections and material strengths.  However, the applicability of the 

CFT model is limited somewhat by the availability of experimental test results.  The 

formulation for the cross-section strength applies to CFT sections with width/thickness 

ratios up to approximately 100, concrete compression strengths up to 15 ksi, and yield 

strengths typical of standard AISC rectangular tubes [AISC, 1994].  The formulation and 

results of the beam-column model, namely the calibrated plasticity parameters, are 

somewhat more limited in scope.  Experimental monotonic load-deflection curves for 

CFT members with width/thickness ratios up to approximately 50 and concrete strengths 

up to 15 ksi were used in the calibration of the model.  For the cyclic analysis, sections 

with a similar range of width/thickness values and concrete strengths of 3 to 5 ksi were 

analyzed and calibrated.  Strictly speaking, the results of the analytical formulation are 
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meant to apply only for sections within this range.  Extension of these preliminary results 

is pending further experimental research to ensure the accuracy of the analysis 

parameters.   

 

 

1.4  Organization of Thesis 

 The analysis of the cross-section strength of CFTs constitutes the first part of the 

thesis.  A discussion of CFT cross-section behavior introduces Chapter 2.  This is 

followed by a discussion of the numerical procedure used to accurately predict CFT 

cross-section behavior.  The chapter concludes with a discussion of the procedure used to 

determine a polynomial equation representing the three-dimensional cross-section 

strength of a general CFT.  This cross-section strength equation is incorporated into the 

concentrated plasticity model for the material nonlinear behavior of CFTs, which is 

introduced in Chapter 3 and developed in detail in Chapter 4.   

 Chapter 3 examines the nonlinear CFT beam element formulation.  The behavior 

of CFT beam-columns subjected to monotonic or cyclic loading is discussed first, 

followed by a general overview of the analytical model.  Following this introductory 

section, each component of the stiffness formulation is discussed--the CFT elastic 

stiffness, the geometric stiffness, and finally, the plastic reduction stiffness, the final step 

of the concentrated plasticity formulation.   The discussion of the plasticity formulation 

describes in general terms the method for modeling the observed CFT beam-column 

behavior, and introduces the plasticity model that is developed in detail in Chapter 4. 

 The concentrated plasticity model discussion of Chapter 4 is divided into three 

general sections.  The first section discusses the incorporation of the CFT cross-section 
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strength equation developed in Chapter 2 into the bounding surface model.  Next, the 

plastic reduction stiffness matrix for a single CFT element is developed.  The last section 

of Chapter 4 details the mathematical formulation for the translation and the contraction 

and expansion of the loading and bounding surfaces.   

 Chapter 5 presents the calibration of the numerical model to experimental test 

results and presents a verification of the analytical CFT beam-column model.  Example 

problems are first illustrated to verify the concentrated plasticity routine for steel 

elements.  Following this verification, the model is calibrated to monotonically- and 

cyclically-loaded CFT members.  Several additional CFT experiments are then used to 

illustrate the accuracy and general applicability of the calibrated model.  The last section 

of the chapter illustrates a final verification problem consisting of a three-dimensional 

cruciform subassembly composed of steel I-beams framing into a CFT beam-column. 

 The final chapter summarizes the research on CFT beam-columns and the 

corresponding nonlinear model of their behavior.  Conclusions are presented and possible 

future research topics are suggested. 
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Chapter 2 

 

Analysis of CFT Cross-Section Strength 

 
 

 The concentrated plasticity model for the material nonlinear behavior of concrete-

filled tube beam-columns requires an explicit equation describing the size and shape of 

the loading and bounding surfaces.  To this end, this chapter details the development of a 

comprehensive empirical equation for determining the three-dimensional cross-section 

strength of CFT beam-columns.   

 The fiber element method, as developed by Sanz-Picon [1992] and El-Tawil et al. 

[1993], is used in this work to accurately compute the cross-section strength of CFTs.  

CFT cross-section strength is defined in this research as the combined axial load and 

bending moment capacity of a zero-length beam-column.  The ultimate bending strength 

of the section for a given applied axial load is determined by executing a moment-

curvature-thrust computation using the fiber element approach.  This approach is detailed 

in Section 2.2.  The peak moment from the moment-curvature-thrust analysis defines a 

point in three-dimensional force space (P-My-Mz) representing the capacity of the cross-

section under a given set of loads.  Thus, a complete three-dimensional cross-section 
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strength surface may be generated by a series of moment-curvature-thrust analyses over a 

range of axial loads and load eccentricities (i.e., varying degrees of biaxial bending). 

 The development of an equation for the three-dimensional cross-section strength 

of CFTs consists of four steps.  First, the components of the fiber analysis specific to 

CFTs are determined:  the stress-strain relationships of the steel and concrete, and the 

criteria for terminating the moment-curvature computation.  Experimental tests of short 

CFT sections are then compared to the results from the fiber element analysis, and the 

stress-strain relationships and the analysis termination criteria are refined to produce 

accurate results.  Once the results from the fiber element method agree with the 

experimental results, the third step entails generating three-dimensional cross-section 

strength surfaces for a series of CFTs with a wide range of dimensions and material 

strengths.  Finally, using the P-My-Mz data from the series of fiber element analyses, an 

empirical polynomial equation is generated to represent the cross-section strength surface 

of a general CFT surface.   

 Chapter 2 is structured as follows.  Section 2.1 discusses the behavior of CFT 

cross-sections, highlighting the behavioral aspects that will be modeled by the cross-

section strength surface equation.  Section 2.2 describes the fiber element analysis 

procedure used to generate moment-curvature-thrust diagrams.  Section 2.3 contains a 

description of the steel and concrete constitutive relationships and Section 2.4 the 

conditions for terminating the moment-curvature-thrust computation.  Section 2.5 

illustrates the accuracy of the fiber element analysis results by comparing the results to 

experimental CFT test results.  In the final portion of this chapter, Section 2.6, the 

procedure for developing an equation to empirically represent a general three-dimensional 

cross-section strength surface for rectangular CFTs is detailed.    

 

 



14 

2.1  CFT Cross-Section Behavior 

 This section introduces the general behavior of a CFT cross-section and serves a 

dual purpose.  First, it provides a general discussion of CFT behavior which is continued 

in Chapter 3 for longer members.  Second, this section lays the foundation for the 

remainder of the chapter by discussing the behavioral aspects that will be incorporated 

into the stress-strain formulations and termination criteria for the moment-curvature 

thrust computation. 

 

2.1.1  Axially-Loaded Cross-Sections 

 The cross-section behavior of CFTs may be best understood by first examining a 

member subjected to a concentric axial load.  In typical CFT applications, the axial load 

will be compressive.  The case of pure tensile loading of a CFT is of less interest because 

the steel and the concrete do not interact.  Instead, they will act independently of one 

another, and the capacity of the member may be accurately approximated by assuming 

that only the strength of the steel tube contributes to the load resistance [Furlong, 1967].  

CFTs in compression, on the other hand, demonstrate unique behavior which is 

dependent upon a number of factors.   

 A concentric axial load applied evenly across a short CFT column will cause 

longitudinal deformation of the steel and the concrete.  At low values of axial load, the 

steel and the concrete deform longitudinally at the same rate, but expand laterally at 

different rates.  At these low levels of strain, Poisson's ratio for the steel exceeds 

Poisson's ratio for the concrete (0.28 for the steel versus 0.15 to 0.25 for the concrete), 

resulting in a greater lateral expansion of the steel, and little or no interaction between the 

two materials [Gardner and Jacobson, 1967; Tsuji et al., 1991].  During this stage of 

loading, the steel and the concrete sustain load independently of one another.  At an axial 
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strain of approximately 0.001, microcracking in the concrete begins to occur and the 

lateral expansion rate of the concrete increases and begins to approach the lateral 

expansion rate of the steel.  Between a strain of 0.001 and 0.002, the concrete expansion 

reinitiates full interactive contact between the two materials, inducing biaxial stresses in 

the steel and triaxial stresses in the concrete [Knowles and Park, 1970; Bode, 1976; Cai, 

1987; Tsuji et al., 1991; Zhang et al., 1991].   

 The interaction between the concrete and the steel results in an overall increase in 

the load-carrying capacity of the member.  The compressive strength and the ductility of 

the concrete core is enhanced by the confining pressure of the steel tube.  On the other 

hand, the outward pressure of the concrete on the steel tube decreases the longitudinal 

capacity of the steel.  If the steel tube has not yet yielded, this biaxial state of stress 

effectively decreases the amount of additional axial load the steel can sustain before 

yielding occurs.  If, on the other hand, the steel tube has begun to yield when the biaxial 

stresses initiate, the steel will be unable to sustain the longitudinal yield stress.  In either 

case, the tube must shed some of its axial load to the concrete [Gardner and Jacobson, 

1967].  While the concrete's expansion has a deleterious effect on the longitudinal steel 

capacity, the increase in axial strength of the concrete actually outweighs the 

corresponding decrease in steel strength, resulting in an overall increase in the capacity of 

the CFT section [Council on Tall Buildings and Urban Habitat, 1979].   

 The behavior of CFTs after the onset of concrete confinement differs for circular 

and rectangular tubes.  A circular steel tube can maintain lateral pressure on the 

expanding concrete by developing a circumferential tensile stress.  The circumferential or 

hoop tension developed in the circular tube provides a larger resistance to the expanding 

concrete and a higher degree of confinement than the flat sides of a rectangular tube, 

which provide little perpendicular pressure to restrain the expanding concrete [Furlong, 

1967; Knowles and Park, 1970].  Consequently, the concrete in rectangular tubes 
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undergoes little increase in strength due to confinement [Knowles and Park, 1970; 

Bridge, 1976].  The concrete in a rectangular tube will, however, experience an increase 

in ductility due to confinement [Tomii et al., 1973], although not to the degree of a 

circular tube.  For both cross-section shapes, an increase in the thickness of the tube 

results in a corresponding increase in the degree of confinement provided by the steel 

because of the increased lateral stiffness of the tube. 

 

2.1.2  Combined Axial Load and Bending 

 A cross-section subjected to a bending moment in addition to axial load exhibits 

behavior which depends primarily on the D t ratio (the ratio of the depth or width of the 

tube to the thickness of the tube), and the strengths of the steel and the concrete.  

Additionally, local buckling of the steel tube may impact the capacity of the cross-section.  

Cross-section behavior may be described by an interaction curve which illustrates a 

section's moment capacity for a given axial load.  Figure 2.1 illustrates typical CFT 

interaction curves for different values of concrete strength, f c
'
  (this interaction curve is 

shown in normalized force space; Po  and Mo  are, respectively, the ultimate axial load in 

the presence of no bending and the ultimate bending moment in the presence of no axial 

load).  The figure illustrates that CFT cross-sections initially sustain increasing amounts 

of moment as the axial load increases from zero.   The degree of this characteristic 

increase in moment, which is manifested in the convex bulge of the interaction curve, 

depends primarily upon the D t ratio and the concrete and steel strengths.  As axial load 

is increased further beyond the bulging portion of the curve, CFTs begin a rapid decrease 

in moment capacity as the axial load approaches its maximum value, Po .   
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Figure 2.1  Cross-Section Strength Curves for Typical CFT Cross-Sections  
 

 

 The moment capacity of a CFT derives primarily from the resistance of the steel 

tube and the resistance of the compression concrete.  The amount of concrete in 

compression depends on the location of the neutral axis of the cross-section.  For CFTs 

with a higher concrete strength or larger ratio of concrete to steel area, the neutral axis 

will lie closer to the top fiber of the section.  When increasing amounts of axial load are 

applied to a given cross-section, the neutral axis moves toward the centroid of the cross-

section, increasing the contribution of the compression concrete.  Therefore, a section 

with a larger fc
'  or a larger D t ratio will experience a larger increase in moment capacity 

(relative to its value of Mo ) as the axial load increases from zero, and will thus exhibit a 

larger bulge in the interaction diagram in the mid-range region of axial load (compare fc
'  

= 3.5 and fc
'  = 15.0 in Fig. 2.1).  The presence of axial load will also enhance the 

confining effect on the concrete.  This illustrates the beneficial behavior of CFT beam-
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columns subjected to moderate values of axial load and bending, and demonstrates the 

advantage of combining high strength concrete with steel tubes that may be quite thin.   

 While CFT behavior is most advantageous for moderate axial loads, CFTs under 

high axial load exhibit rapid moment capacity deterioration and brittle failures.  For high 

values of P Po , the tensile resistance of the steel tube is underutilized and may, for CFTs 

with low D t and low fc
' , still be elastic upon crushing of the compression concrete.  In 

addition, if the steel on the compression side has buckled upon concrete crushing (which 

is more likely as the D t ratio increases), an undesirable brittle failure ensues.  Because 

of these characteristics of CFTs subjected to large axial load, most researchers limit their 

studies of beam-columns to axial loads giving a ratio of P Po less than or equal to 

approximately 0.5 [Tomii and Sakino, 1979a, 1979b; Matsui and Tsuda, 1987].    

 The capacity of a CFT cross-section must also be examined with respect to the 

local buckling of the steel tube.  This deleterious effect is somewhat mitigated by the 

presence of the concrete core in a CFT.  Matsui [1986] established experimentally that the 

D t ratio at which a CFT buckles locally may be increased to 1.5 times that of hollow 

tubes.  Correspondingly, a decrease in the D t ratio will increase the amount of strain the 

section can undergo before it buckles locally.  In addition, Tomii and Sakino [1979a, 

1979b] and Ichinohe et al. [1991] have shown that CFTs with low D t ratios can 

maintain their strength long after local buckling has occurred.   

 

2.1.3  Other Cross-Section Effects 

Residual Stresses 

  In addition to stresses due to the applied loads, residual stresses may also be 

present in the steel tubes.  The level of residual stresses in steel tubes is highly dependent 
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upon the manufacturing process and the shape of the cross section [Sherman, 1992].  The 

tubes considered in this work are cold-formed, welded seam tubes.  These types of tubes 

are manufactured in sheets, bent into shape, and then welded at the seam.  The residual 

stresses produced by this process are largest in the through-thickness direction [Sherman, 

1992] and are assumed in this work to have a negligible effect in the longitudinal and 

circumferential direction.  In addition, to avoid the problem of residual stresses 

altogether, some researchers have used annealed steel tubes, (i.e., tubes which are heated 

to a high temperature and then cooled slowly and uniformly to relieve any residual 

stresses) [Tomii and Sakino, 1979a, 1979b, 1979c; Sakino and Tomii, 1981].  Unless 

otherwise noted, all of the experimental results cited in this research are tubes which have 

not been annealed. 

Bond   

 Composite interaction in a CFT member depends in part on the amount of bond 

between the concrete and the steel.  Virdi and Dowling [1980] have identified two types 

of bond between the concrete and steel in a CFT--microlocking and macrolocking. 

Microlocking, the primary type of bond, refers to the bonding of the concrete with the 

surface irregularities (or roughness) of the inside of the tube.  Macrolocking refers to the 

mechanical and frictional interaction between the concrete and steel due to 

nonuniformities in the tube, e.g., out-of-straightness or out-of-roundness.   

 The ultimate bond strength between the materials is attained upon local crushing 

of the concrete at the interface. Virdi and Dowling [1980] studied the effect of a number 

of parameters and established a characteristic bond strength for CFTs of 150-160 psi.  

They concluded that surface preparation and the amount of compaction are the only 

significant parameters that will increase the amount of bond.  Parameters such as concrete 
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strength, length of the concrete/steel interface, the tube thickness, and the tube diameter 

had only negligible effects on the amount of bond.   

 Nevertheless, it has yet to be determined comprehensively how much strength, if 

any, is lost in a CFT member that is part of a frame once the bond between material 

breaks down [Morino et al., 1993].  It is also difficult to model slip at the interface of the 

tube and the concrete core in a macro model.  Thus, it is assumed in this research that 

perfect bond is maintained between the steel and the concrete (i.e., that no slip occurs).  

Most analytical studies of CFTs to date have incorporated this assumption [Neogi et al., 

1969; Tomii et al., 1973; Bridge, 1976; Tomii and Sakino, 1979b; Prion and Boehme, 

1989; Shakir-Khalil and Zeghiche, 1989; Masuo et al., 1991; Kawaguchi et al., 1991].   

Creep and Shrinkage 

 The effect of creep and shrinkage, an essential consideration in reinforced 

concrete construction, has a much smaller influence on the behavior of CFTs [Nakai et 

al., 1991].  The steel tube serves as an enclosed environment in which conditions remain 

ideally humid, minimizing these effects.  Long-term creep and shrinkage tests by Nakai et 

al. [1991] compared plain concrete specimens to CFTs.  Their results indicate that the 

amount of shrinkage due to drying is negligible compared to the plain concrete.  Creep 

does produce an increase in the longitudinal strains over time in CFTs, but the ratio of the 

final strain after creep to the initial elastic strain due to the axial load in their CFT 

specimens was about half of the value obtained for plain concrete.  Creep and shrinkage 

are neglected in this work.   
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2.2 Fiber Element Method for Computing CFT Cross-Section 

 Strength 

2.2.1  Background on Methods for Cross-Section Strength Computation 

 A number of different methods have been used to analyze the cross-section 

strength of CFTs.  Tomii and Sakino [1979b] computed CFT cross-section strength using 

a stress block method.  In this approach, the stresses in the concrete and steel are 

represented by uniform rectangular blocks, and the resultant forces over the cross-section 

are assumed to act at the centroids of the stress blocks.  Chen and Atsuta [1976, 1977] 

derived parametric equations to describe the moment-curvature-thrust relationship of 

CFT sections.  These equations, derived using empirical expressions for the stress-strain 

relationships of the steel and concrete, relate moment to curvature based on the amount of 

applied axial load.  Numerical integration techniques have also been used by several 

authors to determine the moment-curvature-thrust relationship of CFT sections.  This 

particular method analyzes a given cross-section by determining the stress and strain at 

discrete points and then obtaining resultant internal forces by integrating the stresses.  The 

method used in this work, a fiber element analysis, is one such approach.  Variations of 

this method have been used by Bode [1976], Shakir-Khalil and Zeghiche [1989], and 

Kawaguchi et al. [1993] for uniaxial bending of rectangular CFTs and by Sanz-Picon 

[1992] and El-Tawil et al. [1993] for biaxial bending of SRC sections. 

 

2.2.2  Fiber Element Analysis 

 The fiber element method affords a high degree of accuracy as a numerical tool to 

analyze the moment-curvature-thrust behavior of CFT beam-column cross-sections.  

Values of stress and strain are monitored at a number of different points on the 
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discretized cross-section throughout the analysis.  The resultant forces on a cross-section 

(axial force and bending moment) are obtained by numerically integrating the stresses 

over all of the elements of the cross-section.  The accuracy of the solution improves as the 

cross-section is discretized into a finer and finer mesh of elements. 

 The moment-curvature-thrust relationship for a given cross-section is generated 

by performing a series of iterative procedures (detailed in Section 2.2.4).  By computing a 

number of moment-curvature-thrust analyses at specific values of applied axial load ratio, 

p P Po= , and angle of eccentricity (i.e., the orientation of the applied moment with 

respect to the principal axes of the cross-section), a two- or three-dimensional cross-

section strength surface may be generated.  For a given eccentricity angle of the applied 

moment, a two-dimensional cross-section strength curve (M-P diagram) is generated by 

obtaining the maximum moment from separate moment-curvature-thrust analyses 

performed at increments of axial load ranging from zero to Po .  A piecewise three-

dimensional cross-section strength surface (P-My-Mz diagram) may then be generated by 

calculating a series of two-dimensional cross-section strength surfaces with the moment 

applied at increments of eccentricity angle ranging from 0° (major axis bending) to 90° 

(minor axis bending).   

 

2.2.3  Discretization of the Cross-Section 

 The fiber element analysis first requires a specification of the CFT cross-section 

dimensions and the number of mesh elements.  The geometry of a rectangular CFT is 

defined by three parameters:  the width (b), depth (D), and thickness of the tube (t).  

Figure 2.2 illustrates these dimensions and the meshing scheme incorporated to discretize 

the rectangular CFT cross-sections analyzed in this research.  Each cross-section was 

divided into five regions, facilitating a nearly uniform element size and an element aspect 
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ratio as close to 1:1 as possible.  This scheme also allows different degrees of mesh 

fineness to be used for the steel and concrete.   
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Figure 2.2  CFT Geometry and Typical Meshing Scheme 

 

 The density of the mesh for the cross-sections studied in this research was 

carefully monitored to determine the optimum density with respect to accuracy and 

analysis time.  The mesh densities used were sufficiently refined so that increasing the 

mesh density did not result in any significant changes in the results.  The density of the 

mesh shown in Fig. 2.2 is somewhat coarser than the density used in the cross-sections of 

this study.  In general, the steel tube was meshed in a somewhat finer grid than the 

concrete.   One layer through the thickness of the steel tube provided sufficiently accurate 

results for most cross-sections except for thicker steel tubes having a depth to thickness 

ratio of 24.  For these cross-sections, two layers through the thickness were used.  
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Maintaining a 1:1 aspect ratio resulted in approximately 40 to 60 elements per steel 

region.  The concrete interior (region 5) was also meshed using a 1:1 aspect ratio.  For 

square CFTs, for example, this mesh density results in a grid of concrete elements ranging 

in number from approximately 36 × 36 elements to 50 × 50 elements.   

 

2.2.4  Moment-Curvature-Thrust Analysis 

 The moment-curvature-thrust analysis used in this research to analyze the cross-

section behavior of CFTs was developed by Sanz-Picon [1992] and El-Tawil et al. [1993] 

for the analysis of steel, steel-reinforced concrete, and reinforced concrete cross-sections.  

Their fiber element procedure was implemented in an interactive, graphical computer 

program, COSBIAN [Sanz-Picon, 1992; El-Tawil et al., 1993], which was extended in 

this work to analyze concrete-filled steel tube cross-sections.  The analytical procedure is 

described in detail in their work; this section only briefly highlights the assumptions and 

the salient points of the fiber analysis.  This section also provides a basis for the 

descriptions of the CFT stress-strain relationships (Section 2.3) and the criteria for 

terminating the moment-curvature-thrust computation of CFTs (Section 2.4).   

 The fiber element procedure may be described by examining one increment of a 

moment-curvature-thrust analysis.  For such an analysis, the moment must be computed 

for a given value of curvature, φ.  The procedure for calculating the cross-section moment 

contains a series of iterative steps.  It begins with the initialization of the neutral axis 

orientation and the top fiber strain, εtop, which, combined with the given value of 

curvature, define the strain distribution over the cross-section.  The orientation of the 

neutral axis (the angle θ between the neutral axis and the centroidal axis of the section) is 

initialized to the eccentricity of the axial load, α (see Fig. 2.3).  The top fiber strain is 

initialized to its specified increment.  From the curvature and the top fiber strain values, 
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the location of the neutral axis may be calculated.  The strain at each element is then 

computed assuming the strain distribution is linear.  This assumption implies that perfect 

bond exists between the concrete and steel at the material interface (see Section 2.1.3).  

The strain at any fiber is then computed by multiplying the curvature by the distance from 

the centroid of the element to the neutral axis, measured with respect to a line 

perpendicular to the neutral axis (Fig. 2.3).  
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Figure 2.3  Fiber Element Analysis Definitions (after Sanz-Picon [1992]) 

 

 Once the strain at each fiber element has been determined, stresses are computed 

from the strains using the constitutive relationships described in Section 2.3.  The force 

on each element is the product of the element stress and area.  The resultant internal axial 

force on the cross-section is computed by numerically integrating the stresses over the 

cross-section, which is accomplished by summing the force in each fiber element: 
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 F Ai i
i

k

= ⋅
=
∑σ

1

        (2.1) 

 

where k is the number of fiber elements in the cross-section, Ai is the area of each fiber 

element, and σ i  is the stress at the centroid of each element.  This value of force, F, is 

then compared to the applied axial load, P.  If the values are not within a prescribed 

tolerance, the top fiber strain is adjusted and the process is repeated until convergence.   

 For biaxial loading, the correct orientation of the neutral axis must also be 

established.  Once the axial force is equilibrated, moments in the major (z) and minor (y) 

axis directions are calculated by summing the moment produced by the force in each 

element (the product of the element's force and its distance to the neutral axis): 
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      (2.2) 

 

 M P e A zy z i i i
i

k

= ⋅ = ⋅ ⋅
=
∑σ

1

.      (2.3) 

 

The ratio of the calculated moments M My z  is then compared to the tangent of the angle 

of load eccentricity, α, which is defined as: 

 

 tanα =
e

e
z

y

        (2.4) 

 

where ez and ey  are the eccentricities of the applied load as measured from the y and z 

axis, respectively.  If the ratio of the calculated moments and the ratio of the load 

eccentricities are not within a specified tolerance, the orientation of the neutral axis is 

adjusted until the two ratios converge.  When the neutral axis orientation changes, the 

strain distribution changes.  New strain values are calculated based on the new neutral 
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axis orientation and the procedure for axial force convergence is repeated.  The moment 

ratio,  M My z , is again compared to Eq. (2.4) and the neutral axis is adjusted if the two 

ratios are not within a tolerance.  These two iterative processes are repeated until both the 

axial forces converge and the moments converge.  Once this has occurred, the resultant 

moment is calculated by: 

 

 M M Mz y= +2 2        (2.5) 

 

This value defines one point of the moment-curvature-thrust relationship.  For a complete 

moment-curvature-thrust analysis, the curvature is then increased by a specified 

increment and the iterative process is repeated.  The moment-curvature-thrust 

computation terminates when one of the failure criteria described in Section 2.4 is met. 

 

2.2.5  Analysis Parameters 

 The fiber element analysis discussed in the previous section requires specified 

increments and convergence tolerances for the iterative procedures contained within it.  

Following are the values for these parameters that were used in this research: 

 

 Curvature increment (∆φ)    = 0.00001 

 Strain increment (∆ε)     = 0.0001 

 Increment in neutral axis orientation (∆θ)  = 2.0° 

 Axial force convergence tolerance   = 0.10 % 

 M My z  convergence tolerance   = 1.0 % 

 

These values are all based on the recommendations presented by Sanz-Picon [1992].    
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2.3  Steel and Concrete Constitutive Models 

 The calculation of the concrete and steel element stresses from the element strains 

forms a key step in the fiber element approach since the resultant forces on the cross-

section for a given curvature are computed directly from the stresses.  The accuracy of the 

moment-curvature-thrust solution, therefore, depends upon a correct formulation of the 

concrete and steel constitutive relationships.   

 In this research, empirical uniaxial nonlinear constitutive models were formulated 

to represent the multiaxial stress-strain behavior of the concrete core and the steel tube. 

As discussed in Section 2.1, the multiaxial stress-strain behavior of the steel and concrete 

in a CFT results from the interaction between the concrete and the steel.  This interaction 

often results in additional strength and ductility in the concrete and a decrease in the 

longitudinal strength of the steel tube (effects which are more pronounced in circular 

tubes).  For the rectangular tubes studied in this research, the effect of confinement is 

assumed to produce only an increase in the ductility of the concrete and no increase in 

strength [Tomii and Sakino, 1979b].  Similarly, it is assumed that the concrete/steel 

interaction in rectangular CFTs produces no decrease in the yield strength of the steel 

tube. 

 Because only longitudinal strains are monitored in the fiber element analysis, 

multi-axial behavior must be accounted for indirectly using uniaxial stress-strain curves.  

Relatively few authors have addressed the effect of interactive stresses between the steel 

and the concrete in modeling the behavior of CFTs.  Therefore, much of the following 

discussion and parts of the proposed stress-strain expressions originate from experimental 

and analytical work performed on confined rectangular reinforced concrete sections.  

 

2.3.1  Concrete Constitutive Model   
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 The stress-strain behavior of the concrete in a CFT is dependent upon its 

unconfined uniaxial behavior and the relative ratio of concrete to steel (commonly 

expressed as the depth or width to thickness ratio, or D t ratio).  The D t ratio affects the 

degree of concrete confinement provided by the steel, and therefore, the amount of 

ductility exhibited by the concrete.   

 The uniaxial stress-strain relationship for concrete in a rectangular CFT consists 

of four distinct regions:  a tensile region, an ascending curve in the compression region, a 

plateau region, and a descending curve in the compression region [Tomii and Sakino, 

1979b].  Figure 2.4 illustrates the basic form used in this work of several typical stress-

strain curves for various combinations of concrete strength and D t ratio.  The tensile  
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Figure 2.4  Uniaxial Stress-Strain Curve for Concrete in Rectangular CFTs 
 

region consists of a linear curve up to the rupture strength of the concrete, and then a 

curve that asymptotically approaches zero stress.  The first portion of the compression 

region is an ascending curve from zero to the maximum concrete strength, fc
' .  Upon 
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reaching the maximum strength (typically at a strain of 0.002 to 0.003), the stress remains 

constant until a strain of 0.005.  Beyond this plateau region, the concrete curve descends 

at a slope based upon the D t ratio of the CFT.  All of the regions depend on the concrete 

strength, but only the descending portion of the compression curve is a function of the 

D t ratio.   

 The ascending branch formulation used in this work for rectangular CFTs was 

originally proposed by Popovics [1973] for unconfined concrete and is shown here as 

modified by Collins et al. [1993]: 
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The strain at fc
' , εo, ranges from 0.0019 for a concrete strength of 3.5 ksi, to 0.0030 for a 

concrete strength of 15 ksi.  The modulus of elasticity of concrete in this region is given 

by [Collins et al., 1993]: 

 

 Ec = +40000 1000000f c
'   (psi units)    (2.9) 

Equations (2.6 - 2.9) are appropriate for a wide range of concrete strengths.  Collins et al. 

[1993] confirmed the accuracy of these equations for concrete strengths up to 15 ksi.   
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Although the expression developed by Popovics was originally proposed for unconfined 

concrete, it has been used to model the behavior of confined concrete in reinforced 

concrete sections [Cusson and Paultre, 1993].  Cusson and Paultre showed that the 

expression produced very accurate results for reinforced concrete sections confined by 

rectangular ties.  

 The portion of the rectangular concrete stress-strain expression beyond the strain 

at the maximum concrete strength is based on the curve proposed by Tomii and Sakino 

[1979b] for CFTs.  Beginning at εo (the strain at fc
' ), the stress remains constant until a 

strain of 0.005 is reached.  This plateau region represents the added ductility provided by 

the confining action of the steel tube.   

 The descending branch of the concrete curve extends from a strain of 0.005 to 

0.015 at a slope which is a function of the D t ratio.  The larger the D t ratio, the steeper 

the slope.  This reflects the loss of concrete ductility with a decrease in the amount of 

confinement provided by the steel.  This linear segment descends from a stress of fc
'  to fcl, 

where fcl  is given by the following formula:   

 

 '025.06.1 ccl f
t

D
f ⋅







 ⋅−= .        (2.10) 

 

Equation (2.10) was developed by Tomii and Sakino [1979b] using experimental data 

from rectangular CFTs with D t ratios between 24 and 44.  To encompass a 

comprehensive range of D t ratios, the Tomii and Sakino model for strains beyond 0.005 

was extended as follows.  For a D t ratio of 24, Eq. (2.10) equals fc
' .  It is assumed in this 

work that, regardless of the D t ratio, the concrete does not exceed its cylinder strength 

(f c
' ).  Therefore, sections with a D t ratio less than 24 maintain a constant concrete stress 

of fc
'  as the strain increases from 0.005 to 0.015 or beyond.  Sections with D t ratios 
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ranging between 24 and 64 have a non-zero value of fcl given by Eq. (2.10).  At a 

D t ratio of 64, fcl equals zero.  All sections with D t ratios larger than this follow the 

same curve as the section with a D t ratio of 64, dropping from fc
'  at a strain of 0.005 to 

zero stress at a strain of 0.015.  For strain values beyond 0.015, the stress in all sections is 

assumed to remain at a constant value (fcl) for any subsequent value of strain [Tomii and 

Sakino, 1979b].  Refer again to Fig. 2.4 for clarification. 

 For rectangular tubes (as differentiated from square tubes), the D t of the section 

is different in the major and minor axis directions of the CFT2.  The D t ratio used in the 

Eq. (2.10) for rectangular CFTs is the average of the major axis D t ratio and the minor 

axis D t ratio.  

 The formulation for the concrete tensile response used in this work for rectangular 

CFTs is adopted from the formula proposed by Vecchio and Collins [1986], which was 

also used by Sanz-Picon [1992] for the analysis of steel-reinforced concrete cross-

sections.  The concrete is assumed to follow a linear elastic curve given by the equation:   

 

 f
f

ct
c

ct=
'

.0 001
ε         (2.11) 

 

until it reaches the rupture strength of the concrete.  The rupture strength is given by:   

 

 f fr c= 7 5. '          (2.12) 

 

Once the concrete reaches this stress, its strength decreases according to the following 

equation:   
                                                 
2The dimension D in the D/t ratio for rectangular (as differentiated from square) tubes refers to the 
dimension in the plane parallel to the plane of bending.  The nomenclature for a 24×12×1/2 tube, for 
example, is as follows.  The major, or strong, axis D/t ratio is 48 (the depth of the section, 24, divided by 
1/2) and the minor, or weak, axis D/t ratio is 24 (the width, 12, divided by 1/2).    
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The subscript ct in Eqs. (2.11) and (2.13) denotes concrete tensile stress and strain.  All 

values of strength in Eqs. (2.11 - 2.13) are in psi. 

 

2.3.2  Steel Constitutive Model 

 In the stress-strain formulation for CFTs contained in this work, confinement of 

the concrete in a rectangular CFT is assumed to increase only the ductility of the concrete 

(Section 2.3.1).  Because the concrete strength is not enhanced, the stress-strain 

expression for steel in a rectangular CFT correspondingly assumes that any biaxial 

stresses in a rectangular tube are relatively small for most ranges of loading.  Therefore, 

the steel stress-strain expression is represented by a curve similar to that used for tube 

steel.  The tension and compression regions of the curve are modeled by the same curve, 

with one exception.  To account for the interaction due to the small degree of 

confinement for rectangular CFTs in compression, strain hardening is not modeled in the 

compression region [Tomii and Sakino, 1979b].  Any interaction that may occur between 

the steel and concrete in the tension region is neglected because the concrete in tension 

offers little resistance.  Therefore, steel in the tension region acts independently of the 

concrete, and is modeled as if it were a hollow tube, including strain hardening.   

 The steel stress-strain curve is illustrated in Fig. 2.5.  In the compression region, 

the steel exhibits linear elastic behavior up to the yield point of the material (fy) and then  



34 

-0.2 -0.1 0.1 0.2

-60

-40

-20

0

20

60

Stress
(ksi)

Strain

Compression

Tension
f  = 46 ksiy

fy

ε
y

fy

 

 
Figure 2.5  Uniaxial Stress-Strain Curve for Steel in Rectangular CFTs 

 

follows a perfectly-plastic plateau, remaining at the yield stress, fy, for subsequent values 

of strain.  In the tension region, the stress-strain behavior mirrors the linear elastic, 

perfectly-plastic behavior of the compression region until the onset of strain hardening.  

In this research the value of strain at which strain hardening begins, εsh, was set to 0.0186 

[Sanz-Picon, 1992].  The stress at strain values beyond εsh increases according to the 

following equation [Sanz-Picon, 1992]: 
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The steel stress in this equation asymptotically converges to fu.  This so-called power 

equation, first developed by Richard and Abbott [1975], uses the parameter N to define 

the shape of the curve.  For the analyses performed here, N is set to a value of 2 [Sanz-

Picon, 1992].  As described in Section 2.1.3, residual stresses are assumed to be zero in 

the cross-section strength analyses in this work. 

 

 

2.4 Criteria for Terminating the Moment-Curvature-Thrust 
 Computation 

 The generation of a moment-curvature-thrust diagram requires a set of criteria for 

determining when the computation should terminate, thus identifying the conditions at 

which the section can no longer carry additional load.  Rectangular CFT cross-sections in 

which the concrete remains essentially unconfined and plays a large role in the strength of 

the member, such as CFTs with a large ratio of concrete to steel (i.e., a high D t ratio) 

and subjected to a high axial load, the stress-strain expressions produce a moment-

curvature-thrust diagram with a distinct peak moment.  The descending branch of the 

concrete stress-strain curve for these sections will cause a similar descending slope in the 

moment-curvature-thrust diagram.  Termination of the moment-curvature-thrust 

computation in this case occurs when the moment decreases to a certain percentage of the 

maximum moment attained.  However, in the case of rectangular tubes with low 

D t ratios and small values of axial load ratio, the steel maintains its characteristic 

ductility and the concrete remains ductile as well due to confinement.  In such a case, the 

stress-strain curves of the steel and concrete suggest that the section can withstand 

constant or increasing moment to very large strains.  This large capacity, however, will 

not be reached because of other failure mechanisms such as local buckling or concrete 
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crushing.  Therefore, alternate means of terminating the moment-curvature-thrust diagram 

incorporating these additional failure criteria must be employed.   

 

2.4.1  Discussion of the Termination Criteria 

 Four separate criteria were established to determine the termination point of the 

moment-curvature-thrust diagrams for CFTs.  The criteria include the following:  1)  the 

moment-curvature-thrust diagram drops below 95% of its peak moment value; 2)  a 

specified percentage of steel yields and a specified percentage of the concrete in 

compression crushes; 3)  a specified percentage of the steel in compression buckles and a 

specified percentage of the concrete in compression crushes; and 4)  any portion of the 

steel reaches a tensile strain equal to a specified rupture strain of the steel.  The use of 

several criteria permits an accurate prediction of different failure mechanisms during a 

three-dimensional cross-section strength analysis in which strengths are determined for a 

wide variety of loading, ranging from pure bending to pure axial load.  

  The first criterion applies primarily to CFT sections with medium to high 

D t ratios subjected to a combination of axial load and bending.  Once the peak moment 

is reached, the moment will decrease with any further increase in curvature due to the 

descending branch of the concrete stress-strain curve.  The moment-curvature-thrust 

computation is terminated when the decreasing moment drops to 95% of the maximum 

moment. 

 The second criterion terminates the analysis when a certain percentage of the steel 

yields (typically close to 100%) and a certain percentage of the concrete in compression 

crushes.  Crushing of the concrete combined with steel yielding (or with steel buckling, as 

in criterion three) is the typical method of failure for most CFT cross-sections, especially 

for sections subjected to high axial loads [Gardner and Jacobson, 1967; Chen and Chen, 
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1973; Shakir-Khalil and Zeghiche, 1989].  The strain at which crushing of the concrete 

occurs has been established as 0.005 in this work.  This value was identified by Tomii 

and Sakino [1979b], who indicated in their studies that the concrete stress-strain curve 

consistently begins to descend at this strain.   

 Failure of a CFT may also occur by concrete crushing combined with a specified 

amount of local buckling or bulging of the steel [Kitada et al., 1987; Shakir-Khalil and 

Mouli, 1990].  After local buckling occurs, the concrete resists some of the compressive 

load shed by the steel [Matsui, 1986].  As in criterion two, the strain at which the 

compression concrete crushes is assumed to be 0.005.  The same percentage of crushed 

concrete specified for criterion two is used here as well.  The strain at which local 

buckling of the steel tube is assumed to occur is computed based on the equation 

specified in the AISC LRFD Specification [1994].  This equation limits the D/t ratio of 

steel tubes to prevent local buckling before the steel yields [SSRC, 1979; AISC LRFD, 

1994].  For a rectangular CFT, this limit is:  
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Solving for the yield strain, ε y y sf E= , and setting this strain equal to the local buckling 

strain, εlb, results in the following expression: 
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tD
lb =ε         (2.16)  

 

Experiments have shown that CFT sections often provide additional capacity after the 

initiation of local buckling [Tomii and Sakino, 1979ab].  Also, the presence of concrete in 

the CFT delays the onset of local buckling [Matsui, 1986; Matsui and Tsuda, 1987; Tsuji 
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et al., 1991], rendering Eq. (2.16) conservative, since it was developed for hollow tubes.  

Therefore, rather than terminating the computation immediately at the onset of local 

buckling, a specified percentage of compression steel must buckle and a certain 

percentage of the concrete must crush before the computation is terminated. 

 The fourth and final criterion limits the tensile strain in any given steel element to 

a value of 0.2.  At this strain the steel will rupture, causing a catastrophic failure of the 

section.  This criterion may apply to CFTs having very thin tubes (high D t ratio) and 

subjected to little or no axial load (i.e., pure bending conditions [Prion and Boehme, 

1989]).   

 

2.4.2  Values Used for the Termination Criteria 

 The values of the criteria for terminating the moment-curvature-thrust 

computation remained constant throughout this research.  The values of these parameters 

are as follows: 

 

 Percent of yielded steel = 98%   (criterion 2) 

 Percent of crushed compression concrete = 50%  (criteria 2 & 3) 

 Percent of locally buckled compression steel = 25% (criterion 3) 

 Maximum steel fiber strain (εmax) = 0.2  (criterion 4) 

 

 The majority of the sections in this research were governed by either the first 

criterion (moment dropping to 95% of the maximum) or the third criterion (local buckling 

of the compression steel and crushing of the compression concrete).  The former criterion 

typically governed for sections with high D t ratios combined with high axial load ratios.  

The third criterion governed for most D t ratios at lower axial load ratios.  Generally, the 
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percentage of crushed concrete dictated the stopping point rather than the percentage of 

local buckling, because the crushing strain is larger than the buckling strain and, as 

specified, 50% of the compression concrete must crush compared to 25% of the 

compression steel buckling.   

 Experimental tests indicate that large curvatures may be reached beyond the point 

of initial local buckling [Tomii and Sakino, 1979a].   Also, the local buckling of the steel 

tube in a CFT will be delayed due to the concrete forcing all buckling modes outward 

[Furlong, 1967; Tsuji et al., 1991].  However, the value of 25% was used (rather than a 

higher value) since at present [1994] there is little experimental data justifying a higher 

value. 

 Unlike reinforced concrete sections, the initiation of concrete crushing will not 

cause an immediate loss of member capacity because the concrete in a CFT is confined.  

Therefore, considerably more concrete may crush before failure.  The value of 50% was 

selected based on comparison of the results to experimental data. 

 The percent of steel yielding is the value recommended by Sanz-Picon [1992].  

The value of the rupture strain used in criterion 4 is a typical value specified in the steel 

literature [Salmon and Johnson, 1990].  

 

2.5  Comparison to Experimental Results 

 The accuracy of the constitutive relationships and the criteria for terminating the 

computation of the moment-curvature-thrust relationship was verified by using the fiber 

element method to analyze cross-sections tested experimentally by other researchers.  The 

constitutive relationships and termination criteria were refined and adjusted as necessary 

to produce the best correlation to the experimental data.  Once the available experimental 
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results are accurately reproduced for a select number of sections, a wide range of sizes 

and strengths of CFT sections may be modeled accurately. 

 Table A.1 in Appendix A lists rectangular CFT cross-section tests presented in 

sufficient detail to allow calibration of the analytical results; Table 2.1 illustrates the 

salient data for each of these tests.  Most of the calibration for rectangular CFTs was 

performed using the tests by Tomii and Sakino [1979a, 1979b].  These authors provide 

the most complete results, documenting both moment-curvature-thrust and two-

dimensional cross-section strength relationships.  Tests by Furlong [1967] were also used.  

As of 1994, there are almost no other well documented experimental results of short 

rectangular CFTs subjected to combined axial force and flexure.  

 

Table 2.1  Rectangular CFT Cross-Section Tests 
 

Test 
 
 

Figure 
Notation 

Tube 
Dimensions 

(in.) 

L/D D/t f'c 

(ksi) 
fy 

(ksi) 
Other 
Data 

Furlong, 1967  Furl1 5.0 × 5.0 ×
0.19 

7.2 26.5 6.5 70.3 -- 

Furlong, 1967  Furl2 4.0 × 4.0 ×
0.084 

9.0 47.6 3.4 48.0 -- 

Furlong, 1967  Furl3 4.0 × 4.0 ×
0.125 

9.0 32.0 4.2 48.0 -- 

Tomii and 
Sakino, 1979a  

Tom44a 3.9 × 3.9 ×
0.089 

3.0 44.0 6.6 28.0 annealed 
tube 

Tomii and 
Sakino, 1979a  

Tom44b 3.9 × 3.9 ×
0.089 

3.0 44.0 3.8 49.2 annealed 
tube 

Tomii and 
Sakino, 1979a  

Tom33 3.9 × 3.9 ×
0.118 

3.0 33.0 3.6 42.0 annealed 
tube 

Tomii and 
Sakino, 1979a  

Tom24 3.9 × 3.9 ×
0.162 

3.0 24.0 3.2 42.0 annealed 
tube 
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  Figures 2.6 to 2.16 compare the moment-curvature-thrust results of the fiber 

element analysis to the experimental results of Tomii and Sakino [1979a, 1979b].  Each 

figure is referenced by the notation in column 2 of Table 2.1.  Tomii and Sakino 

performed four series of tests, with D t ranging from 24 to 44 and fc
'  ranging from 3.2 to 

6.6 ksi.  The steel tubes in these tests were annealed to remove residual stresses.  The 

fiber analysis results are quite accurate for moment-curvature-thrust curves with a low- to 

mid-range P/Po and slightly less accurate for higher P/Po (Figs. 2.8, 2.11, and 2.13).  The 

latter tests show a maximum error of approximately 15.0 % and a maximum error in the 

peak moment of  3.0 %.  Figures 2.17 to 2.20 illustrate the close correlation of the fiber 

element analysis results with the results of Tomii and Sakino's experiments; all errors are 

less than 10%.  Both the fiber analysis and the experimental results are normalized by the 

ultimate axial and bending loads calculated in the fiber analysis. 
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Figure 2.6  Moment-Curvature-Thrust Diagram (Tom44a); P/Po = 0.13 
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Figure 2.7  Moment-Curvature-Thrust Diagram (Tom44a); P/Po = 0.27 
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Figure 2.8  Moment-Curvature-Thrust Diagram (Tom44a); P/Po = 0.58 
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Figure 2.9  Moment-Curvature-Thrust Diagram (Tom44b); P/Po = 0.0 
 
 
 

0 0.005 0.01 0.015 0.02
0

20

40

60

80

100

120

140

Fiber Analysis Experimental [Tomii and Sakino, 1979a]

Moment
(in-k)

Curvature (1/in)

 
 

Figure 2.10  Moment-Curvature-Thrust Diagram (Tom44b); P/Po = 0.26 
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Figure 2.11  Moment-Curvature-Thrust Diagram (Tom44b); P/Po = 0.57 
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Figure 2.12  Moment-Curvature-Thrust Diagram (Tom33); P/Po = 0.0 
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Figure 2.13  Moment-Curvature-Thrust Diagram (Tom33); P/Po = 0.47 
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Figure 2.14  Moment-Curvature-Thrust Diagram (Tom24); P/Po = 0.0 
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Figure 2.15  Moment-Curvature-Thrust Diagram (Tom24); P/Po = 0.29 
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Figure 2.16  Moment-Curvature-Thrust Diagram (Tom24); P/Po = 0.57 
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Figure 2.17  Two-Dimensional Cross-Section Strength Diagram (Tom44a) 
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Figure 2.18  Two-Dimensional Cross-Section Strength Diagram (Tom44b) 
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Figure 2.19  Two-Dimensional Cross-Section Strength Diagram (Tom33) 
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Figure 2.20  Two-Dimensional Cross-Section Strength Diagram (Tom24) 
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 Figures 2.21 to 2.23 illustrate the fiber analysis results versus the two-dimensional 

cross-section strength data presented by Furlong [1967]; each figure is referenced by the 

notation listed in column 2 of Table 2.1.  These experimental results show a considerable 

degree of scatter, in contrast to the consistent results presented by Tomii and Sakino.  

Furlong used a slow rate of loading and stated that additional strength could be achieved 

with a more rapid loading rate.  This may explain the over-prediction of strength shown 

in Figs. 2.21 and 2.22.  On the other hand, the under-prediction in strength shown in Fig. 

2.23 may be due to the inaccuracy of the steel properties used in the analysis.  The yield 

stress of the tubes tabulated by Furlong was specified by the supplier, and was not 

determined prior to the tests.  
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Figure 2.21  Two-Dimensional Cross-Section Strength Diagram (Furl1) 
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Figure 2.22  Two-Dimensional Cross-Section Strength Diagram (Furl2) 
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Figure 2.23  Two-Dimensional Cross-Section Strength Diagram (Furl3) 
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2.6 Equation for the Three-Dimensional Cross-Section 
Strength Surface 

 To develop an empirical expression for the cross-section strength of a general 

CFT, the calibrated fiber element analysis procedure was used to analyze a wide range of 

cross-sections.  A series of CFT sections was selected and analyzed, producing sets of 

force point (P-My-Mz) data to which an equation could be fit.  The resulting expression 

for the three-dimensional cross-section strength surface is meant to apply to any CFT 

within the range of selected sections.  This expression, in turn, forms an integral part of 

the CFT beam-element concentrated plasticity model. 

 

2.6.1  Selection of CFT Cross-Sections 

 The first step in the development of an expression for the CFT cross-section 

strength surface entailed selecting a wide range of cross-sections representative of CFTs 

used in both present and future construction practice.  The two properties which most 

directly affect the behavior of the CFT cross-section are the ratio of the concrete area to 

the steel area and the ratio of the concrete strength to the steel strength.  Cross-sections 

may thus be identified by two dimensionless ratios:  the ratio of the tube width to tube 

thickness (D t ratio), which accounts for the ratio of the areas, and the ratio of the 

concrete compression strength to the steel yield strength (f fc y
' ).  Four series of square 

tubes were selected with D t ratios ranging from 24 to 96.  Within each series, four 

sections with different f fc y
'  ratios were chosen.  The concrete strength ranged from 3.5 

ksi to 15 ksi; the steel yield strength of the tubes was 46 ksi.  Therefore, f fc y
'  ranged 

from 0.0761 to 0.326.  The sections chosen represent a range of A As t , all above a value 

of 0.04, the minimum required by the AISC LRFD Specification [1993] to constitute a 

composite column.  These cross-sections are summarized in Table 2.2.   
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Table 2.2  CFT Cross Sections Used for Determining the Cross-Section Strength Surface 

Equation 
 
Steel tubes (fy = 46 ksi, fu = 58 ksi): 
 • Series 24:  12 12 1

2× ×  (D t = 24, A As t  = 0.160) 

 • Series 48:  18 18 3
8× ×  (D t = 48, A As t  = 0.0816) 

 • Series 72:  27 27 3
8× ×  (D t = 72, A As t  = 0.0548) 

 • Series 96:  36 36 3
8× ×  (D t = 96, A As t  = 0.0412) 

 
Concrete properties: 
 • Type A:  fc

'  = 3.5 ksi  (f fc y
'  = 0.0761) 

 • Type B:  fc
'  = 6.5 ksi  (f fc y

'  = 0.141) 

 • Type C:  fc
'  = 10 ksi  (f fc y

'  = 0.217) 

 • Type D:  fc
'  = 15 ksi  (f fc y

'  = 0.326) 

 
 

 The tube sizes were chosen based on the listing of available shapes published by 

AISC [1994].  The two smallest cross-sections in Table 2.2, 12 12 1
2× ×  (D t = 24) and 

18 18 3
8× ×  (D t = 48), are standard manufactured shapes.  The next largest section, 

27 27 3
8× ×  (D t = 72), although not listed by AISC, was chosen to provide a uniform 

increment in D t values.  This cross-section is, however, still representative of a typical 

structural tube since standard tubes with dimensions of 26 26 3
8× ×  and 28 28 3

8× ×  are 

produced.  The largest section in Table 2.2 (D t = 96) was also chosen to provide a 

uniform spacing of D t ratios, and it represents the larger sections that may be used in 

future construction [Goel and Yamanouchi, 1993].  The tube with the largest D t ratio in 

the AISC listing of structural tubes is a 30 30 3
8× ×  (D t = 80).  The tube thickness of this 

section was maintained and the width and depth were increased by six inches to obtain a 

D t ratio of 96.  All of the tubes in Table 2.2 are cold-formed square tubes with a 

nominal yield strength of 46 ksi and an ultimate strength of 58 ksi.  Additionally, the 

following stress/strain parameters were used for the steel (see Section 2.3.2): 
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 Modulus of elasticity (Es)    = 29,000,000 psi 

 Strain at which strain hardening begins (εsh)  = 0.0186 

 Strain hardening modulus (Esh)   = 300,000 psi 

 

 Additional rectangular CFT sections with an aspect ratio (the ratio of the long side 

of the tube to the short side) ranging from 1 to 2, and CFTs with tube strengths up to 70 

ksi were checked following the development of the cross-section strength equation using 

the 16 sections of Table 2.2.  These additional results are summarized in Sections 2.6.5 

and 2.6.6. 

 For each combination of D t and f fc y
'  shown in Table 2.2, a cross-section 

strength surface consisting of 100 P-My-Mz points was generated using the fiber element 

analysis.  Each three-dimensional surface consisted of a series of 10 two-dimensional 

cross-section strength curves generated at load eccentricity increments of 10 degrees, 

ranging from 0° (major axis bending) to 90° (minor axis bending).  For each two-

dimensional cross-section strength curve, 10 points in the M-P plane were computed. 

 

2.6.2  Development of the CFT Cross-Section Strength Equation Form 

 The equation describing the three-dimensional cross-section strength surface of 

rectangular CFTs is a polynomial expression with terms consisting of products of the 

normalized force points -- p, my, and mz.  The most accurate form for the equation was 

determined by performing a least squares fit to the set of cross-section analyses described 

in Section 2.6.1 (for the CFTs of Table 2.2).  The equation consists of six terms:  three 

terms representing the normalized loads (p, my, and mz) and three cross-product terms 

(m py ⋅ , m pz ⋅ , and m mz y⋅ ).  The normalized loads p, my, and mz are given by the 

following equations: 
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Po, Myo, and Mzo are the respective axial compression, ultimate minor axis bending 

moment, and major axis bending moment capacities for the cross-section (see Section 

2.6.7 for a description of their calculation), and ϕ is the location in normalized force 

space of the centroid of the three-dimensional cross-section strength surface.  The value 

of ϕ, which varies from 0 to 1, is required because of the asymmetry of the three-

dimensional cross-section strength surface of a CFT about the moment axes (a typical 

CFT cross-section strength diagram is shown in Fig. 2.24).  As illustrated in Fig. 2.24, an 

actual CFT cross-section strength surface is, however, approximately symmetric about a 

moment axis located at the axial load ratio, ϕ, producing the maximum moment in the 

section.  Thus, by using the parameter ϕ, the axial load is normalized with respect to this 

shifted moment axis (the dotted line in the figure).  Section 2.6.3 discusses the calculation 

of the value of the centroid of the cross-section strength surface, ϕ. 
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Figure 2.24  Typical CFT Two-Dimensional Cross-Section Strength Diagram 
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 The equation for the cross-section strength surface takes the following general 

form (see Orbison et al. [1982] and Zhao [1993] for a description of steel wide-flange 

cross-section strength surfaces of a similar form, and Duan and Chen [1990] for a 

description of similar hollow tube cross-section strength surfaces):   
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          (2.18) 

 

where c1, c2, ..., c6 are coefficients.  The exponents of the terms in Eq. (2.18) (n1, n2, ..., n9) 

must be even integers to insure that the behavior about the coordinate axes is symmetric 

(see Section 2.6.3).  Because the 16 cross-sections used in the least squares analysis were 

square, the properties in the y and z directions are identical.  Therefore, the my and mz 

terms and the m py ⋅  and m pz ⋅  terms are the same.  This decreases the number of 

coefficients in the surface equation to four, and the number of exponents to five: 
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 The four coefficients of Eq. (2.19) are each functions of the two cross-section 

parameters, the D t ratio and the f fc y
'  ratio, rather than remaining constant for all CFT 

sections.  Figure 2.1 in Section 2.1.2 compares the two-dimensional cross-section 

strength curves from the fiber analyses of section types 96A and 96D (refer to Table 2.1 

for this nomenclature).  The surfaces are similar in shape, but the section with the larger 

f fc y
'  ratio, 96D, produces a substantially larger surface.  A similar increase in the size of 

the cross-section strength surface occurs as the D t ratio increases from 24 to 96.  This 

comparison illustrates the necessity of using coefficients in Eq. (2.19) that are functions 
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of the section and material properties.  Both of the surfaces shown in Fig. 2.1 could not be 

accurately described using fixed coefficient values.  Note that cross-section strength 

surfaces which have been developed for similar steel wide-flange sections [Orbison et al., 

1982; Zhao, 1993] use the same coefficient values regardless of section and material 

properties, since the cross-section strengths of a wide range of steel I-beams are nearly 

identical in normalized force space [Chen and Atsuta, 1976, 1977].  Section 2.6.4 

discusses the development of the equations used to describe the coefficients.   

 The general form of Eq. (2.19) was first optimized for section type 48B by 

explicitly using different combinations of exponent values.  For each selected set of 

exponents, the coefficients c1, c2, c3, and c4 were determined by a least squares procedure 

using the normalized axial load and moment data from the fiber analysis of this section.  

The accuracy of the resulting expression with the optimized coefficients was then 

checked against the original fiber analysis data.  Several different combinations of 

exponents were tried using this procedure.  The best set of exponents was determined 

based upon a combination of achieving the smallest average error of all combinations of 

mz, my, and p generated by the fiber analysis, and achieving the smallest standard 

deviation from the average.    

 Forms of the equation in which certain terms were neglected were also analyzed, 

but it became clearly evident that every term of Eq. (2.19) was necessary.  The five or six 

most accurate forms of the equation for section 48B were then checked using sections 

with different combinations of D t and f fc y
'   From the least squares analyses of these 

additional sections, the optimum form of the equation was selected:   
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2.6.3  Modeling the Asymmetry of the Cross-Section Strength Surface  

 As shown in Fig. 2.24, the typical CFT cross-section strength surface is 

unsymmetric about the moment axes.  This is due to the concrete, which provides much 

more strength in compression than in tension.  Therefore, the largest moment capacity 

occurs when the cross-section is subjected to a moderate compressive axial load.   

 As discussed in Section 2.6.2, the normalized cross-section strength surface of all 

CFTs was found by inspection to be nearly symmetric about an axis represented by the 

axial load ratio, ϕ, producing the maximum moment capacity.  The centroid of the 

surface, ϕ, is a function of the relative ratio of concrete to steel and the concrete strength, 

f c
' .  The most accurate formulation for determining the surface centroid was obtained by 

using the normalized average of the tensile and compressive strengths of the concrete.  

This calculated value is expressed as:   

 

 
( )

ϕ calc
c c c r
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      (2.21) 

 

where Po is the ultimate axial load capacity of the section in the presence of no bending 

(see Section 2.6.7) and the rupture strength of the concrete, fr, is given by Eq. (2.12).  All 

values in Eq. (2.21) are taken as positive except for fr, which is negative, and ϕcalc is the 

calculated position of the centroid on the compressive axis of P/Po 

 Table 2.3 compares the calculated value of the surface centroid, ϕcalc, with the 

centroid value obtained from the fiber analysis, ϕfa (i.e., the axial load ratio at the point of 

maximum moment).  The values of ϕcalc show excellent correlation with ϕfa--the 

maximum error between these values for the 16 cross-sections of Table 2.2 is 7.0 % and 

the majority of the values are within an error of 2.0 %.  These results indicate that using ϕ 
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from Eq. (2.21) in Eq. (2.17), as is done in this work, serves as an accurate method of 

representing the asymmetry of the cross-section strength surface. 

 
Table 2.3  Errors in Calculation of Cross-Section Strength Surface Centroids 

 
 Section 

Type 
 

ϕcalc 

Eq. (2.21) 
ϕfa 

(fiber analysis) 
% error 

 

 24A 
 

0.125 0.133 -6.02 % 

 24B 
 

0.193 0.200 -3.50 % 

 24C 
 

0.247 0.250 -1.20 % 

 24D 
 

0.297 0.300 -1.00 % 

 48A 
 

0.201 0.200 0.50 % 

 48B 
 

0.278 0.283 -1.76 % 

 48C 
 

0.328 0.333 -1.50 % 

 48D 
 

0.369 0.367 0.54 % 

 72A 
 

0.248 0.250 -0.80 % 

 72B 
 

0.322 0.317 1.58 % 

 72C 
 

0.365 0.350 4.29 % 

 72D 
 

0.399 0.400 -0.25 % 

 96A 
 

0.279 0.300 -7.00 % 

 96B 
 

0.348 0.350 -0.57 % 

 96C 
 

0.386 0.383 0.78 % 

 96D 
 

0.415 0.400 3.75 % 
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2.6.4  Development of the Coefficient Equations 

 For each of the 16 cross-sections of the data set in Table 2.2, the coefficients of 

Eq. (2.20) were optimized using a least squares procedure, producing 16 values of each of 

the four coefficients, c1, c2, c3, and c4.  These values are listed in Table 2.4.  This table 

reemphasizes the need for functional coefficients, as stressed in Section 2.6.2.  

Coefficients c1 and c4, for example,  range from 0.2214 to 0.9379 and from 0.03667 to 

0.3962, respectively.  Consequently, using fixed coefficients, or even using coefficients 

that are linear functions of D t and f fc y
' , would introduce large errors into Eq. (2.20).     

 For each coefficient, ci, a least squares analysis was performed using the 16 

respective coefficient values in Table 2.4 to obtain expressions in terms of the D t ratio 

and the f fc y
'  ratio of the cross-section.  Two equation forms were examined for the 

optimization of the coefficients, a full quadratic equation:   
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and a full cubic equation: 
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 (2.23) 

 

where a1, ..., a6 and b1, ..., b10 are constant coefficients.  The optimization of coefficient c1 

using  Eqs. (2.22) and (2.23) produces the following quadratic and cubic equations: 
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Table 2.4  Optimum CFT Cross-Section Strength Surface Equation Coefficients 

 
D t  f c

'  
(ksi) 

 

c1 c2 c3 c4 

 3.5 0.9379 
 

1.598 1.961 0.3962 

 
24 

6.5 0.8671 
 

1.890 1.875 0.3538 

 10 0.8130 
 

2.187 1.771 0.3281 

 15 0.6994 
 

2.542 1.492 0.2453 

 3.5 0.8322 
 

1.917 2.324 0.3919 

 
48 

6.5 0.6962 
 

2.381 2.143 0.3014 

 10 0.5684 
 

2.812 1.804 0.2091 

 15 0.4521 
 

3.287 1.420 0.1354 

 3.5 0.7297 
 

2.160 2.146 0.3182 

 
72 

6.5 0.5589 
 

2.686 1.866 0.2014 

 
 

10 0.4255 
 

3.123 1.544 0.1250 

 15 0.3025 
 

3.573 1.149 0.06702 

 3.5 0.6568 
 

2.350 1.966 0.2580 

 
96 

6.5 0.4648 
 

2.893 1.650 0.1397 

 10 0.3301 
 

3.320 1.307 0.07567 

 15 0.2214 
 

3.749 0.9194 0.03667 
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Table 2.5 shows the errors in the coefficient c1 obtained using Eqs. (2.24) and (2.25) for 

each of the CFT cross-sections.  The errors are computed based upon a comparison to the 

optimum values obtained from the least squares analysis of each individual cross-

sections.  These optimum coefficient values are listed in Table 2.4 and repeated in 

column 2 of Table 2.5.  Equations similar to Eqs. (2.24) and (2.25) were obtained for 

coefficients c2, c3, and c4.  The corresponding errors for these coefficients are tabulated in 

Tables 2.6, 2.7, and 2.8, respectively. 

 The coefficients obtained from the quadratic form of the coefficient equation, Eq. 

(2.22), produced errors in Eq. (2.20) of well in excess of 10% for force points of several 

of the cross-sections, especially in the ranges of high D t and high f fc y
' .  This was due 

to the large errors in the quadratic equation for coefficients c1 and c4 (shown in Tables 2.5 

and 2.8, respectively)   Therefore, the cubic coefficient equations, which produced much 

smaller errors in Eq. (2.20), were adopted in this work.  For continuity, the cubic form 

was used for all four coefficient equations, although coefficients c1 and c4 particularly 

required it.  The final form of the CFT three-dimensional cross-section  
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Table 2.5  Errors in Coefficient c1 
 

Section 
Type 

 
 

Optimum 
Value of c1 
(Table 2.4) 

Quadratic 
Equation 

Value of c1 

% Error in 
Quadratic 
Equation 

Cubic 
Equation 

Value of c1 

% Error in 
Cubic 

Equation 

24A 
 

0.9379 0.9513 -1.43% 0.9406 -0.29% 

24B 
 

0.8671 0.8819 -1.70% 0.8731 -0.69% 

24C 
 

0.813 0.8006 1.52% 0.7993 1.68% 

24D 
 

0.6994 0.6844 2.14% 0.7032 -0.54% 

48A 
 

0.8322 0.7894 5.14% 0.8210 1.34% 

48B 
 

0.6962 0.7024 -0.89% 0.6975 -0.19% 

48C 
 

0.5684 0.6006 -5.66% 0.5776 -1.62% 

48D 
 

0.4521 0.4549 -0.61% 0.4519 0.05% 

72A 
 

0.7297 0.6881 5.69% 0.7297 -0.00% 

72B 
 

0.5589 0.5836 -4.41% 0.5678 -1.59% 

72C 
 

0.4255 0.4612 -8.39% 0.4222 0.77% 

72D 
 

0.3025 0.2860 5.45% 0.2962 2.09% 

96A 
 

0.6568 0.6476 1.41% 0.6574 -0.09% 

96B 
 

0.4648 0.5254 -13.04% 0.4745 -2.09% 

96C 
 

0.3301 0.3825 -15.88% 0.3238 1.91% 

96D 
 

0.2214 0.1778 19.68% 0.2268 -2.45% 
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Table 2.6  Errors in Coefficient c2 
 

Section 
Type 

 
 

Optimum 
Value of c2 
(Table 2.4) 

Quadratic 
Equation 

Value of c2 

% Error in 
Quadratic 
Equation 

Cubic 
Equation 

Value of c2 

% Error in 
Cubic 

Equation 

24A 
 

1.598 1.510 5.52% 1.581 1.09% 

24B 
 

1.890 1.898 -0.44% 1.901 -0.56% 

24C 
 

2.187 2.256 -3.15% 2.188 -0.04% 

24D 
 

2.542 2.585 -1.70% 2.548 -0.24% 

48A 
 

1.917 1.961 -2.30% 1.943 -1.37% 

48B 
 

2.381 2.384 -0.13% 2.392 -0.45% 

48C 
 

2.812 2.782 1.06% 2.797 0.53% 

48D 
 

3.287 3.170 3.58% 3.265 0.66% 

72A 
 

2.160 2.236 -3.52% 2.146 0.63% 

72B 
 

2.686 2.694 -0.29% 2.667 0.71% 

72C 
 

3.123 3.132 -0.29% 3.124 -0.03% 

72D 
 

3.573 3.578 -0.13% 3.606 -0.91% 

96A 
 

2.350 2.335 0.65% 2.355 -0.21% 

96B 
 

2.893 2.827 2.28% 2.891 0.07% 

96C 
 

3.320 3.306 0.43% 3.334 -0.41% 

96D 
 

3.749 3.809 -1.61% 3.734 0.41% 
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Table 2.7  Errors in Coefficient c3 
 

Section 
Type 

 
 

Optimum 
Value of c3 

(Table 2.4) 

Quadratic 
Equation 

Value of c3 

% Error in 
Quadratic 
Equation 

Cubic 
Equation 

Value of c3 

% Error in 
Cubic 

Equation 

24A 
 

1.961 2.066 -5.36% 1.964 -0.13% 

24B 
 

1.875 1.909 -1.82% 1.898 -1.23% 

24C 
 

1.771 1.729 2.37% 1.751 1.14% 

24D 
 

1.492 1.478 0.95% 1.488 0.24% 

48A 
 

2.324 2.211 4.85% 2.310 0.62% 

48B 
 

2.143 2.008 6.32% 2.109 1.61% 

48C 
 

1.804 1.773 1.74% 1.833 -1.61% 

48D 
 

1.420 1.443 -1.59% 1.445 -1.77% 

72A 
 

2.146 2.175 -1.34% 2.168 -1.03% 

72B 
 

1.866 1.924 -3.11% 1.885 -1.00% 

72C 
 

1.544 1.634 -5.84% 1.544 0.02% 

72D 
 

1.149 1.226 -6.66% 1.120 2.57% 

96A 
 

1.966 1.956 0.49% 1.964 0.09% 

96B 
 

1.650 1.659 -0.53% 1.652 -0.11% 

96C 
 

1.307 1.314 -0.54% 1.308 -0.05% 

96D 
 

0.919 0.827 10.08% 0.937 -1.92% 
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Table 2.8  Errors in Coefficient c4  
 

Section 
Type 

 
 

Optimum 
Value of c4 

(Table 2.4) 

Quadratic 
Equation 

Value of c4 

% Error in 
Quadratic 
Equation 

Cubic 
Equation 

Value of c4 

% Error in 
Cubic 

Equation 

24A 
 

0.3962 0.4356 -9.95% 0.4019 -1.44% 

24B 
 

0.3538 0.3579 -1.17% 0.3554 -0.46% 

24C 
 

0.3281 0.2923 10.91% 0.3187 2.87% 

24D 
 

0.2453 0.2458 -0.19% 0.2475 -0.89% 

48A 
 

0.3919 0.3642 7.06% 0.3827 2.35% 

48B 
 

0.3014 0.2819 6.48% 0.2937 2.56% 

48C 
 

0.2091 0.2107 -0.76% 0.2241 -7.17% 

48D 
 

0.1354 0.1563 -15.41% 0.1377 -1.69% 

72A 
 

0.3182 0.3033 4.67% 0.3212 -0.95% 

72B 
 

0.2014 0.2163 -7.39% 0.2080 -3.28% 

72C 
 

0.1250 0.1396 -11.68% 0.1270 -1.61% 

72D 
 

0.0670 0.0773 -15.29% 0.0562 16.21% 

96A 
 

0.2580 0.2530 1.95% 0.2588 -0.32% 

96B 
 

0.1397 0.1612 -15.38% 0.1397 -0.00% 

96C 
 

0.0757 0.0790 -4.41% 0.0688 9.14% 

96D 
 

0.0367 0.0088 76.07% 0.0442 -20.51% 
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strength surface equation and the four corresponding cubic coefficient equations are 

shown in Table 2.9. 

 Using the equations of Table 2.9, the errors in each of the 16 cross-sections of 

Table 2.2 were examined and documented.  For a given cross-section, the 100 fiber 

analysis data points were each substituted into Eq. (2.20) and the error was again 

determined by checking the deviation of the solution to Eq. (2.20) from a value of 1.0.  

The cross-section strength errors (e.g., average error and standard deviation of the error 

for the 100 points, as well as the maximum positive and negative errors) are compiled in 

Table 2.10.  The cumulative errors are very good for all of the sections.  The average 

error is never greater than 2.0 % and the largest error between the results of the surface 

equation and the fiber analysis for any p-my-mz point of the 16 cross-sections is only 

10.14 %.    

 Table 2.11 examines the accuracy of the cross-section strength equation in the 

tensile region.  Only the steel tube is assumed to contribute to the tensile capacity of a 

CFT, which may be expressed as P A ftens s y= ⋅ .  This value is normalized by Po and 

compared to the value predicted by Eq. (2.20) for the case of pure axial tension, Peq/Po.  

The errors between the two values are quite accurate except for the sections with a high 

f c
' .  These errors are, however, acceptable since the tensile region was modeled primarily 

to maintain a symmetric and continuous equation and it is presumed in this work that the 

CFT beam-column for which the equation was developed will never be subjected to a 

purely axial tensile load. 
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Table 2.9  CFT Cross-Section Strength Surface Equation 
  

 
CFT Cross-Section Strength Surface Equation: 
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Table 2.10  Cumulative Errors in CFT Cross-Section Strength Surface Equation (Surface 
Equation vs. Fiber Element Analysis) 

 

D t  f c
'  

(ksi) 
 

Standard  
Deviation 

Average 
Error 

Maximum 
Positive 

Error 

Maximum 
Negative 

Error 

 3.5 
 

3.11 % -0.20 % 5.67 % -8.57 % 

 
24 

6.5 
 

2.80 % 0.59 % 6.00 % -6.76 % 

 10 
 

2.75 % -1.38 % 5.37 % -7.55 % 

 15 
 

2.77 % 0.16 % 5.84 % -7.58% 

 3.5 
 

2.59 % 0.88 % 5.18 % -6.35 % 

 
48 

6.5 
 

2.55 % -0.25 % 4.63 % -6.48 % 

 10 
 

3.33 % 0.99 % 7.85 % -6.93 % 

 15 
 

4.57 % -0.39 % 9.28 % -9.87 % 

 3.5 
 

2.33 % -0.22 % 4.92 % -5.90 % 

 
72 

6.5 
 

2.29 % 0.87 % 4.47 % -5.83 % 

 10 
 

2.59 % -0.60 % 4.70 % -6.74 % 

 15 
 

4.28 % -1.83 % 5.55 % -9.05 % 

 3.5 
 

2.19 % -0.06 % 4.88 % -5.36 % 

 
96 

6.5 
 

1.96 % 1.04 % 4.44 % -4.74 % 

 10 
 

2.19 % -1.46 % 3.70 % -5.97 % 

 15 
 

4.01 % 1.89 % 10.14 % -7.00 % 
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Table 2.11  Cross-Section Strength Surface Equation Errors for Tension Region 
 

D t  f c
'  

(ksi) 
 

Ptens/Po Peq/Po % error 

 3.5 0.714 
 

0.666 7.21 % 

 
24 

6.5 0.574 
 

0.534 7.49 % 

 10 0.466 
 

0.429 8.62 % 

 15 0.368 
 

0.330 11.52 % 

 3.5 0.539 
 

0.521 3.45 % 

 
48 

6.5 0.386 
 

0.370 4.32 % 

 10 0.290 
 

0.268 8.21 % 

 15 0.214 
 

0.183 16.94 % 

 3.5 0.432 
 

0.432 0.00 % 

 
72 

6.5 0.291 
 

0.288 1.04 % 

 
 

10 0.210 
 

0.200 5.00 % 

 15 0.151 
 

0.130 16.15 % 

 3.5 0.361 
 

0.373 -3.22 % 

 
96 

6.5 0.233 
 

0.240 -2.92 % 

 10 0.165 
 

0.163 1.23% 

 15 0.117 
 

0.101 15.84 % 
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 Two-dimensional graphical representations of the cross-section strength surface 

equation are shown in Figs. 2.25 to 2.36.  These figures compare the equation results to 

the p-mx-my data points obtained from the fiber analysis of the cross-sections in Table 2.2.  

Figures 2.25 to 2.28 show P/Po vs. M/Mo for each series as fc
'  varies from 3.5 to 15 ksi.  

Figures 2.29 to 2.32 illustrate the same results for constant values of fc
'  and D t ratios 

ranging from 24 to 96.  Figures 2.33 to 2.36 show selected plots of My/Myo vs. Mz/Mzo for 

sections 24A, 48B, 72C, and 96D.  In these last figures, each graph shows contours of 

My/Myo vs. Mz/Mzo for different constant values of axial load ratio, P/Po, varying from 0 to 

1. 

 The accuracy of the three-dimensional cross-section strength surface equation was 

checked by examining sections with combinations of D t and f fc y
'  ratios that are 

different from the cross-sections in Table 2.2.  These sections are all tubes that are 

available from manufacturers [AISC LRFD, 1994].  The errors between the surface 

equation and the fiber analysis for these cross-sections are tabulated in Table 2.12.  

Sections having intermediate values of fc
'  and D t were chosen as well as sections with 

the same D t as sections from the Table 2.2 but with a larger or smaller cross-sectional 

area.  All of these sections produced acceptable results. 
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Table 2.12  CFT Cross-Section Strength Surface Equation Errors: 
Additional CFT Cross-Sections 

 
Section 

(D t ratio) 
 

f c
'  

(ksi) 
Standard 
Deviation 

Average Maximum 
Positive 

Error 

Maximum 
Negative 

Error 

6 6 1
4× ×  

(24) 
 

8.0 2.71 % 0.14 % 5.93 % -6.74 % 

16 16 1
2× ×  

(32) 
 

12.5 3.79 % -0.39 % 7.45 % -9.67 % 

14 14 3
8× ×  

(37.3) 
 

5.0 2.83 % -1.03 % 5.57 % -7.59 % 

24 24 1
2× ×  

(48) 
 

15.0 4.50 % -0.24 % 9.28 % -9.87 % 

28 28 1
2× ×  

(56) 
 

12.5 3.67 % 0.22 % 7.49 % -7.70 % 

24 24 3
8× ×  

(64) 
 

5.0 2.27 % 0.50 % 4.74 % -5.61 % 

30 30 3
8× ×  

(80) 
 

8.0 2.11 % 0.34 % 4.24 % -5.95 % 
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Figure 2.25  Two-Dimensional Cross-Section Strength Diagrams (D t = 24) 
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Figure 2.26  Two-Dimensional Cross-Section Strength Diagrams (D t = 48) 
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Figure 2.27  Two-Dimensional Cross-Section Strength Diagrams (D t = 72) 
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Figure 2.28  Two-Dimensional Cross-Section Strength Diagrams (D t = 96) 
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Figure 2.29  Two-Dimensional Cross-Section Strength Diagrams (fc
'  = 3.5 ksi) 
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Figure 2.30  Two-Dimensional Cross-Section Strength Diagrams (fc
'  = 6.5 ksi) 
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Figure 2.31  Two-Dimensional Cross-Section Strength Diagrams (fc
'  = 10 ksi) 
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Figure 2.32  Two-Dimensional Cross-Section Strength Diagrams (fc
'  = 15 ksi) 
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Figure 2.33  CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo   
Section 24A (D t = 24, fc

'  = 3.5 ksi) 
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Figure 2.34  CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo   
Section 48B (D t = 48, fc

'  = 6.5 ksi) 
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Figure 2.35  CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo  
Section 72C (D t = 72, fc

'  = 10 ksi) 
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Figure 2.36  CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo  
Section 96D (D t = 96, fc

'  = 15 ksi) 
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2.6.5  Rectangular CFTs with Aspect Ratios Greater Than 1:1 

 The cross-section strength surface equation developed above for square CFT 

cross-sections should be accurate for rectangular sections as well.  The equations of Table 

2.9 may be used for rectangular cross-sections by modifying the calculation of the 

coefficient values to account for the different D t ratio in the major axis direction and the 

minor axis direction.  Each coefficient value for a rectangular cross-section is computed 

by averaging two coefficient values:  the coefficient value obtained using the major axis 

D t ratio in the coefficient equations of Table 2.9 and the value obtained using the minor 

axis D t ratio.  This approach produces slightly smaller errors than averaging the major 

axis and minor axis D t ratios and using this average D t value in the coefficient 

equations of Table 2.9.   

 The errors using average coefficients for seven tested sections with aspect ratios 

between 1:1 and 2:1 are shown in Table 2.13.  The errors are greater for the larger aspect 

ratios.  Although some of the maximum errors exceed 10 %, the average error plus or 

minus one standard deviation is, except for one case, always less than 10%.  Figures 2.37 

to 2.45 illustrate a comparison of the surface equation to the fiber analysis results for 

selected sections.  Figures 2.37, 2.38, 2.40, 2.41, 2.43, and 2.44 show P/Po vs. Mz/Mzo 

(major axis) and P/Po vs. My/Myo (minor axis) plots, and Figs. 2.39, 2.42, and 2.45 show 

plots of My/Myo vs. Mz/Mzo.  

 
 



79 

Table 2.13  CFT Cross-Section Strength Surface Equation Errors: 
Rectangular Cross-Sections 

 
Section 

(D t ratios:  
major axis, 
minor axis) 

f c
'  

(ksi) 
Standard 
Deviation 

Average Maximum 
Positive 

Error 

Maximum 
Negative 

Error 

12 6 1
4× ×  

(48, 24) 
 

3.5 4.80 % -3.83 % 7.17 % -14.14 % 

12 6 1
4× ×  

(48, 24) 
 

10 5.02 % -5.17 % 5.74 % -16.16 % 

18 9 1
4× ×  

(72, 36) 
 

6.5 4.48 % -4.26 % 5.73 % -13.49 % 

18 9 1
4× ×  

(72, 36) 
 

15 5.10 % -2.06 % 7.90 % -14.40 % 

20 12 5
16× ×  

(64, 38) 
 

15 5.14 % -1.69 % 7.59 % -14.38 % 

30 24 3
8× ×  

(80, 64) 
 

6.5 2.43 % 0.21 % 4.20 % -7.07 % 

36 18 3
8× ×  

(96, 48) 
 

10 4.38 % -3.47 % 4.54 % -12.88 % 
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Figure 2.37  Two-Dimensional Cross-Section Strength Diagram--Major Axis Moment 
(Major Axis D t = 48, Minor Axis D t = 24, fc

'  = 3.5 ksi) 
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Figure 2.38  Two-Dimensional Cross-Section Strength Diagram--Minor Axis Moment 
(Major Axis D t = 48, Minor Axis D t = 24, fc

'  = 3.5 ksi) 
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Figure 2.39  CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo  
(Major Axis D t = 48, Minor Axis D t = 24, fc

'  = 3.5 ksi) 
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Figure 2.40  Two-Dimensional Cross-Section Strength Diagram--Major Axis Moment 
(Major Axis D t = 72, Minor Axis D t = 36, fc

'  = 15 ksi) 
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Figure 2.41  Two-Dimensional Cross-Section Strength Diagram--Minor Axis Moment 
(Major Axis D t = 72, Minor Axis D t = 36, fc

'  = 15 ksi) 
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Figure 2.42  CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo  
(Major Axis D t = 72, Minor Axis D t = 36, fc

'  = 15 ksi) 
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Figure 2.43  Two-Dimensional Cross-Section Strength Diagram--Major Axis Moment 
(Major Axis D t = 96, Minor Axis D t = 48, fc

'  = 10 ksi) 
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Figure 2.44  Two-Dimensional Cross-Section Strength Diagram--Minor Axis Moment 
(Major Axis D t = 96, Minor Axis D t = 48, fc

'  = 10 ksi) 



84 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

My/Myo

Mz/Mzo

Fiber Analysis Surface Equation  
 

Figure 2.45  CFT Cross-Section Strength Diagrams--My/Myo vs. Mz/Mzo 
(Major Axis D t = 96, Minor Axis D t = 48, fc

'  = 10 ksi) 

 

 

2.6.6  CFTs with Higher Strength Steel 

 Several sections were tested to check the validity of the f fc y
'  ratio used as a 

variable parameter in the formulation of the cross-section strength surface equation.  

Specifically, the equation should accurately predict the cross-section strength surface for 

a constant value of the f fc y
'  ratio with an increasing value of fy.  Table 2.14 shows the 

results of five tested sections with steel yield strengths of up to 70 ksi.  The errors were 

comparable to those obtained with the original formulation using 46 ksi steel.  
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Table 2.14  CFT Cross-Section Strength Surface Equation Errors: 
CFT Cross-Sections with Higher Strength Steel 

 
Section 

(D t ratio) 
 

fy 
(ksi) 

f c
'  

(ksi) 
Standard 
Deviation 

Average Maximum 
Positive 

Error 

Maximum 
Negative 

Error 

12 12 1
2× ×  

(24) 
 

50 10.87 2.72 % -0.84 % 5.13 % -7.84 % 

12 12 1
2× ×  

(24) 
 

70 15.22 4.13 % 3.61 % 7.72 % -7.30 % 

18 18 3
8× ×  

(48) 
 

60 8.48 3.43 % -0.96 % 5.54 % -9.05 % 

27 27 3
8× ×  

(72) 
 

60 13.02 4.50 % 0.70 % 8.87 % -8.08 % 

36 36 3
8× ×  

(96) 
 

70 5.33 3.37 % -0.73 % 4.52 % -8.17 % 

 

 

2.6.7  Nominal Strength of CFTs 

 The final requirement necessary to complete the equation to represent the three-

dimensional cross-section strength of a CFT member is a method for calculating the 

nominal axial and bending moment capacity of the section.  In the above procedure, these 

values were calculated for each analysis by the fiber element procedure.  For 

implementation into the concentrated plasticity model to follow, however, these values 

must be computed explicitly by a simple yet accurate set of equations.    

 The nominal axial load capacity may be calculated directly as it is done in the 

fiber analysis program.  Thus, the axial load capacity is simply the sum of the strengths of 

the two constituent materials [Tomii and Sakino, 1979a, 1979b]: 
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 P A f A fo s y c c= ⋅ + ⋅ '        (2.26) 

 

 The calculation of the nominal moment capacity of the section (i.e., the maximum 

moment in the presence of no axial load) requires a more complicated formulation.  In the 

fiber element analysis, the nominal moment is calculated iteratively by the moment-

curvature analysis procedure (Section 2.2) for the case when the axial load ratio is zero.  

In the simplified formulation that follows, the moment resistance of the concrete is 

calculated by assuming stress blocks equal to 0.85 times the compressive area and 0.50 

times the tensile area, a procedure similar in some respects to that used in the analysis of 

reinforced concrete beams.  The addition of the tensile moment capacity is included for 

the following reason.  For larger CFT sections with a high D t ratio and high concrete 

strength, the neutral axis of the section will be very close to the top fiber of the section 

and a large portion of the concrete will be in tension.  Although the concrete strength in 

tension is only approximately one-tenth of the compression strength, the large percentage 

of concrete in tension will nevertheless have a significant effect on the moment resistance 

of the CFT.  Neglecting this effect produced significantly less accurate results.  The 

nominal moment resistance of the steel is computed assuming the entire cross-section has 

reached the yield stress.   

 Because the concrete in tension and the concrete in compression have different 

strengths, the neutral axis of the section will not be at the centroid and must be calculated 

prior to the moment calculation.  For a rectangular CFT cross-section with width b and 

depth D, the neutral axis, xn (measured from the top fiber of the cross-section), is 

computed by the following equation: 
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         (2.27) 

 

The maximum tensile strength of the concrete, fr, is given by Eq. (2.12).  Given the 

neutral axis, the nominal moment for a general rectangular CFT cross-section may be 

calculated by: 
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         (2.28) 

 

The results of the moment computations were compared to the results from the fiber 

element analysis for the 16 cross-sections of Table 2.2, and to theoretical results 

presented by Chen and Chen [1973].  The results of Eqs. (2.27) and (2.28) are illustrated 

in Table 2.15.  The majority of the computed nominal moments are within 5.0 % of the 

fiber element and the theoretical results. 
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Table 2.15  Nominal Moment Calculation Errors 
 

Cross-
Section 

 

fy 
(ksi) 

f c
'  

(ksi) 
fct 

(ksi) 
Mo 

(Calc.) 
Mo 

(Theory)* 
% 

error 

Chen, '73 
3×3×0.129 

47 5.9 0.58 84.6 81.5 3.85% 

24A 
12 12 1

2× ×  
46 3.5 0.44 5988 5018 -0.59% 

24B 
12 12 1

2× ×  
46 6.5 0.61 5215 5302 -1.64% 

24C 
12 12 1

2× ×  
46 10 0.75 5405 5669 -4.66% 

24D 
12 12 1

2× ×  
46 15 0.92 5598 5944 -5.82% 

48A 
18 18 3

8× ×  
46 3.5 0.44 9414 9466 -0.54% 

48B 
18 18 3

8× ×  
46 6.5 0.61 9997 10 275 -2.70% 

48C 
18 18 3

8× ×  
46 10 0.75 10 440 10 910 -4.28% 

48D 
18 18 3

8× ×  
46 15 0.92 10 880 11 710 -7.07% 

72A 
27 27 3

8× ×  
46 3.5 0.44 22 630 22 716 -0.38% 

72B 
27 27 3

8× ×  
46 6.5 0.61 24 230 24 949 -2.90% 

72C 
27 27 3

8× ×  
46 10 0.75 25 440 26 762 -4.96% 

72D 
27 27 3

8× ×  
46 15 0.92 26 640 28 316 -5.90% 

96A 
36 36 3

8× ×  
46 3.5 0.44 42 290 42 814 -1.22% 

96B 
36 36 3

8× ×  
46 6.5 0.61 45 560 47 303 -3.68% 

96C 
36 36 3

8× ×  
46 10 0.75 48 070 50 564 -4.94% 

96D 
36 36 3

8× ×  
46 15 0.92 50 630 53 418 -5.22% 

*Theoretical nominal moments refer to either moments provided by other authors (e.g. 
Chen, '73) or the moments computed using the fiber element analysis (e.g. Section 24A).  
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Chapter 3   

 

Introduction to the CFT Nonlinear Model 

 
 

 This chapter presents an introduction to the nonlinear analytical formulation to 

model the load-deflection behavior of frame structures composed of CFT beam-columns 

and steel I-beams and subjected to either monotonic or cyclic loading.  The first section of 

this chapter discusses the behavior of rectangular CFT beam-columns, providing an 

introduction to the characteristics modeled by the analytical procedure, which is discussed 

in subsequent sections.  The analytical procedure is examined with respect to each 

component of the nonlinear beam-column model--the elastic stiffness, the geometric 

stiffness, and the plastic reduction stiffness.  The section on the plastic reduction stiffness 

introduces the concentrated plasticity model, the topic of Chapter 4. 

 

 

3.1  Behavior of Rectangular CFT Beam-Columns 

 The primary loads on a CFT beam-column in a frame structure will be a 

combination of axial compression and uniaxial or biaxial bending.  The behavior of CFT 
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beam-columns under a given set of loads will depend upon the member length, the 

strength of the concrete and steel, and the ratio of the concrete area to the steel area.  

Additionally, the behavior of CFT beam-columns is largely influenced by the pattern of 

applied loading--monotonic or cyclic.   

 Chapter 2 examined the behavior of short beam-columns, members governed 

exclusively by cross-section behavior.  These sections are characterized by an ultimate 

strength that is independent of the effect of member instability.  For longer beam-

columns, stability becomes an important factor in the behavior of the member.  

Depending upon the state of stresses at failure, beam-columns may be further classified as 

long (or slender)--beam-columns that reach their capacity when the column fails due 

primarily to elastic instability [Shakir-Khalil and Zeghiche, 1989], or intermediate--beam-

columns that undergo partial plastification of the cross-section at some point along the 

length of the beam-column and fail due to a combination of geometric and material 

nonlinearity [Bridge, 1976; Cederwall et al., 1990].   

 In most CFT applications, especially frame structures, the CFT member will be of 

a length sufficient to induce lateral instability at medium to high axial loads.  The 

following sections investigate the monotonic and cyclic strength and stiffness of 

intermediate and long beam-columns typical of frame structures.  The discussion 

highlights the behavioral characteristics of beam-columns that will be modeled by the 

subsequent analytical formulation. 

 

3.1.1  Monotonic Behavior of Rectangular CFT Beam-Columns   

 The behavior of CFT beam-columns is, in many respects, similar to CFT cross-

section behavior (see Chapter 2).  The main exception is the aspect of length, which 

imparts two primary effects on CFT beam-column behavior.  As the length increases, 
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geometric nonlinearities such as the P-δ effect (member curvature) and the P-∆ effect 

(member chord rotation) [Galambos, 1988] cause the forces in the member to be 

amplified.  The length will also affect the degree to which the concrete is confined by the 

steel tube, directly affecting the material properties of the CFT.  For long beam-columns, 

overall member buckling will occur at longitudinal strains below the level at which 

volumetric expansion of the concrete begins, preventing any increase in concrete strength 

and ductility [Tomii et al., 1973].  Long CFT beam-columns are therefore undesirable in 

practice because the material capacity of the CFT is largely underutilized due to early 

failure by instability [Shakir-Khalil and Mouli, 1990].   

 Failure of an intermediate length CFT beam-column generally results from a 

combination of steel yielding and concrete crushing, which leads to flexural buckling 

[Bridge, 1976; Shakir-Khalil and Zeghiche, 1989].  CFT columns of intermediate length 

undergo a transfer of the load resistance from the concrete to the steel as the moment on 

the section is increased.  Bridge [1976] calculated the percent strength contribution of the 

concrete core for a CFT with a D/t ratio of 20.0.  The concrete core provides only 7.5% of 

the capacity in a member subjected to pure bending versus 30% of the capacity of a 

member subjected to pure axial load.  Although this CFT contains a relatively large 

proportion of steel, the results underscore the increased usefulness of CFTs for members 

subjected to moderate axial loads.   

 Figure 3.1 illustrates the axial load versus mid-height deflection curve for a 

simply-supported CFT beam-column subjected to an axial load applied at an eccentricity, 

e.  The stiffness of the CFT, even under small loads, is nonlinear due to early tensile 

cracking of the concrete, (A).  The beam-column remains fairly stiff, though, until the 

steel tube begins to yield. (B).  As yielding progresses to both the compression and 

tension flanges of the beam-column, (C), the beam-column stiffness degrades severely 
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and the concrete core begins to crush, eventually leading to an instability failure, (D) 

[Bridge, 1976; Shakir-Khalil and Mouli, 1990; Cederwall et al., 1990].   

 The interaction between the concrete and the steel and the inherently ambiguous 

stiffness properties of concrete complicate the calculation of stiffness properties for 

CFTs.  The bending stiffness, E I⋅ , and the axial stiffness, E A⋅ , are well known for steel, 

but these properties are difficult to predict for CFTs because of the inhomogeneity of 

concrete.  Section 3.3 details the formulations that were used in this work for these elastic 

stiffness parameters.  
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Figure 3.1  Typical CFT Load-Deflection Curve   
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3.1.2  Cyclic Behavior of Rectangular CFT Beam-Columns 

 Many of the benefits and advantages of CFTs are realized when these members 

are subjected to cyclic loading.  The addition of concrete to a hollow tube significantly 

improves the cyclic behavior of the member [Matsui and Tsuda, 1987].  The presence of 

the concrete leads to an increase in the capacity of the section and greater ductility 

because the local buckling of the steel tube is delayed [Kawaguchi et al., 1991].  This 

ductility of CFTs is manifested in very full hysteresis loops, indicating a capacity to 

dissipate large amounts of energy.  Additionally, CFT specimens exhibit some cyclic 

strain hardening, resulting in an increase in capacity before degradation due to local 

buckling and concrete crushing occurs [Sakino and Tomii, 1981]. 

 The behavior of a CFT beam-column subjected to cyclic loading is most affected 

by the D/t ratio and the applied axial load ratio.  The significance of the D/t ratio lies in 

the occurrence of local buckling of the steel tube.  While the presence of the concrete will 

delay local buckling, tubes having high values of D/t or tubes subjected to large plastic 

displacements may undergo extensive local buckling.  Combined with crushing of the 

concrete, local buckling will cause a degradation in strength and lead to eventual member 

failure [Sugano et al., 1992].  It has been observed by some researchers, however, that 

rectangular CFTs tend to behave as circular tubes after several cycles, as the buckling of 

the steel tube at the point of maximum force transforms the critical regions from 

rectangular to somewhat circular in shape [Sakino and Tomii, 1981; Kawaguchi et al., 

1993].  Circular members have more stable hysteresis loops and a greater ductility than 

rectangular tubes due to confining effects.  Therefore, this transformation of the 

rectangular tube geometry tends to stabilize the degrading hysteresis loops.  As a result, 

CFTs often exhibit tough behavior, maintaining a high percentage of their initial capacity, 

even for relatively large cyclic displacements [Sugano et al., 1992; Kawaguchi et al., 

1993]. 
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 The effect of the axial load ratio on the cyclic behavior of CFTs is much the same 

as the D/t ratio.  For cyclically loaded specimens subjected to moderate to high axial 

loads, an increase in the axial load leads to a larger and more rapid strength degradation 

[Sakino and Tomii, 1981], resulting in less energy dissipation. 

 Experimental testing of cyclically-loaded rectangular beam-columns has been 

primarily limited to low- to medium-strength materials.  The variable parameters in most 

tests have been member geometry of the specimen and axial load ratio.  Sugano et al. 

[1992], however, have examined CFTs with concrete strengths from 4.5 ksi to 12.8 ksi 

and indicated that the hysteresis curves for square columns will be fuller as the strength of 

the concrete decreases.  These results were based on tests performed by Yamaguchi et al. 

[1989], which were documented in Japanese and unavailable for this research. 

 

 

3.2  CFT Element Formulation  

3.2.1  Background on CFT Behavior Models  

 Much of the analytical research conducted on CFTs to date has focused on 

computing the ultimate capacity of members.  In contrast, relatively few researchers have 

examined the comprehensive load-deflection behavior of CFTs.  The numerical analysis 

methods for CFTs fall into three general categories:  finite element "macro" model 

analyses, fiber element analyses, and three-dimensional continuum analyses.  The former 

two methods are formulations in which each member is represented by one or more line 

elements, each having a specified number of degrees-of-freedom.   
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 Finite element macro model analysis, as referred to in this work, is an analytical 

method in which the structural member is divided into one or more line elements along its 

length and deflections and forces are monitored only at the centroids of the cross-sections 

at the ends of each element.  Macro models often incorporate simplifying assumptions 

such as perfect bond [Neogi et al., 1969; Chen and Chen, 1973; Bridge, 1976; Shakir-

Khalil and Zeghiche, 1989; Masuo et al., 1991] and simplified uniaxial stress-strain 

curves for the steel and concrete [Neogi et al., 1969; Chen and Chen, 1973; Bridge, 1976; 

Shakir-Khalil and Zeghiche, 1989].  Load-deflection relationships may be formulated by 

using moment-curvature-thrust relationships to compute inelastic member response 

[Bridge, 1976]; by assuming a deflected beam-column shape and iteratively computing 

element forces to equilibrate the applied load for successive increments in displacement 

[Neogi et al., 1969; Shakir-Khalil and Zeghiche, 1989; Masuo et al., 1991]; or by using a 

parametric representation of moment and curvature which, in turn, may be used to 

compute deflections for a given loading [Chen and Chen, 1973].   

 The second type of analysis using line elements involves a finer discretization of 

each CFT.  Each member is composed of a number of elements along its length, each of 

which are then, in turn, subdivided into a number of longitudinal fiber elements.  This 

type of analysis allows stress and strain to be monitored at select points along the cross-

section and along the member length, resulting in a more accurate model but a 

computationally more expensive model as well.  Kawaguchi et al. [1993] used such a 

fiber element analysis to model the degrading stress-strain and load-displacement 

relationships due to local buckling of the steel.  Formulation of this type of model for 

three-dimensional CFT beam-columns is part of ongoing research at the University of 

Minnesota. 

 The third general method used to model CFT behavior is three-dimensional 

continuum, or micro analysis.  In this type of analysis, the member is divided into a three-
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dimensional mesh of continuum finite elements, which facilitates a detailed examination 

of bond, initial imperfections, and residual stresses.  Additionally, member inelasticity 

may be explicitly modeled at the multiaxial stress-strain level throughout the member 

using this method.  Ge and Usami [1994] incorporated this type of model into an elasto-

plastic finite displacement analysis of rectangular CFT stub columns. 

 

3.2.2 Overview of the Finite Element Macro Model 

 For computational speed and efficiency, and to facilitate the analysis of entire 

frame structures, a macro finite element model is adopted in this work.  The macro model 

is based on a standard twelve degree-of-freedom beam finite element (displacements for 

the twelve degrees-of-freedom are shown in Fig. 3.2) in which transverse displacement 

are obtained assuming cubic Hermetian shape functions [Weaver and Gere, 1990].  The 

finite element computer program developed in this research to model the load-deflection 

behavior of structures composed of a combination of CFT and steel I-beam members is 

based upon the direct stiffness approach and an incremental updated Lagrangian 

formulation.  Incremental nonlinear finite element analysis has been described by many 

authors (see, for example, Bathe [1982]) and is only briefly presented here.  In this work, 

for static analyses, the total applied load is divided into a series of increments, each 

applied in a load step.  For transient time history analyses, the loading is divided into a 

series of time steps.  While the program developed in this work can execute both static 

and dynamic time history analysis, the incremental formulation is 

presented in terms of static analysis, since there is little experimental evidence at present 

to verify dynamic analysis of structures containing CFTs.  Additional detail on the 

computer implementation of the analytical procedure is provided in the appendix.   
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Figure 3.2  CFT Beam Element 

 

 

 The fundamental step in the analytical procedure is the formulation of the total 

stiffness matrix for each beam element of the structure.  The stiffness, k e , for a single 

structural element may be expressed by the following equation: 

 

 k k k ke
e
e

g
e

r
e= + +       (3.1) 

 

The three components of the total element stiffness given by Eq. (3.1) are the elastic 

stiffness, k e
e , the geometric stiffness, k g

e , and the plastic reduction stiffness, k r
e .   

 Obtaining accurate displacements from the given set of applied loads is entirely 

dependent upon an accurate stiffness formulation.  The following sections of this chapter 

examine each of the three stiffness components of Eq. (3.1) in turn.  The elastic stiffness 

matrix of a structural element, k e
e , has been very well documented for decades.  

Nevertheless, effective elastic stiffness values which constitute the CFT stiffness matrix--

axial rigidity, E A⋅ , bending rigidity, E I⋅ , and torsional rigidity, G J⋅ --must be 

determined to model the composite elastic stiffness of the steel and concrete in a CFT.   
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 The geometric stiffness matrix, k g
e , incorporated in this research is based 

primarily upon the work of Orbison [1982].  The discussion of the geometric stiffness 

matrix in Section 3.4 will focus first on the background of the present formulation and 

second, on the behavioral aspects which the matrix models, namely the stiffness loss in a 

element due to the action of external loads acting through element displacements.   

 The third component of the stiffness formulation, the plastic reduction stiffness, 

k r
e , forms the core of this research.  Section 3.5 introduces the concentrated plasticity 

model for the formulation of the plastic reduction matrix. 

 

 

3.3  Elastic CFT Stiffness Properties 

 The standard 12×12 elastic stiffness matrix for a three-dimensional beam element 

requires terms representing the element's axial, bending and torsional rigidity.  For a steel 

element, these values are well known.  For a CFT element, however, the interaction of the 

steel and the concrete obviates using a simple superposition of stiffnesses, which may not 

necessarily be an accurate representation of the CFT element stiffness.  This section 

discusses the axial, bending, and torsional stiffnesses composing the elastic CFT matrix 

and presents formulas representative of the combined stiffnesses of the steel and the 

concrete.  The formulation for each type of behavior developed assuming the elastic 

stiffness is decoupled from the nonlinear stiffness terms.  The equations for the CFT 

stiffness terms presented in this section are based upon the results presented by Schiller et 

al. [1994]. 
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3.3.1  Axial Rigidity 

 As discussed for CFT cross-sections in Chapter 2, the concrete and the steel 

sustain load independently of one another for small values of axial strain [Gardner and 

Jacobson, 1967; Neogi et al., 1969; Tsuji et al., 1991].  Confinement effects generally do 

not begin until near the point of steel yielding [Knowles and Park, 1970].  Therefore, in 

the elastic region, the behavior of a CFT (in this case, the axial stiffness of a CFT) may be 

accurately represented by summing the individual stiffness components of the steel and 

the concrete: 

 

 ( ) ccsscft AEAEAE ⋅+⋅=⋅       (3.2) 

 

For CFTs under pure axial load, Eq. (3.2) is generally regarded as the most accurate 

model of axial rigidity [Neogi et al., 1969;  Tomii et al., 1973; Zhong and Miao, 1987]. 

 For cyclic load applications, the axial stiffness of a CFT will degrade due to 

concrete cracking as evidenced by the test results of Liu and Goel [1988].  In this work, to 

account for the reduction in elastic rigidity, the elastic modulus of the concrete, Ec, is 

reduced based on the amount of accumulated plastic work.  The next section on flexural 

rigidity explains the reduction of Ec in more detail. 

 

3.3.2  Flexural Rigidity 

 Tomii and Sakino [1979b] presented one of the first detailed formulations of a 

composite flexural stiffness for rectangular CFTs (see also [Bridge, 1976]).  They 

presented a formula in which the flexural rigidity of a CFT is a summation of the rigidity 

of the steel tube and a reduced concrete rigidity which accounts for concrete cracking in 

tension: 
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 ( ) ccsscft IEIEIE ⋅⋅+⋅=⋅ β       (3.3) 

 

The reduction factor, β, is a function of the applied axial load, and is given by: 

 

 
2

457.0619.0311.0 
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Pβ     (3.4) 

 

For a larger applied axial load ratio, β and the corresponding stiffness given by Eq. (3.3) 

are larger due to the greater inhibition of concrete cracking over the cross-section.  Tomii 

and Sakino conducted experimental tests for a range of values of D/t, f'c, fy, and P/Po to 

validate their theoretical formulation.  For CFT specimens with axial load ratios, P/Po, of 

less than 0.5, Eqs. (3.3) and (3.4) predicted a composite stiffness within approximately 

5% of the experimental results.   

 The matrix model contained in this work, however, requires that the linear elastic 

stiffness properties be independent of the loading, rendering Eqs. (3.3) and (3.4) 

inapplicable as expressed.  Since β equals 0.3 (rounded to one significant digit) for the 

case of no axial load, an expression for flexural rigidity that is decoupled from axial force 

may be expressed as: 

 

 ( ) ccsscft IEIEIE ⋅⋅+⋅=⋅ 3.0       (3.5) 

 

 The results of using Eq. (3.5) in the finite element model in this work produced an 

underestimation of the elastic stiffness exhibited by most experimental CFT beam-

column tests.  The primary reason for this, as discussed above, is the decreased concrete 

cracking due to the presence of moderate axial force in the CFT beam-columns in this 

study.  In the Tomii and Sakino model, the presence of axial force results in a larger value 
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of β than was assumed in Eq. (3.5) for pure flexure.  Therefore, an alternate stiffness 

formulation was employed in the elastic range of CFT behavior.  This formulation 

consists of using the full stiffness of both the concrete and steel and is given by the 

following equation [Gardner and Jacobson, 1967; Neogi et al., 1969; Tomii et al., 1973; 

Liu and Goel, 1988]: 

 

 ( ) ccsscft IEIEIE ⋅+⋅=⋅       (3.6) 

 

 Equation (3.6) neglects the detrimental effect of concrete cracking on the overall 

CFT stiffness.  In this work, extensive concrete cracking is assumed to become prevalent 

and significantly influence the CFT stiffness only after the onset of steel yielding.  To 

account for concrete cracking beyond this point, the elastic modulus of the concrete, Ec, 

decreases toward a final value equal to 30% of its original value, resulting in a final CFT 

flexural stiffness defined by Eq. (3.5).  The rate of the decrease in Ec is a calibrated 

parameter which is a function of the amount of accumulated plastic work for a given 

element.  This calibration is explained in Chapter 5. 

 A comparison of the initial elastic flexural stiffness predicted by Eq. (3.6) and the 

results of experimental tests may be found in Schiller et al. [1994].  The verification of 

the nonlinear model for CFTs presented in Chapter 5 also confirms the accuracy of Eq. 

(3.6) and better illustrates the effect of decreasing the concrete elastic modulus on overall 

CFT load-deflection behavior.   

 

3.3.3  Torsional Rigidity 

 Rectangular CFTs provide excellent torsional resistance, exhibiting both high 

strength and large ductility [Bridge, 1976; Kitada and Nakai, 1991].  Although this 
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observation has been well established, there has been relatively little experimental 

research conducted to quantify the behavior of rectangular CFTs in torsion.  Kitada and 

Nakai [1991] present the most comprehensive results.  These authors illustrate that, due 

to the composite interaction of the steel and the concrete, the ultimate torsional moment 

of a rectangular CFT is about 1.2 times the summation of the ultimate torsional moments 

of the steel tube and the concrete core.  With regard to torsional stiffness, their tests 

showed that the torsional rigidity of a rectangular CFT subjected to relatively low values 

of torsion (as in this work) may be accurately estimated by assuming only the steel tube 

contributes torsional resistance.  This result is given by the formula: 

 

 ( ) sscft JGJG ⋅=⋅        (3.7) 

 

The rigidity of the CFT remains relatively high for moderate values of torsion due to the 

benefit of the infilled concrete.  The rigidity begins to decline once shear cracking of the 

concrete core initiates.  At the point of maximum torsional resistance of the section, the 

CFT has undergone some nonlinear behavior and the rate of twist is close to the value 

that would be predicted using a secant stiffness equal to the original elastic rigidity of the 

steel alone [Kitada and Nakai, 1991].  Therefore, since nonlinear torsional stiffness is not 

modeled in this work, Eq. (3.7) provides an accurate estimate of a secant stiffness. 

 The equations that were incorporated in this work for the axial, flexural, and 

torsional rigidity of a CFT beam-column are shown in Table 3.1.  Two equations are 

shown for flexural rigidity--the initial rigidity and the rigidity after the elastic modulus of 

the concrete has been reduced to its final value.  
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Table 3.1  Equations for the Elastic Rigidity of CFT Beam-Columns 
 

Elastic Rigidity 
 

Equation(s) Equation Number 

Axial 
 

( ) ccsscft AEAEAE ⋅+⋅=⋅  (3.2) 

Flexural 
 
 

( ) ccsscft IEIEIE ⋅+⋅=⋅  (initial) 

( ) ccsscft IEIEIE ⋅⋅+⋅=⋅ 3.0  (final) 

(3.6) 

(3.5) 

Torsional 
 

( ) sscft JGJG ⋅=⋅  (3.7) 

 

 

 

3.4  Geometric Nonlinear Formulation  

 The second component of element stiffness, the geometric stiffness, models the 

reduction in element stiffness due to the amplification of internal forces resulting from 

external applied loads acting through large displacements.  Geometric nonlinearities may 

include member chord rotation (P-∆ effect) and member curvature (P-δ effect) 

[Galambos, 1988].  The geometric stiffness matrix used in this work is taken from 

Orbison [1982] and is based on the work of Bathe and Bolourchi [1979], Argyris et al. 

[1979], and others (readers are referred to Orbison for the terms of the matrix).  The 

stiffness matrix is formulated based on the principle of minimum potential energy, 

assuming a cubic polynomial variation of the transverse displacements along the element 

length (i.e., cubic Hermetian shape functions).  In addition, small strains and large 

displacements and rotations are assumed.   

 The geometric formulation is based on an updated Lagrangian formulation, in 

which equilibrium is formed on the deformed configuration of the structure [Bathe, 
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1982].  The nodal coordinates of the structure are thus updated at the end of each load 

step based on the incremental displacements.  In the formulation of k g
e , the elements are 

assumed to be straight at the beginning of each load step and prismatic.  Both CFT and 

steel elements are modeled using the same form of the geometric stiffness matrix.   

 The accuracy of the geometric formulation is a function of the number of load 

steps in the analysis and the number of elements per member.  It is possible, nonetheless, 

to obtain excellent accuracy with a reasonable number of load steps and elements.  The 

analysis used in this work is a simple incremental approach, in lieu of equilibrating the 

forces for each load step (i.e., using a Newton-Raphson or similar solution scheme) which 

would require fewer load steps to obtain the same accuracy.  For the tests contained in 

this work, the number of load steps in the analysis was doubled until the accuracy of the 

solution did not noticeably change.  The number of load steps, although important for 

modeling geometric nonlinearities, depended to a greater extent on the requirements of 

the material nonlinear analysis.   

 Based on the geometric nonlinear formulation, each structural member in a frame 

may be accurately modeled using one to three elements [White and Hajjar, 1991].  For 

members subjected to an axial load ratio, P/Pe of less than 0.4, where P
E I

Le = ⋅ ⋅π2

2
, one 

element sufficiently accounts for both P-∆ effects and P-δ effects.  The largest error in 

any term of the geometric stiffness matrix in this case is less than one percent.  For axial 

load ratios beyond this value, however, up to 3 elements may be required to accurately 

model stiffness loss due to member curvature, or P-δ, effects.  Additionally, more than 

one element is necessary if initial imperfections in the beam-column are to be modeled 

explicitly.  The members in this work generally consisted of 1 to 4 beam elements, 

depending upon the structure and loading.  Four elements, rather than three, were used to 

model beam-columns for which the displacement at mid-span was desired.   
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3.5  Material Nonlinear Formulation 

 The two line element formulations outlined in Section 3.2 have different 

approaches to modeling plasticity in a structural element [White and Chen, 1993].  Macro 

finite element analyses typically employ plastic hinge or concentrated plasticity 

formulations, for which it is assumed that plasticity is restricted to zero-length hinges at 

the element ends.  Material nonlinear fiber formulations, often referred to as plastic zone 

or distributed plasticity analyses, account for the spread of plasticity along an element's 

length as well as through the cross-section.  Both types have advantages and 

disadvantages.  The distributed plasticity analysis requires more computational effort but 

provides a more detailed and often more accurate analysis.  The concentrated plasticity 

model, on the other hand, is computationally efficient and easily incorporated into matrix 

based analysis programs.  This type of analysis is especially appealing for unbraced frame 

structures, in which the beam-columns are typically in double curvature and the 

maximum moments are at the element ends.  Additionally, the concentrated plasticity 

analysis need not be confined to an elastic-perfectly plastic analysis, but may model strain 

hardening, concrete crushing, and the gradual plastification of an element end.  This 

method becomes less accurate, however, for members such as columns subjected to high 

axial loads or beams with uniform bending moments, where the plasticity may be 

distributed along much of the member's length.  

 

3.5.1  Concentrated Plasticity Models 

 The concentrated plasticity approach incorporated in this work is the bounding 

surface model, first developed by Dafalias and Popov [1975] to model the stress-strain 

behavior of metals subjected to cyclic loading.  This formulation is summarized briefly 

here; the reader is referred to papers by Dafalias [Dafalias and Popov, 1975, 1976; 
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Dafalias, 1986, 1992] and others [Krieg, 1975; Tseng and Lee, 1983;  Yang et al., 1985; 

McDowell, 1985, 1987; Yoder and McDowell, 1989; Sfakianakis and Fardis, 1991] for in 

depth discussions of the stress space bounding surface model.   

 Figure 3.3 illustrates a schematic representation in principal stress-space of the 

model proposed by Dafalias and Popov.  The model consists of an inner loading surface 

representing the locus of points in two-dimensional stress space at which the initiation of 

yielding begins.  The outer bounding surface represents the stress state at which a limiting 

or bounding stiffness is attained.  The two surfaces generally are of the same shape, but 

have different radii, RLS and RBS.  Three-dimensional stresses may also be represented by 

this model.    
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Figure 3.3  Bounding Surface Model 
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 The material remains elastic for stress points within the loading surface.  When 

the stress point contacts the loading surface--point A in Fig. 3.3--the material undergoes 

inelastic behavior.  The plastic stress response is governed by a number of hardening 

rules which determine subsequent inelastic behavior [Armen, 1978].  As the material is 

stressed inelastically, the surfaces may translate (kinematic hardening), or contract or 

expand (isotropic hardening), to model parameters such as cyclic softening, cyclic 

hardening, and cyclic creep [Dafalias and Popov, 1975].  The degree of plasticity in the 

material is a function of the relative distance between the two surfaces, denoted by δ in 

Fig. 3.3 (i.e., the distance between A and A', a point on the bounding surface whose 

location depends on the particular kinematic hardening approach that is selected 

[McDowell, 1985]).     

 Figure 3.4 schematically illustrates kinematic hardening of the loading surface.  

Figure 3.5 shows a similar schematic representation for isotropic hardening of the loading 

surface.  While Fig. 3.5 illustrates an expansion of the loading surface, isotropic 

hardening may entail a shrinking of the loading surface as well (referred to as isotropic 

softening).  Additionally, the bounding surface may also kinematically and isotropically 

harden.  Once the force point contacts the bounding surface, the stress-strain curve 

increases at a constant slope--the bounding, or limiting slope.  
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Figure 3.4  Kinematic Hardening 

 
σ

ε

σ

σ1

2

fy

Bounding Surface

Expanded Loading

Initial Loading
Surface

Surface

 
 

Figure 3.5  Isotropic Hardening 

 

 The bounding surface model in stress space has since been incorporated in 

different forms by several authors [Krieg, 1975; Tseng and Lee, 1983; Yang et al., 1985; 

McDowell, 1985, 1987; Sfakianakis and Fardis, 1991].  More recently, the stress space 

model was extended to force space by Hilmy and Abel [1985].  The force space model is 

a macroscopic model consisting of surfaces representing resultant stresses (or forces)--



109 

typically axial force and major and minor axis bending moment.  Orbison [1982] 

developed an empirical equation defining the shape of the surfaces for selected steel W-

sections which Hilmy and Abel implemented in their force space bounding surface 

model.  Zhao [1993] later refined and improved Hilmy's force space formulation and used 

it to model the plastification of steel elements.  The model proposed by Zhao has been 

incorporated in this work to model the behavior of steel members.  Additionally, the work 

conducted by Hilmy and Zhao forms the basis for much of the CFT plasticity model 

contained herein.   

 

3.5.2  Introduction to the CFT Plasticity Model 

 The development of a bounding surface model for CFT elements first requires 

equations representing the loading surface and bounding surface in three-dimensional 

force space.  Since element plasticity in the macroscopic model is constrained to zero-

length hinges at the ends of the elements, the force state at an element end may be 

examined irrespective of length, i.e., by examining the CFT cross-section strength.  The 

polynomial equation representing the three-dimensional cross-section strength surface of 

a general CFT member developed in Chapter 2 thus forms the basic mathematical 

expression of the loading and bounding surfaces.  Both surfaces have the same basic 

shape and their respective sizes may be obtained by specifying appropriate surface radii 

(see Chapter 4).  The inner loading surface represents forces which cause the initiation of 

yielding at some point on the element end cross-section.  The outer surface, as in the 

Dafalias and Popov model, represents the force state at which a limiting stiffness of the 

CFT element end is achieved [Hilmy and Abel, 1985; Zhao, 1993] (see Zhao [1993] for 

further description of the bounding stiffness).  The two surfaces harden kinematically and 

isotropically to model the monotonic and cyclic load-deflection characteristics of CFT 
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beam-columns.  The following section demonstrates how the cyclic and monotonic 

behavioral characteristics of CFTs are modeled through isotropic and kinematic 

hardening of the two surfaces.  

 

3.5.3  Modeling of Inelastic CFT Behavior 

 Figure 3.6 illustrates a typical cyclic hysteresis curve for a CFT beam-column 

tested by Sakino and Tomii [1981].  The test setup is shown along with the curve.  The 

loading pattern consists of a constant axial load, P, and a cyclic shear, Q, applied over 

three full cycles at increasing increments of mid-height rotation from 0.5% to 2.5%.   
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Figure 3.6  Cyclic CFT Behavior (after Sakino and Tomii [1981]) 

 

 Figure 3.6 illustrates several key characteristics of cyclic CFT behavior that must 

be modeled by the concentrated plasticity formulation.  The first noticeable characteristic 



111 

of the curve is the decrease in the size of the elastic zone with successive cycles of 

plasticity.  As a CFT specimen is cycled, the concrete crushes, leading to an early loss of 

elastic strength.  The elastic strength loss propagates further as the steel undergoes cycles 

of local buckling (see Section 3.1.2).  Line A-B in Fig. 3.6 represents the elastic zone for 

the first cycle and line A'-B' represents the elastic zone after several cycles of loading.  It 

is clearly evident that this region shrinks as the member undergoes repeated cycles of 

plasticity, but does not vanish completely.  By shrinking the size of the loading surface, 

the decrease in the size of the elastic zone may be modeled.  If the loading surface size is 

decreased with plastic loading, for each successive cycle the force point will have a 

smaller distance to traverse before plasticity reoccurs, thus creating a smaller elastic zone. 

 A second behavioral characteristic that may be observed in Fig. 3.6 is the change 

in maximum strength as the specimen is cycled.  The section initially exhibits an increase 

in capacity due to cyclic strain hardening of the tube, and then the strength begins to 

degrade (e.g., the strength degradation from Qmax to Q'max in the figure) due to concrete 

crushing and local buckling of the steel [Sakino and Tomii, 1981; Sugano et al., 1992].  

The nonlinear model accounts for these effects primarily by first increasing and then 

decreasing the size of the bounding surface, which results in a corresponding change in 

the load at which the bounding stiffness is reached.   

 The concept of a bounding stiffness may be illustrated by examining the last three 

cycles in Fig 3.6.  As the specimen approaches 2.5% rotation in the positive load region, 

the value of shear force levels out, showing only a slight increase with a further increase 

in rotation.  This steady, relatively shallow slope evolves due to the stabilizing effect of 

the steel tube after significant local buckling (see Section 3.1) [Sakino and Tomii, 1981; 

Kawaguchi et al., 1993].  This slope may be thought of as the bounding stiffness.  In the 

plasticity model, once the force point contacts the bounding surface, the force may 
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increase at a relatively small but constant rate based on a calibrated parameter that models 

the observed slope of the experimental curve.   

 A third characteristic of the cyclic behavior of CFT specimens, which is also 

prominent in the cyclic behavior of metals, is the Bauschinger effect.  If the specimen is 

loaded inelastically into the positive quadrant of Fig. 3.6, upon unloading, less force will 

be required to reinitiate plastic behavior in the negative region than would be required if 

the specimen were initially loaded into the negative quadrant from its virgin state.  

Modeling this characteristic is the prime reason for kinematic hardening of the loading 

surface.  The loading surface translates as the specimen is loaded into the positive region.  

Then upon unloading, the force point contacts the loading surface earlier, i.e., at a smaller 

magnitude of force, because the surface has translated.  This is illustrated in Fig 3.4.   

  CFT specimens also exhibit a gradual softening behavior from the initiation of 

plasticity to the point at which they reach the bounding stiffness, as evidenced in each 

cycle of the curve in Fig. 3.6.  Modeling this gradual softening is the chief advantage of 

the bounding surface model.  Once the force point contacts the loading surface at the 

initiation of plasticity, the loading surface is dragged toward the bounding surface.  As the 

loading surface translates, the distance between the surfaces decreases, causing a 

corresponding decrease in the element stiffness.  Chapter 4 describes how this distance 

between the surfaces correlates to a mathematical formulation of the element stiffness.   

 The above characteristics of CFT behavior vary somewhat as the D/t ratio and 

material strengths of the section change, which necessitates variable calibration 

parameters, as will be described in Chapter 5.  With these behavioral characteristics as a 

base, however, the plasticity model is formulated in detail in Chapter 4.   
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Chapter 4 

 

CFT Force-Space Plasticity Formulation 

 
 

 This chapter presents the formulation of the concentrated plasticity model for 

CFTs.  Portions of the formulation are based on the work of Hilmy and Abel [1985] and 

Zhao [1993] for steel members and are briefly summarized.  The CFT plasticity model, 

however, has several unique characteristics, which are the focus of this chapter.  The first 

section of the chapter describes the formulation of the CFT limit surfaces, which are 

based on the cross-section studies of Chapter 2.  Following this section, the plastic 

reduction matrix for the CFT finite element is presented.  The assumptions implicit in the 

derivation of this matrix are outlined, followed by an description of the plastic stiffness 

matrix, the main component of the plastic reduction matrix.  The final two sections of the 

chapter detail the isotropic and kinematic hardening models, elaborating upon the 

introduction presented in Chapter 3 by describing the mathematical formulation of the 

hardening rules. 
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4.1 Definitions and Assumptions of the Bounding Surface 

 Model 

4.1.1  Loading and Bounding Surfaces 

 As described in Section 3.5, the bounding surface model consists of two surfaces, 

an inner loading surface and an outer bounding surface, which both translate and contract 

in force space to model the load-deflection behavior of CFT elements.  The two surfaces 

are each convex and continuous [Drucker, 1951], and are of the same shape but have 

different sizes.  Figure 4.1a illustrates the initial unstressed state of the loading surface 

and bounding surface for a CFT element end in two-dimensional, normalized force space.  

Figure 4.1b then shows an arbitrary configuration of the bounding surface model.  The 

vector { }s  denotes the normalized vector of internal forces at the element end.  This 

vector resides on the loading surface during plastic loading (point F in Fig 4.1b).  The 

normalized centroids of the loading surface and bounding surface are shown as the 

vectors { }LSα  and { }BSα , respectively. 
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Figure 4.1  CFT Bounding Surface Model 
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 The equation for the three-dimensional cross-section strength of a CFT, as derived 

in Chapter 2, may now be rewritten as the equation defining the loading or bounding 

surface.  Using the equation of Table 2.9, the loading surface equation in three-

dimensional normalized force space may be rewritten as a function of the loading surface 

"radius", RLS, and the vector from the normalized centroid of the surface to the 

normalized force point, { } { }LSs α− :   
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  (4.1) 

Equation (4.1) modifies the cross-section strength surface equation developed in Chapter 

2 by multiplying the nominal strengths (Po , M yo, and Mzo) by RLS .  Although this value 

is not a radius per se (i.e., the surface is not circular in shape), it serves as a convenient 

representation of the size of the surface relative to the full cross-section strength surface 

developed in Chapter 2.  With this modification, the normalized force vector with respect 

to the loading surface for an element end in three dimensions becomes: 
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⋅⋅⋅
=     (4.2) 

 

The vector representing the normalized centroid of the loading surface in three 

dimensions, { }LSα , may be written as: 
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⋅⋅+= ϕα   (4.3) 

 

For an element that has not undergone any plastic deformation (i.e., the surfaces have not 

moved), the normalized centroid of the loading surface given by Eq. (4.3) will lie on the 

axial force axis a distance ϕ ⋅ RLS above the moment axis (Fig. 4.1a) to account for the 

asymmetry of the surface (refer to Chapter 2).  Thus, the initial, normalized centroidal 

coordinates of the loading surface, before any plastic deformation has occurred in the 

CFT element, are: 

 

 { } { }T
LSLS R 00⋅= ϕα       (4.4) 

 

 Although Eqs. (4.1) to (4.4) provide a concise representation of the loading 

surface, the ensuing CFT plasticity formulation considers forces in unnormalized force 

space (this simplifies many calculations).  In unnormalized force space, the force point is 

written as: 

 

 { } { }T
zy MMPS =       (4.5) 

 

and the centroid of the loading surface is represented by the vector { }LSA , where: 

 

 { } { }Tmz
LS

my
LSoLS

p
LSLS aaPRaA ⋅⋅+= ϕ     (4.6) 

 

 The unnormalized centroid of the loading surface given by Eq. (4.6) is the 

summation of two vectors:  { } { } { }LSLSLS aA Φ+= , where { }LSa  represents the "backforce" 



117 

vector, and { }LSΦ  represents the centroidal "offset" vector.  These vectors are expressed 

as: 

 

 { } { }Tmz
LS

my
LS

p
LSLS aaaa =       (4.7a) 

 { } { }T
oLSLS PR 00⋅⋅=Φ ϕ       (4.7b) 

 

Previous stress-space and force-space bounding surface models [Dafalias and Popov, 

1975; Hilmy and Abel, 1985; Zhao, 1993] identify the location of the loading and 

bounding surfaces by their respective backforce vector, { }LSa  and { }BSa , which both 

equal the zero vector for a specimen that has not been loaded.  For symmetric surfaces, 

this backforce point coincides with the centroid of the surface, i.e., there is no initial 

centroid offset from the origin.  For asymmetric surfaces, however, the additional offset 

vector, { }Φ , must be added to the backforce to obtain the location of the centroid (Eq. 

(4.6)).   

 In the CFT plasticity formulation to follow, the surface locations are effectively 

identified by the backforce vector.  However, to facilitate a more succinct representation 

of the plasticity equations, the formulation is written in terms of the surface centroids.  

For clarity, the centroidal vectors should nonetheless be thought of as the summation of 

the two vectors--the backforce, { }a , plus an offset, { }Φ , to account for the asymmetry. 

 Similar equations to the loading surface equations given by Eqs. (4.1) through 

(4.7) may be written to describe the bounding surface, { } { }( )BSBS Rsf ,α− .  The equation 

for the bounding surface is identical to Eq. (4.1) except for the radius and the centroidal 

vector.  The bounding surface is represented by a larger radius, RBS, and a normalized 

centroid, { }BSα , given by: 
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The initial value of the normalized bounding surface centroid (Fig. 4.1a) is given by: 

 

 { } { }00BSBS R⋅= ϕα       (4.9) 

 

The unnormalized centroid is expressed as the sum of the bounding surface backforce 

vector and the centroidal offset of the bounding surface: 

 

 { } { } { } { }Tmz
BS

my
BSoBS

p
BSBSBSBS aaPRaaA ⋅⋅+=Φ+= ϕ   (4.10) 

 

where  

 

 { } { }Tmz
BS

my
BS

p
BSBS aaaa =        (4.11a) 

 { } { }T
oBSBS PR 00⋅⋅=Φ ϕ .     (4.11b) 

 

 The values for the surface radii, RLS  and RBS, are parameters that must be 

calibrated.  The discussion in Chapter 5 addresses the calibration of the surface radii and 

specifies the actual values used in this work. 

 

4.1.2  Basic Assumptions 

 When the force point contacts the loading surface, the element end undergoes 

plastic deformation.  Subsequent inelastic behavior is governed by several rules and 

assumptions.  First, the force point must remain on the loading surface whenever plastic 
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loading occurs [Armen, 1978].  This rule is referred to as the consistency condition and 

must be adhered to when the surfaces harden isotropically and kinematically (movement 

of the surfaces is discussed further in Sections 4.4 and 4.5) [Hilmy and Abel, 1985; Zhao, 

1993].   

 Two additional conditions were postulated by Drucker [1951] for stress-space 

plasticity models of work-hardening materials.  They were adopted to force space 

plasticity by Hilmy and Abel [1985] and are retained in this work.  The first condition 

states that, for work-hardening materials, the plastic potential surface is convex [Drucker, 

1951].  This condition is satisfied by Eq. (4.1).  While concrete exhibits strain-softening 

behavior [Bazant, 1982], the load-deflection behavior of CFTs rarely exhibits softening 

behavior except when subjected to extreme cyclic loading [Kawaguchi et al., 1993].  The 

force-space plasticity model is thus treated as "work-hardening" in this research.  Figure 

3.6 indicates the continual hardening behavior exhibited by a typical CFT beam-column.  

 A second condition, the normality condition, states that plastic deformations are 

normal to the plastic potential surface [Hilmy and Abel, 1985; Zhao, 1993], i.e., in the 

direction of the gradient of the surface.  In this work, associated flow is assumed, such 

that the initial yield (loading) surface is taken to be the same as the plastic potential 

surface.  The gradient vector equals the partial derivative of the loading surface, f, with 

respect to the current force point, and is denoted by { }in , where the subscript i denotes the 

hinge at the i-end of the element.  In three-dimensional force space, the gradient for an 

element end is given by: 
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where the zero terms correspond to the shear in the strong and weak axis directions and 

the torsion.  These terms remain zero since the plasticity model considers only axial force 

and bending.  The gradient vector to the loading surface is illustrated in two-dimensional 

force space in Fig. 4.1. 

 For convenience in later calculations, the gradient vector of the entire element 

may be represented by a single matrix by combining the vectors at both ends, i and j, of 

the element: 

 

 [ ] { } { }
{ } { } 








=

j
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n0
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N        (4.13) 

 

The gradient terms in Eq. (4.13) for an elastic element end are zero and therefore do not 

affect the calculation of the plastic reduction matrix.   

 

 

4.2  Derivation of the Plastic Reduction Matrix 

 The stiffness formulation presented in Chapter 3 introduced the plastic reduction 

matrix, k r
e , for a general element.  This section briefly discusses the derivation of this 

matrix.  This formulation is derived from incremental plasticity theory and is based on the 

work of Zhao [1993].  The reader is referred there for a more extensive derivation. 

 In this approach, the relationship between incremental forces and incremental 

displacements may be expressed as: 

 

 { } [ ] [ ]( ) { }dqkkdS e
r

e
T ⋅+=       (4.14) 
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where k T
e  represents the elastic tangent stiffness matrix and is equal to the sum of the 

elastic and geometric stiffness matrices, k ke
e

g
e+ .  The incremental displacement and 

force vectors for end i of an element are given by (see Fig. 3.2): 
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Similar expressions apply to end j of the element.  The complete incremental 

displacement and force vectors for the element are: 

 

 
{ } { } { }{ }
{ } { } { }{ }T

ji

T
ji

dSdSdS

dqdqdq

=

=
      (4.16) 

 

 Several assumptions are incorporated into the derivation of the plastic reduction 

stiffness matrix.  First, it is assumed that the incremental displacements can be 

decomposed into elastic and plastic displacements [Hilmy and Abel, 1985; Zhao, 1993]: 

 

 { } { } { }pe dqdqdq +=       (4.17) 

 

Then, by the normality condition [Drucker, 1951], incremental plastic displacements are 

normal to the loading surface, i.e., in the direction of the gradient to the loading surface.   

 

 { } [ ] { }λdNdqp ⋅=        (4.18) 
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where { } { }T
ji ddd λλλ = and d iλ  represents the magnitude of incremental plastic 

displacement at element end i.  In isotropic stress-space plasticity formulations, this 

parameter may be calibrated directly.  In multi-dimensional force space, however, the 

behavior is orthotropic, and an additional constraint is required [Zhao, 1993].  This 

orthotropic behavior is expressed in the relation between the plastic stiffness matrix and 

the incremental plastic displacements as follows: 

 

 { } [ ] { }p
e
p dqkdS ⋅=*        (4.19) 

 

where k p
e  is referred to as the plastic stiffness matrix.  In this work, it is diagonal but 

not proportional to the identity matrix [Zhao, 1993].  Thus, the incremental force vector, 

{ }*dS , is not parallel to { }pdq , as it would be if the force space behavior were isotropic.  

Zhao then related this vector to the actual incremental force vector, { }dS , by the 

following constraint [Zhao, 1993]: 

 

  [ ] { } [ ] { }dSNdSN TT ⋅=⋅ *       (4.20) 

 

Through the use of this constraint, in the force space formulation the element plastic 

stiffness, k p
e , is calibrated rather than { }λd  (see Section 4.3).   

 The relationships from Eqs. (4.17) to (4.20) may now be used to derive the plastic 

reduction matrix.  Substituting Eqs. (4.18) and (4.19) into Eq. (4.20) results in: 

 

 [ ] { } [ ] [ ] { } [ ] [ ] [ ] { }λdNkNdqkNdSN e
p

T
p

e
p

TT ⋅⋅⋅=⋅⋅=⋅   (4.21) 

 

Solving Eq. (4.21) for the magnitude of the incremental plastic displacement produces: 
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 { } [ ] { }
[ ] [ ] [ ]NkN

dSN
d

e
p

T

T

⋅⋅
⋅=λ       (4.22) 

 

The elastic force-displacement relationship is given by: 

 

 { } [ ] { }e
e
T dqkdS ⋅=        (4.23) 

 

By substituting Eq. (4.17) into Eq. (4.23), the total incremental force vector may also be 

expressed as: 

 

 { } [ ] { } [ ] { }p
e
T

e
T dqkdqkdS ⋅−⋅=      (4.24) 

 

or, substituting Eq. (4.18) into Eq. (4.24): 

 

 { } [ ] { } [ ] [ ] { }λdNkdqkdS e
T

e
T ⋅⋅−⋅=      (4.25) 

 

Using Eqs. (4.22) and (4.25) and rearranging terms, the magnitudes of the incremental 

plastic displacements may be written in terms of the total incremental displacements: 

 

 { } [ ] [ ]
[ ] [ ] [ ]( ) [ ] { }dq

NkkN

kN
d

e
p

e
T

T

e
T

T

⋅
⋅+⋅

⋅=λ     (4.26) 

 

Combining Eqs. (4.25) and (4.26), the incremental force vector may be expressed as: 

 

{ } [ ] { } [ ] [ ] [ ] [ ] [ ]( ) [ ]( ) [ ] [ ]{ } { }dqkNNkkNNkdqkdS e
T

Te
p

e
T

Te
T

e
T ⋅⋅⋅⋅+⋅⋅⋅−+⋅=

−1
 

          (4.27) 
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The bracketed expression represents the plastic reduction matrix as derived by Hilmy and 

Abel [1985] and Zhao [1993]: 

 

 [ ] [ ] [ ] [ ] [ ] [ ]( ) [ ]( ) [ ] [ ]e
T

Te
p

e
T

Te
T

e
r kNNkkNNkk ⋅⋅⋅+⋅⋅⋅−=

−1
 (4.28) 

 

Since the plastic reduction matrix is negative, this stiffness is subtracted from the tangent 

stiffness.  Therefore, increasing its magnitude results in a decrease in the total stiffness.  

For the case when the plastic stiffness matrix is infinite (i.e., no plastic hinges), the plastic 

reduction matrix is zero and the element stiffness is equal to the elastic tangent stiffness, 

k T
e .   

 

 

4.3  Calculation of Plastic Stiffness 

 The plastic stiffness matrix, k p
e , is a diagonal matrix composed of twelve 

independent terms, six at each element end.  Plastic displacements due to shear and 

torsion are neglected in this model.  Therefore, the shear and torsion terms will be 

infinite, resulting in zero plastic displacements for these components.  The diagonal 

matrix for a single element takes the form: 

 

[ ] ( ) ( ) ( ) ( ) ( ) ( )( )
mz

e
pjmy

e
pjp

e
pjmz

e
pimy

e
pip

e
pi

e
p kkkkkkk ∞∞∞∞∞∞= diag  

          (4.29) 

 

 The terms of the plastic stiffness matrix, k p
e , are determined by the bounding 

surface model, and are thus computed based upon the elastic stiffness, the distance 
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between the loading surface and the bounding surfaces for the current load step, δ, the 

initial distance between the surfaces at the first contact of the force point with the loading 

surface, δ in , and calibrated plasticity coefficients, κ1 and κ 2.  The general bounding 

surface formula for a single plastic stiffness term is represented by [Dafalias and Popov, 

1975; Hilmy and Abel, 1985]: 

 

 








−
⋅+⋅=

δδ
δκκ

in
21ep kk       (4.30) 

 

Each plastic stiffness term will take the form of Eq. (4.30) but may contain different 

values of elastic stiffness and calibration coefficients, thus resulting in orthotropic 

plasticity [Hilmy and Abel, 1985].  The elastic stiffnesses in the three force directions are 

calculated as follows: 

 

 ( ) ( )
L

AE
k cft

pe

⋅
=  ( )

( )
L

IE
k cfty

mye

⋅
=  ( ) ( )

L

IE
k cftz

mze

⋅
=  (4.31) 

 

The remaining variables of Eq. (4.30)--the calibrated plasticity coefficients and the 

distances between the surfaces--are detailed in the following two sections.   

 

4.3.1  Plasticity Coefficients 

 The plasticity coefficients, κ1 and κ 2, are calibrated separately in each of the three 

force space directions included in the plasticity model.  The details of the calibration of 

these parameters are presented in Chapter 5.  The parameter κ1 represents the bounding 

slope of the element stiffness (see Section 3.5).  When the force point reaches the 
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bounding surface, the distance between the surfaces, δ, is zero and the plastic stiffness 

reaches its bounding or limiting stiffness, given by: 

 

 k kp
b

e= ⋅κ1         (4.32) 

 

 The parameter κ 2 represents the rate of plastification, i.e., the rate at which the 

element stiffness decreases from the elastic state to the bounding limit.  Figure 4.2 

illustrates the effect of increasing the value of κ 2.  A large value of κ 2 results in a 

relatively slow rate of degradation of stiffness until the force is close to the bounding 

surface, at which point the stiffness decreases rapidly.  A small value of κ 2, on the other 

hand, results in a more gradual plastification.   
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Figure 4.2  Effect of κ 2 on the Rate of Element Plastification 
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4.3.2  Distance Between the Surfaces 

 In this work, the distance between the two surfaces, δ, is computed along a vector 

from the beginning of step force point, denoted by the vector { }S  in Fig. 4.3, which 

resides on the loading surface, to the conjugate force point on the bounding surface, 

denoted by { }'S .  This vector, referred to as the Mroz vector after Mroz [1967], is given 

by: 

 

 { } { } { }SS −= 'υ        (4.33) 

 

where the conjugate force point vector, { }'S , is given by: 

 

 { } { } { }( ) { }BSLS
LS

BS AAS
R

R
S +−⋅='      (4.34) 

 

and where, as discussed in Section 4.1.1, { } { } { }LSLSLS aA Φ+=  (see Fig. 4.3), and 

{ } { } { }BSBSBS aA Φ+= .  (See Dafalias and Popov [1986] for a discussion of alternate 

methods of measuring the distance between surfaces in stress-space formulations for use 

in Eq. (4.30)).   

 The distance between the two surfaces may then be determined by taking the norm 

of the Mroz vector: 

 

 { } { }υυδ ⋅= T        (4.35) 

 

The value of the distance between the two surfaces for the load step at which the loading 

surface is first contacted is denoted as δ in .  This initial distance is updated each time the 

force point moves from an elastic state (i.e., inside the loading surface) to a plastic state 
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(i.e., on the loading surface).  Therefore, if a hinge unloads, δ in  is recalculated upon 

reinitiation of contact between the force point and the loading surface (see Hilmy [1984] 

and Chaboche [1986] for a discussion on proper updating of δ in , e.g., for cases of 

unloading/reloading). 
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Figure 4.3  Distance Between Loading and Bounding Surface 

 

 

 

4.4  Isotropic Hardening 

 The isotropic hardening formulation presented in this work to change the size of 

the loading surface and bounding surface is based upon the accumulated amount of 

plastic work for a given element end.  As plastic work accumulates, the surfaces contract 
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or expand at exponential rates based upon the amount of accumulated plastic work and 

based upon rate parameters that are calibrated to experimental results.   

 

4.4.1  Calculation of Plastic Work 

 The incremental plastic work is computed for each inelastic element end and is 

expressed as the dot product of the incremental force vector and the incremental plastic 

displacement vector for the element end: 

 

 { } { }
ip

T
iip dqdSdW ⋅=        (4.36) 

 

where i denotes the i-end of the element.  The incremental force vector is known for each 

load step and the incremental plastic displacement vector may be calculated as per the 

discussion in Section 4.2.  Expressing Eq. (4.18) in terms of a single element end, the 

incremental plastic displacements are given by: 

 

 { } { } iiip dndq λ⋅=        (4.37) 

 

where the magnitude of incremental plastic displacement at an element end, diλ , may be 

written as: 

 

 
{ } { }

{ } [ ] { }ii

e
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i
T
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⋅⋅
⋅=λ        (4.38) 
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where [ ] ( ) ( ) ( ){ }
mz

e
pimy

e
pip

e
pii

e
p kkkdiagk ∞∞∞= .  The incremental plastic work 

may be calculated using Eqs. (4.36) to (4.38).  The accumulated plastic work is updated 

for each plastic element end by integrating the incremental plastic work: 

  

 ∑∫ ==
final

final
t

ip

t

ipip dWdWW
0

0
      (4.39) 

 

The plastic work is continually updated from the initial onset of plastification and is not 

reset to zero upon unloading.  Therefore, when an element end reloads, the entire 

previous plastic load history of that end is considered in the formulation. 

 Sections having the same material properties and D/t ratio but different 

dimensions (e.g., a 6 6 1
4× ×  section and a 12 12 1

2× ×  section) will produce different 

values of plastic work for the same amount of displacement.  Therefore, since the same 

calibration parameters will be used for both of these sections (see Section 5.2), the 

accumulated work of Eq. (4.39) must be normalized by some value.  In this work, the 

accumulated plastic work for a given element end is normalized by the axial and flexural 

elastic strain energy present in the element at the first initiation of plastic behavior (i.e., at 

the first contact of the force point with the loading surface).  Once this elastic work for an 

element is established, it remains constant for the remainder of the analysis.   

 The axial strain energy for a single element is expressed as: 
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AE
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⋅⋅
= ∫ 22

22

     (4.40) 

 

The axial rigidity, E A⋅ , and the axial load, P, are both constant over the element length 

and therefore the strain energy is simply the integrand multiplied by the element length, 
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as shown in the latter portion of Eq. (4.40).  The strain energy for a single element due to 

bending (shown here for the strong axis moment, M z), is given by: 

 

 ∫ ⋅
⋅⋅
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IE
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2

2
       (4.41) 

 

The flexural rigidity, E I⋅ , is constant along the element length, but the moment is a 

function of the distance along the element and the moments at the i- and j-ends of the 

element.  With a linear relationship between end moments, the strain energy integral 

becomes:   
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          (4.42) 

 

Integrating Eq. (4.42) produces the expression for major axis bending strain energy: 
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  (4.43) 

 

A similar expression may be written for the bending moment in the minor axis direction.  

The summation of the three strain energy terms produces the elastic strain energy for the 

element (note that the strain energy due to shear and torsion is neglected): 

 

 U U U UT p my mz= + +       (4.44) 
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The accumulated plastic work for an element end is then normalized by the elastic strain 

energy to produce a normalized value of plastic work, Ωp , which now allows the same 

calibration parameters to be used regardless of material strength and section geometry: 

 

 Ωp
p

T

W

U
=         (4.45) 

 

 

4.4.2  Isotropic Hardening of the Loading and Bounding Surfaces 

 The size of the loading surface and bounding surface, represented by their 

respective radii, RLS  and RBS, are updated based upon the total amount of normalized 

plastic work represented by Eq. (4.45).  The surface radii are also functions of the initial 

and final values of the respective surfaces, and the isotropic hardening parameters, ξ LS 

and ξBS.  The initial and final values of the surfaces and the isotropic hardening 

parameters are all obtained based on a calibration to experimental results (see Chapter 5).   

 The equation defining the updated loading surface size may be represented by (see 

Ricles and Popov [1994] for a related formula for isotropic hardening of steel members): 

 

 ( ) ( ) ( ) ( )[ ] pLSeRRRR initLSfinalLSfinalLSnewLS
Ω⋅−⋅−−= ξ   (4.46) 

 

When the normalized plastic work, Ωp , is zero, the exponent term equals one and the 

loading surface equals the initial size, ( )initLSR .  As Ωp  becomes increasingly larger, the 

surface size asymptotically approaches the final size, ( ) finalLSR , at a rate dependent upon 

ξ LS.   
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 Based upon the new radius, the magnitude of incremental loading surface 

translation due to isotropic hardening is expressed as the ratio of the incremental change 

in the loading surface size to the old loading surface size: 

 

 ( )
( ) ( )

( )oldLS

newLSoldLS

oldLS

LS
LS R

RR

R

dR −
==η     (4.47) 

 

The loading surface centroid moves in the direction of the vector from the centroid, 

{ }LSA , to the force point, { }S , by an amount, ηLS:   

 

 { } { } { }( )LSLSisoLS ASdA −⋅=η      (4.48) 

 

This formulation contracts the loading surface directly about the force point, not the 

surface centroid.  By doing this, the consistency condition (see Section 4.1) is not 

violated, i.e., the force point remains on the surface [Zhao, 1993].  Figure 4.4 illustrates 

the contraction of the two surfaces. 

 The bounding surface initially hardens isotropically (i.e., increases in size), and 

then, at a calibrated value of normalized plastic work, ( )
intmpΩ , the bounding surface 

isotropically softens in the same manner as the loading surface (see Section 3.5.3).  For 

values of normalized plastic work less than ( )
intmpΩ , the bounding surface size increases 

by the formula: 

 

 ( ) ( ) ( ) ( )[ ] pΩ⋅−⋅−−= BSeRRRR initBSintmBSintmBSnewBS
ξ   (4.49) 
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where ( ) ntmiBSR  denotes the intermediate, or maximum size of the bounding surface.  

Once the intermediate plastic work value, ( )
intmpΩ , is attained, the bounding surface 

decreases according to the following formula: 

 

 ( ) ( ) ( ) ( )[ ] ( )[ ]
mpp intBS1.1RRRR intmBSfinalBSfinalBSnewBS

Ω−Ω⋅−⋅−−= ξ
 (4.50) 

 

To avoid a discontinuity in the formulation for the bounding surface size, the value of 

( ) ntmiBSR  in Eq. (4.50) is updated to the actual bounding surface size at ( )
intmpΩ  (the 

original intermediate size, ( ) ntmiBSR , is only asymptotically approached in Eq. (4.49) and 

will not be reached).  A second characteristic of Eq. (4.50) to note is the base of the 

exponential, which is set to 1.1 rather than e.  The latter value results in an undesirably 

rapid decrease in the size of the loading surface, whereas the value of 1.1 provides the 

more moderate decrease necessary to model actual CFT behavior (see Chapter 5). 
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Figure 4.4  Isotropic Hardening of Loading and Bounding Surfaces 
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 At no time during the analysis does the loading surface radius size exceed the size 

of the bounding surface.  If this occurred, the surfaces would overlap, thus violating the 

bounding principle [Dafalias and Popov, 1975].  To ensure that overlap does not occur, 

the initial and final sizes of the bounding surface must be larger than the respective sizes 

of the loading surface, and the loading surface should generally contract at a faster rate 

(the calibrated parameters given in Chapter 5 adhere to this constraint).  If experimental 

results demand a faster bounding surface contraction, then the user must ensure that the 

bounding surface size does not decrease below the loading surface size.   

 The incremental movement of the bounding surface due to isotropic hardening is 

given by: 

 

 ( )
( ) ( )

( )oldBS

newBSoldBS

oldBS

BS
BS R

RR

R

dR −
==η     (4.51) 

 

The bounding surface contracts by moving the centroid of the bounding surface in the 

direction of the vector pointing from the centroid to the force point, { }S  (Fig. 4.4): 

  

 { } { } { }( )BSBSisoBS ASdA −⋅=η      (4.52) 

 

 If the force point (and thus the loading surface) ever contact the bounding surface, 

the isotropic hardening formulation remains the same as shown in Eqs. (4.46) to (4.52).  

Additionally, when the bounding surface increases in size (i.e., ( ) ( )oldBSnewBS RR > ), Eq. 

(4.51) produces a negative value of ηBS.  In this case, the formulation in Eq. (4.52) moves 

the centroid away from the force point.  When the bounding surface decreases in size, the 

centroid moves toward the force point as shown in Fig. 4.4. 
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4.5  Variation of κκκκ2 and Ec   

 As will be shown in Chapter 5, the values of the κ 2 parameters must increase as 

plastic work accumulates in order to simulate experimental results for cyclically loaded 

CFT specimens.  This is especially true for CFT sections with low D/t ratios, as will be 

discussed in Chapter 5.   

 Alternately, the concrete elastic modulus, Ec , must decrease during plastic 

loading to simulate the degrading behavior of CFT beam-columns as the concrete cracks 

in tension and crushes in compression (Section 3.3.2).  Beginning with the initial contact 

between the force point and the loading surface, Ec  decreases to a final value equal to 

0 3. ⋅ Ec  as discussed in Section 3.3.2.    

 The rate at which both parameters change from their initial value to their final 

value is based upon the same plastic work-based exponential equation used for isotropic 

hardening (e.g., Eq. (4.40)), but with different exponential rates.  The updated value of κ 2 

for each step is given by: 

 

 ( ) ( ) ( ) ( )[ ] p2einit2final2final2new2
Ω⋅−⋅−−= κξκκκκ     (4.53) 

 

where ξκ2 denotes the calibrated rate of change in κ 2.   

 For the concrete elastic modulus, Ec , the increase is given by a similar equation.  

Using the initial and final values given in Section 3.3.2: 

 

 ( ) [ ] pEceEE3.0E3.0E cccnewc
Ω⋅−⋅−⋅−⋅= ξ     (4.54) 

 

where  ξEc denotes the calibrated rate of change in Ec . 
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4.6  Kinematic Hardening 

 In the bounding surface formulation presented in this work, the loading surface 

and bounding surface are isotropically hardened first, and then the surfaces are hardened 

kinematically.  In this way, when the surfaces translate, it is with respect to the surface 

radii and the centroid location after isotropic hardening, and the consistency condition 

(which must also be enforced in the kinematic hardening formulation) is not violated.  

Consequently, the two hardening methods are essentially decoupled (this approach was 

first proposed by Zhao [1993] after determination that satisfying the consistency 

condition during simultaneous isotropic and kinematic hardening is quite complex in 

orthotropic force space).   

 The formulation for the kinematic hardening of the loading and bounding surfaces 

requires both a magnitude and a direction of translation.  Both the loading surface and the 

bounding surface are assumed to move in the same direction in this work, but the 

magnitude of their respective movement differs.  Only when the loading surface contacts 

the bounding surface do the two surfaces move at the same rate. 

 The direction of kinematic hardening may be specified by a number of different 

methods [Dafalias and Popov, 1975; Armen, 1978; McDowell, 1985; Hilmy and Abel, 

1985].  One of the first methods was proposed by Prager [1956] for stress-space models.  

In Prager's method, the loading surface translates in the direction of the normal to the 

surface at the stress point.  Ziegler [1959] modified Prager's hardening rule by specifying 

that the loading surface move in the direction of the vector from the centroid of the 

surface to the force point.  These methods were used primarily with single surface 

models.  In 1967, Mroz [1967], proposed finding the conjugate point on the bounding 

surface and translating the loading surface in the direction of a vector pointing from the 

force point to the conjugate bounding surface point.  Recall that the distance between the 
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loading surface and the bounding surface (Section 4.3.2) was calculated along this vector.  

Additionally, Zhao [1993] used the Mroz kinematic hardening rule in his bounding 

surface model for steel elements.  The Mroz direction of surface movement is retained for 

the steel elements contained in this work (see Zhao [1993] for further details on this 

method).   

 Tseng and Lee [1983] provided an alternative translation direction which has been 

shown to produce superior results for stress-space plasticity of both metals [McDowell, 

1985] and concrete [Fardis et al., 1983].  Based on observations of the experimental 

results of Phillips [Phillips and Weng, 1975; Phillips and Lee, 1979], Tseng postulated 

that the loading surfaces generally translate kinematically in the direction of the 

incremental stress vector.  For CFT elements, the Tseng rule of kinematic hardening is 

adopted to three-dimensional force-space in this work [Tseng and Lee, 1983]. 

 The Tseng method is illustrated schematically in Fig. 4.5.  The surfaces 

kinematically harden in a direction that is obtained as follows.  The incremental force 

vector, { }dS , is extended to the bounding surface.  The intersection of the extended 

incremental force vector and the bounding surface is represented by point F' in Fig. 4.5.  

The conjugate point on the loading surface is then located--point F in Fig. 4.5.  The vector 

from point F to point F' denotes the Tseng direction, { }ϑ , the direction in which the 

surfaces kinematically translate.  One feature of this formulation is that this direction of 

motion is optimal for insuring that the loading surface never overlaps the bounding 

surface (presuming both are of the same shape). 

 Algebraically, the formulation for the Tseng kinematic hardening direction is 

represented in force-space by the following equations for spherical loading surfaces 

[Tseng and Lee, 1983].  First, the distance between the beginning of step force point and 

the point F' on the bounding surface is computed using the law of cosines: 
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where { }  represents the magnitude of the vector { }.  The unit vector, { }τ , denotes the 

direction from the centroid of the bounding surface to point F', as shown in Fig. 4.5, and 

is given by: 
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Figure 4.5  Kinematic Hardening by the Tseng Method 
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Finally, the Tseng direction unit vector, { }ϑ , the vector denoting the direction of 

kinematic hardening, is illustrated in Fig. 4.5 and is given by: 

 

 { } ( ) { } { } { }( )
( ) { } { } { }( )BSLSLSBS

BSLSLSBS

AARR

AARR

−−⋅−
−−⋅−=

τ
τϑ     (4.57) 

 

 In the above formulation, the radii of the loading and bounding surfaces are used 

in the equations.  Because the CFT surfaces are not spherical like the surfaces in the 

model for which Tseng originally proposed these equations (isotropic metal plasticity), 

the use of radii does not give appropriate results in Eqs. (4.55) to (4.57).  Therefore, in 

this work, a different approach is used to obtain the Tseng vector, { }ϑ .   

 In the computer implementation, the radii of the surfaces need not be used and the 

calculations may be performed in unnormalized force space.  The first step in this 

formulation entails locating the intersection of the incremental force vector extension 

with the bounding surface.  Successive increments are added to the incremental force 

vector until the total vector length intersects the bounding surface.  The increment that 

crosses the bounding surface is then bisected to locate the point of intersection within a 

tolerance.  Given the intersection point, denoted now in vector notation, { }'F , the Tseng 

vector may be calculated as the vector from the conjugate point on the loading surface, 

{ }F , to the bounding surface intersection point, { }'F : 

 

 { } { } { }FF −= 'ϑ        (4.58) 

 

where the conjugate point on the loading surface, { }F , is given by: 
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The ratio of the surface sizes, 
R

R
LS

BS

, is applicable regardless of the shape of the surfaces 

(i.e., Eq. (4.59) holds for the non-spherical CFT surfaces as well as spherical surfaces). 

 The amount of kinematic hardening that the loading surface undergoes is a 

function of the loading surface gradient, the incremental force vector, and the Tseng 

direction vector, { }ϑ , and is obtained by satisfying the consistency condition [Zhao, 

1993]: 

 

 { } { } { }
{ } { } { }ϑ

ϑ
⋅

⋅
⋅=

T

T

kinLS
n

dSn
dA       (4.60) 

 

The bounding surface moves in the same direction, { }ϑ , as the loading surface, but by a 

smaller amount, which is a function of the amount of kinematic hardening the loading 

surface undergoes and the terms of the plastic stiffness matrix (see Section 4.3 for their 

derivation).  The incremental bounding surface movement due to kinematic hardening is 

given by [Zhao, 1993]: 

 

 { } [ ] { }kinLSkinBS dAdA ⋅Λ=       (4.61) 

 

where the magnitude of translation is given by: 
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The kp
b terms represent the bounding stiffness terms and are calculated by Eq. (4.32) as 

presented in Section 4.3.1.  The plastic stiffness terms will always be greater than or 
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equal to these values, producing terms in Λ  that are less than one.  Therefore, the 

bounding surface will move at a slower rate than the loading surface, and, with continued 

loading in one direction, the loading surface will eventually contact the bounding surface.  

At the point of contact, kp will equal kp
b and the two surfaces translate at the same rate. 

 Once contact occurs, the surfaces move together in the direction of the normal to 

the loading surface (this equation results from equating { }ϑ  to { }n  in Eq. (4.60)): 

 

 { } { } { } { }
{ }

{ }n
n

dSn
dAdA

T

T

kinBSkinLS ⋅⋅==     (4.63) 

 

For plastic displacements beyond the contact point, the plastic stiffness remains equal to 

the bounding stiffness, k p
b . 

 The isotropic and kinematic hardening may be summarized in a single expression 

representing the total movement of the surface centroids.  For the loading surface: 

 

 { } { } { }kinLSisoLSLS dAdAdA +=      (4.64) 

 

Similarly, for the bounding surface: 

 

 { } { } { }kinBSisoBSBS dAdAdA +=      (4.65) 

 

 To reiterate, the surfaces are referenced by the backforce vectors, { }LSa  and 

{ }BSa , corrected by the offset vectors, { }LSΦ  and { }BSΦ , to account for the asymmetry of 

the surfaces (see Section 4.1.1).  Equations (4.64) and (4.65) also presume that isotropic 

hardening is performed first, followed by kinematic hardening, which is based upon the 

updated radii and surface centroids. 
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 Following isotropic and kinematic hardening, force point drift control is 

performed to fulfill the consistency condition [Hilmy et al., 1987].  Using a bisection 

algorithm, the force point is returned to the loading surface (within a specified tolerance) 

in the direction of the normal to the loading surface.  Using a sufficiently small load step 

size, the force point never drifts far from the loading surface.  This is, however, an 

essential attribute of the plasticity formulation analysis, since the assumptions contained 

within it require the consistency condition to be maintained. 
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Chapter 5 

 

Verification and Calibration 

 
 

 Verification of the fully-nonlinear frame analysis program developed in this 

research will be presented in three sections.  Further details of this program, CFTmacro, 

are outlined in Appendix B and C.  The steel plasticity formulation will be verified first.  

The steel formulation, based on the work of Zhao [1993], uses his calibrated parameters, 

and the examples will be compared to his results.  Additionally, these examples verify the 

geometric nonlinear formulation and general analysis system.  The inelastic analysis of 

CFT beam-columns will then be calibrated and verified.  The CFT examples include both 

monotonic and cyclic studies.  A select group of CFT beam-column sections with varying 

material strength, D/t ratio, and method of applied loading will first be examined.  The 

CFT plasticity model is calibrated to these tests, and the procedure and results are 

documented.  Additional monotonic examples are then presented to verify the model and 

the calibration parameters.  The final study consists of a comparison of the analytical 

results to experimental data for a cyclically-loaded three-dimensional subassembly 

consisting of steel I-girders framing from four sides into a CFT beam-column.    
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5.1  Verification of the Steel Plasticity Analysis 

 The main application of the program contained in this work is the analysis of one-

way or two-way unbraced steel or composite frames.  This section examines the accuracy 

of the program in modeling the material nonlinear behavior of steel beam-column 

elements required for such frame studies.  In addition, the results presented in this section 

serve to verify the accuracy of the geometric nonlinear formulation (which is the same for 

the CFT beam-column element).  The steel plasticity formulation is based on the work of 

Zhao [1993].  The two examples presented in this section were presented by Zhao [1993] 

and use the calibration parameters that he recommended in his work.   

 

5.1.1  Steel Cantilever Beam 

 The first steel example consists of a W8×31 cantilever subjected to axial load, 

major axis bending, and minor axis bending, each load applied separately (Fig. 5.1).  This 

example served as a calibration study for Zhao [1993].  Only kinematic hardening was 

performed; the surfaces were not isotropically hardened.  The parameters used in Zhao's 

work are retained for the analyses performed here and are as follows: 

RLS = 0.5 RBS = 1.0 κ1 = 0.001 κ 2
p  = 8.0 κ 2

my  = 5.0 κ 2
mz  = 11.0 
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Figure 5.1  Cantilever Beam 
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 The program results shown in the Figs. 5.2 through 5.4 were obtained using four 

elements along the member length, as per Zhao [1993].  The first load case, the results of 

which are shown in Figure 5.2, consists of an axial load applied to the end of the member.  

The beam-column is restrained in the minor axis direction, forcing buckling to occur in 

the major axis plane of the member.  Figures 5.3 and 5.4 illustrate a comparison of the 

results of CFTmacro to Zhao's proposed model for major and minor axis bending of the 

beam-column.  In these cases, only the transverse load, V, is applied.  All results match 

Zhao's. 
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Figure 5.2  Steel Cantilever:  Axial Load vs. Displacement 
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Figure 5.3  Steel Cantilever:  Major Axis Moment vs. Rotation 
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Figure 5.4  Steel Cantilever:  Minor Axis Moment vs. Rotation 
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5.1.2  Steel Beam-Column 

 The second steel plasticity verification problem examines an axially-loaded beam-

column with varying end conditions [Zhao, 1993].  For each end condition (pinned-

pinned, pinned-fixed, and fixed-fixed) the beam-column is alternately loaded in major 

axis bending and minor axis bending.  A W8×31 with an initial imperfection of L/1000 is 

used for the beam-column (Fig. 5.5).  Isotropic hardening is not included; the beam-

column is divided into four elements; and the surface radii and plasticity parameters, κ1 

and κ2, used in Example 5.1.1 are used in this example as well [Zhao, 1993].  
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Figure 5.5  Beam-Column 

 

 Figures 5.6 and 5.7 illustrate the excellent correlation between the program results 

and Zhao's results for major axis and minor axis bending, respectively.  Zhao, in turn, 

demonstrated that his proposed model provides sufficient accuracy when compared to a 

more detailed finite element analysis [Zhao, 1993]. 
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Figure 5.6  Steel Beam-Column:  Major Axis Bending 
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Figure 5.7  Steel Beam-Column:  Minor Axis Bending 
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5.2  CFT Plasticity Analysis Calibration 

 The calibration of the CFT plasticity model was performed by comparing the 

analytical results of CFTmacro with several different experimental studies of individual 

CFT beam-columns.  The experimental calibration studies were selected to provide the 

widest range of test variables (e.g., material strength, D/t ratio, and the method of applied 

loading).  Section 5.2.1 reviews the plasticity parameters that require calibration and 

itemizes the CFT tests that were used in the procedure.  Section 5.2.2 discusses the 

procedure of selecting the parameter values and presents the final calibration values.  

  

5.2.1  Calibration Parameters and Tests 

 The calibration parameters that were introduced in Chapter 4 are summarized in 

Table 5.1.  Each parameter is listed along with its corresponding symbol. 
 

Table 5.1  List of Calibration Parameters 
 

 Parameter 
 

Symbol 

 Initial Loading Surface Radius ( )initLSR  

 Final Loading Surface Radius ( ) finalLSR  

 Isotropic Hardening Rate of L.S. ξ LS 
 Initial Bounding Surface Radius ( )initBSR  

 Intermediate Bounding Surface Radius ( )intmBSR  

 Final Bounding Surface Radius ( ) finalBSR  

 Isotropic Hardening Rate of B.S. ξ LS 
 Normalized Plastic Work at ( )intmBSR  ( )

intmpΩ  

 κ1 Parameters κ1
p , κ1

my , κ1
mz   

 Initial κ2 Parameters ( )init
p
2κ , ( )init

my
2κ , ( )init

mz
2κ  

 Final κ2 Parameters ( ) final
p
2κ , ( ) final

my
2κ , ( ) final

mz
2κ  

 Rate of κ2 Increase ξκ2  
 Rate of Ec Decrease ξEc 
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 For the calibration to CFT experimental tests, it was desired to obtain a wide 

range of beam-column test sections.  Appendix A tabulates papers containing 

experimental test results for rectangular CFTs.  Tables A.2 and A.3, respectively, list 

monotonic and cyclic CFT papers and the number of tests for each paper; each table is 

categorized by concrete strength, f c
' , and D/t ratio.  The tests that were used for the 

calibration of the CFT element model are listed in Table 5.2 along with their salient 

geometric and material parameters.  The group of tests includes 3 cyclic tests and 8 

monotonic tests, 4 of which were loaded proportionally (including 3 uniaxial and 1 

biaxial test), and 4 of which were loaded non-proportionally (i.e., a constant axial load is 

applied, followed by a gradual increase in the applied bending load).  The 3 cyclic tests 

were all loaded non-proportionally.  The figure reference given in column 2 of Table 5.2 

refers to the appropriate figure, Fig. 5.8, 5.9, or 5.10, illustrating the type of test.  These 

figures show the schematic representation of the analytical structural model and the 

applied loading for the three basic types of experimental tests used in the calibration.  

Four elements per member were used for the tests represented by Figs. 5.8 and 5.9.  For 

CFT members represented by Fig. 5.10, two elements per member were used in the 

analytical model.  For rectangular beam-columns, the L/D and D/t ratios are tabulated for 

both the major and minor axis directions.  The first number denotes the D/t or L/D value 

with respect to the dimension in the plane of the applied eccentric load and the second 

number, in parentheses, denotes the out-of-plane value.  Additionally, tubes that were 

annealed to remove residual stresses are noted in the table. 

 The sections in Table 5.2 represent the widest range of parameters currently 

available in the CFT literature [Gourley and Hajjar, 1993].  As mentioned in Chapter 1, 

the applicability of the calibration parameters presented in this work is therefore 

necessarily limited in scope to the range given by the sections in Table 5.2.  
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Table 5.2  CFT Calibration Tests 
 

Test 
(Notation) 

 

Type of Test* 
(Figure) 

Dimen-
sions 
(in.) 

L/D D/t f'c 

(ksi) 
fy 

(ksi) 
Other 

Data** 

Bridge, 1976 
(Br3) 

 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

8.0 ×
8.0 ×
0.395 

10.5 20.0 5.0 45.4 e = 1.5 in. 
α = 30° 

Cederwall et 
al., 1990 
(Ced2) 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

4.7 ×
4.7 ×
0.20 

25.0 24.0 6.7 63.5 e = 0.79 in 

Cederwall et 
al., 1990 
(Ced9) 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

4.7 ×
4.7 ×
0.32 

25.0 15.0 14.9 55.0 e = 0.79 in 

Shakir-Khalil, 
1991 

(SK91_4) 

Ecc. Load, Pr 
Monotonic 
(Fig 5.8) 

5.9 ×
3.9 ×
0.20 

25.5 
(38.3) 

30.0 
(20.0) 

5.8 50.8 e = 1.77 in 

Tomii and 
Sakino, 1979a 

(Tom24_3) 

Bm-Col, NPr 
Monotonic 
(Fig 5.9) 

3.9 ×
3.9 ×
0.17 

3.0 24.0 3.2 41.5 P/Po = 
0.29 

annealed 
Tomii and 

Sakino, 1979a 
(Tom24_6) 

Bm-Col, NPr 
Monotonic 
(Fig 5.9) 

3.9 ×
3.9 ×
0.17 

3.0 24.0 3.4 41.5 P/Po = 
0.57 

annealed 
Tomii and 

Sakino, 1979a 
(Tom44_3) 

Bm-Col, NPr 
Monotonic 
(Fig 5.9) 

3.9 ×
3.9 ×
0.087 

3.0 44.0 3.75 49.2 P/Po = 
0.26 

annealed 
Tomii and 

Sakino, 1979a 
(Tom44_6) 

Bm-Col, NPr, 
Monotonic 
(Fig 5.9) 

3.9 ×
3.9 ×
0.087 

3.0 44.0 3.75 42.0 P/Po = 
0.57 

annealed 

Sakino and 
Tomii, 1981 
(Sak24_2) 

Cyclic Shear, 
NPr 

(Fig 5.10) 

3.9 ×
3.9 ×
0.164 

6.0 24.0 3.5 42.7 P/Po = 
0.20 

annealed 
Sakino and 
Tomii, 1981 
(Sak34_3) 

Cyclic Shear, 
NPr 

(Fig. 5.10) 

3.9 ×
3.9 ×
0.116 

6.0 34.0 4.0 42.7 P/Po =  
0.30 

annealed 
Sakino and 
Tomii, 1981 
(Sak46_5) 

Cyclic Shear, 
NPr 

(Fig 5.10) 

3.9 ×
3.9 ×
0.086 

6.0 46.0 4.0 42.7 P/Po = 
0.50 

annealed 

* Pr denotes proportional loading; NPr denotes non-proportional loading 
** e denotes the applied load eccentricity; α denotes angle of applied load relative to 
centroidal axis of cross-section for biaxially-loaded specimens 
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Figure 5.8  Eccentrically-Loaded Beam-Column 
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Figure 5.9  Axially-Loaded Beam in Bending 
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Figure 5.10  Cyclically-Loaded Shear Specimen 

 

 

5.2.2  Calibration Procedure and Results 

Initial Loading Surface Size 

 The initial size of the loading surface was the first parameter to be calibrated.  

Recall that the initial loading surface represents the locus of force points at which 

inelastic behavior begins.  To simplify the plasticity formulation and insure that the 

surfaces do not overlap, the loading surface is a scaled version of the surface representing 

the CFT section's cross-section strength (see Section 4.1.1).  The initial yield surface of 

an actual CFT, however, takes a different shape, as illustrated in Fig. 5.11 (only the 
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positive force quadrant in two dimensions is shown).  The initial loading surface, LS1, 

represents one possible locus of force points at which steel yielding or concrete crushing 

initiates.  This surface, LS1, was obtained using a radius, RLS , equal to the ratio to the 

yield moment of the steel tube to the nominal moment of the CFT, M Myld o .  For pure 

bending, the actual initial yield condition is represented well by this loading surface.  For 

mid-range values of axial load, however, the loading surface overshoots the initial yield 

surface, predicting higher forces than are actually required to cause plasticity.  

Additionally, for higher D t ratios or higher f fc y
'  ratios (Fig 5.11 illustrates a section 

with D t = 20.0 and f fc y
'  = 0.1), the bulge in the loading surface is even more 

conspicuous (see Figs. 2.25 through 2.32 in Section 2.6), while the initial yield surface 

remains almost linear, since only the steel dictates the initial yield for nearly all cross-

sections.  Since the objective of the CFT study in this work focuses on beam-columns 

existing in frame structures, these observations suggest that, for the mid-range axial load 

values typical in frame applications, the loading surface should be further scaled back 

from M Myld o  based upon the D t ratio and the f fc y
'  ratios of the section.  The loading 

surface labeled LS2 in Fig. 5.11 illustrates this result.  

 Based on the above discussion, the initial loading surface radius was calibrated by 

optimizing the loading surface size for each of the tests of Table 5.2 and then developing 

a linear relation between the ratio of the radius and the relative axial capacity of the 

concrete to the axial capacity of the entire section, represented by ( )sococo PPP + .  This 

term implicitly accounts for both the D/t ratio and the f fc y
'  ratio.  The calibrated 

equation for the initial radius of the loading surface is expressed as:   

 

 ( )
soco

co

o

yld

initLS PP

P

M

M
R

+
⋅−= 30.0      (5.1) 
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where Mo is calculated by Eqs. (2.27) and (2.28) in Section 2.6.7 and M f Syld y= ⋅ , where 

S is the section modulus of the steel tube in the plane of bending.  The axial compression 

capacity of the steel and concrete, respectively, are P A fso s y= ⋅  and P A fco c c= ⋅ ' .  For 

CFT sections with a low D/t and a low f fc y
'  ratio (e.g., Tom24_3), the steel will 

dominate the section behavior and a loading surface scaled to M Myld o  will be accurate.  

In this case, Eq. (5.1) produces a value very near M Myld o .  As the D/t ratio and the 

f fc y
'  ratio increase, a larger value is subtracted from M Myld o , effectively moving the 

bulge in the surface for mid-range axial force closer to the actual initial yield surface. 
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Figure 5.11  Initial Loading Surface Size and Shape 

 

Initial Value of κκκκ2  

 The initial values of the κ2 coefficients were calibrated based on the relative 

strengths of the concrete and steel, thus accounting implicitly for both the D/t ratio and 
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the f fc y
'  ratio.  Using a methodology similar to that used to obtain Eq. (5.1), the initial 

axial κ2  coefficient value is given as: 

 

 ( )
so

co
init

p

P

P
=2κ         (5.2) 

 

The κ2 coefficient values for the moment terms are equal to half of the axial value:  

 

 ( ) ( ) ( )
0.2

2
22

init
p

init
mz

init
my κ

κκ ==       (5.3) 

 

Initial Bounding Surface Size 

 After specifying an initial loading surface radius and κ2 coefficients, the initial 

bounding surface size was calibrated using primarily the monotonic test results.  The 

bounding surface was set to an initial value of 1.0 to represent the cross-section strength 

of a CFT; this value proves quite accurate for the tests of Table 5.2.   

Value of κκκκ1  

 A value of κ1 (the bounding slope of the load-deflection curve) equal to 0.0010 

produces accurate results.  The non-zero value of the bounding slope results from the 

continued strength gain observed in CFTs due to gradual strain hardening of the steel tube 

[Sakino and Tomii, 1981].  A constant value of κ1 accurately portrays the observed 

bounding slope of CFT specimens.  This slope does not vary substantially with continued 

loading since strain hardening of the steel tube occurs gradually over the cross-section. 
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Final Loading Surface Size 

 Having established the initial calibration values, the cyclic tests were used to 

calibrate the remaining parameters.  Cyclic tests indicate that the radius of the loading 

surface and the corresponding size of the elastic zone decrease to a very small value due 

to extensive concrete crushing and steel local buckling (however, as discussed in Section 

3.5.2, the elastic zone rarely vanishes completely).  For the plasticity model a minimum, 

or final radius, ( ) finalLSR , of 0.10 was thus established.  The isotropic softening rate, ξ LS, 

was calibrated to be 1.0×101.  For the cyclic tests in Table 5.2, this rate shrinks the 

loading surface to its final size several cycles before the completion of the test. 

Final Value of κκκκ2  

 In conjunction with a decrease in the loading surface size, the κ2 coefficients 

simultaneously change from their initial to final values.  A calibrated rate of 

ξκ2
13 0 10= ×.  provides the best results.  The final κ2 values are a function of the initial κ2 

values and may be larger or smaller than this initial value depending upon the section 

properties.  The linear relationship between initial and final values is expressed by the 

following calibrated equations: 

 

 
( ) ( )
( ) ( ) 0.2

5.40.5

22

22

final
p

final
m

init
p

final
p

κκ

κκ

=

⋅−=
      (5.4) 

  

For sections with a low D/t ratio or a low f fc y
'  ratio, and therefore a low value of ( )init2κ  

(see Eqs. (5.2) and (5.3)), κ2 will increase.  This simulates experimental CFT load-

deflection behavior which, despite the decrease in the size of the elastic zone, exhibits 

relatively little strength degradation, due to strain hardening and confinement of the 

concrete [Sakino and Tomii, 1981].  Reexamining Fig. 4.2 in Section 4.3.1 illustrates that 
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a higher value of κ2 results in less strength degradation for low to moderate magnitudes of 

displacement.   

 If the CFT section has a higher D/t ratio or lower steel strength, less strain 

hardening and concrete confinement will occur and the section will exhibit a more severe 

degradation.  In this case, κ2 will decrease with continued plasticity, resulting in a lower 

strength for low to moderate magnitudes of displacement (refer again to Fig. 4.2).  

Intermediate and Final Bounding Surface Sizes 

 As discussed in Section 4.4.2, the bounding surface first increases to model cyclic 

strain hardening and then decreases at a calibrated value of plastic work to model 

concrete crushing and steel local buckling.  Therefore, initial, intermediate, and final 

bounding surface sizes are required, as well as an isotropic hardening rate and a value of 

normalized plastic work at which the bounding surface begins to decrease.  The same rate 

of isotropic hardening, ξBS = ×5 0 101. , was used for the isotropic hardening and isotropic 

softening.  This value was constant for all tests, as were the intermediate bounding 

surface size, ( )intmBSR  and the normalized plastic work at which the bounding surface 

begins to shrink, ( )
intmpΩ .  These two values were calibrated to be 1.4 and 0.020, 

respectively.  Upon reaching the maximum size, the bounding surface decreases toward a 

final size, which is given by the following calibrated equation: 

 

 ( )
so

co
finalBS P

P
R ⋅−= 88.03.1       (5.5) 

 

The final bounding surface size becomes smaller as the D/t ratio increases or the strength 

of the steel decreases.  This models the decreased effect of strain hardening and concrete 

confinement and the increased severity of local buckling corresponding to a smaller 

quantity of steel or a lower steel strength.   



159 

Rate of Change of Ec  

 The final calibrated parameter is the rate of decrease of the elastic concrete 

modulus from its initial value (Eq. (3.6)) to its final reduced value (Eq. (3.5)).  This 

value, ξEc, must rapidly decrease to model the early tensile cracking of the concrete and 

the degradation of concrete stiffness.  A relatively high rate of 3.0×103 was thus 

established.  This results in a degradation of the concrete elastic modulus, Ec, even at low 

magnitudes of plastic displacement.  

 Table 5.3 summarizes the calibration values and formulas presented above.  Note 

that these equations apply only to sections within the range of experimental studies 

incorporated in this work (see Section 1.3). 

 

Table 5.3  Final Calibrated Parameters 
 

Parameter 
 

Initial Value Intermediate 
Value 

Final Value Rate, ξ 

RLS M

M

P

P P
yld

o

co

co so

− ⋅
+

0 30.

 

-- 0.10 ξLS = ×1 0 101.  

RBS 1.0 1.4 
1 3 0 88. .− ⋅ P

P
co

so

 ξBS = ×5 0 101.  

( )
intmpΩ  0.020 

 
-- 0.020 -- 

κ κ κ1 1 1
p my mz, ,  

 

0.0010 -- 0.0010 -- 

κ 2
p  P

P
co

so

 
-- ( )init

p
25.40.5 κ⋅−

 

ξκ2
13 0 10= ×.  

κ κ2 2
my mz,  ( )

0.2
2 init
pκ

 
-- ( )

0.2
2 final
pκ

 
ξκ2

13 0 10= ×.  

Ec Ec -- 0.3⋅Ec ξEc = ×3 0 103.  
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Results of Calibration Studies 

 The following figures illustrate the comparison between the analytical and 

experimental load-deflection curves for each of the calibration tests listed in Table 5.2.  

Each test is referenced by the notation given in column 1 of Table 5.2.  As a whole, these 

figures illustrate the applicability of the calibrated parameters of Table 5.3 to a wide 

range of experimental tests.  Figure 5.12 illustrates a biaxially-loaded specimen, which 

was as accurate as the uniaxial tests.  The mid-height deflection shown in Fig. 5.12 

denotes the deflection in the plane of the applied loading.  Both proportional (Figs. 5.12 

to 5.15) and non-proportional tests (Figs 5.16 to 5.19) produced equally accurate results.   

 The cyclic tests shown in Figs. 5.20 to 5.22 illustrate the accuracy of the rate 

parameters and the final values of the loading surface, bounding surface, and κ2 

parameters.  Better results could have been obtained for these tests had they each been 

calibrated individually.  The objective of this work, however, is to establish calibration 

parameters of general applicability.  The equations listed in Table 5.3 (Eqs. (5.4) and 

(5.5) specifically) were developed as linear functions of the optimum results from these 

three tests.  This reemphasizes the need to recalibrate if sections with properties beyond 

this range of tests are analyzed, but also that this CFT formulation is quite accurate within 

this wide range of CFT sizes and strengths.  
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 Figure 5.12  Eccentrically-Loaded Beam-Column (Br3) 
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Figure 5.13  Eccentrically-Loaded Beam-Column (Ced2) 
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Figure 5.14  Eccentrically-Loaded Beam-Column (Ced9) 
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Figure 5.15  Eccentrically-Loaded Beam-Column (SK91_4) 
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Figure 5.16  Axially-Loaded Beam in Bending (Tom24_3) 
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Figure 5.17  Axially-Loaded Beam in Bending (Tom24_6) 
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Figure 5.18  Axially-Loaded Beam in Bending (Tom44_3) 
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Figure 5.19  Axially-Loaded Beam in Bending (Tom44_6) 
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Figure 5.20  Cyclically-Loaded Shear Specimen (Sak24_2) 
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Figure 5.21  Cyclically-Loaded Shear Specimen (Sak34_3) 
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Figure 5.22  Cyclically-Loaded Shear Specimen (Sak46_5) 
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5.3  CFT Plasticity Analysis Verification 

 The verification of the CFT element involves comparing the analytical results to 

the results of a number of additional CFT beam-column tests without deviating from the 

calibration parameters of Table 5.3.  This section contains additional monotonic tests, 

which together reflect a thorough range of test parameters within the bounds established 

by the tests of Table 5.2.  Table 5.4 presents the CFT verification tests in the same format 

as Table 5.2.  The figure number given in column 2 again refers to the appropriate 

analytical structural model illustrated in the previous section (i.e., Fig. 5.8, 5.9, or 5.10). 

 Figures 5.23 through 5.43 illustrate each test in turn, showing the analytical results 

versus the experimental results.  Figures 5.23 through 5.28 contain eccentrically-loaded 

tests by Bridge [1976].  The maximum percent error in the axial load, P, for these tests 

was 12.7 % for specimen Br8 (Fig 5.28).  The biaxially-loaded specimens--Br4, Br5, and 

Br6--are modeled well by the analytical formulation, showing a maximum error in the 

axial load of only 7.3 %.   

 Figures 5.29 through 5.33 illustrate eccentrically-loaded tests performed by 

Cederwall et al. [1990].  These tests, along with Ced2 and Ced9 in Section 5.2, illustrate 

the accuracy of the model for a range of concrete strengths.  The maximum error in the 

axial load was 8.9 % (specimen Ced10--Fig. 5.32).   

 Figures 5.34 through 5.37 illustrate the analytical results versus the results from 

tests performed by Shakir-Khalil et al. [1989, 1991].  The maximum error between the 

analytical and experimental results was 10.5 % (specimen SK91_10--Fig 5.37).  These 

tests provide the only rectangular (as opposed to square) sections in the verification, and 

they include relatively long members.  Specimens SK89_2 and SK91_9 are loaded in the 

minor axis direction and specimens SK89_5 and SK91_10 in the major axis direction.  

The analytical results for these tests produced reasonably accurate results.   
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Table 5.4  CFT Verification Tests 
 

Test 
(Notation) 

 

Type of Test* 
(Figure) 

Dimen-
sions 
(in) 

L/D D/t f'c 

(ksi) 
fy 

(ksi) 
Other 

Data** 

Bridge, 1976 
(Br1) 

 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

8.0 × 
8.0 × 
0.392 

10.5 20.0 4.4 42.2 e = 1.5 in. 

Bridge, 1976 
(Br4) 

 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

7.9 ×
7.9 ×
0.394 

10.5 20.0 4.9 45.4 e = 1.5 in. 
α = 45° 

Bridge, 1976 
(Br5) 

 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

7.9 ×
7.9 ×
0.394 

15.0 20.0 5.5 45.4 e = 1.5 in. 
α = 30° 

Bridge, 1976 
(Br6) 

 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

8.0 ×
8.0 ×
0.385 

15.0 20.0 4.7 45.4 e = 2.5 in. 
α = 45° 

Bridge, 1976 
(Br7) 

 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

6.0 ×
6.0 ×
0.256 

20.0 23.5 5.1 36.8 e = 1.5 in. 

Bridge, 1976 
(Br8) 

 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

6.0 ×
6.0 ×
0.392 

20.0 23.5 5.1 36.8 e = 2.5 in. 

Cederwall et 
al, 1990 
(Ced1) 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

4.7 ×
4.7 ×
0.20 

25.0 24.0 6.8 44.1 e = 0.79 in 

Cederwall et 
al, 1990 
(Ced6) 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

4.7 ×
4.7 ×
0.32 

25.0 15.0 6.7 43.5 e = 0.79 in 

Cederwall et 
al, 1990 
(Ced7) 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

4.7 ×
4.7 ×
0.32 

25.0 15.0 6.8 54.5 e = 0.79 in 

Cederwall et 
al, 1990 
(Ced10) 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

4.7 ×
4.7 ×
0.32 

25.0 15.0 5.7 55.0 e = 0.79 in 

Cederwall et 
al, 1990 
(Ced13) 

Ecc. Load, Pr 
Monotonic 
(Fig. 5.8) 

4.7 ×
4.7 ×
0.32 

25.0 15.0 11.6 56.6 e = 0.79 in 
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Table 5.4 (cont'd) 
 

Test 
(Notation) 

 

Type of Test* 
(Figure) 

Dimen-
sions 
(in) 

L/D D/t f'c 

(ksi) 
fy 

(ksi) 
Other 

Data** 

Shakir-Khalil 
and Zeghiche, 
'89 (SK89_2) 

Ecc. Load, Pr 
Monotonic 
(Fig 5.8) 

4.7 ×
3.2 ×
0.18 

23.0 
(34.5) 

24.0 
(16.0) 

5.2 56.0 e = 0.95 in 

Shakir-Khalil 
and Zeghiche, 
'89 (SK89_5) 

Ecc. Load, Pr 
Monotonic 
(Fig 5.8) 

4.7 ×
3.2 ×
0.18 

34.5 
(23.0) 

16.0 
(24.0) 

5.6 49.8 e = 1.57 in 
minor axis 
bending 

Shakir-Khalil, 
1991 

(SK91_9) 

Ecc. Load, Pr 
Monotonic 
(Fig 5.8) 

5.9 ×
3.9 ×
0.20 

31.6 
(47.4) 

30.0 
(20.0) 

5.5 50.8 e = 2.95 in 

Shakir-Khalil, 
1991 

(SK91_10) 

Ecc. Load, Pr 
Monotonic 
(Fig 5.8) 

5.9 ×
3.9 ×
0.20 

40.0 
(26.6) 

20.0 
(30.0) 

5.9 53.4 e = 1.18 in 
minor axis 
bending 

Tomii and 
Sakino, 1979a 

(Tom24_2) 

Bm-Col, NPr 
Monotonic 
(Fig 5.9) 

3.9 ×
3.9 ×
0.17 

3.0 24.0 3.2 41.5 P/Po = 
0.19 

annealed 
Tomii and 

Sakino, 1979a 
(Tom24_4) 

Bm-Col, NPr 
Monotonic 
(Fig 5.9) 

3.9 ×
3.9 ×
0.17 

3.0 24.0 3.2 41.5 P/Po = 
0.38 

annealed 
Tomii and 

Sakino, 1979a 
(Tom24_5) 

Bm-Col, NPr 
Monotonic 
(Fig 5.9) 

3.9 ×
3.9 ×
0.17 

3.0 24.0 3.4 41.5 P/Po = 
0.48 

annealed 
Tomii and 

Sakino, 1979a 
(Tom44_2) 

Bm-Col, NPr 
Monotonic 
(Fig 5.9) 

3.9 ×
3.9 ×
0.087 

3.0 44.0 3.75 49.2 P/Po = 
0.18 

annealed 
Tomii and 

Sakino, 1979a 
(Tom44_4) 

Bm-Col, NPr 
Monotonic 
(Fig 5.9) 

3.9 ×
3.9 ×
0.087 

3.0 44.0 3.75 42.0 P/Po = 
0.38 

annealed 
Tomii and 

Sakino, 1979a 
(Tom44_5) 

Bm-Col, NPr 
Monotonic 
(Fig 5.9) 

3.9 ×
3.9 ×
0.087 

3.0 44.0 3.75 42.0 P/Po = 
0.48 

annealed 

* Pr denotes proportional loading; NPr denotes non-proportional loading 
** e denotes the applied load eccentricity; α denotes angle of applied load relative to 
centroidal axis of cross-section for biaxially-loaded specimens 
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 Figures 5.38 to 5.43 show the results of the tests performed by Tomii and Sakino 

[1979a, 1979b] for a wide range of applied axial loads.  The maximum percent error 

between the experimental and analytical moments for these tests was -8.1 % (specimen 

Tom24_2--Fig. 5.38).  These tests, in which the specimens were loaded 

nonproportionally, illustrate the accuracy of the formulation for the initial loading surface 

size.  The mid-range axial loads result in very accurate results while the low range tests 

produce slightly less accurate results.  For a low value of axial load, the loading surface, 

LS2, in Fig. 5.12 predicts a lower yield moment, producing premature yielding in the 

analytical results.  
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 Figure 5.23  Eccentrically-Loaded Beam-Column (Br1) 
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Figure 5.24  Eccentrically-Loaded Beam-Column (Br4) 
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Figure 5.25  Eccentrically-Loaded Beam-Column (Br5) 
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Figure 5.26  Eccentrically-Loaded Beam-Column (Br6) 
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Figure 5.27  Eccentrically-Loaded Beam-Column (Br7) 
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Figure 5.28  Eccentrically-Loaded Beam-Column (Br8) 
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Figure 5.29  Eccentrically-Loaded Beam-Column (Ced1) 
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Figure 5.30  Eccentrically-Loaded Beam-Column (Ced6) 
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Figure 5.31  Eccentrically-Loaded Beam-Column (Ced7) 
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Figure 5.32  Eccentrically-Loaded Beam-Column (Ced10) 
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Figure 5.33  Eccentrically-Loaded Beam-Column (Ced13) 
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Figure 5.34  Eccentrically-Loaded Beam-Column (SK89_2) 
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Figure 5.35  Eccentrically-Loaded Beam-Column (SK89_5) 
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Figure 5.36  Eccentrically-Loaded Beam-Column (SK91_9) 
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Figure 5.37  Eccentrically-Loaded Beam-Column (SK91_10) 
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Figure 5.38  Axially-Loaded Beam in Bending (Tom24_2) 
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Figure 5.39  Axially-Loaded Beam in Bending (Tom24_4) 
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Figure 5.40  Axially-Loaded Beam in Bending (Tom24_5) 
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Figure 5.41  Axially-Loaded Beam in Bending (Tom44_2) 
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Figure 5.42  Axially-Loaded Beam in Bending (Tom44_4) 
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Figure 5.43  Axially-Loaded Beam in Bending (Tom44_5) 
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5.4  Verification of the Nonlinear Beam-Column Model 

 The final verification problem consists of a three-dimensional subassembly of 

steel I-girders framing into a CFT beam-column [Morino et al., 1993].  Figure 5.44 

illustrates the structure configuration and the applied loading (Morino's test labeled 

SCC20 was used for this study).  For the cyclic loading test that is examined, a constant 

axial load, P Po= ⋅0 15.  (Po = 292.5 k for this specimen), is applied to the CFT beam-

column and a constant load, W 4.725 k= , is applied to one end of the steel beam in the 

y-z plane.  The cyclic loading, Q, is then applied transversely to the ends of the beams in 

the x-z plane as shown in Fig. 5.44.  The load is cycled by applying anti-symmetric beam 

loads, Q, for increasing increments of rotation equal to 0.005, 0.01, and 0.02, and 0.03 

radians.  Two full cycles are performed at each increment in rotation.  This CFT beam-

column is thus subjected to unsymmetric, cyclic biaxial bending, plus axial force. 
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Figure 5.44  Three-Dimensional Subassembly (after Morino et al. [1993]) 
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 The CFT beam-column consists of a square tube with cross-section dimensions 

4 92 4 92 0 226. . .× ×  (inches) and material strengths of f ksic
' .= 2 91  and f ksiy = 57 3. .  

The steel I-beams are built-up sections consisting of flanges measuring 4 92 0 354. .×  and 

a web measuring 9 13 0 236. .×  (all dimensions in inches).  The yield strength of the beams 

is f ksiy = 58 0. .  The lengths of the members are given in Figs 5.44 and 5.45. 

 Figure 5.45 illustrates a schematic representation of the analytical model of the 

subassembly.  The rotation was obtained in a manner analogous to the experimental 

method [Morino et al., 1993].  The displacements, D1 and D2 at locations A and B, 

respectively, in Fig 5.45 were summed and divided by the length between these points, 

which is denoted as the length L.  This method, like the measurement technique used in 

the experiment, accounts for rotation of the structure at the connection as well as 

additional rotation due to beam flexure between the connection and the measuring points, 

A and B.  The beam shear shown in the results is an average of the shears at the ends of 

each beam.  These shears are not equal due to the axial displacement of the column.  For 

the analysis, the structure was divided into three elements per CFT beam-column (to 

account for geometric nonlinearity with great accuracy), and two elements per beam (one 

spanning from the connection to the measurement point, point A or B in Fig. 5.45, and 

the other continuing to the point of the applied shear, Q).   The connection is designed to 

remain fully restrained and the beams are designed to remain elastic throughout the entire 

analysis.  In addition to the boundary conditions shown at the ends of the CFT beam-

column in Fig. 5.45, each beam is restrained from translating in its out-of-plane direction 

(i.e., the beams in the x-z plane--the beams subjected to the applied cyclic loads, Q--are 

restrained from translating sideways in the x-y plane, and the beams in the y-z plane are 

restrained from translating in the x-y direction). 
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Figure 5.45  3D Subassembly:  Analytical Model 

 

 The analysis of the structure was performed using the calibration parameters of 

Table 5.3.  Figure 5.46 illustrates the analytical results compared to the experimental 

results provided by Morino et al. [1993].  The analytical results produce excellent 

accuracy for the entire hysteresis curve.  The stiffness of the analytical curve matches the 

experimental curve well.  The maximum shear at a rotation of 0.02 rad is slightly low in 

the analytical model (approximately 8.0 %), but the shear at a final rotation of 0.03 rad is 

nearly identical to the experimental shear for both cycles at this rotation level. 
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Figure 5.46  3D Subassembly:  Shear-Rotation Hysteresis Curve 
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Chapter 6 

 

Conclusions 

 
 

 The research contained in this work examines the three-dimensional, inelastic 

behavior of concrete-filled steel tube beam-columns.  Analytical methods are developed 

for determining the cross-section strength of CFTs and the behavior of single member 

CFT beam-columns and CFT beam-columns contained in composite frame structures.  

The main impetus of the research focuses on the development of a compact and efficient 

concentrated plasticity bounding surface model in three-dimensional force-space to 

analyze the inelastic behavior of CFT beam-columns.  This chapter presents a discussion 

of the results of this research on the behavior of CFTs.  Several aspects of the work are 

highlighted, comments are made regarding the accuracy of the analytical model, and 

general conclusions are drawn about the behavior of CFTs.  Following the conclusions, 

the final section of this chapter presents suggestions for possible future CFT research 

topics. 
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6.1  Conclusions 

 As background work for the analytical model developed herein, an extensive 

literature review was undertaken, in which the numerous advantages of CFT members  

became evident [Gourley and Hajjar, 1993].  CFTs provide a flexible, efficient, and 

economic alternative to traditional structural members.  They offer high strength and 

stiffness, and exhibit excellent seismic load resistance.  The experimental results used for 

the calibration and verification of the analytical model further demonstrate this highly 

favorable behavior of CFTs.  

 The first main topic of this research--the development of an expression for the 

three dimensional cross-section strength surface of a CFT--introduces uniaxial stress-

strain formulations for the steel and the concrete.  These formulations are implemented 

into a fiber element analysis of CFT cross-sections.  The comparison of the fiber analysis 

to experimental moment-curvature-thrust data in Chapter 2 illustrates that these uniaxial 

stress-strain expressions accurately represent the interactive multiaxial behavior of the 

two materials due to confinement of the concrete.  The use of uniaxial stress-strain 

relationships for the steel and concrete greatly simplifies the analysis, yet contributes no 

substantial loss of accuracy in the predicted moment-curvature-thrust behavior of the 

section. 

 A second important aspect of the cross-section study concerns the shape of the 

cross-section strength surface, since this surface forms an integral part of the bounding 

surface model.  Due to the disparity in the compressive and tensile strengths of the 

concrete, the bending capacity of a CFT is highest when the section is subjected to low to 

moderate axial compression loads.  This behavior results in a cross-section strength 

surface that is asymmetric about the moment axes (as opposed to strength surfaces for 

steel members, which have presumed symmetry about all force axes).  This research 
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presents an empirical equation for the three-dimensional CFT cross-section strength 

surface that models this asymmetry and demonstrates excellent accuracy for a wide range 

of CFT cross-section sizes and material strengths.  This equation, although containing 

four coefficients represented by cubic polynomials, is easily implemented into the 

analytical model and is based on only the D/t ratio and the ratio of the concrete strength to 

the steel strength, f fc y
' .  

 The concentrated plasticity model for CFTs incorporates a number of significant 

features, particularly with respect to the hardening of the loading and bounding surfaces.  

First, to model the complicated behavior of CFTs, both the loading surface and the 

bounding surface harden isotropically and kinematically.  The Tseng kinematic hardening 

method is used in the CFT model as opposed to the Mroz method, which has been used in 

previous force-space plasticity models for steel beam-columns, since the Tseng method 

has been shown to work best for non-proportional loading in stress space plasticity.  The 

CFT isotropic hardening approach utilizes a plastic work-based equation, in which the 

plastic work is normalized by an elastic work value calculated at the onset of initial yield 

to account for the material and geometric properties of the section.   

 Cyclic CFT behavior mandates an expansion of the bounding surface to model the 

strength increase due to cyclic strain hardening and concrete confinement, followed by a 

contraction of the bounding surface to model the stiffness degradation due to concrete 

crushing and local buckling of the steel tube.  Cyclic CFT behavior also requires a 

variable κ 2 coefficient, representing the rate of plastification, and a decreasing concrete 

elastic modulus.  The initial and final values of the κ 2 coefficients, the final bounding 

surface size, and the initial loading surface size are all calibration parameters that are 

presented as functions of the material strengths and the dimensions of the CFT.   In this 

way, the formulation is generalized for all of the monotonic and cyclic tests examined in 
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this research, and is thus generally applicable to a wide range of CFT sections and 

material strengths. 

 The results of the verification studies of Chapter 5 demonstrate that the bounding 

surface model may be used with excellent accuracy to model the nonlinear behavior of 

both monotonically and cyclically-loaded beam-column specimens.  The model itself 

requires a relatively small number of calibrated parameters to provide accuracy over a 

wide range of steel tube geometries and steel and concrete strengths.  The final structure 

that is analyzed and compared to experimental results--a three-dimensional subassembly 

consisting of both CFT and steel I-beam elements---demonstrates an accurate 

representation of both stiffness and strength for this complex cyclically-loaded structure.  

This study verifies that this compact and efficient CFT finite element is ideal for use in 

static and transient dynamic analysis of composite CFT frame structures. 

 

6.2  Suggestions for Future Research 

 The research contained in this work represents an early step in the analysis of CFT 

member behavior and a number of additional CFT research topics naturally follow this 

research.  This section suggests future topics of research that explore new areas of CFT 

behavior or expand upon the results presented herein. 

 The first immediate research need is additional experimental work.  A more 

comprehensive scope of cross-section geometries and material strengths should be 

investigated.  Studies of cross-section strength, monotonic behavior, and cycle behavior--

both static and dynamic, warrant further experimental study.  The results presented in this 

work indicate a deficiency of experiments for CFTs with high-strength steel and high-

strength concrete.  A particularly beneficial, yet perhaps prohibitively expensive, set of 
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experimental tests might include a study of three-dimensional CFT/steel frames having 

rigid connections and incorporating a range of concrete strengths and tube thicknesses.  

Cyclic biaxial lateral loads could be applied to the structure along with gravity loads.  

Less elaborate tests, especially using high-strength materials, would, however, serve to 

refine and expand the results presented here.  

 A number of aspects of the CFT concentrated plasticity formulation warrant 

further investigation.  First, an initial loading surface in the shape of the actual initial 

yield surface (as discussed in Chapter 5) would provide a more accurate representation of 

CFT behavior over a wide range of axial load ratios.  This modified surface could, by 

some mathematical formulation, gradually transform into the shape of the bounding 

surface as the two surfaces approach one another.  A second potential modification of the 

current plasticity model involves computing a vectorial, rather than a scalar, distance 

between the loading and bounding surfaces to determine the extent of plastic loading in 

the member.  The result of using different kinematic hardening approaches might also be 

examined.  Initial exploration of the difference between the Tseng and Mroz hardening 

methods produced similar results for both methods, but further studies would be required 

to state any definitive conclusions regarding the superiority of one method over the other.  

 A more thorough examination of the local buckling phenomenon in CFTs is also 

required.  A fiber element analysis would work well for examining this characteristic of 

the infilled steel tube.  An accurate local buckling formulation based on the material 

strengths and the D/t ratio of the CFT section could be implemented into both the cross-

section strength formulation (i.e., in the determination of the failure criteria) and the 

plasticity model (e.g., in establishing the point at which the strength of a cyclically-loaded 

specimen begins to degrade).  

 There are a number of additional CFT research topics that should be addressed in 

the future.  Some possibilities include:  1) research on CFT/steel connections, including 
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topics such as steel/concrete bond at the connection, the development of economic and 

efficient connections, and the development of an analysis method to model partially-

restrained connections;  2) parametric studies of CFT/steel frame structures to develop 

improved design formulations; and  3) development of an analytical macro model for 

circular CFTs similar to the one developed in this work for rectangular CFTs.  
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Appendix A 

 

CFT Experimental Tests 

 
 

 This appendix is composed of three tables which list papers containing 

experimental test results for rectangular CFTs.  Only tests published in sufficient detail to 

use for calibration are included in the tables, and tests are considered only for CFTs 

which are completely filled with concrete and make no use of reinforcing bars or shear 

connectors to improve the concrete/steel bond.  Table A.1 contains cross-section tests, 

i.e., monotonic tests of specimens having L/D ratios less than 10.  Tables A.2 and A.3 

contain beam-column tests for monotonically- and cyclically-loaded CFT specimens, 

respectively.  The papers in each table are categorized by D/t ratio and concrete strength, 

f c
' .  Tests in which the experimental setup consisted of more than one member (e.g., 

subassemblies) are noted in the tables.  Complete references for each paper are shown in 

the list of references following the Appendix.  Each tabular entry is presented in the 

following format: 

Author(s), Year  (Number of Tests) 

[L/D; D/t; f c
' , fy] 
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Table A.1  Rectangular CFT Cross-Section Tests ( )10≤DL  
 

 Low D/t  
(5 - 24) 

 

Medium D/t 
(24 - 50) 

High D/t 
(50 - ) 

Low f'c 
(2 - 5) 

 
 
 

Tomii, Sakino, '79ab (7) 
[3; 24; 2.7-2.9; 41.4] 

Furlong, '67 (13) 
[9.0; 32, 48; 3.4, 4.2; 48] 

 
Tomii, Sakino, '79ab (21) 
[3; 33-44; 3-5.5; 28-49] 

 

 

Medium f'c 
(5 - 9) 

 
 

 Furlong, '67 (4) 
[7.2; 26; 6.5; 70.3] 

  

High f'c 
(9 - ) 
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Table A.2  Monotonic Rectangular Beam-Column Tests ( )10≥DL  
 

 Low D/t 
(5 - 24) 

 

Medium D/t 
(24 - 50) 

High D/t 
(50 - ) 

Low f'c 
(2 - 5) 

 

Bridge, '76 (4) 
[10.5, 15; 20, 24; 4.6; 44] 

Shakir-Khalil, '90 (4) 
[21-37; 30; 4.4-4.9;  

50-56] 
 

Matsui et al., '93 (16) 
[12-30; 33.3; 4.6] 

 

 

Medium f'c 
(5 - 9) 

 
 
 

Knowles, Park '69 (4) 
[11, 18.7; 23; 5.9; 47, 58] 

 
Bridge, '76 (4) 

[11-20; 20, 24; 5; 37-45] 
 

Shakir-Khalil, '89 (7) 
[23, 35; 16, 24; 5.4; 53] 

 
Cederwall et al,. '90 (4) 
[25; 15; 5.7-6.8; 44-64] 

 
Shakir-Khalil, '90 (12) 
[23; 24; 4.9-5.4; 49-53] 

 

Shakir-Khalil, '91 (11) 
[21-32; 30; 5.4-6.2; 48-

53] 
 

Cederwall et al,. '90 (2) 
[25; 24; 6.8; 44-64] 

 

High f'c 
(9 - ) 

 
 

Cederwall et al,. '90 (10) 
[25; 15; 11.6-14.9;  

44-64] 

Cederwall et al., '90 (2) 
[25; 24; 13.9; 44-64] 
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Table A.3  Cyclic Rectangular Beam-Column Tests 
  

 Low D/t  
(5 - 24) 

 

Medium D/t 
(24 - 50) 

High D/t 
(50 - ) 

Low f'c 
(2 - 5) 

 
 
 

Sakino, Tomii, '81 (4) 
[6; 24; 2.9; 42-45] 

 
Sakino,Ishibashi, '85 (4) 
[2; 24; 3.1-3.7; 42-46] 

 
Kawaguchi, '91, '93 (14) 
[10; 22, 31; 3.1-3.6; 49] 

 
Morino et al '93 (5--2D 
and 3D subassemblies) 

[14.3; 21.3; 2.9; 57] 
  

Sakino, Tomii, '81 (11) 
[4, 6; 34-46; 3.5; 42-45] 

 
Sakino,Ishibashi, '85 (8) 

[2; 34, 45; 2.4-3.7;  
42-46] 

 
Liu, Goel, '88 (2) 

[23, 45; 30; 4; 54, 60] 
 

Matsui, Tsuda, '87 (6) 
[5.0; 47-94; 5.7-6.0; 

71.5] 

Medium f'c 
(5 - 9) 

 
 
 

 Matsui, '86 (2--2D 1 bay 
frames) 

[6.7; 33, 47; 5.4; 42, 60] 
 

Liu, Goel, '88 (4) 
[23-68; 14, 30; 6-8;  

54-60] 
 

Sugano et al., '92 (1) 
[6.8; 31.3; 5.5; 54]  

 

Matsui, '86 (1--2D 1-
bay frame) 

[6.7; 68; 5.5; 42] 
 

High f'c 
(9 - ) 
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Appendix B 

 

Key Features of the Computer 
Implementation 

 
 

 This section summarizes some of the key features of the software implementation 

of the nonlinear analysis presented in this work.  A sample data input file for the program 

CFTmacro is also presented, along with a description of the salient characteristics of the 

file. 

 The program accesses the AISC database of manufactured structural shapes.  

Therefore, the user need only input a section designation, e.g., W14×53, and the section 

properties are automatically input.  Additionally, each element of the structure may be 

oriented in any direction in three-dimensional space by specifying the three components 

of a unit vector, { }u , in global coordinates.  For a steel member this unit vector is oriented 

parallel to the web at the i-end of the element (Fig. B.1a).  For a CFT member, the unit 

vector lies along the major axis of the element at the i-end, as illustrated in Fig. B.1b.  In 

both elements shown in Fig B.1, the unit vector, { }u , is given by the global x y z− −  

coordinates { } { }100=u .  
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{u}

i-end

j-end

a) Steel Element b) CFT Element

{u}

i-end

j-end

x

z

y

 

Figure B.1  Unit Vectors Denoting Global Orientation of Steel and CFT Elements 

 

 Table B.1 illustrates a sample input file to execute a static cyclic analysis of a two-

dimensional portal frame.  The program reads the input data in blocks; each block of data 

is prefaced by a starred keyword (e.g., *A_JTS).  The program searches for each 

keyword, then begins reading data at the first non-blank, non-comment (denoted with a #) 

line following this keyword until the complete set of data has been read.  Therefore, the 

keywords, each with their corresponding data, may appear in any order in the input file.  

The keywords *A_START and *A_END signal the beginning and end of the file.  All of 

the units in the input file are in kips and inches to match the units in the AISC database. 

 The first group of data sets shown in Table B.1 refer to the joints or nodes of the 

structure.  The section *A_JTS defines each node of the structure in global x y z− −  

coordinates.  The next section, *A_JT_RF, specifies the restraint conditions for each 

nodal degree-of-freedom (DOF)--0 denotes a restrained DOF and 1 denotes a free DOF.  

The final joint-based category of input for a static analysis is the load data, which is listed 

under the keyword *A_JT_LOAD.  Loads are input on a joint and DOF basis and each 

load is assigned a load history, which is defined in a subsequent data set and explained 

below. 

 The input sections for the CFT and steel elements, *A_CFT_ELS and 

*A_STL_ELS, respectively, define the connectivity, orientation, and properties of each 
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element in the structure.   The first three numbers denote the element number, i-end, and 

j-end, respectively, of the element.  The next three numbers define the global coordinates 

of the element orientation vector (see Fig. B.1).  The remaining values define the material 

and section properties of the element.  In addition to these parameters, the plasticity 

parameters are also input on an element by element basis under the headings 

*A_CFT_PLAST and *A_STL_PLAST.  These input sections define the calibrated 

parameters for the CFT and steel elements (see Chapter 5).   

 Section *A_LOAD_HIST defines each load history.  The user first inputs the 

number of load histories, the time step, and the total time of the analysis, and then 

specifies the time versus load fraction coordinate for each point in each load history.  The 

input file shown illustrates non-proportional loading, specifying a constant load (load 

history 1) and a variable cyclic load (load history 2).  These load histories are illustrated 

in Fig. B.2.  Note that the load fraction is the multiple of the joint/DOF load specified 

under *A_JT_LOAD.  For example, for load history 1 (Fig. B.2a), a non-proportional 

load of -35.7 kips (1.0 × -35.7) is applied to joint 3, DOF 2 for the full analysis (0 to 6 

sec.).  For load history 2 (Fig. B.2b), a cyclically increasing load is applied to joint 3, 

DOF 1--11810 kips (1.0 × 11810) at 0.5 sec., -11810 kips (-1.0 × 11810) at 1.5 sec., 

23620 kips (2.0 × 11810) at 2.5 sec., and so on.  For static analyses, the magnitude of 

time has no influence on the analysis per se; it serves only as a means of incrementing the 

load.  A time history is incorporated in the program to accommodate dynamic analyses, in 

which accelerations and velocities directly depend upon the value of time. 
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Figure B.2  Sample Load Histories 

 

 The section *A_TOLS defines the loading and bounding surface tolerance.  This 

value is used in the determination of force point contact with either surface and for force 

point drift control (Section 4.6).  The final section of the input file, *A_FLAGS, contains 

flags to activate or deactivate certain aspects of the program.  For example, the user may 

specify an elastic or second-order elastic analysis.  Additionally, either the Mroz or Tseng 

method of kinematic hardening may be specified for the CFT and steel elements.   
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Table B.1  Sample Input File for CFTmacro 
 
*A_START  
#SAMPLE INPUT FILE 
#2-D PORTAL FRAME W/ CFT BEAM-COLUMNS (FIXED AT BAS E) AND A STEEL BEAM 
 
*A_JTS  
#Input of the joint coordinates 
#Format: Joint number, x coord, y coord, z coord (i nches) 
 
1 0.0 0.0 0.0 
2 0.0 100.0 0.0 
3 100.0 100.0 0.0 
4 100.0 0.0 0.0 
 
 
*A_JT_RF  
#List of joint restraints ( 1 = free, 0 = restraine d ) 
#Format: Joint num., 6 joint directions (x, y, z tr anslation, x, y, z rotation) 
 
1 0 0 0 0 0 0 
2 1 1 1 1 1 1 
3 1 1 1 1 1 1 
4 0 0 0 0 0 0 
 
 
*A_CFT_ELS  
#CFT elements (all data must be in kips and inches)  
#Choose either user input format or AISC rectangula r tube format 
#    line 1: CFT element number, i-end, j-end, i-en d unit vector (x, y, z),  
#      fy, Es, Gs, fc, Ec, nu_c, wt_c 
#    line 2 (user input format): tube depth, tube w idth, tube thickness 
#    line 2 (AISC rectangular tube format): section  designation (e.g., TS6x6x1/2) 
 
1 1 2 1.0 0.0 0.0 46.0 29000.0 11500.0 5.0 3500.0 0 .2 0.086 
6.0 6.0 0.25 
 
2 3 4 1.0 0.0 0.0 46.0 29000.0 11500.0 5.0 3500.0 0 .2 0.086 
6.0 6.0 0.25 
 
 
*A_CFT_PLAST  
#CFT plasticity coefficients and parameters 
#Each CFT element must have separate input, i.e., 3  lines for each element 
# (line 1: elem num and surface radii, line2: initi al and final coeffs,  
#  line 3: isotropic params): 
#  line 1: elem #, init LS rad, fin LS rad, init BS  rad, intm BS rad, fin BS rad 
#  line 2: pk1, myk1, mzk1, pk2i, myk2i, mzk2i, pk2 f, myk2f, mzk2f 
#  line 3: ls_iso, bs_iso, k2_iso, ec_iso, intmBS_w ork 
 
1 0.662 0.1 1.0 1.4 0.503 
0.001 0.001 0.001 0.572 0.286 0.286 2.43 1.21 1.21 
10.0 50.0 30.0 3000.0 0.02 
 
2 0.662 0.1 1.0 1.4 0.503 
0.001 0.001 0.001 0.572 0.286 0.286 2.43 1.21 1.21 
10.0 50.0 30.0 3000.0 0.02 
 
 
*A_STL_ELS  
#Steel elements (all data must be in kips and inche s) 
#Choose either user input format or AISC W-section format 
#    line 1: Steel elem #, i-end, j-end, web-vector  coords (x, y, z), fy, E, G 
#    line 2 (user input format): area, J, Iminor, I major, Sy, Sz, Zy, Zz, kpi_s 
#    line 2 (AISC W-section format): section design ation (e.g., W14x53) 
 
1 2 3 0.0 1.0 0.0 36.0 29000.0 11500.0 
W10x45 
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Table B.1  (cont'd) 
 
*A_STL_PLAST  
#Steel plasticity coefficients and parameters 
#Each steel element requires a separate line 
#Format (1 line): 
#   Element number, 6 coeffs (pk1, myk1, mzk1, pk2,  myk2, mzk2),  
#  2 radii (init L.S., init B.S.) 
 
1 0.001 0.001 0.001 8.0 11.0 5.0 0.5 1.0 
 
 
*A_JT_LOADS  
#Joint loads 
#Format: Joint number, joint direction, load (kips) , load history number 
 
2 2 -30.0 1 
3 2 -30.0 1 
2 1 3.0 2 
 
 
*A_LOADHIST  
#Load history 
# 
#Format: 
# Number of load histories, time step, total time, output every __ steps 
#Format for each load history: 
# First line:  Load history number, number of point s 
# Successive lines:  Load history pts (load fractio n, time)  
#      (Note: maximum of 50 (load, time) points per  history) 
 
2 0.01 1.0 10 
 
1 2 
1.0 0.0 
1.0 1.0 
 
2 6 
0.0 0.0 
0.2 1.0 
0.4 -1.0 
0.6 2.0 
0.8 -2.0 
1.0 0.0 
 
 
*A_TOLS  
#Tolerances used throughout the program 
#Loading and bounding surface tolerance: 
 
0.0001 
 
 
*A_FLAGS  
#Program flags 
#Include geometric nonlinearities? (Y or N) 
Y 
#Include material nonlinearities? (Y or N) 
Y 
#Perform force point drift control? (Y or N) 
Y 
#Include isotropic hardening? (Y or N) 
Y 
#Use Mroz or Tseng kinematic hardening for steel? ( M or T) 
Mroz 
#Use Mroz or Tseng kinematic hardening for CFTs? (M  or T) 
Tseng 
#Should element masses be applied to joints? (Y or N) 
N 
 
 
*A_END 
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Appendix C 

 

CFTmacro Source Code 

 
 

 This appendix presents a major portion of the source code for the program 

CFTmacro developed in this work.  Table C.1 shows the main driver function followed 

by an alphabetical listing of selected corollary functions as they appear in the complete 

program.  Although the program has capabilities beyond those utilized in this work, only 

the routines specifically pertinent to the analyses performed in this work have been 

included.  Therefore the functions relating to dynamic analysis, distributed loading, and 

member releases, which may appear as function calls in some of the routines in Table 

C.1, are not shown.  Additionally, to prevent undue redundancy, only the functions 

specific to CFTs are shown; the steel routines, which are nearly identical, have not been 

included.  Functions pertaining to input/output, initialization, memory allocation, skyline 

storage and solution, and general administration have also been omitted. 

 Table C.2 contains an alphabetical listing of the header files accessed by the 

program functions.  The files shown contain external variable definitions, macro 

definitions, and the definitions of all of the data structures that are used throughout the 

program.  
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Table C.1  CFTmacro Source Code  
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- cftmacro 
 
  @(#) CFT MACRO model beam-column program 
 
*     ABSTRACT- This program performs a fully nonli near static or dynamic  
  analysis of three-dimensional frame structures co mposed of  
  concrete- filled steel tube and/or steel elements .  Material  
  nonlinearity is modeled using the bounding surfac e  
  concentrated-plasticity approach.  
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <string.h>  /* C STRING FUNCTIONS     */ 
#include <stddef.h>  /* C STANDARD HEADER FILE   */  
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES    */ 
#include "a_jt.h"  /* DATA STRUCTURE DEFINING JOINT  PROPS. */ 
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT MA CRO ELEMENT */ 
#include "a_stl_el.h"  /* DATA STRUCTURE FOR STEEL MACRO ELE. */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
#include "a_global.h"  /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */ 
 
 
void main ( argc, argv ) 
 
int argc;   /* NUMBER OF COMMAND LINE ARGUMENTS   * / 
char *argv[];  /* COMMAND LINE ARGUMENTS    */ 
 
{ 
long  status = 1L;  /* RETURN STATUS               */ 
long  *diag = ( long * )0; /* INDEX OF K MATRIX DIA GONAL  */ 
double  *kt = ( double * )0;/* SKYLINE GLOBAL K MAT RIX     */ 
A_MODEL_SIZE size;   /* GLOBAL STRUCTURE SIZES      */ 
A_TIME  time;   /* TIME PARAMETERS         */ 
A_NEW_RAPH nr;   /* NEWTON-RAPHSON PARAMETERS   */ 
A_TOLERANCE tol;   /* PROGRAM TOLERANCES         */  
A_FLAGS  flag;   /* PROGRAM FLAGS             */ 
A_DYNAMIC dyn;   /* DYNAMIC ANALYSIS PARAMETERS */ 
A_ACCEL  acclg[ 3L ];  /* ACCELEROGRAM PARAMETERS     */  
A_EIGEN  *eigen = ( A_EIGEN * )0; /* EIGEN-ANALYSIS  DATA   */ 
A_LOADHIST *lhist = ( A_LOADHIST * )0; /* LOAD HIST ORY PARAMS   */ 
A_JT_JOINT *jt   = ( A_JT_JOINT * )0; /* SINGLE JOI NT          */ 
A_CFT_BC *cft  = ( A_CFT_BC * )0;   /* CFT BEAM-COL UMN       */ 
A_STL_BC *stl  = ( A_STL_BC * )0;   /* STEEL BEAM-C OLUMN     */ 
A_GLOBAL *global = ( A_GLOBAL * )0; /* DOF-BASED VA RIABLES   */ 
 
 
/********************************************/ 
/* DEFINE AND INITIALIZE EXTERNAL VARIABLES */ 
/********************************************/ 
 
if ( ! a_mem_init_extern() ) 
 { 
 status = 0L; 
 printf( 
 "\nInitialization of external variables failed.  E xit program.\n" ); 
 } 
 
/*************************************/ 
/* READ FILE NAMES FROM COMMAND LINE */ 
/*************************************/ 
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else if ( ! a_io_filenames( argc, argv, "cftmacro.i n", "cftmacro.out",  
       "cftmacro.plot", "cftmacro.max" ) ) 
 { 
 status = 0L; 
 printf( "\nFailure to establish file names.  Exit program.\n" ); 
 } 
 
/************************************/ 
/* OPEN AISC SECTION TABLE DATABASE */ 
/************************************/ 
 
else if ( ! a_io_aisc_open( argc, argv ) ) 
 { 
 status = 0L; 
 printf(  
 "\nOpening the AISC section database failed.  Exit  program.\n" ); 
 } 
 
/**************/ 
/* OPEN FILES */ 
/**************/ 
 
else if ( ! ( A_fp_in  = fopen( A_in_file, "r" ) ) ) /* OPEN INPUT FILE */ 
 { 
 status = 0L; 
 printf( "\nOpening input file failed.  Exit progra m.\n" ); 
 } 
 
else if ( ! ( A_fp_out  = fopen( A_out_file, "w" ) ) ) /* OPEN OUTPUT FILE */ 
 { 
 status = 0L; 
 printf( "\nOpening output file failed.  Exit progr am.\n" ); 
 } 
 
else if ( ! ( A_fp_plot = fopen( A_plot_file, "w" )  ) ) /* OPEN PLOT FILE */ 
 {  
 status = 0L; 
 printf( "\nOpening plot file failed.  Exit program .\n" ); 
 } 
 
/**********************************/ 
/* INITIALIZE NON-ARRAY VARIABLES */ 
/**********************************/ 
 
else if ( ! a_mem_init( &size, &time, &nr, &tol, &f lag, &dyn ) ) 
 { 
 status = 0L; 
 printf( "\nInitializaion of variables failed.  Exi t program.\n" ); 
 } 
 
/***************************/ 
/* DETERMINE SIZE OF MODEL */ 
/***************************/ 
 
else if ( ! a_io_model_size( &size ) ) 
 { 
 status = 0L; 
 printf( "\nCounting model size failed.  Exit progr am.\n" ); 
 } 
 
/*************************************/ 
/* ALLOCATE DYNAMIC MEMORY FOR MODEL */ 
/*************************************/ 
 
else if ( ! a_mem_alloc_model( size, &lhist, &jt, & cft, &stl ) ) 
 { 
 status = 0L; 
 printf( "\nAllocating memory for model failed.  Ex it program.\n" ); 
 } 
 
/******************************************/ 
/* INITIALIZE STRUCTURE SIZE BASED ARRAYS */ 
/******************************************/ 
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else if ( ! a_mem_init_array( size, acclg, lhist, j t, cft, stl ) ) 
 { 
 status = 0L; 
 printf( "\nInitialization of arrays failed.  Exit program.\n" ); 
 } 
 
/***************************************/ 
/* INPUT STRUCTURAL MODEL, LOADS, ETC. */ 
/***************************************/ 
 
else if ( ! a_io_input_model( &size, &time, &nr, &t ol, &flag, &dyn, acclg, 
         lhist, jt, cft, stl ) ) 
 { 
 status = 0L; 
 printf( "\nInput of data failed.  Exit program.\n"  ); 
 } 
 
/************************************************** ******************/ 
/* DETERMINE NUMBER OF DOFS IN MODEL AND MAP TO JOI NTS AND ELEMENTS */ 
/************************************************** ******************/ 
 
else if ( ! a_jt_dof_map( &size, jt, cft, stl ) ) 
 { 
 status = 0L; 
 printf( "\nCounting of DOFs failed.  Exit program. \n" ); 
 } 
 
/************************************************** *******/ 
/* ALLOCATE DYNAMIC MEMORY FOR DOF-BASED DATA STRUCTURES */ 
/************************************************** *******/ 
 
else if ( ! a_mem_alloc_dof( &diag, size, &eigen, & global ) ) 
 { 
 status = 0L; 
 printf( "\nAllocating memory for dofs failed.  Exi t program.\n" ); 
 } 
 
/*******************************/ 
/* INITIALIZE DOF-BASED ARRAYS */ 
/*******************************/ 
 
else if ( ! a_mem_init_dofarray( diag, size, eigen,  global  ) ) 
 { 
 status = 0L; 
 printf( "\nInitialization of arrays failed.  Exit program.\n" ); 
 } 
 
/************************************************** *********/ 
/* CALCULATE TIME- AND LOAD-INDEPENDENT ELEMENT PAR AMETERS */ 
/************************************************** *********/ 
 
else if ( ! a_el_calcs( size, flag, cft, stl ) ) 
 { 
 status = 0L; 
 printf( "\nPlastic calculations failed.  Exit prog ram.\n" ); 
 } 
 
/************************************************** ***************/ 
/* SET UP SKYLINE STORAGE, ALLOCATE MEMORY FOR GLOB AL K MATRICES */ 
/************************************************** ***************/ 
 
else if ( ! a_eq_skyline( diag, &kt, &size, cft, st l, global ) ) 
 { 
 status = 0L; 
 printf( "\nSetup of skyline storage failed.  Exit program.\n" ); 
 } 
 
/********************/ 
/* ANALYSIS ROUTINE */ 
/********************/ 
 
else if ( flag.analysis == STATIC ) 
 { 
 if ( ! a_drv_static( diag, kt, &size, &time, &nr, tol, &flag,  
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  acclg, lhist, jt, cft, stl, global ) ) status = 0 L; 
 } 
 
else if ( ( flag.analysis == DYNAMIC ) || ( flag.an alysis == EIGEN ) ) 
 { 
 if ( ! a_drv_dynamic( diag, kt, &size, &time, &nr,  tol, &flag, &dyn, 
  acclg, eigen, lhist, jt, cft, stl, global ) ) sta tus = 0L; 
 } 
 
/***********************/ 
/* FREE DYNAMIC MEMORY */ 
/***********************/ 
 
cfree( diag ); 
cfree( kt ); 
cfree( eigen ); 
cfree( lhist ); 
cfree( jt ); 
cfree( cft ); 
cfree( stl ); 
cfree( global ); 
 
/***************/ 
/* CLOSE FILES */ 
/***************/ 
 
if ( A_fp_in   ) fclose( A_fp_in   ); 
if ( A_fp_out  ) fclose( A_fp_out  ); 
if ( A_fp_plot ) fclose( A_fp_plot ); 
if ( A_fp_max  ) fclose( A_fp_max  ); 
 
if ( status )  
 { 
 printf( "\n\n\nDONE!!!.\n\n" ); 
 } 
else  
 { 
 printf( "\n\n\nError encountered / Structure faile d.\n\n" ); 
 } 
 
exit( 1L ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_cft_frecovery 
 
  @(#) CFT Force RECOVERY  
 
*  CALLED FROM- a_drv_dynamic, a_drv_static 
 
*     ABSTRACT- This function computes the incremen tal forces for the CFT 
  members based upon the incremental displacements obtained  
  from the solution procedure. 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <string.h>  /* C STRING FUNCTIONS     */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES & PROT OTYPES   */ 
#include "a_jt.h"  /* DATA STRUCTURE DEFINING JOINT  PROPS   */ 
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
#include "a_global.h"  /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */ 
 
 
long a_cft_frecovery( size, flag, jt, cft, global )  
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A_MODEL_SIZE *size;  /* DATA STRUCTURE OF GLOBAL ST RUCT SIZE  */ 
A_FLAGS  *flag;  /* DATA STRUCTURE OF PROGRAM FLAGS   */ 
A_JT_JOINT jt[];  /* DATA STRUCTURE FOR SINGLE JOIN T  */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
A_GLOBAL global[]; /* DATA STRUCTURE OF DOF-BASED V ARIABLES */ 
 
{ 
long status = 1L;  /* RETURN STATUS    */ 
long n = 0L;  /* ELEMENT COUNTER    */ 
long ctr1 = 0L;  /* COUNTER     */ 
long ctr2 = 0L;  /* COUNTER     */ 
long dof = 0L;  /* DEGREE-OF-FREEDOM COUNTER   */ 
long j = 0L;  /* TEMP STORAGE OF CURRENT DOF NUMBER   */ 
double l_tmp = 0.0;  /* TEMPORARY ELEMENT LENGTH   */ 
double temp_du[ A_CFT_NUM_DOF + 1L ]; /* STORAGE OF  GLOBAL ELM DISPLS*/ 
 
 
/************************************************** ****************/ 
/* LOOP OVER ELEMENTS AND RECOVER LOCAL INCREMENTAL MEMBER FORCES */ 
/************************************************** ****************/ 
 
for ( n = 1L; n <= size->num_cft_elems; n++ ) 
{ 
/************************************************** *****/ 
/* MAP GLOBAL INCREMENTAL DISPLACEMENTS TO MEMBER DOFS */ 
/************************************************** *****/ 
 
for ( dof = 1L; dof <= A_CFT_NUM_DOF; dof++ ) 
 { 
 temp_du[ dof ] = 0.0; 
 j = cft[ n ].mcode[ dof ]; 
 if ( j != 0 ) 
  { 
  temp_du[ dof ] = global[ j ].dqi; 
  } 
 } 
 
/************************************************** **************/ 
/* ROTATE INCREMENTAL MEMBER DISPLACEMENTS FROM GLOBAL TO LOCAL */ 
/************************************************** **************/ 
 
for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
 cft[ n ].du[ ctr1 ]  = 0.0; 
 
 for ( ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++ ) 
  { 
  cft[ n ].du[ ctr1 ] += temp_du[ ctr2 ] * 
           cft[ n ].lambda[ ctr1 ][ ctr2 ]; 
  cft[ n ].u2[ ctr1 ] += temp_du[ ctr2 ] * 
           cft[ n ].lambda[ ctr1 ][ ctr2 ]; 
  } 
 } 
 
/*******************************************/ 
/* COMPUTE LOCAL INCREMENTAL MEMBER FORCES */ 
/*******************************************/ 
 
for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
 cft[ n ].df_i[ ctr1 ]  = 0.0; 
 
 for ( ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++ ) 
  { 
  cft[ n ].df_i[ ctr1 ] += cft[ n ].du[ ctr2 ] *  
           ( cft[ n ].kt[ ctr1 ][ ctr2 ] - 
      cft[ n ].kr[ ctr1 ][ ctr2 ] ); 
  } 
 } 
 
/************************************************** *****************/ 
/* FOR 2ND ORDER ELASTIC ANALYSIS, CALC INCR AXIAL FORCES DIRECTLY */ 
/************************************************** *****************/ 
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if ( ( flag->kg ) && ( ! flag->kp ) ) 
 { 
 /* CALCULATE UPDATED MEMBER LENGTH */ 
 
 l_tmp = sqrt(  
  pow( ( jt[ cft[ n ].j ].co.x - jt[ cft[ n ].i ].c o.x ), 2 ) + 
         pow( ( jt[ cft[ n ].j ].co.y - jt[ cft[ n ].i ].co.y ), 2 ) + 
         pow( ( jt[ cft[ n ].j ].co.z - jt[ cft[ n ].i ].co.z ), 2 ) ); 
 
 /* CALCULATE NEW AXIAL FORCES (OVERWRITE ABOVE AXI AL CALCS) */ 
 
 cft[ n ].df_i[ 1L ] = - cft[ n ].ea * ( l_tmp / cf t[ n ].l - 1L ); 
 cft[ n ].df_i[ 7L ] =   cft[ n ].ea * ( l_tmp / cf t[ n ].l - 1L ); 
 } 
 
/***********************************/ 
/* COMPUTE END-OF ITERATION FORCES */ 
/***********************************/ 
 
for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
 cft[ n ].f2[ ctr1 ] += cft[ n ].df_i[ ctr1 ]; 
 } 
 
} /* for ( n = 1L; n <= size->num_cft_elems; n++ ) */ 
 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_cft_plastic 
 
  @(#) calculation of CFT PLASTIC stiffness matrix 
 
*  CALLED FROM- a_pl_cft_state 
 
*     ABSTRACT- This function calculates the cft pl astic stiffness terms  
  comprising the kp matrix which is used in turn to  calculate 
  the plastic reduction matrix. 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <string.h>  /* C STRING FUNCTIONS     */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES     */  
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */ 
 
 
long a_cft_plastic_k( n, end, cft ) 
 
long  n;  /* CURRENT ELEMENT    */ 
long  end;  /* CURRENT ELEMENT END    */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
 
{ 
long status = 1L;  /* RETURN STATUS    */ 
long i = 0L;  /* ELEMENT END INDEX    */ 
 
 
/************************************************** *****/ 
/* CALCULATE INDEX, i, TO REFERENCE PROPER ELEMENT END */ 
/************************************************** *****/ 
 
i = 6L * end; 
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/************************************************/ 
/* COMPUTE PLASTIC AND BOUNDING STIFFNESS TERMS */ 
/************************************************/ 
 
/* AXIAL */ 
cft[ n ].kp[ end ].p = cft[ n ].ea / cft[ n ].l *  
   ( cft[ n ].k1[ end ].p + cft[ n ].k2[ end ].p *  
   ( cft[ n ].dist[ end ] / ( cft[ n ].dist_in[ end  ] -  
     cft[ n ].dist[ end ] ) ) ); 
cft[ n ].kpb[ end ].p = cft[ n ].ea / cft[ n ].l *  
     cft[ n ].k1[ end ].p; 
  
/* WEAK AXIS BENDING */ 
cft[ n ].kp[ end ].my = cft[ n ].eiy / cft[ n ].l *   
   ( cft[ n ].k1[ end ].my + cft[ n ].k2[ end ].my *  
   ( cft[ n ].dist[ end ] / ( cft[ n ].dist_in[ end  ] -  
     cft[ n ].dist[ end ] ) ) ); 
cft[ n ].kpb[ end ].my = cft[ n ].eiy / cft[ n ].l *  
     cft[ n ].k1[ end ].my;  
 
/* STRONG AXIS BENDING */ 
cft[ n ].kp[ end ].mz = cft[ n ].eiz / cft[ n ].l *   
   ( cft[ n ].k1[ end ].mz + cft[ n ].k2[ end ].mz *  
   ( cft[ n ].dist[ end ] / ( cft[ n ].dist_in[ end  ] -  
     cft[ n ].dist[ end ] ) ) ); 
cft[ n ].kpb[ end ].mz = cft[ n ].eiz / cft[ n ].l *  
     cft[ n ].k1[ end ].mz;  
 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_cft_reduction_k 
 
  @(#) CFT plastic REDUCTION stiffness matrix 
 
*  CALLED FROM- a_cft_stiffness 
 
*     ABSTRACT- This function computes the CFT elem ent plastic reduction  
  stiffness terms.  This function is only called if  a hinge 
  exists at one or both of the elelment ends. 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS    */ 
#include <stdio.h>  /* C I/O FUNCTIONS    */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES    */ 
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */ 
 
 
long a_cft_reduction_k( n, cft ) 
 
long  n;  /* CURRENT ELEMENT NUMBER   */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
 
{ 
long status = 1L;  /* RETURN STATUS     */ 
long ctr1 = 0L;  /* COUNTER      */ 
long ctr2 = 0L;  /* COUNTER      */ 
long ctr3 = 0L;  /* COUNTER      */ 
double a = 0.0;  /* STORAGE FOR INVERTING MATRIX  * / 
double b = 0.0;  /* STORAGE FOR INVERTING MATRIX  * / 
double c = 0.0;  /* STORAGE FOR INVERTING MATRIX  * / 
double d = 0.0;  /* STORAGE FOR INVERTING MATRIX  * / 
double inverse[ 3L ][ 3L ]; /* TEMPORARY MATRIX STO RAGE   */ 
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double kp[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF + 1L  ];   /* PLASTIC K */ 
double grad[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF + 1L ]; /* GRADIENT  */ 
double gradt[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF +  1L ];/* GRAD TRANSP*/ 
double temp1[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF +  1L ];/* TEMP MATRIX*/ 
double temp2[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF +  1L ];/* TEMP MATRIX*/ 
double temp3[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF +  1L ];/* TEMP MATRIX*/ 
double temp4[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF +  1L ];/* TEMP MATRIX*/ 
double temp5[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF +  1L ];/* TEMP MATRIX*/ 
 
 
/*********************/ 
/* INITIALIZE ARRAYS */ 
/*********************/ 
 
for ( ctr1 = 0L; ctr1 < 3L; ctr1++ ) 
 { 
 for ( ctr2 = 0L; ctr2 <= 3L; ctr2++ ) 
  { 
  inverse[ ctr1 ][ ctr2 ] = 0.0; 
  } 
 } 
 
for ( ctr1 = 0L; ctr1 < A_CFT_NUM_DOF + 1L; ctr1++ ) 
 { 
 for ( ctr2 = 0L; ctr2 < A_CFT_NUM_DOF + 1L; ctr2++  ) 
  { 
  kp[ ctr1 ][ ctr2 ]  = 0.0; 
  grad[ ctr1 ][ ctr2 ]  = 0.0; 
  gradt[ ctr1 ][ ctr2 ]  = 0.0; 
  temp1[ ctr1 ][ ctr2 ]  = 0.0; 
  temp2[ ctr1 ][ ctr2 ]  = 0.0; 
  temp3[ ctr1 ][ ctr2 ]  = 0.0; 
  temp4[ ctr1 ][ ctr2 ]  = 0.0; 
  temp5[ ctr1 ][ ctr2 ]  = 0.0; 
  cft[ n ].kr[ ctr1 ][ ctr2 ]  = 0.0; 
  } 
 } 
 
/***********************/ 
/* FILL TEMP kp MATRIX */ 
/***********************/ 
 
kp[ 1L ][ 1L ]   = cft[ n ].kp[ 0L ].p; 
kp[ 5L ][ 5L ]   = cft[ n ].kp[ 0L ].my; 
kp[ 6L ][ 6L ]   = cft[ n ].kp[ 0L ].mz; 
kp[ 7L ][ 7L ]   = cft[ n ].kp[ 1L ].p; 
kp[ 11L ][ 11L ] = cft[ n ].kp[ 1L ].my; 
kp[ 12L ][ 12L ] = cft[ n ].kp[ 1L ].mz; 
 
/************************************************** / 
/* COMPUTE GRADIENT AND GRADIENT TRANSPOSE ARRAYS */ 
/************************************************** / 
 
/* GRADIENT */ 
 
if ( ( cft[ n ].state[ 0L ] == PL )  && ( cft[ n ]. state[ 1L ] == PL ) ) 
 {  /* HINGE AT BOTH ENDS */ 
 
 a_pl_cft_grad( n, 0L, F1, cft ); 
 a_pl_cft_grad( n, 1L, F1, cft ); 
 
 grad[ 1L ][ 1L ] = cft[ n ].grad[ 0L ].p; 
 grad[ 5L ][ 1L ] = cft[ n ].grad[ 0L ].my; 
 grad[ 6L ][ 1L ] = cft[ n ].grad[ 0L ].mz; 
 grad[ 7L ][ 2L ] = cft[ n ].grad[ 1L ].p; 
 grad[ 11L ][ 2L ] = cft[ n ].grad[ 1L ].my; 
 grad[ 12L ][ 2L ] = cft[ n ].grad[ 1L ].mz; 
 } 
 
else if (( cft[ n ].state[ 0L ] == PL ) && (( cft[ n ].state[ 1L ] == EL ) || 
         ( cft[ n ].state[ 1L ] == PL_IN ))) 
 {  /* HINGE AT END I */ 
 a_pl_cft_grad( n, 0L, F1, cft ); 
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 grad[ 1L ][ 1L ] = cft[ n ].grad[ 0L ].p; 
 grad[ 5L ][ 1L ] = cft[ n ].grad[ 0L ].my; 
 grad[ 6L ][ 1L ] = cft[ n ].grad[ 0L ].mz; 
 } 
 
else if (( cft[ n ].state[ 1L ] == PL ) && (( cft[ n ].state[ 0L ] == EL ) || 
         ( cft[ n ].state[ 0L ] == PL_IN ))) 
 {  /* HINGE AT END J */ 
 a_pl_cft_grad( n, 1L, F1, cft ); 
 
 grad[ 7L ][ 2L ] = cft[ n ].grad[ 1L ].p; 
 grad[ 11L ][ 2L ] = cft[ n ].grad[ 1L ].my; 
 grad[ 12L ][ 2L ] = cft[ n ].grad[ 1L ].mz; 
 } 
 
/* GRADIENT TRANSPOSE */ 
 
for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
 for ( ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++ ) 
  { 
  gradt[ ctr2 ][ ctr1 ] = grad[ ctr1 ][ ctr2 ]; 
  } 
 } 
 
/************************************************** ***************************/ 
/* CALC. PLASTIC REDUCTION K ( -kt*grad*(gradt*(kt+ kp)*grad)^(-1)*gradt*kt ) */ 
/************************************************** ***************************/ 
 
/** temp1 = gradt * ( kt + kp ) **/ 
for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
 for ( ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++ ) 
  { 
  temp1[ 1L ][ ctr1 ] += gradt[ 1L ][ ctr2 ] *  
          ( cft[ n ].kt[ ctr2 ][ ctr1 ] +  
     kp[ ctr2 ][ ctr1 ] ); 
  temp1[ 2L ][ ctr1 ] += gradt[ 2L ][ ctr2 ] *  
          ( cft[ n ].kt[ ctr2 ][ ctr1 ] +  
     kp[ ctr2 ][ ctr1 ] ); 
  } 
 } 
 
/** temp2 = temp1 * grad **/ 
for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
 for ( ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++ ) 
  { 
  temp2[ 1L ][ ctr1 ] += temp1[ 1L ][ ctr2 ] *  
           grad[ ctr2 ][ ctr1 ]; 
  temp2[ 2L ][ ctr1 ] += temp1[ 2L ][ ctr2 ] *  
           grad[ ctr2 ][ ctr1 ]; 
  } 
 } 
 
/** inverse = ( gradt * ( kt + kp ) * grad ) ^ (-1)  = temp2 ^ (-1) **/ 
a = temp2[ 1L ][ 1L ]; 
b = temp2[ 1L ][ 2L ]; 
c = temp2[ 2L ][ 1L ]; 
d = temp2[ 2L ][ 2L ]; 
 
/* TAKE PROPER INVERSE DEPENDING ON HINGE LOCATION( S) */ 
 
if ( ( cft[ n ].state[ 0L ] == PL )  && ( cft[ n ]. state[ 1L ] == PL ) ) 
 {  /* HINGE AT BOTH ENDS */ 
 if ( ( a != 0.0 ) && ( ( a * d - b * c ) != 0.0 ) )  
  { 
  inverse[ 1L ][ 1L ] = ( c * b ) / ( a * ( a * d -  b * c ) ) +  
          1 / a; 
  inverse[ 1L ][ 2L ] = -b / ( a * d - b * c ); 
  inverse[ 2L ][ 1L ] = -c / ( a * d - b * c ); 
  inverse[ 2L ][ 2L ] = a / ( a * d - b * c ); 
  } 
 else 
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  { 
  printf( "\nDivide-by-zero error in a_cft_reductio n_k. \n" ); 
  status = 0L; 
  } 
 } 
 
else if ( ( cft[ n ].state[ 0L ] == PL ) && ( cft[ n ].state[ 1L ] == EL ) ) 
 {  /* HINGE AT END I */ 
 if ( a != 0.0 ) 
  { 
  inverse[ 1L ][ 1L ] = 1 / a; 
  } 
 else 
  { 
  printf( "\nDivide-by-zero error in a_cft_reductio n_k. \n" ); 
  status = 0L; 
  } 
 } 
 
else if ( ( cft[ n ].state[ 0L ] == EL ) && ( cft[ n ].state[ 1L ] == PL ) ) 
 {  /* HINGE AT END J */ 
 if ( d != 0.0 ) 
  { 
  inverse[ 2L ][ 2L ] = 1 / d; 
  } 
 else 
  { 
  printf( "\nDivide-by-zero error in a_cft_reductio n_k. \n" ); 
  status = 0L; 
  } 
 } 
 
/** temp3 = kt * grad **/ 
for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
 for ( ctr2 = 1L; ctr2 <= 2L; ctr2++ ) 
  { 
  for ( ctr3 = 1L; ctr3 <= A_CFT_NUM_DOF; ctr3++ ) 
   { 
   temp3[ ctr1 ][ ctr2 ] += cft[ n ].kt[ ctr1 ][ ct r3 ] *  
       grad[ ctr3 ][ ctr2 ]; 
   } 
  } 
 } 
 
/** temp4 = temp3 * inverse **/ 
for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
 for ( ctr2 = 1L; ctr2 <= 2L; ctr2++ ) 
  { 
  for ( ctr3 = 1L; ctr3 <= 2L; ctr3++ ) 
   { 
   temp4[ ctr1 ][ ctr2 ] += temp3[ ctr1 ][ ctr3 ] *   
       inverse[ ctr3 ][ ctr2 ]; 
   } 
  } 
 } 
 
/** temp5 = temp4 * gradt **/ 
for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
 for ( ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++ ) 
  { 
  for ( ctr3 = 1L; ctr3 <= 2L; ctr3++ ) 
   { 
   temp5[ ctr1 ][ ctr2 ] += temp4[ ctr1 ][ ctr3 ] *   
       gradt[ ctr3 ][ ctr2 ]; 
   } 
  } 
 } 
 
/** cft[ n ].kr = temp5 * kt **/ 
for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
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 for ( ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++ ) 
  { 
  for ( ctr3 = 1L; ctr3 <= A_CFT_NUM_DOF; ctr3++ ) 
   { 
   cft[ n ].kr[ ctr1 ][ ctr2 ] +=  
      temp5[ ctr1 ][ ctr3 ] *  
      cft[ n ].kt[ ctr3 ][ ctr2 ]; 
   } 
  } 
 } 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_cft_rotate 
 
  @(#) CFT member force ROTATE from n to n + 1 
 
*  CALLED FROM- a_drv_dynamic, a_drv_static 
 
*     ABSTRACT- This function takes the forces obta ined from the structural 
  configuration at time n and rotates them to the s tructural 
  configuration at time n + 1.  The global joint fo rces are 
  then calculated.  Also, the function which update s the  
  CFT members (i.e., lengths, etc.) is called in th is routine. 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <string.h>  /* C STRING FUNCTIONS     */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES     */  
#include "a_jt.h"  /* DATA STRUCTURE DEFINING JOINT  PROPS  */ 
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
#include "a_global.h"  /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */ 
 
 
long a_cft_rotate( size, nr, flag, lhist, jt, cft, global ) 
 
A_MODEL_SIZE *size;  /* DATA STRUCTURE OF GLOBAL ST RUCTURE SIZE*/ 
A_NEW_RAPH *nr;  /* DATA STRUCTURE OF NEWTON-RAPHSO N PARAMS*/ 
A_FLAGS  *flag;  /* DATA STRUCTURE OF PROGRAM FLAGS   */ 
A_LOADHIST lhist[]; /* DATA STRUCTURE OF LOAD HISTO RY PARAMS */ 
A_JT_JOINT jt[];  /* DATA STRUCTURE FOR SINGLE JOIN T  */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
A_GLOBAL global[]; /* DATA STRUCTURE OF DOF-BASED V ARIABLES */ 
 
{ 
long status = 1L;  /* RETURN STATUS    */ 
long i = 0L;  /* TEMP VARIABLE    */ 
long j = 0L;  /* TEMP VARIABLE    */ 
long k = 0L;  /* TEMP VARIABLE    */ 
long n = 0L;  /* ELEMENT COUNTER    */ 
long dof = 0L;  /* DOF COUNTER     */ 
long ctr1 = 0L;  /* COUNTER     */ 
long ctr2 = 0L;  /* COUNTER     */ 
double l = 0.0;  /* SHORTENED VARIABLE FOR STEEL ME MBER LENGTH */ 
double m2 = 0.0;  /* SHORTENED VARIABLE FOR DOF 2 M ULTIPLIER    */ 
double m6 = 0.0;  /* SHORTENED VARIABLE FOR DOF 6 M ULTIPLIER    */ 
double m8 = 0.0;  /* SHORTENED VARIABLE FOR DOF 8 M ULTIPLIER    */ 
double m12 = 0.0;  /* SHORTENED VARIABLE FOR DOF 12  MULTIPLIER   */ 
double r2 = 0.0;  /* RATIO OF df_i / f2 FOR DOF 2       */ 
double r6 = 0.0;  /* RATIO OF df_i / f2 FOR DOF 6       */ 
double r8 = 0.0;  /* RATIO OF df_i / f2 FOR DOF 8       */ 
double r12 = 0.0;  /* RATIO OF df_i / f2 FOR DOF 12        */ 
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double wl = 0.0;  /* INCREMENTAL DISTRIBUTED LOAD       */ 
double temp_df_i[ A_CFT_NUM_DOF + 1L ]; /* TEMP GLO BAL INCR FORCES        */ 
double temp_f2[ A_CFT_NUM_DOF + 1L ];   /* TEMP GLO BAL FORCES AT STEP n + 1 */ 
 
 
/************************************************** *************************/ 
/* LOOP OVER ELEMENTS; COMPUTE GLOBAL JOINT FORCES & ROTATED MEMBER FORCES */ 
/************************************************** *************************/ 
 
for ( n = 1L; n <= size->num_cft_elems; n++ ) 
{ 
/************************************************** **/ 
/* UPDATE ELEMENT GEOMETRY, ROTATION MATRICES, ETC.  */ 
/************************************************** **/ 
 
if ( flag->kg ) 
 { 
 if ( ! a_cft_update( n, jt, cft, global ) ) 
  { 
  status = 0L; 
  printf(  
  "\nMember calculations failed.  Exit program.\n" ); 
  } 
 } 
 
/************************************************** ******/ 
/* ROTATE LOCAL ELEMENT FORCES TO GLOBAL W/ C2 MATR ICES */ 
/************************************************** ******/ 
 
for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
 temp_df_i[ ctr1 ] = 0.0; 
 temp_f2[ ctr1 ]  = 0.0; 
 
 for ( ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++ ) 
  { 
  temp_df_i[ ctr1 ] += cft[ n ].lambda[ ctr2 ][ ctr 1 ] *  
         cft[ n ].df_i[ ctr2 ]; 
  temp_f2[ ctr1 ]   += cft[ n ].lambda[ ctr2 ][ ctr 1 ] *  
         cft[ n ].f2[ ctr2 ]; 
  } 
 } 
 
/******************************************/ 
/* ASSEMBLE THE FORCES FOR EACH JOINT DOF */ 
/******************************************/ 
 
for ( dof = 1L; dof <= A_JT_DOF; dof++ ) 
 { 
 jt[ cft[ n ].i ].df_i[ dof ] += temp_df_i[ dof ]; 
 jt[ cft[ n ].j ].df_i[ dof ] += temp_df_i[ dof + 6 L ]; 
 } 
 
/************************************************** ***/ 
/* ROTATE FORCES FROM GLOBAL TO LOCAL W/ C2 MATRICE S */ 
/************************************************** ***/ 
 
for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
 cft[ n ].df_i[ ctr1 ] = 0.0; 
 cft[ n ].f2[ ctr1 ]   = 0.0; 
 
 for ( ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++ ) 
  { 
  cft[ n ].df_i[ ctr1 ] += temp_df_i[ ctr2 ] *  
             cft[ n ].lambda[ ctr1 ][ ctr2 ]; 
  cft[ n ].f2[ ctr1 ]   += temp_f2[ ctr2 ] *  
             cft[ n ].lambda[ ctr1 ][ ctr2 ]; 
  } 
 } 
 
/***************************************/ 
/* COMPUTE INCREMENTAL ADJUSTED FORCES */ 
/***************************************/ 
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for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
 cft[ n ].f1_i[ ctr1 ]  = cft[ n ].f2_i[ ctr1 ]; 
 cft[ n ].f2_i[ ctr1 ] += cft[ n ].df_i[ ctr1 ]; 
 } 
 
} /* for ( n = 1L; n <= size->num_cft_elems; n++ ) */ 
 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_cft_stiffness 
 
  @(#) CFT element STIFFNESS matrix formulation  
 
*  CALLED FROM- a_drv_dynamic, a_drv_static 
 
*     ABSTRACT- This function calls the subroutines  to compute the cft member  
  elastic, geometric, and plastic reduction matrice s. 
*************************************************** **************************/ 
 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <math.h>  /* MATH FUNCTIONS    */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES    */ 
#include "a_jt.h"  /* DATA STRUCTURE FOR JOINTS   * / 
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
 
 
long a_cft_stiffness ( n, size, flag, jt, cft ) 
 
long  n;  /* CURRENT ELEMENT NUMBER   */ 
A_MODEL_SIZE *size;  /* DATA STRUCTURE OF GLOBAL ST RUCT PARAMS*/ 
A_FLAGS  *flag;  /* DATA STRUCTURE OF PROGRAM FLAGS    */ 
A_JT_JOINT jt[];  /* DATA STRUCTURE FOR JOINTS   */  
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
 
{ 
long status  = 1L;  /* RETURN STATUS     */ 
long ctr1 = 0L;  /* COUNTER     */ 
long ctr2 = 0L;  /* COUNTER     */ 
long end = 0L;  /* COUNTER FOR CURRENT ELEMENT END  */ 
 
 
/***********************************/ 
/* COMPUTE TANGENT STIFFNESS TERMS */ 
/***********************************/ 
 
if ( ! a_cft_tangent_k( n, flag, cft ) ) 
 { 
 status = 0L; 
 printf( "\nTangent stiffness computation failed.  Exit program.\n" ); 
 } 
 
/************************************************** ***********/ 
/* ALTER THE TANGENT K MATRIX TO ACCOUNT FOR MEMBER  RELEASES */ 
/************************************************** ***********/ 
 
if ( cft[ n ].release ) 
 { 
 a_k_mem_rel( A_CFT_NUM_DOF, cft[ n ].release, cft[  n ].kt ); 
 } 
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/************************************************** *****************/ 
/* COMPUTE CFT PLASTIC REDUCTION STIFFNESS TERMS (O NLY IF PLASTIC) */ 
/************************************************** *****************/ 
 
if ( flag->kp ) 
{ 
for ( ctr1 = 1L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { /* ZERO kr FOR ALL ELEMS (THIS IS ESPECIALLY FOR  UNLOADING) */ 
 for ( ctr2 = 1L; ctr2 <= A_CFT_NUM_DOF; ctr2++ ) 
  { 
  cft[ n ].kr[ ctr1 ][ ctr2 ] = 0.0; 
  } 
 } 
 
if ( ( cft[ n ].state[ 0L ] == PL ) || ( cft[ n ].s tate[ 1L ] == PL ) ) 
 { 
 if ( ! a_cft_reduction_k( n, cft ) ) 
  { 
  status = 0L; 
  printf( "\nPlastic reduction stiffness computatio n failed." ); 
  printf( "Exit program.\n" ); 
  } 
 } 
 
} /* if ( flag->kp ) */ 
 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_cft_tangent_k 
 
  @(#) CFT TANGENT stiffness (K) matrix 
 
*  CALLED FROM- a_cft_stiffness 
 
*     ABSTRACT- This function computes the local CF T element tangent stiffness  
  terms (elastic + geometric). 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS    */ 
#include <stdio.h>  /* C I/O FUNCTIONS    */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES & PROT OTYPES   */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */ 
 
 
long a_cft_tangent_k ( n, flag, cft ) 
 
long  n;  /* CURRENT ELEMENT NUMBER   */ 
A_FLAGS  *flag;  /* DATA STRUCTURE OF PROGRAM FLAGS   */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
 
{ 
long status = 1L;  /* RETURN STATUS     */ 
long ctr1 = 0L;  /* COUNTER      */ 
long ctr2 = 0L;  /* COUNTER      */ 
long ctr3 = 0L;  /* COUNTER      */ 
long init1 = 0L;  /* COUNTER FOR INITIALIZATIN OF A RRAYS */ 
long init2 = 0L;  /* COUNTER FOR INITIALIZATIN OF A RRAYS */ 
 
 
/*****************/ 
/* INITIALIZE kt */ 
/*****************/ 
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for ( init1 = 0L; init1 < A_CFT_NUM_DOF + 1L; init1 ++ ) 
 { 
 for ( init2 = 0L; init2 < A_CFT_NUM_DOF + 1L; init 2++ ) 
  { 
  cft[ n ].kt[ init1 ][ init2 ]  = 0.0; 
  } 
 } 
 
/************************************************/ 
/* UPDATE CONCRETE ELASTIC STIFFNESS PARAMETERS */ 
/************************************************/ 
 
cft[ n ].gmod_c = cft[ n ].emod_c / ( 2.0 * ( 1 + c ft[ n ].nu_c ) ); 
 
cft[ n ].eiy = cft[ n ].emod_s * cft[ n ].iy_s + 
    cft[ n ].emod_c * cft[ n ].iy_c; 
cft[ n ].eiz = cft[ n ].emod_s * cft[ n ].iz_s + 
    cft[ n ].emod_c * cft[ n ].iz_c; 
cft[ n ].ea = cft[ n ].emod_s * cft[ n ].a_stl + 
    cft[ n ].emod_c * cft[ n ].a_conc; 
cft[ n ].gj = cft[ n ].gmod_s * cft[ n ].ix; 
 
/************************************************** **********/ 
/* GENERATE ELASTIC TERMS IN UPPER TRIANGULAR PORTI ON OF kt */ 
/************************************************** **********/ 
 
cft[ n ].kt[ 1 ][ 1 ] =   cft[ n ].ea / cft[ n ].l;  
cft[ n ].kt[ 1 ][ 7 ]  = - cft[ n ].kt[ 1 ][ 1 ]; 
cft[ n ].kt[ 2 ][ 2 ] =   12.0 * cft[ n ].eiz / pow ( cft[ n ].l, 3 ); 
cft[ n ].kt[ 2 ][ 6 ] =   6.0 * cft[ n ].eiz / pow(  cft[ n ].l, 2 ); 
cft[ n ].kt[ 2 ][ 8 ]  = - cft[ n ].kt[ 2 ][ 2 ]; 
cft[ n ].kt[ 2 ][ 12 ]  =   cft[ n ].kt[ 2 ][ 6 ]; 
cft[ n ].kt[ 3 ][ 3 ] =   12.0 * cft[ n ].eiy / pow ( cft[ n ].l, 3 ); 
cft[ n ].kt[ 3 ][ 5 ] = - 6.0 * cft[ n ].eiy / pow(  cft[ n ].l, 2 ); 
cft[ n ].kt[ 3 ][ 9 ]  = - cft[ n ].kt[ 3 ][ 3 ]; 
cft[ n ].kt[ 3 ][ 11 ]  =   cft[ n ].kt[ 3 ][ 5 ]; 
cft[ n ].kt[ 4 ][ 4 ] =   cft[ n ].gj / cft[ n ].l;  
cft[ n ].kt[ 4 ][ 10 ]  = - cft[ n ].kt[ 4 ][ 4 ]; 
cft[ n ].kt[ 5 ][ 5 ] =   4.0 * cft[ n ].eiy / cft[  n ].l; 
cft[ n ].kt[ 5 ][ 9 ]  = - cft[ n ].kt[ 3 ][ 5 ]; 
cft[ n ].kt[ 5 ][ 11 ] =   2.0 * cft[ n ].eiy / cft [ n ].l; 
cft[ n ].kt[ 6 ][ 6 ] =   4.0 * cft[ n ].eiz / cft[  n ].l; 
cft[ n ].kt[ 6 ][ 8 ]  = - cft[ n ].kt[ 2 ][ 6 ]; 
cft[ n ].kt[ 6 ][ 12 ] =   2.0 * cft[ n ].eiz / cft [ n ].l; 
cft[ n ].kt[ 7 ][ 7 ]  =   cft[ n ].kt[ 1 ][ 1 ]; 
cft[ n ].kt[ 8 ][ 8 ]  =   cft[ n ].kt[ 2 ][ 2 ]; 
cft[ n ].kt[ 8 ][ 12 ]  = - cft[ n ].kt[ 2 ][ 6 ]; 
cft[ n ].kt[ 9 ][ 9 ]  =   cft[ n ].kt[ 3 ][ 3 ]; 
cft[ n ].kt[ 9 ][ 11 ]  = - cft[ n ].kt[ 3 ][ 5 ]; 
cft[ n ].kt[ 10 ][ 10 ] =   cft[ n ].kt[ 4 ][ 4 ]; 
cft[ n ].kt[ 11 ][ 11 ] =   cft[ n ].kt[ 5 ][ 5 ]; 
cft[ n ].kt[ 12 ][ 12 ] =   cft[ n ].kt[ 6 ][ 6 ]; 
 
/************************************************** ************/ 
/* GENERATE GEOMETRIC TERMS IN UPPER TRIANGULAR PORTION OF kt */ 
/************************************************** ************/ 
 
if ( flag->kg ) 
{ 
cft[ n ].kt[ 2 ][ 2 ] +=   1.2 * cft[ n ].f2[ 7 ] /  cft[ n ].l; 
cft[ n ].kt[ 2 ][ 6 ] +=   cft[ n ].f2[ 7 ] / 10.0;  
cft[ n ].kt[ 2 ][ 8 ] += - 1.2 * cft[ n ].f2[ 7 ] /  cft[ n ].l; 
cft[ n ].kt[ 2 ][ 12 ] +=   cft[ n ].f2[ 7 ] / 10.0 ; 
cft[ n ].kt[ 3 ][ 3 ] +=   1.2 * cft[ n ].f2[ 7 ] /  cft[ n ].l; 
cft[ n ].kt[ 3 ][ 5 ] += - cft[ n ].f2[ 7 ] / 10.0;  
cft[ n ].kt[ 3 ][ 9 ] += - 1.2 * cft[ n ].f2[ 7 ] /  cft[ n ].l; 
cft[ n ].kt[ 3 ][ 11 ] += - cft[ n ].f2[ 7 ] / 10.0 ; 
cft[ n ].kt[ 5 ][ 5 ] +=   2.0 * cft[ n ].f2[ 7 ] *  cft[ n ].l / 15.0; 
cft[ n ].kt[ 5 ][ 9 ] +=   cft[ n ].f2[ 7 ] / 10.0;  
cft[ n ].kt[ 5 ][ 11 ] += - cft[ n ].f2[ 7 ] * cft[  n ].l / 30.0; 
cft[ n ].kt[ 6 ][ 6 ] +=   2.0 * cft[ n ].f2[ 7 ] *  cft[ n ].l / 15.0; 
cft[ n ].kt[ 6 ][ 8 ] += - cft[ n ].f2[ 7 ] / 10.0;  
cft[ n ].kt[ 6 ][ 12 ] += - cft[ n ].f2[ 7 ] * cft[  n ].l / 30.0; 



217 

cft[ n ].kt[ 8 ][ 8 ] +=   1.2 * cft[ n ].f2[ 7 ] /  cft[ n ].l; 
cft[ n ].kt[ 8 ][ 12 ] += - cft[ n ].f2[ 7 ] / 10.0 ; 
cft[ n ].kt[ 9 ][ 9 ] +=   1.2 * cft[ n ].f2[ 7 ] /  cft[ n ].l; 
cft[ n ].kt[ 9 ][ 11 ] +=   cft[ n ].f2[ 7 ] / 10.0 ; 
cft[ n ].kt[ 11 ][ 11 ] +=   2.0 * cft[ n ].f2[ 7 ]  * cft[ n ].l / 15.0; 
cft[ n ].kt[ 12 ][ 12 ] +=   2.0 * cft[ n ].f2[ 7 ]  * cft[ n ].l / 15.0; 
 
 
/* HIGHER ORDER GEOMETRIC STIFFNESS TERMS */ 
 
if ( flag->order == HIGHORDER ) 
{ 
cft[ n ].kt[ 1 ][ 2 ] =   ( cft[ n ].f2[ 6 ] + cft [ n ].f2[ 12 ] ) / 
     pow( cft[ n ].l, 2 ); 
cft[ n ].kt[ 1 ][ 3 ] = - ( cft[ n ].f2[ 5 ] + cft [ n ].f2[ 11 ] ) / 
     pow( cft[ n ].l, 2 ); 
cft[ n ].kt[ 1 ][ 8 ] = - ( cft[ n ].f2[ 6 ] + cft [ n ].f2[ 12 ] ) / 
     pow( cft[ n ].l, 2 ); 
cft[ n ].kt[ 1 ][ 9 ] =   ( cft[ n ].f2[ 5 ] + cft [ n ].f2[ 11 ] ) / 
     pow( cft[ n ].l, 2 ); 
cft[ n ].kt[ 2 ][ 4 ] =   cft[ n ].f2[ 5 ] / cft[ n  ].l; 
cft[ n ].kt[ 2 ][ 5 ] =   cft[ n ].f2[ 10 ] / cft[ n ].l; 
cft[ n ].kt[ 2 ][ 7 ] = - ( cft[ n ].f2[ 6 ] + cft [ n ].f2[ 12 ] ) / 
     pow( cft[ n ].l, 2 ); 
cft[ n ].kt[ 2 ][ 10 ] =   cft[ n ].f2[ 11 ] / cft[  n ].l; 
cft[ n ].kt[ 2 ][ 11 ] = - cft[ n ].f2[ 10 ] / cft[  n ].l; 
cft[ n ].kt[ 3 ][ 4 ] =   cft[ n ].f2[ 6 ] / cft[ n  ].l; 
cft[ n ].kt[ 3 ][ 6 ] =   cft[ n ].f2[ 10 ] / cft[ n ].l; 
cft[ n ].kt[ 3 ][ 7 ] =   ( cft[ n ].f2[ 5 ] + cft [ n ].f2[ 11 ] ) / 
     pow( cft[ n ].l, 2 ); 
cft[ n ].kt[ 3 ][ 10 ] =   cft[ n ].f2[ 12 ] / cft[  n ].l; 
cft[ n ].kt[ 3 ][ 12 ] = - cft[ n ].f2[ 10 ] / cft[  n ].l; 
cft[ n ].kt[ 4 ][ 4 ] +=   cft[ n ].f2[ 7 ] * ( cft [ n ].ip ) /  
     ( ( cft[ n ].a_stl + cft[ n ].a_conc )  
       * cft[ n ].l ); 
cft[ n ].kt[ 4 ][ 5 ] =   cft[ n ].f2[ 12 ] / 6.0 -  cft[ n ].f2[ 6 ] / 3.0; 
cft[ n ].kt[ 4 ][ 6 ] =   cft[ n ].f2[ 5 ] / 3.0 - cft[ n ].f2[ 11 ] / 6.0; 
cft[ n ].kt[ 4 ][ 8 ] = - cft[ n ].f2[ 5 ] / cft[ n  ].l; 
cft[ n ].kt[ 4 ][ 9 ] = - cft[ n ].f2[ 6 ] / cft[ n  ].l; 
cft[ n ].kt[ 4 ][ 10 ] += - cft[ n ].f2[ 7 ] * ( cf t[ n ].ip ) /  
     ( ( cft[ n ].a_stl + cft[ n ].a_conc )  
       * cft[ n ].l ); 
cft[ n ].kt[ 4 ][ 11 ] = - ( cft[ n ].f2[ 6 ] + cft  [ n ].f2[ 12 ] ) / 6.0; 
cft[ n ].kt[ 4 ][ 12 ] =   ( cft[ n ].f2[ 5 ] + cft  [ n ].f2[ 11 ] ) / 6.0; 
cft[ n ].kt[ 5 ][ 8 ] = - cft[ n ].f2[ 10 ] / cft[ n ].l; 
cft[ n ].kt[ 5 ][ 10 ] = - ( cft[ n ].f2[ 6 ] + cft  [ n ].f2[ 12 ] ) / 6.0; 
cft[ n ].kt[ 5 ][ 12 ] =   cft[ n ].f2[ 10 ] / 2.0;  
cft[ n ].kt[ 6 ][ 9 ] = - cft[ n ].f2[ 10 ] / cft[ n ].l; 
cft[ n ].kt[ 6 ][ 10 ] =   ( cft[ n ].f2[ 5 ] + cft  [ n ].f2[ 11 ] ) / 6.0; 
cft[ n ].kt[ 6 ][ 11 ] = - cft[ n ].f2[ 10 ] / 2.0;  
cft[ n ].kt[ 7 ][ 8 ] =   ( cft[ n ].f2[ 6 ] + cft [ n ].f2[ 12 ] ) / 
     pow( cft[ n ].l, 2 ); 
cft[ n ].kt[ 7 ][ 9 ] = - ( cft[ n ].f2[ 5 ] + cft [ n ].f2[ 11 ] ) / 
     pow( cft[ n ].l, 2 ); 
cft[ n ].kt[ 8 ][ 10 ] = - cft[ n ].f2[ 11 ] / cft[  n ].l; 
cft[ n ].kt[ 8 ][ 11 ] =   cft[ n ].f2[ 10 ] / cft[  n ].l; 
cft[ n ].kt[ 9 ][ 10 ] = - cft[ n ].f2[ 12 ] / cft[  n ].l; 
cft[ n ].kt[ 9 ][ 12 ] =   cft[ n ].f2[ 10 ] / cft[  n ].l; 
cft[ n ].kt[ 10 ][ 10 ] +=   cft[ n ].f2[ 7 ] * ( c ft[ n ].ip ) /  
     ( ( cft[ n ].a_stl + cft[ n ].a_conc )  
       * cft[ n ].l ); 
cft[ n ].kt[ 10 ][ 11 ] =   cft[ n ].f2[ 6 ] / 6.0 - cft[ n ].f2[ 12 ] / 3.0; 
cft[ n ].kt[ 10 ][ 12 ] =   cft[ n ].f2[ 11 ] / 3.0  - cft[ n ].f2[ 5 ] / 6.0; 
 
} /* if ( flag->order == HIGHORDER ) */ 
 
} /* if ( flag->kg ) */ 
 
/************************************************** ***********/ 
/* GENERATE TERMS IN LOWER TRIANGULAR PORTION OF cf t[ n ].kt */ 
/************************************************** ***********/ 
 
for ( ctr1 = 1L; ctr1 <= 11L; ctr1++ ) 
 { 
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 for ( ctr2 = ( ctr1 + 1L ); ctr2 <= 12L; ctr2++ ) 
  { 
  cft[ n ].kt[ ctr2 ][ ctr1 ] =  
   cft[ n ].kt[ ctr1 ][ ctr2 ]; 
  } 
 } 
 
 
return( status ); 
} 
 
 
 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_cft_update 
 
  @(#) CFT member properties UPDATE  
 
*  CALLED FROM- a_drv_dynamic, a_drv_static, a_cft_ frecovery 
 
*     ABSTRACT- This function computes CFT member l engths, direction cosines, 
  and transformation matrices 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES & PROT OTYPES   */ 
#include "a_jt.h"  /* DATA STRUCTURE DEFINING JOINT  PROPS  */ 
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
#include "a_global.h"  /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */ 
 
 
long a_cft_update ( n, jt, cft, global ) 
 
long  n;  /* CURRENT ELEMENT NUMBER   */ 
A_JT_JOINT jt[];  /* DATA STRUCTURE FOR JOINT   */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
A_GLOBAL global[]; /* DATA STRUCTURE OF DOF-BASED V ARIABLES */ 
 
{ 
long status  = 1L;  /* RETURN STATUS    */ 
long ctr1  = 0L;  /* COUNTER     */ 
long ctr2  = 0L;  /* COUNTER     */ 
long i  = 0L;  /* INDEX     */ 
double xl  = 0.0;  /* ELEMENT LENGTH IN GLOBAL X-DI RECTION */ 
double yl  = 0.0;  /* ELEMENT LENGTH IN GLOBAL Y-DI RECTION */ 
double zl  = 0.0;  /* ELEMENT LENGTH IN GLOBAL Z-DI RECTION */ 
double cx = 0.0;  /* X-DIRECTION COSINE OF MEMBER  */ 
double cy = 0.0;  /* Y-DIRECTION COSINE OF MEMBER  */ 
double cz = 0.0;  /* Z-DIRECTION COSINE OF MEMBER  */ 
double theta_i = 0.0;  /* MEMBER TORSIONAL ROTATION  OF i-END  */ 
double theta_j = 0.0;  /* MEMBER TORSIONAL ROTATION  OF j-END  */ 
double theta = 0.0;  /* AVERAGE OF INCR. TORSIONAL ROTATIONS */ 
double iendx  = 0.0;  /* TEMP I-END VECTOR (GLOBAL X COMP)  */ 
double iendy  = 0.0;  /* TEMP I-END VECTOR (GLOBAL Y COMP)  */ 
double iendz  = 0.0;  /* TEMP I-END VECTOR (GLOBAL Z COMP)  */ 
double outp = 0.0;  /* LENGTH OF OUT-OF-PLANE VECTO R  */ 
double outpx  = 0.0;  /* GLOBAL X-DIRECTION COMPONE NT  */ 
double outpy  = 0.0;  /* GLOBAL Y-DIRECTION COMPONE NT  */ 
double outpz  = 0.0;  /* GLOBAL Z-DIRECTION COMPONE NT  */ 
 
 
/****************************************/ 
/* STORE OLD MEMBER LENGTH; COMPUTE NEW */ 
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/****************************************/ 
 
cft[ n ].l_last = cft[ n ].l; 
 
xl = jt[ cft[ n ].j ].co.x - jt[ cft[ n ].i ].co.x;   
yl = jt[ cft[ n ].j ].co.y - jt[ cft[ n ].i ].co.y;   
zl = jt[ cft[ n ].j ].co.z - jt[ cft[ n ].i ].co.z;   
 
cft[ n ].l = sqrt( pow( xl, 2 ) + pow( yl, 2 ) + po w( zl, 2 ) ); 
 
/***************************************/ 
/* COMPUTE DIRECTION COSINES OF MEMBER */ 
/***************************************/ 
 
cx = xl / cft[ n ].l; 
cy = yl / cft[ n ].l; 
cz = zl / cft[ n ].l; 
 
/************************************************** *******************/ 
/* CALCULATE TEMPORARY I-END UNIT VECTOR: {CURRENT I-END VECTOR} +   */ 
/*  {RELATIVE MEMBER ROTATION} * {LAST STEP OUT-OF- PLANE VECTOR} */ 
/************************************************** *******************/ 
 
/* CALCULATE RELATIVE LOCAL ROTATION OF MEMBER ENDS  */ 
 
theta_i = global[ cft[ n ].mcode[ 4 ] ].dqi * cft[ n ].lambda[ 4 ][ 4 ] + 
   global[ cft[ n ].mcode[ 5 ] ].dqi * cft[ n ].lam bda[ 4 ][ 5 ] + 
   global[ cft[ n ].mcode[ 6 ] ].dqi * cft[ n ].lam bda[ 4 ][ 6 ]; 
theta_j = global[ cft[ n ].mcode[ 10 ] ].dqi * cft[  n ].lambda[ 10 ][ 10 ] + 
   global[ cft[ n ].mcode[ 11 ] ].dqi * cft[ n ].la mbda[ 10 ][ 11 ] + 
   global[ cft[ n ].mcode[ 12 ] ].dqi * cft[ n ].la mbda[ 10 ][ 12 ]; 
theta  = ( theta_i + theta_j ) / 2.0; 
 
/* COMPUTE TEMPORARY I-END VECTOR */ 
 
iendx = cft[ n ].iend_x + tan( theta ) * cft[ n ].o utp_x; 
iendy = cft[ n ].iend_y + tan( theta ) * cft[ n ].o utp_y; 
iendz = cft[ n ].iend_z + tan( theta ) * cft[ n ].o utp_z; 
 
/************************************************** ****/ 
/* COMPUTE OUT-OF-PLANE VECTOR: {outp} = {c} x {ien d} */ 
/************************************************** ****/ 
 
outpx  = ( cy * iendz ) - ( cz * iendy ); 
outpy  = ( cz * iendx ) - ( cx * iendz ); 
outpz  = ( cx * iendy ) - ( cy * iendx ); 
outp   = sqrt( pow( outpx, 2 ) + pow( outpy, 2 ) + pow( outpz, 2 ) ); 
 
cft[ n ].outp_x = outpx / outp; 
cft[ n ].outp_y = outpy / outp; 
cft[ n ].outp_z = outpz / outp; 
 
/************************************************** ********************/ 
/* CALCULATE NEW I-END VECTOR AS CROSS PRODUCT: {ie nd} = {outp} x {c} */ 
/************************************************** ********************/ 
 
cft[ n ].iend_x = cft[ n ].outp_y * cz - cft[ n ].o utp_z * cy; 
cft[ n ].iend_y = cft[ n ].outp_z * cx - cft[ n ].o utp_x * cz; 
cft[ n ].iend_z = cft[ n ].outp_x * cy - cft[ n ].o utp_y * cx; 
 
/******************************/ 
/* INITIALIZE LAMBDA MATRICES */ 
/******************************/ 
 
for ( ctr1 = 0L; ctr1 <= A_CFT_NUM_DOF; ctr1++ ) 
 { 
 for ( ctr2 = 0L; ctr2 <= A_CFT_NUM_DOF; ctr2++ ) 
  { 
  cft[ n ].lambda[ ctr1 ][ ctr2 ] = 0.0; 
  } 
 } 
 
/************************************************** ********/ 
/* COMPUTE LAMBDA (GLOBAL TO LOCAL TRANSFORMATION MATRIX) */ 
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/************************************************** ********/ 
 
for ( ctr1 = 0L; ctr1 <= 3L; ctr1++ ) 
 { 
 i = 3L * ctr1; 
 cft[ n ].lambda[ 1+i ][ 1+i ] =  cx;  
 cft[ n ].lambda[ 1+i ][ 2+i ] =  cy;  
 cft[ n ].lambda[ 1+i ][ 3+i ] =  cz;  
 cft[ n ].lambda[ 2+i ][ 1+i ] =  cft[ n ].iend_x;  
 cft[ n ].lambda[ 2+i ][ 2+i ] =  cft[ n ].iend_y;  
 cft[ n ].lambda[ 2+i ][ 3+i ] =  cft[ n ].iend_z;  
 cft[ n ].lambda[ 3+i ][ 1+i ] =  cft[ n ].outp_x;  
 cft[ n ].lambda[ 3+i ][ 2+i ] =  cft[ n ].outp_y;  
 cft[ n ].lambda[ 3+i ][ 3+i ] =  cft[ n ].outp_z;  
 } 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_drv_static 
 
  @(#) analysis DRiVer--STATIC 
 
*  CALLED FROM- cftmacro 
 
*     ABSTRACT- This function calls the subroutines  which perform the 
  non-linear static analysis of the structure based  on 
  the present time step which is incremented in thi s 
  function. 
*************************************************** ************************** 
 
#include <math.h>  /* C MATH FUNCTIONS          */ 
#include <stdio.h>  /* C I/O FUNCTIONS          */ 
#include <string.h>  /* C STRING FUNCTIONS          */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS          * / 
#include "a_extern.h"  /* EXTERNAL VARIABLES & PROT OTYPES       */ 
#include "sstmatch.h"  /* TOLERANCE COMPARISONS        */ 
#include "a_jt.h"  /* DATA STRUCTURE DEFINING JOINT  PROPS   */ 
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN      */ 
#include "a_stl_el.h"  /* DATA STRUCTURE FOR STEEL BEAM-COLUMN */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
#include "a_global.h"  /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */ 
 
 
long a_drv_static ( diag, kt, size, time, nr, tol, flag, acclg, lhist, jt,  
         cft, stl, global ) 
 
long  diag[];  /* INDEX OF SKYLINE K MATRIX DIAG TE RMS */ 
double  kt[];  /* SKYLINE GLOBAL STIFFNESS MATRIX       */ 
A_MODEL_SIZE *size;  /* DATA STRUCTURE OF GLOBAL ST RUCT SIZE */ 
A_TIME  *time;  /* DATA STRUCTURE FOR TIME PARAMETE RS  */ 
A_NEW_RAPH *nr;  /* DATA STRUCTURE--NEWTON-RAPHSON PARAMS */ 
A_TOLERANCE tol;  /* DATA STRUCTURE OF PROGRAM TOLE RANCES */ 
A_FLAGS  *flag;  /* DATA STRUCTURE OF PROGRAM FLAGS        */ 
A_ACCEL  acclg[]; /* DATA STRUCTURE OF ACCELEROGRAM  PARAMS */ 
A_LOADHIST lhist[]; /* DATA STRUCTURE OF LOAD HISTO RY PARAMS */ 
A_JT_JOINT jt[];  /* DATA STRUCTURE FOR SINGLE JOIN T       */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
A_STL_BC stl[];  /* DATA STRUCTURE FOR STEEL BEAM-C OLUMN */ 
A_GLOBAL global[]; /* DATA STRUCTURE OF DOF-BASED V ARIABLES */ 
 
{ 
char *calloc();  /* SYSTEM MEMORY ALLOCATOR   */ 
long status  = 1L;  /* RETURN STATUS    */ 
long ctr = 0L;  /* COUNTER     */ 
long n = 0L;  /* ELEMENT COUNTER    */ 
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double t = 0.0;   /* CURRENT TIME   */ 
double displ_y[ 4L ];   /* STORY YIELD DISPLACEMENT S  */ 
double *soln = ( double * )0; /* VEC PASSED TO AND FROM SOLVER */ 
 
/* USER SCREEN INFO */ 
printf( "\n\n**** Beginning Static Analysis ****" ) ; 
 
/************************************************** */ 
/* ALLOCATE MEMORY FOR SOLUTION VECTOR; INITIALIZE */ 
/************************************************** */ 
 
soln       = ( double * ) calloc ( ( unsigned ) ( s ize->num_dofs + 1L ), 
                ( unsigned ) ( sizeof( *soln ) ) );  
 
for ( ctr = 0L; ctr < size->num_dofs + 1L; ctr++ ) 
 { 
 soln[ ctr ] = 0.0; 
 } 
for ( ctr = 0L; ctr < 4L; ctr++ ) 
 { 
 displ_y[ ctr ] = 0.0; 
 } 
 
/************************************************** ***/ 
/* CALC LENGTHS, DIR. COSINES, AND ROTATION MATRICE S */ 
/************************************************** ***/ 
 
/*** CFT ELEMENTS ***/ 
for ( n = 1L; ( n <= size->num_cft_elems ) && ( sta tus ); n++ ) 
 { 
 if ( ! a_cft_update( n, jt, cft, global ) ) 
  { 
  status = 0L; 
  printf( "\nCFT element calculations failed.\n" );  
  } 
 } 
 
/*** STEEL ELEMENTS ***/ 
for ( n = 1L; ( n <= size->num_stl_elems ) && ( sta tus ); n++ ) 
 { 
 if ( ! a_stl_update( n, jt, stl, global ) ) 
  { 
  status = 0L; 
  printf( "\nSteel element calculations failed.\n" ); 
  } 
 } 
 
/*******************************/ 
/* ADD ELEMENT LOADS TO JOINTS */ 
/*******************************/ 
 
/*** CFT ELEMENTS ***/ 
for ( n = 1L; ( n <= size->num_cft_elems ) && ( sta tus ); n++ ) 
 { 
 if ( ! a_cft_distr( n, flag, jt, cft ) ) 
  { 
  status = 0L; 
  printf( "\nCFT element load calcs failed.\n" ); 
  } 
 } 
 
/*** STEEL ELEMENTS ***/ 
for ( n = 1L; ( n <= size->num_stl_elems ) && ( sta tus ); n++ ) 
 { 
 if ( ! a_stl_distr( n, flag, jt, stl ) ) 
  { 
  status = 0L; 
  printf( "\nSteel element load calcs failed.\n" );  
  } 
 } 
 
/********************************/ 
/* PRINT STRUCTURAL INFORMATION */ 
/********************************/ 
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if ( ! a_io_output( t, displ_y, size, time, nr, fla g, acclg, jt, cft, stl,  
      global ) && ( status ) ) 
 { 
 status = 0L; 
 printf( "\nOutput of structural information failed . \n" ); 
 } 
 
/************************************************** *********************/ 
/*********************   BEGIN STATIC ANALYSIS   ** *********************/ 
/************************************************** *********************/ 
 
t = time->step; 
 
while ( ( t <= ( time->total + .01 * time->step ) )  && ( status ) ) 
 { 
 printf( "\n\n\n********** Time = %6lf **********",  t ); 
 printf(     "\n*********************************** **\n" ); 
 
 nr->conv = 0L; 
 
 /********************************/ 
 /* SET BEGINNING OF STEP VALUES */ 
 /********************************/ 
 
 if ( ! a_nr_init_step( t, size, flag, acclg, lhist , jt, cft, stl, 
          global ) && ( status ) ) 
  { 
  status = 0L; 
  printf( "\nFailure in step initialization routine .\n" ); 
  } 
 
   /*********************************************** **********************/ 
   /*******************   NEWTON-RAPHSON ITERATION   ********************/ 
   /*********************************************** **********************/ 
 
   for ( nr->iter_ct = 1L; ( nr->iter_ct <= nr->ite r_max ) &&  
      ( ! nr->conv ) && ( status ); nr->iter_ct++ )  
 { 
 if ( nr->iter_max > 1L ) 
     { 
     printf( "\n***********Iteration %ld*********** \n", nr->iter_ct ); 
     } 
 
/* STIFFNESS CALCULATION */ 
 
 /****************************************/ 
 /* CALCULATE ELEMENT STIFFNESS MATRICES */ 
 /****************************************/ 
 
 /*** CFT ELEMENTS ***/ 
 for ( n = 1L; ( n <= size->num_cft_elems ) && ( st atus ); n++ ) 
  { 
  if ( ! a_cft_stiffness( n, size, flag, jt, cft ) ) 
   { 
   status = 0L; 
   printf( "\nMember stiffness calcs failed.\n" ); 
   } 
  } 
 
 /*** STEEL ELEMENTS ***/ 
 for ( n = 1L; ( n <= size->num_stl_elems ) && ( st atus ); n++ ) 
  { 
  if ( ! a_stl_stiffness( n, size, flag, jt, stl ) ) 
   { 
   status = 0L; 
   printf( "\nMember stiffness calcs failed.\n" ); 
   } 
 
  } 
 
 /****************************************/ 
 /* ASSEMBLE GLOBAL STIFFNESS MATRIX, kt */ 
 /****************************************/ 
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 if ( ! a_k_assemble( diag, kt, size, cft, stl ) &&  ( status ) ) 
  { 
  status = 0L; 
  printf( "\nAssembly of global matrix failed.\n" ) ; 
  } 
 
/* GLOBAL MATRICES */ 
 
 /**********************************/ 
 /* FACTOR GLOBAL STIFFNESS MATRIX */ 
 /**********************************/ 
 
 if ( status ) 
  { 
  printf( "\n** Factoring Global Stiffness Matrix * *\n" ); 
 
  if ( ! a_eq_factor( diag, kt, size ) ) 
   { 
   status = 0L; 
   printf( "\nFactorization of K matrix failed.\n" ); 
   } 
  } 
 
/* LOADS */ 
 
 /***********************************************/ 
 /* ASSEMBLE THE GLOBAL INCREMENTAL LOAD VECTOR */  
 /***********************************************/ 
 
 if ( ! a_load_static( size, nr, lhist, jt, global ) ) 
  { 
  status = 0L; 
  printf( "Assembly of global load vector failed. \ n" ); 
  } 
 
 /****************************************/ 
 /* COMPUTE DISTRIBUTED LOAD MULTIPLIERS */ 
 /****************************************/ 
 
 else if ( ! a_load_distr( size, nr, jt, cft, stl, global ) ) 
  { 
  status = 0L; 
  printf( "\nCalc of distributed load multipliers f ailed. \n" ); 
  } 
 
/* SOLVE */ 
 
 /************************************************* ***************/ 
 /* PASS {dR} TO SOLVER; SOLVE THE SYSTEM OF EQUATI ONS; GET {dq} */ 
 /************************************************* ***************/ 
 
 for ( ctr = 1L; ( ctr <= size->num_dofs ) && ( sta tus ); ctr++ ) 
  { 
  soln[ ctr ] = global[ ctr ].dr; 
  } 
 
 printf( "\n** Solving for Displacements ** \n" ); 
 
 if ( ! a_eq_solve( diag, kt, soln, size ) ) 
  { 
  status = 0L; 
  printf( "\nSolution for displacements failed.\n" ); 
  } 
 
 for ( ctr = 1L; ( ctr <= size->num_dofs ) && ( sta tus ); ctr++ ) 
  { 
  global[ ctr ].dqi = soln[ ctr ]; 
  } 
 
/* UPDATE */ 
 
 /**********************************************/ 
 /* UPDATE NODAL COORDINATES AND DISPLACEMENTS */ 
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 /**********************************************/ 
 
 if ( ! a_jt_update( size, nr, flag, jt, global ) )  
  { 
  status = 0L; 
  printf( "\nUpdate of joints failed.\n" ); 
  } 
 
/* RECOVER FORCES */ 
 
 /*******************************/ 
 /* RECOVER LOCAL MEMBER FORCES */ 
 /*******************************/ 
 
 if ( status ) 
  { 
  printf( "\n** Recovering Forces **\n" ); 
 
  /*** CFT ELEMENTS ***/ 
  if ( ! a_cft_frecovery( size, flag, jt, cft, glob al ) ) 
   { 
   status = 0L; 
   printf( "\nCFT force recovery failed.\n" ); 
   } 
 
  /*** STEEL ELEMENTS ***/ 
  else if ( ! a_stl_frecovery( size, flag, jt, stl,  global ) ) 
   { 
   status = 0L; 
   printf( "\nSteel force recovery failed.\n" ); 
   } 
  } 
 
 /*********************************/ 
 /* UPDATE MEMBERS; ROTATE FORCES */ 
 /*********************************/ 
 
 if ( status ) 
  { 
  /*** CFT ELEMENTS ***/ 
  if ( ! a_cft_rotate( size, nr, flag, lhist, jt, c ft, global ) ) 
   { /* a_cft_update CALLED INSIDE THIS FUNCTION */  
   status = 0L; 
   printf( "\nCFT member rotation failed.\n" ); 
   } 
 
  /*** STEEL ELEMENTS ***/ 
  else if ( ! a_stl_rotate( size, nr, flag, lhist, jt, stl,  
       global ) ) 
   { /* a_stl_update CALLED INSIDE THIS FUNCTION */  
   status = 0L; 
   printf( "\nSteel member rotation failed.\n" ); 
   } 
  } 
 
/* PLASTICITY */ 
 
 /************************************************* *********************/ 
 /* DETERMINE THE PLASTICITY STATE AT EACH MEMBER E ND; UPDATE SURFACES */ 
 /************************************************* *********************/ 
 
 if ( ( flag->kp ) && ( status ) ) 
  { 
  printf( "\n** Plasticity Analysis **\n" ); 
 
  /*** CFT ELEMENTS ***/ 
  if ( ! a_pl_cft_state( size, nr, tol, flag, cft, global ) ) 
   {  
   status = 0L; 
   printf( "\nCFT hinge check failed.\n" ); 
   } 
 
  /*** STEEL ELEMENTS ***/ 
  else if ( ! a_pl_stl_state( size, nr, tol, flag, stl, global ) ) 
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   { 
   status = 0L; 
   printf( "\nSteel hinge check failed.\n"); 
   } 
  } 
 
/* CONVERGENCE CHECK */ 
 
 /***********************************/ 
 /* CHECK FOR ITERATION CONVERGENCE */ 
 /***********************************/ 
 
 if ( status ) 
  { 
  if ( ! a_nr_conv( size, nr, tol, flag, jt, global  ) ) 
   { 
   status = 0L; 
   printf( "\nConvergence check failed.\n" ); 
   } 
  } 
 
 } /* for ( nr->iter_ct = 1L; ...; nr->iter_ct++ ) */ 
 
   /*****************   END NEWTON-RAPHSON ITERATIO N LOOP   *****************/ 
 
/* PRINT RESULTS */ 
 
 /*****************************/ 
 /* OUTPUT TIME STEP RESPONSE */ 
 /*****************************/ 
 
 if ( status ) 
  { 
  printf( "\n** Writing Output of Step **\n" ); 
 
  if ( ! a_io_output( t, displ_y, size, time, nr, f lag, acclg,  
        jt, cft, stl, global ) ) 
   { 
   status = 0L; 
   printf( "\nOutput of time step failed.\n" ); 
   } 
  } 
 
 /************************************************* *************/ 
 /* UPDATE MAX AND MIN DISPLS AND FORCES (FOR OUTPU T PURPOSES) */ 
 /************************************************* *************/ 
 
 if ( flag->maxmin ) 
  { 
  if ( ! status ) 
   { /* STRUCTURE HAS FAILED OR AN ERROR OCCURRED * / 
   t = time->total;  /* This assures values are pri nted */ 
   } 
 
  if ( ! a_io_maxmin( t, size, time, flag, jt, cft,  stl, global )) 
   { 
   status = 0L; 
   printf( "\nCalculation of max/min values failed.  \n" ); 
   } 
  } 
 
 /*****************************************/ 
 /* INCREMENT TIME; EMPTY INTERNAL BUFFER */ 
 /*****************************************/ 
 
 t += time->step; 
 
 fflush( stdout ); 
 
 
 } /* while ( t <= time->total ) */ 
 
/**************************** END TIME STEP LOOP ** **************************/ 
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/*************************************/ 
/* FREE DYNAMICALLY-ALLOCATED MEMORY */ 
/*************************************/ 
 
cfree( soln ); 
 
 
return( status ); /* RETURN TO cftmacro.c */ 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_el_calcs 
 
  @(#) miscellaneous ELement CALCulationS  
 
*  CALLED FROM- cftmacro 
 
*     ABSTRACT- This function performs the calculat ion of variables that are  
    independent of the time or load, including plas ticity 
    variables, and effective CFT stiffness paramete rs. 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS    */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES & PROT OTYPES   */ 
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */ 
#include "a_stl_el.h"  /* DATA STRUCTURE FOR STEEL BEAM-COLUMN */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
 
 
long a_el_calcs( size, flag, cft, stl ) 
 
A_MODEL_SIZE size;  /* DATA STRUCTURE OF GLOBAL STR UCT SIZE  */ 
A_FLAGS  flag;  /* DATA STRUCTURE OF PROGRAM FLAGS  */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
A_STL_BC stl[];  /* DATA STRUCTURE FOR STEEL BEAM-C OLUMN */ 
 
{ 
long status = 1L;  /* RETURN STATUS    */ 
long n = 0L;  /* ELEMENT COUNTER    */ 
double na_z = 0.0;  /* MAJOR NEUTRAL AXIS OF CROSS SECTION */ 
double na_y = 0.0;  /* MINOR NEUTRAL AXIS OF CROSS SECTION */ 
double dt = 0.0;  /* CFT MAJOR AXIS D/t RATIO    */  
double bt = 0.0;  /* CFT MINOR AXIS D/t RATIO    */  
double fcy = 0.0;  /* RATIO OF fc TO fy    */ 
double d_c = 0.0;  /* DEPTH OF CONCRETE    */ 
double b_c = 0.0;  /* WIDTH OF CONCRETE    */ 
double dt_c1 = 0.0;  /* COEFFICIENT c1 USING MAJOR AXIS D/t */ 
double bt_c1 = 0.0;  /* COEFFICIENT c1 USING MINOR AXIS D/t */ 
double dt_c2 = 0.0;  /* COEFFICIENT c2 USING MAJOR AXIS D/t */ 
double bt_c2 = 0.0;  /* COEFFICIENT c2 USING MINOR AXIS D/t */ 
double dt_c3 = 0.0;  /* COEFFICIENT c3 USING MAJOR AXIS D/t */ 
double bt_c3 = 0.0;  /* COEFFICIENT c3 USING MINOR AXIS D/t */ 
double dt_c4 = 0.0;  /* COEFFICIENT c4 USING MAJOR AXIS D/t */ 
double bt_c4 = 0.0;  /* COEFFICIENT c4 USING MINOR AXIS D/t */ 
 
 
/************************/ 
/**** STEEL ELEMENTS ****/ 
/************************/ 
 
for ( n = 1L; n <= size.num_stl_elems; n++ ) 
 { 
 /***********************************/ 
 /* COMPUTE POLAR MOMENT OF INERTIA */ 
 /***********************************/ 
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 stl[ n ].i_p = sqrt( pow( stl[ n ].i_y, 2 ) + pow(  stl[ n ].i_z, 2 ) ); 
 
 /*****************************/ 
 /* COMPUTE NOMINAL STRENGTHS */ 
 /*****************************/ 
 
 stl[ n ].po  = stl[ n ].area * stl[ n ].fy;  
 stl[ n ].myo  = stl[ n ].z_y * stl[ n ].fy; 
 stl[ n ].mzo  = stl[ n ].z_z * stl[ n ].fy; 
 stl[ n ].myy  = stl[ n ].s_y * stl[ n ].fy; 
 stl[ n ].mzy  = stl[ n ].s_z * stl[ n ].fy; 
 } 
 
/**********************/ 
/**** CFT ELEMENTS ****/ 
/**********************/ 
 
for ( n = 1L; n <= size.num_cft_elems; n++ ) 
 { 
 /************************************************* **********/ 
 /* CALCULATE AREAS, MOMENTS OF INERTIA, AND SECTIO N MODULI */ 
 /************************************************* **********/ 
 
 d_c   = cft[ n ].d - 2.0 * cft[ n ].t; /*CONCR DEP TH*/ 
 b_c  = cft[ n ].b - 2.0 * cft[ n ].t; /*CONCR WIDT H*/ 
 cft[ n ].a_conc = d_c * b_c; 
 cft[ n ].a_stl = cft[ n ].d * cft[ n ].b - cft[ n ].a_conc;  
 cft[ n ].iy_c = pow( b_c, 3 ) * d_c / 12.0; 
 cft[ n ].iz_c = pow( d_c, 3 ) * b_c / 12.0; 
 
 if ( ! cft[ n ].section )  /* USER INPUT SECTION * / 
  { 
  cft[ n ].iz_s = ( cft[ n ].b * pow( cft[ n ].d, 3  ) - 
      b_c * pow( d_c, 3 ) ) / 12.0; 
  cft[ n ].iy_s = ( cft[ n ].d * pow( cft[ n ].b, 3  ) - 
      d_c * pow( b_c, 3 ) ) / 12.0; 
  cft[ n ].s_z  = cft[ n ].iz_s / ( cft[ n ].d / 2. 0 ); 
  cft[ n ].s_y  = cft[ n ].iy_s / ( cft[ n ].b / 2. 0 ); 
  cft[ n ].ix   = 4.0 * cft[ n ].t * pow( ( cft[ n ].b -  
    cft[ n ].t ) * ( cft[ n ].d - cft[ n ].t ), 2 ) / 
    ( 2.0 * ( cft[ n ].b - cft[ n ].t ) +  
      2.0 * ( cft[ n ].d - cft[ n ].t ) ); 
  cft[ n ].kpi_s= cft[ n ].a_stl * 0.284; 
  } 
 cft[ n ].ip  = sqrt( pow( cft[ n ].iy_s, 2) + pow(  cft[ n ].iz_s, 2) ); 
 cft[ n ].gmod_c = cft[ n ].emod_c / ( 2.0 * ( 1 + cft[ n ].nu_c ) ); 
 
 /**********************************************/ 
 /* COMPUTE EFFECTIVE CFT STIFFNESS PARAMETERS */ 
 /**********************************************/ 
 
 cft[ n ].ec_in = cft[ n ].emod_c; 
 cft[ n ].eiy = cft[ n ].emod_s * cft[ n ].iy_s + 
     ( cft[ n ].emod_c * cft[ n ].iy_c ); 
 cft[ n ].eiz = cft[ n ].emod_s * cft[ n ].iz_s + 
     ( cft[ n ].emod_c * cft[ n ].iz_c ); 
 
 cft[ n ].ea = cft[ n ].emod_s * cft[ n ].a_stl + 
     cft[ n ].emod_c * cft[ n ].a_conc; 
 cft[ n ].gj = cft[ n ].gmod_s * cft[ n ].ix; 
 
 cft[ n ].kpi_c = cft[ n ].wt_c * cft[ n ].a_conc; 
 cft[ n ].kpi = cft[ n ].kpi_s + cft[ n ].kpi_c; 
 
 /*****************************/ 
 /* COMPUTE NOMINAL STRENGTHS */ 
 /*****************************/ 
 
 cft[ n ].fct = 7.5 * sqrt( 1000 * cft[ n ].fc ) / 1000; 
 cft[ n ].po  = ( cft[ n ].a_stl * cft[ n ].fy ) + 
           ( cft[ n ].a_conc * cft[ n ].fc ); 
 cft[ n ].ptens = ( cft[ n ].a_stl * cft[ n ].fy ) + 
     ( cft[ n ].a_conc * cft[ n ].fct ); 
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 cft[ n ].phi  = ( cft[ n ].po - cft[ n ].ptens ) /   
            ( 2.0 * cft[ n ].po ); 
 na_z = ( 0.85 * cft[ n ].fc * ( cft[ n ].b * cft[ n ].t - 2.0 *  
          cft[ n ].t * cft[ n ].t ) +  
      0.5 * cft[ n ].fct * ( ( cft[ n ].d - cft[ n ].t ) *  
      ( cft[ n ].b - 2.0 * cft[ n ].t ) ) + 
      cft[ n ].fy * ( 2.0 * cft[ n ].d * cft[ n ].t  ) ) /  
    ( 0.85 * cft[ n ].fc * ( cft[ n ].b - 2.0 * cft [ n ].t ) + 
      0.5 * cft[ n ].fct * ( cft[ n ].b - 2.0 * cft [ n ].t ) + 
      cft[ n ].fy * ( 4.0 * cft[ n ].t ) ); 
 na_y = ( 0.85 * cft[ n ].fc * ( cft[ n ].d * cft[ n ].t - 2.0 *  
          cft[ n ].t * cft[ n ].t ) +  
      0.5 * cft[ n ].fct * ( ( cft[ n ].b - cft[ n ].t ) *  
      ( cft[ n ].d - 2.0 * cft[ n ].t ) ) + 
      cft[ n ].fy * ( 2.0 * cft[ n ].b * cft[ n ].t  ) ) /  
    ( 0.85 * cft[ n ].fc * ( cft[ n ].d - 2.0 * cft [ n ].t ) + 
      0.5 * cft[ n ].fct * ( cft[ n ].d - 2.0 * cft [ n ].t ) + 
      cft[ n ].fy * ( 4.0 * cft[ n ].t ) ); 
 cft[ n ].mzo = 0.85 * cft[ n ].fc * ( cft[ n ].b -  2.0 * cft[ n ].t ) * 
    0.5 * pow( ( na_z - cft[ n ].t ), 2 ) + 0.5 * c ft[ n ].fct *  
    ( cft[ n ].b - 2.0 * cft[ n ].t ) * 0.5 * pow( ( cft[ n ].d -  
    na_z - cft[ n ].t ), 2 ) + cft[ n ].fy * ( 2.0 * cft[ n ].t * 
    ( 0.5 * pow( cft[ n ].d, 2 ) - cft[ n ].d * cft [ n ].t +  
    pow( na_z, 2 ) + pow( cft[ n ].t, 2 ) - cft[ n ].d * na_z ) + 
    ( cft[ n ].b * cft[ n ].t ) * ( cft[ n ].d - cf t[ n ].t ) );  
 cft[ n ].myo = 0.85 * cft[ n ].fc * ( cft[ n ].d -  2.0 * cft[ n ].t ) * 
    0.5 * pow( ( na_y - cft[ n ].t ), 2 ) + 0.5 * c ft[ n ].fct *  
    ( cft[ n ].d - 2.0 * cft[ n ].t ) * 0.5 * pow( ( cft[ n ].b -  
    na_y - cft[ n ].t ), 2 ) + cft[ n ].fy * ( 2.0 * cft[ n ].t * 
    ( 0.5 * pow( cft[ n ].b, 2 ) - cft[ n ].b * cft [ n ].t +  
    pow( na_y, 2 ) + pow( cft[ n ].t, 2 ) - cft[ n ].b * na_y ) + 
    ( cft[ n ].d * cft[ n ].t ) * ( cft[ n ].b - cf t[ n ].t ) );  
 cft[ n ].myy = cft[ n ].s_y * cft[ n ].fy; 
 cft[ n ].myy = cft[ n ].s_y * cft[ n ].fy; 
 cft[ n ].mzy = cft[ n ].s_z * cft[ n ].fy; 
 
 /************************************************* ***********/ 
 /* COMPUTE COEFFICIENTS FOR MAJOR AND MINOR AXIS D /t RATIOS */ 
 /************************************************* ***********/ 
 
 dt  = cft[ n ].d / cft[ n ].t; 
 bt = cft[ n ].b / cft[ n ].t; 
 fcy = cft[ n ].fc / cft[ n ].fy; 
 dt_c1 = 1.077 - 0.002646 * dt + 0.00002304 * pow( dt, 2 ) - 1.128e-7 * 
    pow( dt, 3 ) + 0.3745 * fcy - 1.299 * pow( fcy,  2 ) - 0.04193 
    * pow( fcy, 3 ) - 0.06913 * dt * fcy + 0.000233 9 *  
    pow( dt, 2 ) * fcy + 0.07542 * dt * pow( fcy, 2  ); 
 bt_c1 = 1.077 - 0.002646 * bt + 0.00002304 * pow( bt, 2 ) - 1.128e-7 * 
    pow( bt, 3 ) + 0.3745 * fcy - 1.299 * pow( fcy,  2 ) - 0.04193 
    * pow( fcy, 3 ) - 0.06913 * bt * fcy + 0.000233 9 *  
    pow( bt, 2 ) * fcy + 0.07542 * bt * pow( fcy, 2  ); 
 dt_c2 = 0.6277 + 0.0259 * dt - 0.0003673 * pow( dt , 2 ) + 1.989e-6 * 
    pow( dt, 3 ) + 4.496 * fcy - 14.89 * pow( fcy, 2 ) + 22.44 * 
    pow( fcy, 3 ) + 0.1644 * dt * fcy - 0.0007564 *  pow( dt, 2 ) * 
    fcy - 0.1263 * dt * pow( fcy, 2 ); 
 bt_c2 = 0.6277 + 0.0259 * bt - 0.0003673 * pow( bt , 2 ) + 1.989e-6 * 
    pow( bt, 3 ) + 4.496 * fcy - 14.89 * pow( fcy, 2 ) + 22.44 * 
    pow( fcy, 3 ) + 0.1644 * bt * fcy - 0.0007564 *  pow( bt, 2 ) * 
    fcy - 0.1263 * bt * pow( fcy, 2 ); 
 dt_c3 = 0.4204 + 0.08921 * dt - 0.001216 * pow( dt , 2 ) + 0.000005128 
    * pow( dt, 3 ) + 4.897 * fcy - 16.51 * pow( fcy , 2 ) + 16.22 * 
    pow( fcy, 3 ) - 0.1645 * dt * fcy + 0.0007135 *  pow( dt, 2 ) * 
    fcy + 0.1199 * dt * pow( fcy, 2 ); 
 bt_c3 = 0.4204 + 0.08921 * bt - 0.001216 * pow( bt , 2 ) + 0.000005128 
    * pow( bt, 3 ) + 4.897 * fcy - 16.51 * pow( fcy , 2 ) + 16.22 * 
    pow( fcy, 3 ) - 0.1645 * bt * fcy + 0.0007135 *  pow( bt, 2 ) * 
    fcy + 0.1199 * bt * pow( fcy, 2 ); 
 dt_c4 = 0.3456 + 0.009121 * dt - 0.000127 * pow( d t, 2 ) + 4.979e-7 * 
    pow( dt, 3 ) - 0.3912 * fcy + 4.545 * pow( fcy,  2 ) - 10.3 * 
    pow( fcy, 3 ) - 0.05924 * dt * fcy + 0.0002449 * pow( dt, 2 ) 
    * fcy + 0.06592 * dt * pow( fcy, 2 ); 
 bt_c4 = 0.3456 + 0.009121 * bt - 0.000127 * pow( b t, 2 ) + 4.979e-7 * 
    pow( bt, 3 ) - 0.3912 * fcy + 4.545 * pow( fcy,  2 ) - 10.3 * 
    pow( fcy, 3 ) - 0.05924 * bt * fcy + 0.0002449 * pow( bt, 2 ) 
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    * fcy + 0.06592 * bt * pow( fcy, 2 ); 
 
 /**************************************/ 
 /* COMPUTE AVERAGE COEFFICIENT VALUES */ 
 /**************************************/ 
 
 cft[ n ].c1 = ( dt_c1 + bt_c1 ) / 2.0; 
 cft[ n ].c2 = ( dt_c2 + bt_c2 ) / 2.0; 
 cft[ n ].c3 = ( dt_c3 + bt_c3 ) / 2.0; 
 cft[ n ].c4 = ( dt_c4 + bt_c4 ) / 2.0; 
 
 } /* for ( n = 1L; n <= size.num_cft_elems; n++ ) */ 
 
 
return( status ); 
} 
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/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_jt_update 
 
  @(#) JOINT parameters UPDATE 
 
*  CALLED FROM- a_drv_dynamic, a_drv_static 
 
*     ABSTRACT- Calculate new nodal coordinates, di splacements, velocities,  
  and accelerations based upon the calculated globa l  
  displacements. 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS    */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES & PROT OTYPES   */ 
#include "a_jt.h"  /* DATA STRUCTURE DEFINING JOINT  PROPS  */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
#include "a_global.h"  /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */ 
 
 
long a_jt_update( size, nr, flag, jt, global ) 
 
A_MODEL_SIZE *size;  /* DATA STRUCTURE OF GLOBAL ST RUCTURE SIZE*/ 
A_NEW_RAPH *nr;  /* DATA STRUCTURE OF NEWTON-RAPHSO N PARAMS*/ 
A_FLAGS  *flag;  /* DATA STRUCTURE OF PROGRAM FLAGS   */ 
A_JT_JOINT jt[];  /* DATA STRUCTURE FOR SINGLE JOIN T  */ 
A_GLOBAL global[]; /* DATA STRUCTURE OF DOF-BASED V ARIABLES */ 
 
{ 
long status = 1L;  /* RETURN STATUS    */ 
long joint = 0L;  /* JOINT COUNTER    */ 
long k1 = 0L;  /* VARIABLE TO STORE X-TRANSLATION D OF */ 
long k2 = 0L;  /* VARIABLE TO STORE Y-TRANSLATION D OF */ 
long k3 = 0L;  /* VARIABLE TO STORE Z-TRANSLATION D OF */ 
long  dof = 0L;  /* DEGREE-OF-FREEDOM COUNTER   */ 
 
 
/***********************************/ 
/* CALCULATE NEW JOINT COORDINATES */ 
/***********************************/ 
 
if ( flag->kg )  /* UPDATE COORDS ONLY IF PERFRMING  GEOM NONL ANALYSIS */ 
 { 
 for ( joint = 1L; joint <= size->num_jts; joint++ ) 
  { 
  k1 = jt[ joint ].jcode[ 1 ]; 
  if ( k1 != 0L ) 
   { 
   jt[ joint ].co_i.x  = jt[ joint ].co.x; 
   jt[ joint ].co.x   += global[ k1 ].dqi; 
   } 
  k2 = jt[ joint ].jcode[ 2 ]; 
  if ( k2 != 0L ) 
   { 
   jt[ joint ].co_i.y  = jt[ joint ].co.y; 
   jt[ joint ].co.y   += global[ k2 ].dqi; 
   } 
  k3 = jt[ joint ].jcode[ 3 ]; 
  if ( k3 != 0L ) 
   { 
   jt[ joint ].co_i.z  = jt[ joint ].co.z; 
   jt[ joint ].co.z   += global[ k3 ].dqi; 
   } 
  } 
 } 
 
return( status ); 
} 
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/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_load_static 
 
  @(#) assembly of the LOAD vector -- STATIC portio n 
 
*  CALLED FROM- a_drv_dynamic, a_drv_static 
 
*     ABSTRACT- This function obtains the amount of  applied load as a fraction 
  of the total load.  This is obtained by determini ng the 
  current position on the load history curve and co mputing the  
  load fraction based upon the current time. 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <string.h>  /* C STRING FUNCTIONS     */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES & PROT OTYPES   */ 
#include "a_jt.h"  /* DATA STRUCTURE DEFINING JOINT  PROPS   */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
#include "a_global.h"  /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */ 
 
 
long a_load_static( size, nr, lhist, jt, global ) 
 
A_MODEL_SIZE *size;  /* DATA STRUCTURE OF GLOBAL ST RUCT SIZE  */ 
A_NEW_RAPH *nr;  /* DATA STRUCTURE OF NEWTON-RAPHSO N DATA */ 
A_LOADHIST lhist[]; /* DATA STRUCTURE OF LOAD HISTO RY PARAMS */  
A_JT_JOINT jt[];  /* DATA STRUCTURE FOR SINGLE JOIN T  */ 
A_GLOBAL global[]; /* DATA STRUCTURE OF DOF-BASED V ARIABLES */ 
 
{ 
long status  = 1L;  /* RETURN STATUS    */ 
long jnt  = 0L;  /* JOINT COUNTER    */ 
long dof  = 0L;  /* JOINT DOF COUNTER    */ 
long lhnum = 0L;  /* LOAD HISTORY NUMBER    */ 
long k = 0L;  /* CURRENT GLOBAL DEGREE-OF-FREEDOM  */ 
 
 
/* USER SCREEN INFO */ 
printf( "\n** Assembling Load Vector **\n" ); 
 
/************************************************** *******/ 
/* CALCULATE THE ITERATIVE GLOBAL LOAD VECTOR, glob al.dr */ 
/************************************************** *******/ 
 
for ( jnt = 1L; jnt <= size->num_jts; jnt++ ) 
{ 
for ( dof = 1L; dof <= A_JT_DOF; dof++ ) 
{ 
if ( jt[ jnt ].jcode[ dof ] != 0L ) 
 { 
 k = jt[ jnt ].jcode[ dof ]; 
 lhnum  = jt[ jnt ].lhist[ dof ]; 
 
 /************************************************* **/ 
 /* COMPUTE TOTAL GLOBAL LOAD VECTOR--1ST ITERATION  */ 
 /************************************************* **/ 
 
 if ( nr->iter_ct == 1L ) 
  { 
  global[ k ].r2 = lhist[ lhnum ].ldfrac2 * jt[ jnt  ].load[dof] + 
     lhist[ 1L ].ldfrac2 * jt[ jnt ].load1[ dof ] +  
     lhist[ 2L ].ldfrac2 * jt[ jnt ].load2[ dof ]; 
  jt[ jnt ].r2[ dof ] = global[ k ].r2;  
  } 
 
 /**********************************/ 
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 /* COMPUTE ITERATIVE GLOBAL LOADS */ 
 /**********************************/ 
 
 global[ k ].dr = global[ k ].r2 + global[ k ].dyn 
       + ( jt[ jnt ].ma[ dof ] ) 
       - ( jt[ jnt ].f1[ dof ] + jt[ jnt ].f2_i[ do f ] );      
 
/* INITIALIZE INCREMENTAL JOINT FORCE--MUST BE 0 EN TERING rotate */ 
 
jt[ jnt ].df_i[ dof ]   = 0.0; 
 
 } /* if ( jt[ jnt ].jcode[ dof ] != 0L ) */ 
 
} /* for ( dof = 1L; dof <= A_JT_DOF; dof++ ) */ 
 
} /* for ( jnt = 1L; jnt <= size->num_jts; jnt++ ) */ 
 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_nr_init_step 
 
  @(#) Newton-Raphson iteration--INITialization of first STEP 
 
*  CALLED FROM- a_drv_dynamic, a_drv_static 
 
*     ABSTRACT- This function sets the beginning-of -step forces and 
  displacements for the current time (load) step. 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <string.h>  /* C STRING FUNCTIONS     */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES     */  
#include "sstmatch.h"  /* TOLERANCE COMPARISONS   * / 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */ 
#include "a_stl_el.h"  /* DATA STRUCTURE FOR STEEL BEAM-COLUMN */ 
#include "a_global.h"  /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */ 
 
 
long a_nr_init_step( t, size, flag, acclg, lhist, j t, cft, stl, global ) 
 
double  t;  /* CURRENT TIME    */ 
A_MODEL_SIZE *size;  /* DATA STRUCTURE OF GLOBAL ST RUC. SIZE  */ 
A_FLAGS  *flag;  /* DATA STRUCTURE OF PROGRAM FLAGS   */ 
A_ACCEL  acclg[]; /* DATA STRUCTURE OF ACCELEROGRAM  PARAMS */ 
A_LOADHIST lhist[]; /* DATA STRUCTURE OF LOAD HISTO RY POINTS */ 
A_JT_JOINT jt[];  /* DATA STRUCTURE FOR SINGLE JOIN T  */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
A_STL_BC stl[];  /* DATA STRUCTURE FOR STEEL BEAM-C OLUMN */ 
A_GLOBAL global[]; /* DATA STRUCTURE OF DOF-BASED V ARIABLES */ 
 
{ 
long status = 1L;  /* RETURN STATUS    */ 
long i = 0L;  /* ELEMENT END INDEX    */ 
long j = 0L;  /* ELEMENT END INDEX    */ 
long n = 0L;  /* ELEMENT COUNTER    */ 
long joint = 0L;  /* JOINT COUNTER    */ 
long dof = 0L;  /* DOF COUNTER     */ 
long lhnum = 0L;  /* LOAD HISTORY NUMBER    */ 
long acclnum = 0L;  /* ACCELEROGRAM NUMBER    */ 
long coord  = 0L;  /* VARIABLE DETERMINING CURRENT SEGMENT  */ 
long curve  = 0L;  /* VARIABLE DETERMINING CURRENT SEGMENT  */ 
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    /* OF TIME HISTORY OR ACCELEROGRAM CURVE */ 
 
 
/************************************/ 
/* SET BEG-OF-STEP CFT FORCE VALUES */ 
/************************************/ 
 
for ( n = 1L; n <= size->num_cft_elems; n++ ) 
 { 
 for ( dof = 1L; dof <= A_CFT_NUM_DOF; dof++ ) 
  { 
  cft[ n ].df_i[ dof ]  = 0.0; 
  cft[ n ].f1_i[ dof ] = 0.0; 
  cft[ n ].f2_i[ dof ] = 0.0; 
  cft[ n ].f1[ dof ]  = cft[ n ].f2[ dof ]; 
  } 
 } 
 
/**************************************/ 
/* SET BEG-OF-STEP STEEL FORCE VALUES */ 
/**************************************/ 
 
for ( n = 1L; n <= size->num_stl_elems; n++ ) 
 { 
 for ( dof = 1L; dof <= A_STL_NUM_DOF; dof++ ) 
  { 
  stl[ n ].df_i[ dof ]  = 0.0; 
  stl[ n ].f1_i[ dof ] = 0.0; 
  stl[ n ].f2_i[ dof ] = 0.0; 
  stl[ n ].f1[ dof ]  = stl[ n ].f2[ dof ]; 
  } 
 } 
 
/********************************/ 
/* SET BEG-OF-STEP JOINT FORCES */ 
/********************************/ 
 
for ( joint = 1L; joint <= size->num_jts; joint++ )  
 { 
 for ( dof = 1L; dof <= A_JT_DOF; dof++ ) 
  { 
  jt[ joint ].df_i[ dof ] = 0.0; 
  jt[ joint ].f2_i[ dof ] = 0.0; 
  jt[ joint ].f1[ dof ]   = jt[ joint ].f2[ dof ]; 
  } 
 } 
 
/****************************/ 
/* UPDATE GLOBAL PARAMETERS */ 
/****************************/ 
 
for ( dof = 1L; dof <= size->num_dofs; dof++ ) 
 { 
 global[ dof ].dr = 0.0; 
 global[ dof ].r1  = global[ dof ].r2; 
 global[ dof ].q2i  = 0.0; 
 global[ dof ].q1 = global[ dof ].q2; 
 global[ dof ].v1 = global[ dof ].v2; 
 global[ dof ].v1_i = global[ dof ].v2; 
 global[ dof ].a1 = global[ dof ].a2; 
 global[ dof ].a1_i = global[ dof ].a2; 
 } 
 
/************************************************** ***********************/ 
/* FIND LOCATIONS ON LOAD CURVES AND ACCELEROGRAMS FOR CURRENT TIME STEP */ 
/************************************************** ***********************/ 
 
/* GET LOCATION ON LOAD HISTORY CURVES */ 
for ( lhnum = 1L; lhnum <= size->num_lhs; lhnum++ )  
 { 
 for ( coord = 1L; coord <= lhist[ lhnum ].num_lhpt s; coord++ ) 
  { 
  if ( t <= lhist[ lhnum ].time_pt[ coord ] + 0.000 0001 ) 
   { 
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   lhist[ lhnum ].curve = coord; 
   break; 
   } 
  } 
 } 
 
/************************************************** *********/ 
/* CALCULATE THE LOAD FRACTION FOR EACH LOAD HISTOR Y CURVE */ 
/************************************************** *********/ 
 
for ( lhnum = 1L; ( lhnum <= size->num_lhs ) && sta tus; lhnum++ ) 
 { 
 curve = lhist[ lhnum ].curve; 
 lhist[ lhnum ].ldfrac1 = lhist[ lhnum ].ldfrac2; 
 
        if ( ! SS_TOL_SAME( ( lhist[ lhnum ].time_p t[ curve ] - 
         lhist[ lhnum ].time_pt[ curve - 1L ] ), 0. 0 ) ) 
  { 
  lhist[ lhnum ].ldfrac2 = lhist[ lhnum ].load_pt[ curve - 1L ] +  
   ( t - lhist[ lhnum ].time_pt[ curve - 1L ] ) * 
   ( lhist[ lhnum ].load_pt[ curve ] -  
     lhist[ lhnum ].load_pt[ curve - 1L ] ) / 
   ( lhist[ lhnum ].time_pt[ curve ] -  
     lhist[ lhnum ].time_pt[ curve - 1L ] ); 
  } 
 else 
  { 
  status = 0L; 
  printf( "\n\nDivide by zero error for load histor y %ld", lhnum); 
  printf( "\nCheck input under *A_LOADHIST for erro rs.\n\n" ); 
  } 
 } 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_pl_cft_dist.c 
 
  @(#) for CFT element ends: calc. DISTance between  surfaces 
 
*  CALLED FROM- a_pl_cft_state 
 
*     ABSTRACT- This function calculates the distan ce between the loading  
  surface and the bounding surface by using the Mro z vector.   
  If the end became plastic for the first time this  step, din is  
  calculated; otherwise d is calculated. 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <string.h>  /* C STRING FUNCTIONS     */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES     */  
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
 
 
long a_pl_cft_dist( n, end, tol, cft ) 
 
long  n;  /* CURRENT ELEMENT    */ 
long  end;  /* CURRENT END:  0L = I-END   */ 
    /*               1L = J-END   */ 
A_TOLERANCE tol;  /* DATA STRUCTURE OF PROGRAM TOLE RANCES  */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
 
{ 
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long status = 1L;  /* RETURN STATUS    */ 
long ctr1 = 0L;  /* COUNTER     */ 
long i = 0L;  /* FORCE INDEX     */ 
long neg = 1L;  /* AXIAL FORCE MULTIPLIER 
     POS =  1L (DO NOT CHANGE SIGN) 
     NEG = -1L (NEGATE FORCE VALUE) */ 
double  rho = 0.0;  /* RATIO OF B.S. RADIUS TO L.S.  RADIUS */ 
double rl = 0.0;  /* LOADING SURFACE RADIUS   */ 
double rb = 0.0;  /* BOUNDING SURFACE RADIUS   */ 
double al[ 4 ];  /* VECTOR CONTAINING L.S. CENTROID S  */ 
double ab[ 4 ];  /* VECTOR CONTAINING B.S. CENTROID S  */ 
double s[ 4 ];   /* VECTOR OF END OF STEP FORCES  * / 
 
 
/*********************/ 
/* INITIALIZE ARRAYS */ 
/*********************/ 
 
for ( ctr1 = 0L; ctr1 < 4L; ctr1++ ) 
 { 
 al[ ctr1 ] = 0.0; 
 ab[ ctr1 ] = 0.0; 
 s[ ctr1 ] = 0.0; 
 } 
 
/*************************/ 
/* CALCULATE FORCE INDEX */ 
/*************************/ 
 
i = 6L * end; 
 
/************************************************** **************************/ 
/* IF J-END, THEN NEGATE THE FORCE SUCH THAT A COMP RESSIVE LOAD IS POSITIVE */ 
/************************************************** **************************/ 
 
( i == 0L ) ? ( neg = POS ) : ( neg = NEG ); 
 
/***************************/ 
/* SET SHORTENED VARIABLES */ 
/***************************/ 
 
rho = cft[ n ].rho[ end ]; 
rl  = cft[ n ].ls_rad[ end ]; 
rb = cft[ n ].bs_rad[ end ]; 
 
al[ 1 ] = cft[ n ].ls_cent[ end ].p + cft[ n ].phi * rl * cft[ n ].po; 
al[ 2 ] = cft[ n ].ls_cent[ end ].my; 
al[ 3 ] = cft[ n ].ls_cent[ end ].mz; 
 
ab[ 1 ] = cft[ n ].bs_cent[ end ].p + cft[ n ].phi * rb * cft[ n ].po; 
ab[ 2 ] = cft[ n ].bs_cent[ end ].my; 
ab[ 3 ] = cft[ n ].bs_cent[ end ].mz; 
 
s[ 1 ] = cft[ n ].f2[ 1 + i ] * neg; 
s[ 2 ] = cft[ n ].f2[ 5 + i ]; 
s[ 3 ] = cft[ n ].f2[ 6 + i ]; 
 
/*************************/ 
/* CALCULATE MROZ VECTOR */ 
/*************************/ 
 
cft[ n ].mroz[ end ].p  = ( rho - 1L ) * s[ 1 ] - (  rho * al[ 1 ] - ab[ 1 ] ); 
cft[ n ].mroz[ end ].my = ( rho - 1L ) * s[ 2 ] - (  rho * al[ 2 ] - ab[ 2 ] ); 
cft[ n ].mroz[ end ].mz = ( rho - 1L ) * s[ 3 ] - (  rho * al[ 3 ] - ab[ 3 ] ); 
 
/**********************/ 
/* CALCULATE DISTANCE */ 
/**********************/ 
 
/* IF THE FORCE POINT IS ON THE B.S., SET d EQUAL T O ZERO */ 
 
if ( cft[ n ].surf[ end ] == BS ) 
 { 
 cft[ n ].dist[ end ] = 0.0; 
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 } 
 
/* OTHERWISE COMPUTE ACCORDING TO THE MROZ VECTOR */ 
 
else if ( cft[ n ].state[ end ] == PL_IN )  /* INIT IAL BREACH */ 
 { 
 cft[ n ].dist_in[ end ] = sqrt( pow( cft[ n ].mroz [ end ].p, 2 ) + 
       pow( cft[ n ].mroz[ end ].my, 2 ) + 
       pow( cft[ n ].mroz[ end ].mz, 2 ) ); 
 cft[ n ].dist[ end ] = cft[ n ].dist_in[ end ] - t ol.surf; 
 } 
 
else if ( cft[ n ].state[ end ] == PL ) /* END WAS PLASTIC AT THE BEG OF STEP */ 
 { 
 cft[ n ].dist[ end ] = sqrt( pow( cft[ n ].mroz[ e nd ].p, 2 ) + 
      pow( cft[ n ].mroz[ end ].my, 2 ) + 
      pow( cft[ n ].mroz[ end ].mz, 2 ) ); 
 
 if ( cft[ n ].dist[ end ] == cft[ n ].dist_in[ end  ] ) 
  { 
  cft[ n ].dist[ end ] = cft[ n ].dist_in[ end ] - tol.surf; 
  } 
 } 
 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_pl_cft_drift.c 
 
  @(#) CFT element force point DRIFT control 
 
*  CALLED FROM- a_pl_cft_state 
 
*     ABSTRACT- This function moves the end of step  force point (which may lie 
  either beyond or beneath the L.S.) back to the lo ading surface  
  by moving normal to the axial force axis.  The pr ocedure  
  entails finding the vector that crosses the L.S.,  then  
  performing the bisection algorithm on this vector  until the  
  force point is on the L.S. w/in a tol. 
  Following drift control back to the LS, the shear s are  
  adjusted to equilibrate the moments that may have  been alter 
  by the drift control.  Except for torsion, tis pr ocedure  
  ensures element equilibrium, since axial forces a re not altered. 
 
  Note: if the force point is beyond the bounding s urface, other  
  functions have already ensured that the two surfa ces are  
  touching.  Therefore moving to the L.S. will put the force  
  point on or w/in a tolerance of the B.S. 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <string.h>  /* C STRING FUNCTIONS     */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES     */  
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
 
#define IN 0L 
#define OUT 1L 
 
 
long a_pl_cft_drift( n, end, tol, cft ) 
 
long  n;  /* CURRENT ELEMENT    */ 
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long  end;  /* CURRENT ELEMENT END    */  
A_TOLERANCE tol;  /* DATA STRUCTURE OF TOLERANCES  */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
 
{ 
long status = 1L;  /* RETURN STATUS    */ 
long i = 0L;  /* FORCE INDEX     */ 
long done = 0L;  /* FLAG TO INDICATE COMPLETION OF BISEC  */ 
long fpt = 0L;  /* LOCATION OF FORCE PT RELATIVE TO  L.S. 
     0L = IN (inside L.S.) 
     1L = OUT (outside L.S.)  */ 
long neg = 1L;  /* AXIAL FORCE MULTIPLIER 
     POS =  1L (DO NOT CHANGE SIGN) 
     NEG = -1L (NEGATE FORCE VALUE) */ 
double eqn = 0.0;  /* VALUE OF SURFACE EQUATION   * / 
double eqn_i = 0.0;  /* VALUE OF LAST STEP SURFACE EQUATION   */ 
double l1 = 0.0;  /* LOWER AXIAL FORCE PT OF BISECT  VEC    */ 
double l2 = 0.0;  /* LOWER Y-MOMENT FORCE PT OF BIS ECT VEC */ 
double l3 = 0.0;  /* LOWER Z-MOMENT FORCE PT OF BIS ECT VEC */ 
double m1 = 0.0;  /* MID AXIAL FORCE PT OF BISECT V EC    */ 
double m2 = 0.0;  /* MID Y-MOMENT FORCE PT OF BISEC T VEC */ 
double m3 = 0.0;  /* MID Z-MOMENT FORCE PT OF BISEC T VEC */ 
double u1 = 0.0;  /* UPPER AXIAL FORCE PT OF BISECT  VEC    */ 
double u2 = 0.0;  /* UPPER Y-MOMENT FORCE PT OF BIS ECT VEC */ 
double u3 = 0.0;  /* UPPER Z-MOMENT FORCE PT OF BIS ECT VEC */ 
double moment = 0.0;  /* NORMAL OF STRONG AND WK AX IS BENDING  */ 
 
 
/*************************/ 
/* CALCULATE FORCE INDEX */ 
/*************************/ 
 
i = 6L * end; 
 
/************************************************** **************************/ 
/* IF J-END, THEN NEGATE THE FORCE SUCH THAT A COMP RESSIVE LOAD IS POSITIVE */ 
/************************************************** **************************/ 
 
( i == 0L ) ? ( neg = POS ) : ( neg = NEG ); 
 
/************************************************** ******************/ 
/* IF DRIFT IS ALONG AXIAL FORCE AXIS, DO NOT PERFO RM DRIFT CONTROL */ 
/************************************************** ******************/ 
 
moment = sqrt( pow( cft[ n ].f2[ 5 + i ] / cft[ n ] .myo, 2.0 ) +  
        pow( cft[ n ].f2[ 6 + i ] / cft[ n ].mzo, 2 .0 ) ); 
 
if ( moment > tol.surf ) 
{ 
/************************************************** ****************************/ 
/* SET INITIAL ENDPOINTS OF BISECTION VECTOR TO F2 FORCE PT AND L.S. CENTROID */ 
/************************************************** ****************************/ 
 
u1 = ( neg * cft[ n ].f2[ 1 + i ] - cft[ n ].ls_cen t[ end ].p - 
       cft[ n ].ls_rad[ end ] * cft[ n ].phi * cft[  n ].po ) /  
     ( cft[ n ].ls_rad[ end ] * cft[ n ].po ); 
u2 = ( cft[ n ].f2[ 5 + i ] - cft[ n ].ls_cent[ end  ].my ) /  
     ( cft[ n ].ls_rad[ end ] * cft[ n ].myo ); 
u3 = ( cft[ n ].f2[ 6 + i ] - cft[ n ].ls_cent[ end  ].mz ) /  
     ( cft[ n ].ls_rad[ end ] * cft[ n ].mzo ); 
 
l1 = u1; 
l2 = 0.0; 
l3 = 0.0; 
 
/************************************************** *******************/ 
/* DETERMINE WHETHER FORCE POINT IS ON THE INSIDE O R OUTSIDE OF L.S. */ 
/************************************************** *******************/ 
 
/* CALL SURFACE EQN ROUTINE; CALCULATES VALUE OF L. S. EQN FOR l1, l2, AND l3 */ 
 
eqn = a_pl_cft_surf( n, cft, u1, u2, u3 ); 
 
( eqn < ( 1.0 + tol.surf ) ) ? ( fpt = IN ) : ( fpt  = OUT ); 
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/************************************************** ***************************/ 
/* IF THE END-OF-STEP POINT IS INSIDE THE L.S., MOV E OUTWARD ALONG THE VECTOR*/ 
/* FROM THE CENTROID OF THE L.S. TO THE FORCE POINT  IN INCREMENTS EQUAL TO 10*/ 
/* TIMES THE L.S. TOLERANCE UNTIL THE L.S. IS CROSS ED           */ 
/************************************************** ***************************/ 
 
if ( fpt == IN ) 
 { 
 while ( eqn < ( 1.0 + tol.surf ) ) 
  { 
  u2 += 10.0 * tol.surf * ( u2 - l2 ); 
  u3 += 10.0 * tol.surf * ( u3 - l3 ); 
  
  eqn = a_pl_cft_surf( n, cft, u1, u2, u3 ); 
  } 
 } 
 
/************************************************** ****/ 
/* PERFORM BISECTION ON VECTOR WITH ENDPOINTS u AND  l */ 
/************************************************** ****/ 
 
/* COMPUTE INITIAL MIDPOINT OF BISECTION VECTOR */ 
 
m1 = ( l1 + u1 ) / 2.0; 
m2 = ( l2 + u2 ) / 2.0; 
m3 = ( l3 + u3 ) / 2.0; 
 
eqn = a_pl_cft_surf( n, cft, m1, m2, m3 ); 
 
/* CHECK MIDPOINT OF VECTOR AGAINST L.S.  IF NOT ON  L.S. W/I A TOLERANCE,   */ 
/* BISECT THE SEGMENT OF THE VECTOR CROSSING THE L. S AND REPEAT STEPS WITH  */ 
/* THE NEW MIDPOINT         */ 
 
while ( ! done ) 
 { 
 eqn_i = eqn; 
 
 if ( eqn > ( 1.0 + tol.surf ) )  
  { 
  u2 = m2;   /* ASSIGN UPPER FORCE POINT TO MIDPT * /  
  u3 = m3; 
 
  m2 = ( l2 + u2 ) / 2.0;  /* BISECT VECTOR */ 
  m3 = ( l3 + u3 ) / 2.0; 
 
  eqn = a_pl_cft_surf( n, cft, m1, m2, m3 ); 
  } 
 else if ( eqn < 1.0 ) 
  { 
  l2 = m2;  /* ASSIGN LOWER FORCE POINT OT MIDPT */   
  l3 = m3; 
 
  m2 = ( l2 + u2 ) / 2.0;  /* BISECT VECTOR */ 
  m3 = ( l3 + u3 ) / 2.0; 
 
  eqn = a_pl_cft_surf( n, cft, m1, m2, m3 ); 
  } 
 else 
  { 
  done = 1L; 
  } 
  
 if ( ( ! done ) && ( eqn_i == eqn ) ) 
  { 
  done = 1L; 
  } 
 } /* while ( ! done ) */ 
 
/*****************************************/ 
/* COMPUTE NEW f2 AND INCREMENTAL FORCES */ 
/*****************************************/ 
 
cft[ n ].f2[ 5 + i ] = m2 * ( cft[ n ].ls_rad[ end ] * cft[ n ].myo ) + 
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         cft[ n ].ls_cent[ end ].my; 
cft[ n ].f2[ 6 + i ] = m3 * ( cft[ n ].ls_rad[ end ] * cft[ n ].mzo ) + 
         cft[ n ].ls_cent[ end ].mz; 
 
cft[ n ].f2_i[ 5 + i ] = cft[ n ].f2[ 5 + i ] - cft [ n ].f1[ 5 + i ]; 
cft[ n ].f2_i[ 6 + i ] = cft[ n ].f2[ 6 + i ] - cft [ n ].f1[ 6 + i ]; 
 
cft[ n ].df_i[ 5 + i ] = cft[ n ].f2_i[ 5 + i ] - c ft[ n ].f1_i[ 5 + i ]; 
cft[ n ].df_i[ 6 + i ] = cft[ n ].f2_i[ 6 + i ] - c ft[ n ].f1_i[ 6 + i ]; 
 
/****************************************/ 
/* ADJUST SHEARS TO EQUILIBRATE MOMENTS */ 
/****************************************/ 
 
cft[ n ].f2[ 2L ] = ( cft[ n ].f2[ 6L ] + cft[ n ]. f2[ 12L ] ) / cft[ n ].l;  
cft[ n ].f2[ 3L ] = ( cft[ n ].f2[ 5L ] + cft[ n ]. f2[ 11L ] ) / cft[ n ].l;  
cft[ n ].f2[ 8L ] = - cft[ n ].f2[ 2L ]; 
cft[ n ].f2[ 9L ] = - cft[ n ].f2[ 3L ]; 
 
cft[ n ].f2_i[ 2L ] = cft[ n ].f2[ 2L ] - cft[ n ]. f1[ 2L ]; 
cft[ n ].f2_i[ 3L ] = cft[ n ].f2[ 3L ] - cft[ n ]. f1[ 3L ]; 
cft[ n ].f2_i[ 8L ] = cft[ n ].f2[ 8L ] - cft[ n ]. f1[ 8L ]; 
cft[ n ].f2_i[ 9L ] = cft[ n ].f2[ 9L ] - cft[ n ]. f1[ 9L ]; 
 
cft[ n ].df_i[ 2L ] = cft[ n ].f2_i[ 2L ] - cft[ n ].f1_i[ 2L ]; 
cft[ n ].df_i[ 3L ] = cft[ n ].f2_i[ 3L ] - cft[ n ].f1_i[ 3L ]; 
cft[ n ].df_i[ 8L ] = cft[ n ].f2_i[ 8L ] - cft[ n ].f1_i[ 8L ]; 
cft[ n ].df_i[ 9L ] = cft[ n ].f2_i[ 9L ] - cft[ n ].f1_i[ 9L ]; 
 
} /* if ( moment > tol.surf ) */ 
 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_pl_cft_grad.c 
 
  @(#) calculation of the CFT loading surface GRADi ent 
 
*  CALLED FROM- a_pl_cft_state 
 
*     ABSTRACT- This function calculates the gradie nt to the loading surface 
  for the current element end.  It changes the flag  signaling if  
  the end is loading or unloading. 
 
  Note that a positive j-end axial force will be te nsile although 
  in the plastic formulation a positive force is al ways  
  compressive.  Therefore, before computing the gra dient, the  
  j-end axial force is negated using the 'negate' v ariable to  
  rectify this. 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <string.h>  /* C STRING FUNCTIONS     */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES     */  
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */  
 
 
long a_pl_cft_grad( n, end, force, cft ) 
 
long   n;  /* CURRENT ELEMENT    */ 
long  end;  /* CURRENT ELEMENT END (0L = i, 1L = j)  */ 
long  force;  /* FORCES TO USE IN EVAL. OF GRADIENT  
     F1 = 1L (beg of step forces) 
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     F2 = 2L (end of step forces)  */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
 
{ 
long status = 1L;  /* RETURN STATUS    */ 
long i = 0L;  /* FORCE INDEX     */ 
long neg = 1L;  /* AXIAL FORCE MULTIPLIER 
     POS =  1L (DO NOT CHANGE SIGN) 
     NEG = -1L (NEGATE FORCE VALUE) */ 
double product = 0.0;  /* DOT PRODUCT OF GRADIENT A ND INCR FORCE*/ 
    /* VECTOR, IF < 0, UNLOADING HAS OCCURRED*/ 
double p = 0.0;  /* AXIAL FORCE - AXIAL BACK FORCE - 
     PHI * RADIUS * NOM. AXIAL FORCE */ 
double my = 0.0;  /* Y-MOMENT FORCE - Y-MOMENT BACK  FORCE */ 
double mz = 0.0;  /* Z-MOMENT FORCE - Z-MOMENT BACK  FORCE */ 
double po = 0.0;  /* L.S. RADIUS * NOM. AXIAL FORCE   */ 
double myo = 0.0;  /* L.S. RADIUS * NOM. Y-MOMENT F ORCE  */ 
double mzo = 0.0;  /* L.S. RADIUS * NOM. Z-MOMENT F ORCE  */ 
 
 
/*************************/ 
/* CALCULATE FORCE INDEX */ 
/*************************/ 
 
i = 6L * end; 
 
/************************************************** **************************/ 
/* IF J-END, THEN NEGATE THE FORCE SUCH THAT A COMP RESSIVE LOAD IS POSITIVE */ 
/************************************************** **************************/ 
 
( i == 0L ) ? ( neg = POS ) : ( neg = NEG ); 
 
/*****************************/ 
/* COMPUTE CURRENT GRADIENTS */ 
/*****************************/ 
 
/* LOADING SURFACE EQUATION:              */ 
/* F = c1 * ( mz / mzo )^2 + c1 * ( my / myo )^2 + c2 * ( p / po )^2 +     */ 
/*     c3 * ( mz / mzo )^2 * ( p / po )^2 +            */ 
/*     c3 * ( my / myo )^2 * ( p / po )^2 +            */ 
/*     c4 * ( mz / mzo )^2 * ( my / myo )^2           */ 
 
 
if ( force == F1 ) 
 { /* USE BEGINNING OF ITERATION FORCES */ 
 p  = neg * ( cft[ n ].f1[ 1 + i ] + cft[ n ].f1_i[  1 + i ] ) -  
    cft[ n ].ls_cent[ end ].p -  
    cft[ n ].phi * cft[ n ].ls_rad[ end ] * cft[ n ].po; 
 po = cft[ n ].ls_rad[ end ] * cft[ n ].po; 
 
 my = cft[ n ].f1[ 5 + i ] + cft[ n ].f1_i[ 5 + i ]  -  
    cft[ n ].ls_cent[ end ].my;  
 myo = cft[ n ].ls_rad[ end ] * cft[ n ].myo; 
 
 mz = cft[ n ].f1[ 6 + i ] + cft[ n ].f1_i[ 6 + i ]  -  
    cft[ n ].ls_cent[ end ].mz;  
 mzo = cft[ n ].ls_rad[ end ] * cft[ n ].mzo; 
 } 
 
else if ( force == F2 ) 
 { /* USE END OF ITERATION FORCES */ 
 p  = neg * cft[ n ].f2[ 1 + i ] - cft[ n ].ls_cent [ end ].p -  
    cft[ n ].phi * cft[ n ].ls_rad[ end ] * cft[ n ].po; 
 po = cft[ n ].ls_rad[ end ] * cft[ n ].po; 
 
 my = cft[ n ].f2[ 5 + i ] - cft[ n ].ls_cent[ end ].my;  
 myo = cft[ n ].ls_rad[ end ] * cft[ n ].myo; 
 
 mz = cft[ n ].f2[ 6 + i ] - cft[ n ].ls_cent[ end ].mz;  
 mzo = cft[ n ].ls_rad[ end ] * cft[ n ].mzo; 
 } 
 
 
cft[ n ].grad[ end ].p = 2.0 * p / ( po * po ) *  
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   ( cft[ n ].c2 + cft[ n ].c3 * pow( my / myo, 2 )  +  
     cft[ n ].c3 * pow( mz / mzo, 2 ) ); 
 
cft[ n ].grad[ end ].my = 2.0 * my / ( myo * myo ) *  
   ( cft[ n ].c1 + cft[ n ].c3 * pow( p / po, 2 ) +   
     cft[ n ].c4 * pow( mz / mzo, 2 ) ); 
 
cft[ n ].grad[ end ].mz = 2.0 * mz / ( mzo * mzo ) *  
   ( cft[ n ].c1 + cft[ n ].c3 * pow( p / po, 2 ) +   
     cft[ n ].c4 * pow( my / myo, 2 ) ); 
 
/*****************************************/ 
/* COMPUTE DENOMINATOR OF NORMAL TO L.S. */ 
/*****************************************/ 
 
cft[ n ].norm[ end ]  = sqrt( pow( cft[ n ].grad[ e nd ].p, 2 ) + 
    pow( cft[ n ].grad[ end ].my, 2 ) + 
    pow( cft[ n ].grad[ end ].mz, 2 ) ); 
 
/***********************/ 
/* CHECK FOR UNLOADING */ 
/***********************/ 
 
product = cft[ n ].grad[ end ].p * neg * cft[ n ].d f_i[ 1 + i ] + 
   cft[ n ].grad[ end ].my * cft[ n ].df_i[ 5 + i ]  + 
   cft[ n ].grad[ end ].mz * cft[ n ].df_i[ 6 + i ] ;  
 
if ( product < 0.0 ) 
 { 
 cft[ n ].status[ end ] = UNLOAD; 
 } 
else 
 { 
 cft[ n ].status[ end ] = LOAD; 
 } 
 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_pl_cft_iso_hard.c 
 
  @(#) PLasticity routine for CFT ISOtropic HARDeni ng 
 
*  CALLED FROM- a_pl_cft_state 
 
*     ABSTRACT- This function performs the isotropi c hardening calculations for 
  movement of the CFT loading surface and bounding surface. 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <string.h>  /* C STRING FUNCTIONS     */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES     */  
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
 
 
long a_pl_cft_iso_hard( n, end, cft ) 
 
long  n;  /* ELEMENT NUMBER    */ 
long  end;  /* ELEMENT END     */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
 
{ 
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long status = 1L;  /* RETURN STATUS    */ 
long i = 0L;  /* FORCE AND STIFFNESS TERM INDEX  */  
long ctr1 = 0L;  /* COUNTER     */ 
long neg = 1L;  /* AXIAL FORCE MULTIPLIER 
     POS =  1L (DO NOT CHANGE SIGN) 
     NEG = -1L (NEGATE FORCE VALUE) */ 
double grad[ 7L ];  /* GRADIENT VECTOR STORED IN AR RAY  */ 
double temp = 0.0;  /* TEMPORARY PRODUCT STORAGE    */ 
double num = 0.0;  /* {dF/dS}T * [Kt] * {dq}   */ 
double denom = 0.0;  /* {dF/dS}T * [Kt + Kp] * {dF/ dS}  */ 
double dlambda = 0.0;  /* SCALAR RELATING PLASTIC A ND TOTAL DISPLS*/ 
double dqp_p = 0.0;  /* INCR OF PLASTIC AXIAL DISPL ACEMENT  */ 
double dqp_my = 0.0;  /* INCR OF PLASTIC Y-MOMENT D ISPLACEMENT */ 
double dqp_mz = 0.0;  /* INCR OF PLASTIC Z-MOMENT D ISPLACEMENT */ 
double dwork = 0.0;  /* INCR OF PLASTIC WORK   */ 
double work_norm= 0.0; /* PLASTIC WORK NORMALIZED B Y STRAIN ENERGY*/ 
double old_lsr = 0.0;  /* BEGINNING OF STEP L.S. RA DIUS  */ 
double old_bsr = 0.0;  /* BEGINNING OF STEP B.S. RA DIUS  */ 
double eta_ls = 0.0;  /* AMOUNT OF L.S. MOVEMENT   */ 
double eta_bs = 0.0;  /* AMOUNT OF B.S. MOVEMENT   */ 
double al[ 4 ];  /* VECTOR CONTAINING L.S. CENTROID S  */ 
double ab[ 4 ];  /* VECTOR CONTAINING B.S. CENTROID S  */ 
double ds[ 4 ];  /* VECTOR OF INCREMENTAL FORCES  * / 
double s[ 4 ];   /* VECTOR OF BEGINNING OF STEP FOR CES  */ 
 
 
/*********************/ 
/* INITIALIZE ARRAYS */ 
/*********************/ 
 
for ( ctr1 = 0L; ctr1 < 7L; ctr1++ ) 
 { 
 grad[ ctr1 ] = 0.0; 
 } 
 
for ( ctr1 = 0L; ctr1 < 4L; ctr1++ ) 
 { 
 al[ ctr1 ] = 0.0; 
 ab[ ctr1 ] = 0.0; 
 ds[ ctr1 ]  = 0.0; 
 s[ ctr1 ]  = 0.0; 
 } 
 
/********************************************/ 
/* CALCULATE FORCE AND STIFFNESS TERM INDEX */ 
/********************************************/ 
 
i = 6L * end; 
 
/************************************************** **************************/ 
/* IF J-END, THEN NEGATE THE FORCE SUCH THAT A COMP RESSIVE LOAD IS POSITIVE */ 
/************************************************** **************************/ 
 
( i == 0L ) ? ( neg = POS ) : ( neg = NEG ); 
 
/***************************/ 
/* SET SHORTENED VARIABLES */ 
/***************************/ 
 
al[ 1 ] = cft[ n ].ls_cent[ end ].p + cft[ n ].phi * cft[ n ].ls_rad[ end ] * 
   cft[ n ].po; 
al[ 2 ] = cft[ n ].ls_cent[ end ].my; 
al[ 3 ] = cft[ n ].ls_cent[ end ].mz; 
 
ab[ 1 ] = cft[ n ].bs_cent[ end ].p + cft[ n ].phi * cft[ n ].bs_rad[ end ] * 
   cft[ n ].po; 
ab[ 2 ] = cft[ n ].bs_cent[ end ].my; 
ab[ 3 ] = cft[ n ].bs_cent[ end ].mz; 
 
ds[ 1 ] = cft[ n ].df_i[ 1 + i ] * neg; 
ds[ 2 ] = cft[ n ].df_i[ 5 + i ]; 
ds[ 3 ] = cft[ n ].df_i[ 6 + i ]; 
 
s[ 1 ] = ( cft[ n ].f1[ 1 + i ] + cft[ n ].f1_i[ 1 + i ] ) * neg; 
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s[ 2 ] = cft[ n ].f1[ 5 + i ] + cft[ n ].f1_i[ 5 + i ]; 
s[ 3 ] = cft[ n ].f1[ 6 + i ] + cft[ n ].f1_i[ 6 + i ]; 
 
/***********************************************/ 
/* CALCULATE INCREMENT OF PLASTIC DISPLACEMENT */ 
/***********************************************/ 
 
/* ASSIGN VALUES TO TEMPORARY ARRAYS */ 
 
grad[ 1 ] = cft[ n ].grad[ end ].p; 
grad[ 5 ] = cft[ n ].grad[ end ].my; 
grad[ 6 ] = cft[ n ].grad[ end ].mz; 
 
/* CALCULATE NUMERATOR OF DLAMBDA:  num = {dF/dS}T * {dS} */ 
 
num = grad[ 1 ] * ds[ 1 ] + grad[ 5 ] * ds[ 2 ] + g rad[ 6 ] * ds[ 3 ]; 
 
/* CALCULATE DENOMINATOR OF DLAMBDA:  denom = {dF/d S}T * Kp * {dF/dS} */ 
 
denom = grad[ 1 ] * cft[ n ].kp[ end ].p  * grad[ 1  ] + 
 grad[ 5 ] * cft[ n ].kp[ end ].my * grad[ 5 ] + 
 grad[ 6 ] * cft[ n ].kp[ end ].mz * grad[ 6 ];  
 
/* CALCULATE DLAMBDA AND INCREMENTAL PLASTIC DISPLA CEMENTS */ 
 
dlambda = num / denom; 
 
dqp_p = dlambda * grad[ 1 ]; 
dqp_my = dlambda * grad[ 5 ]; 
dqp_mz = dlambda * grad[ 6 ]; 
 
/***********************************************/ 
/* CALCULATE STEP AND ACCUMULATED PLASTIC WORK */ 
/***********************************************/ 
 
dwork = neg * cft[ n ].df_i[ 1 + i ] * dqp_p + 
         cft[ n ].df_i[ 5 + i ] * dqp_my + 
         cft[ n ].df_i[ 6 + i ] * dqp_mz; 
 
cft[ n ].pl_work[ end ] += dwork; 
work_norm = cft[ n ].pl_work[ end ] / cft[ n ].el_w ork; 
 
/*************************************/ 
/* CALCULATE NEW L.S. AND B.S. RADII */ 
/*************************************/ 
 
old_lsr = cft[ n ].ls_rad[ end ]; 
old_bsr = cft[ n ].bs_rad[ end ]; 
 
cft[ n ].ls_rad[ end ] = cft[ n ].lsr_fn[ end ] - (  cft[ n ].lsr_fn[ end ] - 
     cft[ n ].lsr_in[ end ] ) * exp(  
     -cft[ n ].ls_iso[ end ] * work_norm ); 
 
/* B.S. RADIUS FORMULATION */ 
 
if ( work_norm <= cft[ n ].iso_work[ end ] ) 
 { 
 cft[ n ].bs_rad[ end ] =   
  cft[ n ].bsr_intm[ end ] - ( cft[ n ].bsr_intm[ e nd ] - 
  cft[ n ].bsr_in[ end ] ) * exp( -cft[ n ].bs_iso[  end ] *  
  work_norm ); 
 
 cft[ n ].bsr_upd[ end ] = cft[ n ].bs_rad[ end ]; 
 } 
 
else 
 { 
 cft[ n ].bs_rad[ end ] = 
  cft[ n ].bsr_fn[ end ] - ( cft[ n ].bsr_fn[ end ]  - 
  cft[ n ].bsr_upd[ end ] ) * pow( 1.1, -cft[ n ].b s_iso[ end ] * 
  ( work_norm - cft[ n ].iso_work[ end ] ) ); 
 } 
 
/* CALCULATE NEW RATIO OF SURFACE RADII */ 
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cft[ n ].rho[ end ] = cft[ n ].bs_rad[ end ] / cft[  n ].ls_rad[ end ]; 
 
/************************************************** ***********/ 
/* CALCULATE UPDATED k2 PARAMETERS, CONCRETE ELASTI C MODULUS */ 
/************************************************** ***********/ 
 
cft[ n ].emod_c  = 0.3 * cft[ n ].ec_in + ( 0.689 *  cft[ n ].ec_in ) *  
     exp( -cft[ n ].ec_iso[ end ] * work_norm ); 
 
cft[ n ].k2[ end ].p = cft[ n ].k2f[ end ].p - ( cf t[ n ].k2f[ end ].p - 
     cft[ n ].k2i[ end ].p ) *  
     exp( -cft[ n ].k2_iso[ end ] * work_norm ); 
cft[ n ].k2[ end ].my = cft[ n ].k2f[ end ].my - ( cft[ n ].k2f[ end ].my - 
     cft[ n ].k2i[ end ].my ) *  
     exp( -cft[ n ].k2_iso[ end ] * work_norm ); 
cft[ n ].k2[ end ].mz = cft[ n ].k2f[ end ].mz - ( cft[ n ].k2f[ end ].mz - 
     cft[ n ].k2i[ end ].mz ) * 
     exp( -cft[ n ].k2_iso[ end ] * work_norm ); 
 
/************************************************** *****************/ 
/* CALCULATE INCREMENTAL SURFACE CENTROID MOVEMENT DUE TO ISO HARD */ 
/************************************************** *****************/ 
 
/* CALCULATE DISTANCE TO MOVE CENTROIDS */ 
 
eta_ls = 1.0 - ( cft[ n ].ls_rad[ end ] / old_lsr ) ; 
eta_bs = 1.0 - ( cft[ n ].bs_rad[ end ] / old_bsr ) ; 
 
/* CALCULATE VECTORS OF CENTROID MOVEMENT */ 
 
cft[ n ].dls_iso[ end ].p  = eta_ls * ( s[ 1 ] - al [ 1 ] ); 
cft[ n ].dls_iso[ end ].my = eta_ls * ( s[ 2 ] - al [ 2 ] ); 
cft[ n ].dls_iso[ end ].mz = eta_ls * ( s[ 3 ] - al [ 3 ] ); 
 
cft[ n ].dbs_iso[ end ].p  = eta_bs * ( s[ 1 ] - ab [ 1 ] ); 
cft[ n ].dbs_iso[ end ].my = eta_bs * ( s[ 2 ] - ab [ 2 ] ); 
cft[ n ].dbs_iso[ end ].mz = eta_bs * ( s[ 3 ] - ab [ 3 ] ); 
 
/* COMPUTE SURFACE CENTROIDS AFTER ISOTROPIC HARDENING */ 
 
cft[ n ].ls_cent[ end ].p  += cft[ n ].dls_iso[ end  ].p; 
cft[ n ].ls_cent[ end ].my += cft[ n ].dls_iso[ end  ].my; 
cft[ n ].ls_cent[ end ].mz += cft[ n ].dls_iso[ end  ].mz; 
 
cft[ n ].bs_cent[ end ].p  += cft[ n ].dbs_iso[ end  ].p; 
cft[ n ].bs_cent[ end ].my += cft[ n ].dbs_iso[ end  ].my; 
cft[ n ].bs_cent[ end ].mz += cft[ n ].dbs_iso[ end  ].mz; 
 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_pl_cft_kin_hard 
 
  @(#) PLasticity routine for CFT KINematic HARDeni ng 
 
*  CALLED FROM- a_pl_cft_state 
 
*     ABSTRACT- This function performs the kinemati c hardening calculations for 
  movement of the CFT loading surface and bounding surface. 
  In the input file, the user may specify whether t he loading 
  surface should move in the Mroz direction or the Tseng  
  direction.  Both of these routines are contained herein. 
  Additionally, if the force point is on the boundi ng surface,  
  the surfaces move in the direction of the increme ntal force 
  vector. 
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*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <string.h>  /* C STRING FUNCTIONS     */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES     */  
#include "a_cft_el.h"  /* DATA STRUCTURE FOR CFT BE AM-COLUMN  */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
 
 
long a_pl_cft_kin_hard( n, end, tol, flag, cft ) 
 
long  n;  /* ELEMENT NUMBER    */ 
long  end;  /* ELEMENT END     */ 
A_TOLERANCE tol;  /* DATA STRUCTURE OF PROGRAM TOLE RANCES  */ 
A_FLAGS  *flag;  /* DATA STRUCTURE OF PROGRAM FLAGS   */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
 
{ 
long status = 1L;  /* RETURN STATUS    */ 
long ctr1 = 0L;  /* COUNTER     */ 
long i = 0L;  /* FORCE INDEX     */ 
long done = 0L;  /* FLAG TO INDICATE COMPLETION OF BISECT */ 
long neg = 1L;  /* AXIAL FORCE MULTIPLIER 
     POS =  1L (DO NOT CHANGE SIGN) 
     NEG = -1L (NEGATE FORCE VALUE) */ 
double rl = 0.0;  /* LOADING SURFACE RADIUS   */ 
double rb = 0.0;  /* BOUNDING SURFACE RADIUS   */ 
double rho = 0.0;  /* RATIO OF B.S. SIZE TO L.S. SI ZE  */ 
double num = 0.0;  /* {grad}T * df    */ 
double denom = 0.0;  /* {grad}T * MROZ OR TSENG VEC TOR  */ 
double al[ 4 ];  /* VECTOR CONTAINING L.S. CENTROID S  */ 
double ab[ 4 ];  /* VECTOR CONTAINING B.S. CENTROID S  */ 
double s1[ 4 ];  /* VECTOR OF f1 FORCES    */ 
double ds[ 4 ];  /* VECTOR OF INCREMENTAL FORCES  * / 
 
/* TSENG VARIABLES */ 
double l1  = 0.0;  /* LOWER VALUE OF BISECTION VECT OR  */ 
double l2  = 0.0;  /* LOWER VALUE OF BISECTION VECT OR  */ 
double l3  = 0.0;  /* LOWER VALUE OF BISECTION VECT OR  */ 
double u1  = 0.0;  /* UPPER VALUE OF BISECTION VECT OR  */ 
double u2  = 0.0;  /* UPPER VALUE OF BISECTION VECT OR  */ 
double u3  = 0.0;  /* UPPER VALUE OF BISECTION VECT OR  */ 
double m1  = 0.0;  /* MID VALUE OF BISECTION VECTOR   */ 
double m2  = 0.0;  /* MID VALUE OF BISECTION VECTOR   */ 
double m3  = 0.0;  /* MID VALUE OF BISECTION VECTOR   */ 
double eqn = 0.0;  /* VALUE OF B.S. EQUATION (BISEC TION)  */ 
double ds_norm = 0.0;  /* NORMAL OF THE INCR. FORCE  VECTOR  */ 
double s1_norm = 0.0;  /* NORMAL OF THE f1 FORCE VE CTOR  */ 
double incr1 = 0.0;  /* INCREMENTAL VECTOR ADDED TO  f1  */ 
double incr2 = 0.0;  /* INCREMENTAL VECTOR ADDED TO  f1  */ 
double incr3 = 0.0;  /* INCREMENTAL VECTOR ADDED TO  f1  */ 
 
 
/*********************/ 
/* INITIALIZE ARRAYS */ 
/*********************/ 
 
for ( ctr1 = 0L; ctr1 < 4L; ctr1++ ) 
 { 
 al[ ctr1 ] = 0.0; 
 ab[ ctr1 ] = 0.0; 
 s1[ ctr1 ] = 0.0; 
 ds[ ctr1 ] = 0.0; 
 } 
 
/*************************/ 
/* CALCULATE FORCE INDEX */ 
/*************************/ 
 
i = 6L * end; 
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/************************************************** **************************/ 
/* IF J-END, THEN NEGATE THE FORCE SUCH THAT A COMP RESSIVE LOAD IS POSITIVE */ 
/************************************************** **************************/ 
 
( i == 0L ) ? ( neg = POS ) : ( neg = NEG ); 
 
/***************************/ 
/* SET SHORTENED VARIABLES */ 
/***************************/ 
 
rl  = cft[ n ].ls_rad[ end ]; 
rb = cft[ n ].bs_rad[ end ]; 
rho = cft[ n ].rho[ end ]; 
 
al[ 1 ] = cft[ n ].ls_cent[ end ].p + cft[ n ].phi * rl * cft[ n ].po; 
al[ 2 ] = cft[ n ].ls_cent[ end ].my; 
al[ 3 ] = cft[ n ].ls_cent[ end ].mz; 
 
ab[ 1 ] = cft[ n ].bs_cent[ end ].p + cft[ n ].phi * rb * cft[ n ].po; 
ab[ 2 ] = cft[ n ].bs_cent[ end ].my; 
ab[ 3 ] = cft[ n ].bs_cent[ end ].mz; 
 
s1[ 1 ] = ( cft[ n ].f1[ 1 + i ] + cft[ n ].f1_i[ 1  + i ] ) * neg; 
s1[ 2 ] = cft[ n ].f1[ 5 + i ] + cft[ n ].f1_i[ 5 +  i ]; 
s1[ 3 ] = cft[ n ].f1[ 6 + i ] + cft[ n ].f1_i[ 6 +  i ]; 
 
ds[ 1 ] = cft[ n ].df_i[ 1 + i ] * neg; 
ds[ 2 ] = cft[ n ].df_i[ 5 + i ]; 
ds[ 3 ] = cft[ n ].df_i[ 6 + i ]; 
 
/************************************************** **********************/ 
/* MOVE SURFACES FOR CASE WHERE THE SURFACES TOUCH AND THE FORCE POINT */  
/* IS ON OR BEYOND THE BS.  MOVE BOTH SURFACES IN T HE DIRECTION OF */  
/* THE NORMAL TO THE SURFACES.      */ 
/************************************************** **********************/ 
 
if ( cft[ n ].surf[ end ] == BS ) 
 { 
 num = cft[ n ].grad[ end ].p  * ds[ 1 ] + 
    cft[ n ].grad[ end ].my * ds[ 2 ] + 
    cft[ n ].grad[ end ].mz * ds[ 3 ]; 
 
 denom = cft[ n ].norm[ end ]; 
 
 cft[ n ].dls_kin[ end ].p  = ( num / denom ) * cft [ n ].grad[ end ].p; 
 cft[ n ].dls_kin[ end ].my = ( num / denom ) * cft [ n ].grad[ end ].my; 
 cft[ n ].dls_kin[ end ].mz = ( num / denom ) * cft [ n ].grad[ end ].mz; 
 
 cft[ n ].dbs_kin[ end ].p  = cft[ n ].dls_kin[ end  ].p; 
 cft[ n ].dbs_kin[ end ].my = cft[ n ].dls_kin[ end  ].my; 
 cft[ n ].dbs_kin[ end ].mz = cft[ n ].dls_kin[ end  ].mz; 
 } 
 
/************************************************** ************************/ 
/* KINEMATICALLY HARDEN THE L.S. AND B.S. USING THE  MROZ DIRECTION VECTOR */ 
/************************************************** ************************/ 
 
else if ( flag->cft_kin == 1L ) 
{ 
 
/* CALCULATE MROZ VECTOR */ 
 
cft[ n ].mroz[ end ].p  = ( rho - 1L ) * s1[ 1 ] - ( rho * al[ 1 ] - ab[ 1 ] ); 
cft[ n ].mroz[ end ].my = ( rho - 1L ) * s1[ 2 ] - ( rho * al[ 2 ] - ab[ 2 ] ); 
cft[ n ].mroz[ end ].mz = ( rho - 1L ) * s1[ 3 ] - ( rho * al[ 3 ] - ab[ 3 ] ); 
 
/* CALCULATE VECTOR OF INCREMENTAL L.S. CENTROID MO VEMENT DUE TO KIN HARD */ 
 
num = cft[ n ].grad[ end ].p  * ds[ 1 ] + 
   cft[ n ].grad[ end ].my * ds[ 2 ] + 
   cft[ n ].grad[ end ].mz * ds[ 3 ]; 
 
denom = cft[ n ].grad[ end ].p  * cft[ n ].mroz[ en d ].p  + 
   cft[ n ].grad[ end ].my * cft[ n ].mroz[ end ].m y + 
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   cft[ n ].grad[ end ].mz * cft[ n ].mroz[ end ].m z; 
 
cft[ n ].dls_kin[ end ].p  = ( num / denom ) * cft[  n ].mroz[ end ].p; 
cft[ n ].dls_kin[ end ].my = ( num / denom ) * cft[  n ].mroz[ end ].my; 
cft[ n ].dls_kin[ end ].mz = ( num / denom ) * cft[  n ].mroz[ end ].mz; 
 
/* CALCULATE VECTOR OF INCREMENTAL B.S. CENTROID MO VEMENT DUE TO KIN HARD */ 
 
( cft[ n ].kp[ end ].p == 0.0 ) ? ( cft[ n ].dbs_ki n[ end ].p = 0.0 ) : 
( cft[ n ].dbs_kin[ end ].p  = cft[ n ].kpb[ end ]. p  / cft[ n ].kp[ end ].p * 
          cft[ n ].dls_kin[ end ].p ); 
 
( cft[ n ].kp[ end ].my == 0.0 ) ? ( cft[ n ].dbs_k in[ end ].my = 0.0 ) : 
( cft[ n ].dbs_kin[ end ].my = cft[ n ].kpb[ end ]. my / cft[ n ].kp[ end ].my * 
          cft[ n ].dls_kin[ end ].my ); 
 
( cft[ n ].kp[ end ].mz == 0.0 ) ? ( cft[ n ].dbs_k in[ end ].mz = 0.0 ) : 
( cft[ n ].dbs_kin[ end ].mz = cft[ n ].kpb[ end ]. mz / cft[ n ].kp[ end ].mz * 
          cft[ n ].dls_kin[ end ].mz ); 
 
} /* else if ( flag->cft_kin == 1L ) */ 
 
/************************************************** *************************/ 
/* KINEMATICALLY HARDEN THE L.S. AND B.S. USING THE  TSENG DIRECTION VECTOR */ 
/************************************************** *************************/ 
 
else if ( flag->cft_kin == 2L ) 
{ 
 
/* CALCULATE TSENG VECTOR */ 
 
/* FIND INTERSECTION OF THE PROJECTION OF INCR FORC E VECTOR WITH THE B.S. */ 
/* ADD df VECTORS TO f1 UNTIL B.S. IS CROSSED, THEN  PERFORM BISECTION     */ 
 
/* CALCULATE INCREMENTAL VECTOR.  BY NORMALIZING TH E INCR. FORCE VECTOR AND  
   MULTIPLYING BY THE s1 NORMAL, THE VECTOR THAT IS  ADDED TO THE s1 FORCES IS 
   OF THE PROPER MAGNITUDE.  OTHERWISE, ds MAY BE V ERY SMALL AND THOUSANDS OF 
   INCRS WOULD NEED TO BE ADDED TO s1 TO REACH THE B.S.        */ 
 
ds_norm = sqrt( pow( ds[ 1 ], 2 ) + pow( ds[ 2 ], 2  ) + pow( ds[ 3 ], 2 ) );  
s1_norm = sqrt( pow( s1[ 1 ], 2 ) + pow( s1[ 2 ], 2  ) + pow( s1[ 3 ], 2 ) );  
incr1 = s1_norm * ds[ 1 ] / ds_norm; 
incr2 = s1_norm * ds[ 2 ] / ds_norm; 
incr3 = s1_norm * ds[ 3 ] / ds_norm; 
 
/* SET INITIAL ENDPOINTS OF VECTOR TO BE BISECTED * / 
 
u1 = s1[ 1 ]; 
u2 = s1[ 2 ]; 
u3 = s1[ 3 ]; 
 
l1 = u1 - ds[ 1 ]; 
l2 = u2 - ds[ 2 ]; 
l3 = u3 - ds[ 3 ]; 
 
eqn = a_pl_cft_surf( n, cft,  
       ( u1 - ab[ 1 ] ) / ( rb * cft[ n ].po ), 
       ( u2 - ab[ 2 ] ) / ( rb * cft[ n ].myo ), 
       ( u3 - ab[ 3 ] ) / ( rb * cft[ n ].mzo ) ); 
 
/* ADD df INCRS. TO f1 UNTIL THE B.S. IS CROSSED */  
 
while ( eqn < ( 1.0 + tol.surf ) ) 
 { 
 l1  = u1; 
 l2  = u2; 
 l3  = u3; 
 
 u1 += incr1; 
 u2 += incr2; 
 u3 += incr3; 
 
 eqn = a_pl_cft_surf( n, cft,  
        ( u1 - ab[ 1 ] ) / ( rb * cft[ n ].po ), 
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        ( u2 - ab[ 2 ] ) / ( rb * cft[ n ].myo ), 
        ( u3 - ab[ 3 ] ) / ( rb * cft[ n ].mzo ) );  
 } 
 
/* BISECT INCR VECTOR (u - l) THAT CROSSED THE B.S.  TO GET INTERSECTING PT. */ 
 
m1 = ( l1 + u1 ) / 2.0; 
m2 = ( l2 + u2 ) / 2.0; 
m3 = ( l3 + u3 ) / 2.0; 
 
eqn = a_pl_cft_surf( n, cft,  
       ( m1 - ab[ 1 ] ) / ( rb * cft[ n ].po ), 
       ( m2 - ab[ 2 ] ) / ( rb * cft[ n ].myo ), 
       ( m3 - ab[ 3 ] ) / ( rb * cft[ n ].mzo ) ); 
 
while ( ! done ) 
 { 
 if ( eqn > ( 1.0 + tol.surf ) )  
  { 
  u1 = m1;   /* ASSIGN UPPER FORCE POINT TO MIDPT * / 
  u2 = m2;  
  u3 = m3; 
 
  m1 = ( l1 + u1 ) / 2.0;  /* BISECT VECTOR */ 
  m2 = ( l2 + u2 ) / 2.0; 
  m3 = ( l3 + u3 ) / 2.0; 
 
  eqn = a_pl_cft_surf( n, cft,  
         ( m1 - ab[ 1 ] ) / ( rb * cft[ n ].po ), 
         ( m2 - ab[ 2 ] ) / ( rb * cft[ n ].myo ), 
         ( m3 - ab[ 3 ] ) / ( rb * cft[ n ].mzo ) ) ; 
  } 
 
 else if ( eqn < 1.0 ) 
  { 
  l1 = m1;  /* ASSIGN LOWER FORCE POINT OT MIDPT */   
  l2 = m2;  
  l3 = m3; 
 
  m1 = ( l1 + u1 ) / 2.0;  /* BISECT VECTOR */ 
  m2 = ( l2 + u2 ) / 2.0; 
  m3 = ( l3 + u3 ) / 2.0; 
 
  eqn = a_pl_cft_surf( n, cft,  
         ( m1 - ab[ 1 ] ) / ( rb * cft[ n ].po ), 
         ( m2 - ab[ 2 ] ) / ( rb * cft[ n ].myo ), 
         ( m3 - ab[ 3 ] ) / ( rb * cft[ n ].mzo ) ) ; 
  } 
 else 
  { 
  done = 1L; 
  } 
 } /* while ( ! done ) */ 
 
 
/* COMPUTE COMPONENTS OF THE TSENG VECTOR */ 
 
cft[ n ].tseng[ end ].p  = m1 - m1 / rho + ab[ 1 ] / rho - al[ 1 ]; 
cft[ n ].tseng[ end ].my = m2 - m2 / rho + ab[ 2 ] / rho - al[ 2 ]; 
cft[ n ].tseng[ end ].mz = m3 - m3 / rho + ab[ 3 ] / rho - al[ 3 ]; 
 
 
/* CALCULATE VECTOR OF INCREMENTAL L.S. CENTROID MO VEMENT DUE TO KIN HARD   */ 
/* (da)kin = [ ( gradT * dS ) / ( gradT * tseng ) ]  * ( tseng )   */ 
 
num = cft[ n ].grad[ end ].p  * ds[ 1 ] + 
   cft[ n ].grad[ end ].my * ds[ 2 ] + 
   cft[ n ].grad[ end ].mz * ds[ 3 ]; 
 
denom = cft[ n ].grad[ end ].p  * cft[ n ].tseng[ e nd ].p  + 
   cft[ n ].grad[ end ].my * cft[ n ].tseng[ end ]. my + 
   cft[ n ].grad[ end ].mz * cft[ n ].tseng[ end ]. mz; 
 
cft[ n ].dls_kin[ end ].p  = ( num / denom ) * cft[  n ].tseng[ end ].p; 
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cft[ n ].dls_kin[ end ].my = ( num / denom ) * cft[  n ].tseng[ end ].my; 
cft[ n ].dls_kin[ end ].mz = ( num / denom ) * cft[  n ].tseng[ end ].mz; 
 
/* CALCULATE VECTOR OF INCREMENTAL B.S. CENTROID MO VEMENT DUE TO KIN HARD */ 
 
cft[ n ].dbs_kin[ end ].p  = cft[ n ].kpb[ end ].p  / cft[ n ].kp[ end ].p  * 
        cft[ n ].dls_kin[ end ].p; 
cft[ n ].dbs_kin[ end ].my = cft[ n ].kpb[ end ].my  / cft[ n ].kp[ end ].my * 
        cft[ n ].dls_kin[ end ].my; 
cft[ n ].dbs_kin[ end ].mz = cft[ n ].kpb[ end ].mz  / cft[ n ].kp[ end ].mz * 
        cft[ n ].dls_kin[ end ].mz; 
 
} /* else if ( flag->cft_kin == 2L ) */ 
 
/* COMPUTE SURFACE CENTROIDS AFTER KINEMATIC HARDENING */ 
 
cft[ n ].ls_cent[ end ].p  += cft[ n ].dls_kin[ end  ].p; 
cft[ n ].ls_cent[ end ].my += cft[ n ].dls_kin[ end  ].my; 
cft[ n ].ls_cent[ end ].mz += cft[ n ].dls_kin[ end  ].mz; 
 
cft[ n ].bs_cent[ end ].p  += cft[ n ].dbs_kin[ end  ].p; 
cft[ n ].bs_cent[ end ].my += cft[ n ].dbs_kin[ end  ].my; 
cft[ n ].bs_cent[ end ].mz += cft[ n ].dbs_kin[ end  ].mz; 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_pl_cft_state.c 
 
  @(#) CFT element end plasticity STATE 
 
*  CALLED FROM- a_drv_dynamic, a_drv_static 
 
*     ABSTRACT- This function determines the state of each CFT element end 
  and calls the appropriate functions to perform th e plasticity 
  calculations.  The comments below in the code exp lain this 
  procedure in greater detail. 
 
  Note that a positive j-end axial force will be te nsile although 
  in the plastic formulation a positive force is al ways  
  compressive.  Therefore, before computing the gra dient, the  
  j-end axial force is negated using the 'negate' v ariable to  
  rectify this. 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <string.h>  /* C STRING FUNCTIONS     */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES     */  
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
#include "a_cft_el.h"  /* DATA STRUCTURE FOR STEEL BEAM-COLUMN */ 
#include "a_global.h"  /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */ 
 
 
long a_pl_cft_state( size, nr, tol, flag, cft, glob al ) 
 
A_MODEL_SIZE *size;  /* DATA STRUCTURE OF GLOBAL ST RUCT SIZE */ 
A_NEW_RAPH *nr;  /* DATA STRUCTURE FOR NEWTON-RAPHS ON   */ 
A_TOLERANCE tol;  /* DATA STRUCTURE FOR PROGRAM TOL ERANCES */ 
A_FLAGS  *flag;  /* DATA STRUCTURE OF PROGRAM FLAGS   */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
A_GLOBAL global[]; /* DATA STRUCTURE OF DOF-BASED V ARIABLES */ 
 
{ 
long status = 1L;  /* RETURN STATUS    */ 
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long ctr1 = 0L;  /* COUNTER     */ 
long ctr2 = 0L;  /* COUNTER     */ 
long end = 0L;  /* END: 0 = i-end, 1 = j-end   */ 
long i = 0L;  /* FORCE INDEX     */ 
long n = 0L;  /* ELEMENT COUNTER    */ 
long neg = 1L;  /* AXIAL FORCE MULTIPLIER 
     POS =  1L (DO NOT CHANGE SIGN) 
     NEG = -1L (NEGATE FORCE VALUE) */ 
 
 
/**************************/ 
/* LOOP OVER CFT ELEMENTS */ 
/**************************/ 
 
for ( n = 1L; n <= size->num_cft_elems; n++ ) 
{ 
 
/************************************************** *******************/ 
/* IF ELEMENT HAS NOT PLASTIFIED, UPDATE INITIAL EL ASTIC ENERGY      */ 
/* I.E., CALCULATE THE STRAIN ENERGY DUE TO AXIAL A ND BENDING FORCES */ 
/* U = Up + Umy + Umz = (P^2*L)/(2EA) +                              */  
/* 1/(2EI)*(Myi^2*L+(Myi+Myj)^2*L/3 - Myi*L*(Myi+My j)) +         */ 
/* 1/(2EI)*(Mzi^2*L+(Mzi+Mzj)^2*L/3 - Mzi*L*(Mzi+Mz j)) +         */ 
/************************************************** *******************/ 
 
if ( ( ( cft[ n ].state[ 0L ] == EL ) && ( ! cft[ n  ].hinge ) ) || 
     ( ( cft[ n ].state[ 1L ] == EL ) && ( ! cft[ n  ].hinge ) ) ) 
 { 
 cft[ n ].el_work =  
  ( pow( cft[ n ].f2[ 1 ], 2 ) * cft[ n ].l /  
    ( 2.0 * cft[ n ].ea ) ) + 
  ( pow( cft[ n ].f2[ 5 ], 2 ) * cft[ n ].l + 
    pow( cft[ n ].f2[ 5 ] + cft[ n ].f2[ 11 ], 2 ) *  
    cft[ n ].l / 3.0 - cft[ n ].f2[ 5 ] * cft[ n ]. l *  
    ( cft[ n ].f2[ 5 ] + cft[ n ].f2[ 11 ] ) ) /  
    ( 2.0 * cft[ n ].eiz ) + 
  ( pow( cft[ n ].f2[ 6 ], 2 ) * cft[ n ].l + 
    pow( cft[ n ].f2[ 6 ] + cft[ n ].f2[ 12 ], 2 ) *  
    cft[ n ].l / 3.0 - cft[ n ].f2[ 6 ] * cft[ n ]. l *  
    ( cft[ n ].f2[ 6 ] + cft[ n ].f2[ 12 ] ) ) /  
    ( 2.0 * cft[ n ].eiz ) ; 
 } 
 
/************************************************** / 
/* CHECK THE PLASTICITY STATE OF EACH ELEMENT END * / 
/************************************************** / 
 
for ( end = 0L; end <= 1L; end++ ) 
{ 
 
/*************************/ 
/* CALCULATE FORCE INDEX */ 
/*************************/ 
 
i = 6L * end; 
 
/************************************************** **************************/ 
/* IF J-END, THEN NEGATE THE FORCE SUCH THAT A COMP RESSIVE LOAD IS POSITIVE */ 
/************************************************** **************************/ 
 
( i == 0L ) ? ( neg = POS ) : ( neg = NEG ); 
 
/************************************************** ************/ 
/* END WAS PLASTIC LAST STEP       */ 
/*  I. CHECK GRADIENT FOR UNLOADING    */ 
/*   A.  NEG:  SET FLAG TO UNLOADING   */ 
/*   1. CHECK IF RELOADING (IS F2 > L.S.?)  */ 
/*    a. NO:  SET FLAG TO ELASTIC  */ 
/*    b. YES:  SET FLAG TO LOADING  */ 
/*      DO STEP B.   */ 
/*   B.  POS:  SET FLAG TO LOADING    */ 
/*    1.  MOVE SURFACES (KIN & ISO)   */ 
/*    2.  DRIFT CONTROL BACK TO L.S.  */ 
/*    3.  CALCULATE DISTANCE    */ 
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/*   4.  CALCULATE NEW GRADIENT FOR USE IN Kr */ 
/************************************************** ************/ 
 
if ( ( cft[ n ].state[ end ] == PL ) || ( cft[ n ]. state[ end ] == PL_IN ) ) 
 { 
 cft[ n ].state[ end ] = PL; 
 
 /*************************************/ 
 /* CHECK IF HINGE UNLOADED THIS STEP */ 
 /*************************************/ 
 
 a_pl_cft_grad( n, end, F2, cft ); 
 
 /************************************************* ****/ 
 /* NEGATIVE GRADIENT:  CHECK IF HINGE TRULY UNLOAD ED */ 
 /************************************************* ****/ 
 
 if ( cft[ n ].status[ end ] == UNLOAD )  
  {  
 
  /************************************************ / 
  /* DETERMINE STATE OF FORCE POINT AND SET FLAGS * / 
  /************************************************ / 
 
  cft[ n ].ls_eqn[ end ] = a_pl_cft_surf( n, cft, 
   ( neg * cft[ n ].f2[ 1+i ] - cft[ n ].ls_cent[en d].p - 
     cft[ n ].phi * cft[ n ].ls_rad[end] * cft[ n ] .po ) / 
   ( cft[ n ].ls_rad[ end ] * cft[ n ].po ), 
   ( cft[ n ].f2[ 5 + i ] - cft[ n ].ls_cent[ end ] .my ) / 
   ( cft[ n ].ls_rad[ end ] * cft[ n ].myo ), 
   ( cft[ n ].f2[ 6 + i ] - cft[ n ].ls_cent[ end ] .mz ) / 
   ( cft[ n ].ls_rad[ end ] * cft[ n ].mzo ) ); 
 
  cft[ n ].bs_eqn[ end ] = a_pl_cft_surf( n, cft, 
   ( neg * cft[ n ].f2[ 1+i ] - cft[ n ].bs_cent[en d].p - 
     cft[ n ].phi * cft[ n ].bs_rad[end] * cft[ n ] .po ) / 
   ( cft[ n ].bs_rad[ end ] * cft[ n ].po ), 
   ( cft[ n ].f2[ 5 + i ] - cft[ n ].bs_cent[ end ] .my ) / 
   ( cft[ n ].bs_rad[ end ] * cft[ n ].myo ), 
   ( cft[ n ].f2[ 6 + i ] - cft[ n ].bs_cent[ end ] .mz ) / 
   ( cft[ n ].bs_rad[ end ] * cft[ n ].mzo ) ); 
 
  if ( cft[ n ].ls_eqn[ end ] >= 1.0 )  
   { 
   cft[ n ].status[ end ]  = LOAD; 
   cft[ n ].state[ end ]   = PL; 
   cft[ n ].surf[ end ]    = LS; 
 
   if ( cft[ n ].bs_eqn[ end ] >= 1.0 ) 
    { 
    cft[ n ].surf[ end ]    = BS; 
    } 
   } 
 
  /**************************************/ 
  /* HINGE UNLOADED, SET END TO ELASTIC */ 
  /**************************************/ 
 
  else 
   { 
   cft[ n ].status[ end ]  = UNLOAD; 
   cft[ n ].state[ end ]   = EL; 
   cft[ n ].surf[ end ]    = NONE; 
   cft[ n ].duct[ end ] = 0.0; 
   } 
 
  } /* if ( cft[ n ].status[ end ] == UNLOAD ) */ 
 
 /******************/ 
 /* END IS PLASTIC */ 
 /******************/ 
 
 if ( cft[ n ].status[ end ] == LOAD )  
  { 
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  /* CHECK IF B.S. HAS BEEN BREACHED */ 
 
  cft[ n ].bs_eqn[ end ] = a_pl_cft_surf( n, cft, 
   ( neg * cft[ n ].f2[ 1+i ] - cft[ n ].bs_cent[en d].p - 
     cft[ n ].phi * cft[ n ].bs_rad[end] * cft[ n ] .po ) / 
   ( cft[ n ].bs_rad[ end ] * cft[ n ].po ), 
   ( cft[ n ].f2[ 5 + i ] - cft[ n ].bs_cent[ end ] .my ) / 
   ( cft[ n ].bs_rad[ end ] * cft[ n ].myo ), 
   ( cft[ n ].f2[ 6 + i ] - cft[ n ].bs_cent[ end ] .mz ) / 
   ( cft[ n ].bs_rad[ end ] * cft[ n ].mzo ) ); 
 
  if ( cft[ n ].bs_eqn[ end ] >= 1.0 ) 
   { 
   cft[ n ].surf[ end ] = BS; 
   } 
 
 
  /* MOVE SURFACES USING KINEMATIC AND ISOTROPIC HA RDENING */ 
 
  if ( flag->iso )  
   { 
   a_pl_cft_iso_hard( n, end, cft ); 
   } 
 
  a_pl_cft_kin_hard( n, end, tol, flag, cft ); 
 
 
  /* PERFORM FORCE POINT DRIFT CONTROL IF NEEDED */  
 
  cft[ n ].ls_eqn[ end ] = a_pl_cft_surf( n, cft, 
   ( neg * cft[ n ].f2[ 1+i ] - cft[ n ].ls_cent[en d].p - 
     cft[ n ].phi * cft[ n ].ls_rad[end] * cft[ n ] .po ) / 
   ( cft[ n ].ls_rad[ end ] * cft[ n ].po ), 
   ( cft[ n ].f2[ 5 + i ] - cft[ n ].ls_cent[ end ] .my ) / 
   ( cft[ n ].ls_rad[ end ] * cft[ n ].myo ), 
   ( cft[ n ].f2[ 6 + i ] - cft[ n ].ls_cent[ end ] .mz ) / 
   ( cft[ n ].ls_rad[ end ] * cft[ n ].mzo ) ); 
 
  if ( ( ( cft[ n ].ls_eqn[ end ] < 1.0 ) || 
         ( cft[ n ].ls_eqn[ end ] > ( 1.0 + tol.sur f ) ) ) && 
         ( flag->drift ) ) 
   { 
   a_pl_cft_grad( n, end, F2, cft ); 
   a_pl_cft_drift( n, end, tol, cft ); 
   } 
 
 
  /* CALCULATE NEW DISTANCE BETWEEN SURFACES */ 
 
  a_pl_cft_dist( n, end, tol, cft ); 
 
 
  /* CALCULATE PLASTIC STIFFNESS TERMS */ 
 
  a_cft_plastic_k( n, end, cft ); 
 
  } 
 
 } /*  if ( ( cft[ n ].state[ end ] == PL ) || ... */ 
 
/************************************************** ************/ 
/* END WAS ELASTIC LAST STEP       */ 
/*  I. CHECK IF LOADING SURFACE WAS BREACHED   */ 
/*   A.  YES:  END IS NOW PLASTIC    */ 
/*    1.  SET STATE FLAG TO PL_IN   */ 
/*    2.  DRIFT CONTROL BACK TO L.S.  */ 
/*    3.  CALCULATE INITIAL DISTANCE  */ 
/*   4.  CALCULATE GRADIENT FOR USE IN Kr  */ 
/*   B.  NO:  END REMAINS ELASTIC -- DO NOTHING  */  
/************************************************** ************/ 
 
else if ( cft[ n ].state[ end ] == EL ) 
 { 
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 /************************************************/  
 /* DETERMINE STATE OF FORCE POINT AND SET FLAGS */  
 /************************************************/  
 
 cft[ n ].ls_eqn[ end ] = a_pl_cft_surf( n, cft, 
  ( neg * cft[ n ].f2[ 1+i ] - cft[ n ].ls_cent[end ].p - 
    cft[ n ].phi * cft[ n ].ls_rad[end] * cft[ n ]. po ) / 
  ( cft[ n ].ls_rad[ end ] * cft[ n ].po ), 
  ( cft[ n ].f2[ 5 + i ] - cft[ n ].ls_cent[ end ]. my ) / 
  ( cft[ n ].ls_rad[ end ] * cft[ n ].myo ), 
  ( cft[ n ].f2[ 6 + i ] - cft[ n ].ls_cent[ end ]. mz ) / 
  ( cft[ n ].ls_rad[ end ] * cft[ n ].mzo ) ); 
 
 /***********************************/ 
 /* IF END BECAME PLASTIC THIS STEP */ 
 /***********************************/ 
 
 if ( cft[ n ].ls_eqn[ end ] >= 1.0 ) 
  { 
  cft[ n ].state[ end ]  = PL_IN; 
  cft[ n ].hinge    = YES; 
 
 
  /* PERFORM FORCE POINT DRIFT CONTROL */ 
 
         if ( ( ( cft[ n ].ls_eqn[ end ] < 1.0 ) ||  
        ( cft[ n ].ls_eqn[ end ] > ( 1.0 + tol.surf  ) ) ) && 
        ( flag->drift ) ) 
   { 
   a_pl_cft_drift( n, end, tol, cft ); 
   } 
 
 
  /* CALCULATE THE INITIAL DISTANCE BETWEEN SURFACE S */ 
 
  a_pl_cft_dist( n, end, tol, cft ); 
 
   
  /* CALCULATE PLASTIC STIFFNESS TERMS */ 
 
  a_cft_plastic_k( n, end, cft ); 
 
  } 
 
 } /* else if ( cft[ n ].state[ end ] == EL ) */ 
 
else 
 { 
 status = 0L; 
 printf( "\nError.  Flag not set to elastic or plas tic. \n" ); 
 } 
 
} /* for ( end = 0L; end <= 1L; end++ ) */ 
 
} /* for ( n = 1L; n <= size->num_cft_elems; n++ ) */ 
 
 
return( status ); 
} 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_pl_cft_surf.c 
 
  @(#)  CFT loading and bounding SURFace equation c alculation 
 
*  CALLED FROM- a_pl_cft_state, a_pl_cft_kin_hard, a_pl_cft_drift 
 
*     ABSTRACT- This function computes and returns the value of the surface 
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  equation.  It receives normalized values which co ntain the back 
  force and the radius of the surface (either L.S. or B.S.) 
*************************************************** **************************/ 
 
#include <math.h>  /* C MATH FUNCTIONS     */ 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include <string.h>  /* C STRING FUNCTIONS     */ 
 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_extern.h"  /* EXTERNAL VARIABLES     */  
 
 
double a_pl_cft_surf( n, cft, p, my, mz ) 
 
long  n;  /* CURRENT ELEMENT NUMBER   */ 
A_CFT_BC cft[];  /* DATA STRUCTURE FOR CFT BEAM-COL UMN  */ 
double  p;  /* ( P - a - phi * R * Po ) / ( R * Po ) */ 
double  my;  /* ( My - a ) / ( R * Myo )    */ 
double  mz;  /* ( Mz - a ) / ( R * Mzo )    */ 
    /* where R = surf rad, a = surf centroid */ 
{ 
double equation = 0.0;  /* VALUE OF THE SURFACE EQU ATION RETURNED */ 
 
 
/* COMPUTE VALUE OF SURFACE EQUATION FOR CURRENT FORCE POINT */ 
 
equation = cft[ n ].c1 * ( my * my + mz * mz ) +  
    cft[ n ].c2 * p * p +  
    cft[ n ].c3 * ( my * my * p * p + mz * mz * p *  p ) + 
    cft[ n ].c4 * my * my * mz * mz;  
 
 
return( equation ); 
} 
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Table C.2  CFTmacro Header Files  

 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_cft_el.h 
 
  @(#) Concrete-Filled Tube ELement data structures  
 
*     ABSTRACT- This include file contains the data  structure definitions 
  pertaining to the CFT macro beam-column finite el ement 
*************************************************** **************************/ 
 
#ifndef A_CFT_EL_H 
#define  A_CFT_EL_H 
 
#include "a_mac.h" 
 
typedef  struct  
 { 
 double  p;  /* AXIAL FORCE    */ 
 double  my;  /* BENDING MOMENT ABOUT Y AXIS   */ 
 double  mz;  /* BENDING MOMENT ABOUT Z AXIS   */ 
 } A_CFT_FORCES; 
 
typedef struct  
 { 
 /* ELEMENT AND JOINT NUMBERS, FLAGS  */ 
 long  el;  /* ELEMENT NUMBER   */ 
 long  i;  /* I JOINT    */ 
 long  j;  /* J JOINT    */ 
 long  mcode[A_CFT_NUM_DOF+1L]; /* ELEMENT DOF CODE     */ 
 long  release; /* FLAG TO SIGNAL MEMBER DOF RELEAS E 
        (ALL 12 DOFS ST ORED BY BIT IN 1 long)                                                
      0L = NO RELEASE 
      1L = RELEASE             */ 
 long  section; /* FLAG TO SIGNAL AISC SHAPE READ 
      0L = NO  (user input) 
      1L = YES (AISC section)  */ 
 long  ei_status;      /* FLAG TO SIGNAL EIc IS UPD ATED 
      0L = FULL (full EIc) 
      1L = REDUCED (0.311*EIc) */ 
 long  hinge;       /* FLAG TO SIGNAL IF HINGE HAS FORMED 
      0L = NO (hinge not yet formed) 
      1L = YES (hinge formed)  */ 
 
 /* SECTION PROPERTIES */ 
 double  d;  /* TUBE DEPTH    */ 
 double  b;  /* TUBE WIDTH    */ 
 double  t;  /* TUBE THICKNESS   */ 
 double  a_stl;  /* AREA OF THE STEEL TUBE  */ 
 double  a_conc;  /* AREA OF THE CONCRETE CORE  */ 
 double  area;  /* EFFECTIVE AREA OF CFT  */ 
 double  ix;  /* TORSIONAL CONSTANT   */  
 double  iy_c;  /* Y-AXIS CONC MOMENT OF INERTIA */  
 double  iz_c;  /* Z-AXIS CONC MOMENT OF INERTIA */  
 double  iy_s;  /* STL Y-AXIS MOMENT OF INERTIA  */  
 double  iz_s;  /* STL Z-AXIS MOMENT OF INERTIA  */  
 double  ip;  /* POLAR MOMENT OF INERTIA  */ 
 double  eiy;  /* Y-AXIS BENDING STIFFNESS  */ 
 double  eiz;  /* Z-AXIS BENDING STIFFNESS  */ 
 double  ea;  /* AXIAL STIFFNESS   */ 
 double  gj;  /* TORSIONAL STIFFNESS   */ 
 double  s_y;  /* Y-AXIS SECTION MODULUS  */ 
 double  s_z;  /* Z-AXIS SECTION MODULUS  */ 
 
 /* LENGTH AND DIRECTION COSINES */ 
 double  l;  /* ELEMENT LENGTH   */ 
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 double  l_last;  /* PREVIOUS ITER ELEMENT LENGTH * / 
 double        iend_x;  /* GLOBAL X COMP. OF I-END VECT  */ 
 double        iend_y;  /* GLOBAL Y COMP. OF I-END VECT  */ 
 double        iend_z;      /* GLOBAL Z COMP. OF I- END VECT  */ 
 double        outp_x;       /* GLOBAL X COMP. OF O UT-OF-PLANE VECT*/        
 double        outp_y;       /* GLOBAL Y COMP. OF O UT-OF-PLANE VECT*/        
 double        outp_z;       /* GLOBAL Z COMP. OF O UT-OF-PLANE VECT*/ 
 
 /* MATERIAL PROPERTIES */ 
 double  fy;  /* YIELD STRENGTH OF THE STEEL */ 
 double  fc;  /* CONCRETE STRENGTH   */ 
 double  fct;  /* CONCRETE TENSILE STRENGTH  */ 
 double  emod_s;  /* STEEL ELASTIC MODULUS  */ 
 double  gmod_s;  /* STEEL SHEAR MODULUS   */ 
 double  kpi_s;  /* WEIGHT OF STEEL (k/in)   */ 
 double  ec_in;  /* INITIAL CONCRETE ELASTIC MOD */  
 double  emod_c;  /* UPDATED CONCRETE ELASTIC MOD * / 
 double  nu_c;  /* CONCRETE POISSON'S RATIO  */ 
 double  gmod_c;  /* CONCRETE SHEAR MODULUS  */ 
 double  wt_c;  /* WEIGHT OF CONCR. (k/in^3)  */ 
 double  kpi_c;  /* WEIGHT OF CONCR. (k/in)   */ 
 double  kpi;  /* EFFECTIVE MEMBER WEIGHT  */ 
 double  mass;  /* TOTAL MASS OF MEMBER  */ 
 double  w1;  /* DISTRIB DEAD LOAD ON MEMBER   */ 
 double  w2;  /* DISTRIB LIVE LOAD ON MEMBER   */ 
 double  mult[ A_CFT_NUM_DOF + 1L];  /* DISTRIB LOA D MULT*/ 
 
 /* LOADING AND BOUNDING SURFACE PROPERTIES  */ 
 long  ls[ 2L ]; /* LOADING SURFACE TYPE  */ 
 long  bs[ 2L ]; /* BOUNDING SURFACE TYPE  */ 
 long  state[ 2L ]; /* STATE OF PLASTICITY MODEL  
      0L = EL (elastic) 
      1L = PL (plastic) 
      2L = PL_IN (init plast.) */ 
 long  status[ 2L ]; /* FLAG TO SIGNAL UNLOADING  
      0L = LOAD (loading)  
      1L = UNLOAD (unloading) */ 
 long  surf[ 2L ]; /* FLAG - SURFACE EQN TO CHECK 
      0L = NONE (elastic) 
      1L = LS (loading surf) 
      2L = BS (bounding surf)  
      3L = BOTH (both surfs)   */ 
 double  ls_rad[ 2L ]; /* RADIUS OF LOADING SURFACE   */ 
 double  bs_rad[ 2L ]; /* RADIUS OF BOUNDING SURFAC E  */ 
 double  ls_eqn[ 2L ]; /* VALUE OF L.S. EQUATION  * / 
 double  bs_eqn[ 2L ]; /* VALUE OF B.S. EQUATION  * / 
 double  rho[ 2L ]; /* RATIO:  bs_rad/ls_rad  */ 
 double  dist[ 2L ]; /* DISTANCE BETWEEN SURFACES  */ 
 double  dist_in[ 2L ]; /* INITIAL DISTANCE   */ 
 double  norm[ 2L ]; /* NORMAL TO LOADING SURFACE  */ 
 A_CFT_FORCES ls_cent[ 2L ]; /* CENTROID OF L.S.   */ 
 A_CFT_FORCES bs_cent[ 2L ]; /* CENTROID OF B.S.   */ 
 A_CFT_FORCES conj[ 2L ]; /* CONJUGATE FORCE POINT ON B.S. */ 
 A_CFT_FORCES grad[ 2L ]; /* GRADIENT VECTOR OF FOR CE PT. */ 
 
 /* KINEMATIC HARDENING PARAMETERS */ 
 A_CFT_FORCES mroz[ 2L ]; /* DIRECTION OF MROZ VECT OR  */ 
 A_CFT_FORCES tseng[ 2L ]; /* DIRECTION OF TSENG VE CTOR  */ 
 A_CFT_FORCES dls_kin[ 2L ]; /* LS RAD CHANGE DUE T O KIN HARD */ 
 A_CFT_FORCES dbs_kin[ 2L ]; /* BS RAD CHANGE DUE T O KIN HARD */ 
 A_CFT_FORCES k1[ 2L ]; /* HARDENING COEFFICIENT  * / 
 A_CFT_FORCES k2[ 2L ]; /* UPDATED HARDENING COEFFI CIENT */ 
 A_CFT_FORCES k2i[ 2L ]; /* UPDATED HARDENING COEFF ICIENT */ 
 A_CFT_FORCES k2f[ 2L ]; /* UPDATED HARDENING COEFF ICIENT */ 
 A_CFT_FORCES kp[ 2L ]; /* PLASTIC STIFFNESS   */ 
 A_CFT_FORCES kpb[ 2L ]; /* BOUNDING PLASTIC STIFFN ESS  */ 
 
 /* ISOTROPIC HARDENING PARAMETERS */ 
 double  el_work; /* MEMBER STRAIN ENERGY  */ 
 double  pl_work[ 2L ]; /* ACCUMULATED PLASTIC WORK   */ 
 double  lsr_in[ 2L ]; /* INITIAL RADIUS OF L.S.  * / 
 double  lsr_fn[ 2L ]; /* FINAL (MAX OR MIN) LS RAD      */ 
 double  bsr_in[ 2L ]; /* INITIAL RADIUS OF B.S.  * / 
 double  bsr_intm[ 2L ]; /* PEAK OF B.S. RAD CURVE  */ 
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 double  bsr_fn[ 2L ]; /* FINAL (MAX OR MIN) BS RAD      */ 
 double  bsr_upd[ 2L ]; /* INITIAL B.S. RAD FOR DES CENT  */ 
 double  ls_iso[ 2L ]; /* L.S. SOFTENING PARAMETER  */ 
 double  bs_iso[ 2L ]; /* B.S. SOFTENING PARAMETER  */ 
 double  k2_iso[ 2L ]; /* k2 SOFTENING PARAMETER  * / 
 double  ec_iso[ 2L ]; /* RATE OF CONCR. EMOD DECRE ASE */ 
 double  iso_work[ 2L ];/* % OF ELASTIC WORK AT INT M BS  */ 
 A_CFT_FORCES dls_iso[ 2L ]; /* LS RAD CHANGE DUE T O ISO HARD */ 
 A_CFT_FORCES dbs_iso[ 2L ]; /* BS RAD CHANGE DUE T O ISO HARD */ 
 
 /* PROPERTIES FOR SURFACE EQN AND PLASTIC LENGTH C ALCS  */ 
 double  c1;  /* EQUATION COEFFICIENT  */ 
 double  c2;  /* EQUATION COEFFICIENT  */ 
 double  c3;  /* EQUATION COEFFICIENT  */ 
 double  c4;  /* EQUATION COEFFICIENT  */ 
 double  phi;  /* CENTROID OF LOADING SURFACE */ 
 double  po;  /* NOMINAL AXIAL LOAD CAPACITY */ 
 double  ptens;  /* NOMINAL TENSILE CAPACITY  */ 
 double  myy;  /* Y-AXIS YIELD MOMENT   */ 
 double  mzy;  /* Z-AXIS YIELD MOMENT   */ 
 double  myo;  /* NOMINAL Y-MOMENT CAPACITY  */ 
 double  mzo;  /* NOMINAL Z-MOMENT CAPACITY  */ 
 
 /* MEMBER DISPLACEMENTS */ 
 double  du[A_CFT_NUM_DOF+1L];  /* INCR DISPLS          */ 
 double  u2[A_CFT_NUM_DOF+1L];  /* END-OF-STEP DISP LS    */ 
 double  rz_y[ 2L ]; /* MAJOR AXIS 'YIELD' ROTATION  */ 
 double  duct[ 2L ]; /* ELEMENT END DUCTILITY RATIO  */ 
 
 /* MEMBER FORCES AND DISPLACEMENTS */ 
 double  sratio[ 2L ];        /* STRESS RATIOS  */ 
 double  df_i[A_CFT_NUM_DOF+1L];/* ITERATION FORCES       */ 
 double  f1_i[A_CFT_NUM_DOF+1L];/* BEG-OF-ITER FORC ES    */ 
 double  f2_i[A_CFT_NUM_DOF+1L];/* END-OF-ITER FORC ES    */ 
 double  f1[A_CFT_NUM_DOF+1L];  /* FORCES AT STEP n       */ 
 double  f2[A_CFT_NUM_DOF+1L];  /* FORCES AT STEP n  + 1  */ 
 
 /* MAXIMUM AND MINIMUM VALUES */ 
 double  sratio_max[ 2L ];  /* MAX STRESS RATIO  */  
 double  t_sratio[ 2L ];  /* TIME OF MAX STRESS   * / 
 double  duct_max[ 2L ];  /* MAX DUCTILITY RATIO  * / 
 double  t_duct[ 2L ];   /* TIME OF MAX DUCT     */  
 double  f_max[A_CFT_NUM_DOF+1L]; /* MAX FORCES    */ 
 double  f_min[A_CFT_NUM_DOF+1L]; /* MIN FORCES    */ 
 double  t_max[A_CFT_NUM_DOF+1L]; /* TIME STEP OF M AX F'S*/ 
 double  t_min[A_CFT_NUM_DOF+1L]; /* TIME STEP OF M IN F'S*/ 
 
 /* TRANSFORMATIN MATRIX */ 
 double  lambda[A_CFT_NUM_DOF+1L][A_CFT_NUM_DOF+1L] ; 
     /* GLOBAL TO LOCAL TRANSFORM  */ 
 
 /* ELEMENT STIFFNESS MATRICES */ 
 double  kt[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF + 1L ]; 
     /* LOCAL ELEMENT TANGENT K       */ 
 double  kr[ A_CFT_NUM_DOF + 1L ][ A_CFT_NUM_DOF + 1L ]; 
     /* LOCAL PLASTIC REDUCTION K     */ 
 
 } A_CFT_BC;  /* CFT BEAM-COLUMN ELEMENT */ 
 
#endif 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_extern.h 
 
  @(#) Generic EXTERNal variables 
 
 
*     ABSTRACT- Declaration of generic external var iables  
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*************************************************** **************************/ 
 
#ifndef A_EXTERN_H 
#define A_EXTERN_H 
 
#include <stdio.h>  /* C I/O FUNCTIONS     */ 
#include "a_mac.h"  /* MACRO DEFINITIONS     */ 
#include "a_jt.h"           /* DATA STRUCTURE DEFIN ING JOINT PROPS  */ 
#include "a_cft_el.h"       /* DATA STRUCTURE FOR C FT BEAM-COLUMN    */ 
#include "a_stl_el.h"       /* DATA STRUCTURE FOR S TEEL BEAM-COLUMN  */ 
#include "a_param.h"  /* DATA STRUCTURE OF VARIOUS PARAMETERS */ 
#include "a_global.h"  /* DATA STRUCTURE OF DOF-BAS ED VARIABLES */ 
#include "aisc.h"  /* DATA STRUCTURE FOR AISC DATAB ASE  */ 
#include "aiscpriv.h"  /* AISC PRIVATE INCLUDE FILE --AISC MACROS*/ 
 
#ifndef EXTERN 
#define EXTERN extern 
#endif 
 
/* FILE POINTERS */ 
 
EXTERN FILE* A_fp_in;  /* INPUT FILE POINTER   */ 
EXTERN FILE* A_fp_out;  /* OUTPUT FILE POINTER   */  
EXTERN FILE* A_fp_plot;  /* PLOT FILE POINTER   */ 
EXTERN FILE* A_fp_max;  /* MAXIMUM VALUE FILE POINT ER  */ 
EXTERN FILE* A_fp_accl;  /* ACCELEROGRAM INPUT POIN TER    */ 
 
/* CHARACTER STRINGS */ 
 
EXTERN char A_in_file [ A_FILE_NAME_LEN ];   /* INP UT FILENAME */ 
EXTERN char A_out_file[ A_FILE_NAME_LEN ]; /* OUTPU T FILENAME */ 
EXTERN char A_plot_file[ A_FILE_NAME_LEN ]; /* PLOT  FILENAME */ 
EXTERN char A_max_file[ A_FILE_NAME_LEN ]; /* MAX V ALUE FILENAME */ 
EXTERN char A_accel_file [ A_FILE_NAME_LEN ]; /* AC CEL INPUT FNAME */ 
 
#endif 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_global.h 
 
  @(#) data structure of GLOBAL degree-of-freedom-b ased variables 
 
*     ABSTRACT- This include file contains the data  structure containing  
  global arrays having size equal to the number of degrees-of- 
  freedom in the structure.  These include global f orces,  
  displacements, mass, damping, and others. 
*************************************************** **************************/ 
 
#ifndef  A_GLOBAL_H 
#define  A_GLOBAL_H 
 
typedef  struct { /* 'global' */ 
  long col_ht;  /* GLOBAL K MATRIX COLUMN HEIGHTS      */ 
 
  /* LOADS */ 
  double dr;  /* INCREMENTAL GLOBAL LOAD VECTOR      */ 
  double r1;  /* BEGINNING OF STEP LOAD VECTOR       */ 
  double r2;  /* END OF STEP LOAD VECTOR         */  
  double dyn;  /* DYNAMIC LOAD (ma + NEWMARK EFFECT S) */ 
 
  /* DISPLACEMENTS */ 
  double dqi;  /* GLOBAL ITERATIVE DISPLACEMENTS      */ 
  double dq1;  /* GLOBAL 1ST ITERATION DISPLACEMENT S  */ 
  double q1;  /* BEGINNING OF STEP DISPLACEMENTS     */ 
  double q2;  /* END OF STEP DISPLACEMENTS         */ 
  double q2i;  /* END OF ITERATION DISPLACEMENT       */ 
 
  /* MASS AND DAMPING */ 
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  double mass;  /* GLOBAL MASS MATRIX (DIAGONAL)       */ 
  double cv1;  /* PRODUCT OF DAMPING MATRIX AND v1    */ 
  double cv1i;  /* PRODUCT OF DAMPING MATRIX AND v1 i   */ 
 
  /* ACCELERATIONS AND VELOCITIES */ 
  double a1;  /* BEGINNING OF STEP ACCELERATION      */ 
  double a1_i;  /* BEGINNING OF ITERATION ACCELERAT ION */ 
  double a2;  /* END OF STEP ACCELERATION            */ 
  double v1;  /* BEGINNING OF STEP VELOCITY          */ 
  double v1_i;  /* BEGINNING OF ITERATION VELOCITY     */ 
  double v2;  /* END OF STEP VELOCITY              */ 
 
  } A_GLOBAL; /* GLOBAL STRUCTURAL PARAMETERS */ 
 
#endif 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_jt.h 
 
  @(#) JoinT data structures 
 
*     ABSTRACT- This include file contains the data  structures pertaining to 
  the joints 
*************************************************** **************************/ 
 
#ifndef A_JT_H 
#define  A_JT_H 
 
#include "a_mac.h"   /* MACRO DEFINITIONS   */ 
 
typedef  struct { 
 double  x;  /* X COORDINATE   */ 
 double  y;  /* Y COORDINATE   */ 
 double  z;  /* Z COORDINATE   */ 
  } A_JT_COORD; /* GLOBAL CARTESIAN COORDINATES */ 
 
typedef  struct { 
 long  jt;   /* JOINT NUMBER        */ 
 long  jcode[ A_JT_DOF + 1L ]; /* DOFS MAPPED ONTO LOCAL JT  */ 
 long  rf[ A_JT_DOF + 1L ];  /* VECTOR OF JOINT RES TRAINTS  */  
      /* 0 = restrained, 1 = free    */ 
 
 /* LOADS */ 
 long  lhist[ A_JT_DOF + 1L ];  /* ASSIGNED LOAD HI STORY NUM */ 
 double  load[ A_JT_DOF + 1L ];  /* TOTAL JOINT LOA D       */ 
 double  load1[ A_JT_DOF + 1L ]; /* TOTAL JOINT LOA D (LHIST 1) */ 
 double  load2[ A_JT_DOF + 1L ]; /* TOTAL JOINT LOA D (LHIST 2) */  
 double  r2[ A_JT_DOF + 1L ];  /* TOTAL END OF STEP  LOAD   */ 
 double  ma[ A_JT_DOF + 1L ];  /* GROUND ACCELERATI ON LOAD */ 
 double  dyn[ A_JT_DOF + 1L ];  /* JOINT LOAD DUE T O DYNAMICS */ 
 
 /* FORCES */ 
 double  df_i[ A_JT_DOF + 1L ];  /* INCREMENTAL JOI NT FORCE   */ 
 double  f2_i[ A_JT_DOF + 1L ];  /* JOINT FORCE AT INCR n + 1 */ 
 double  f1[ A_JT_DOF + 1L ];  /* JOINT FORCE AT ST EP n     */ 
 double  f2[ A_JT_DOF + 1L ];  /* JOINT FORCE AT ST EP n + 1 */ 
 
 /* MASS AND DAMPING */ 
 double  mass[ A_JT_DOF + 1L ];  /* JOINT LUMPED MA SS  */ 
 double  damp[ A_JT_DOF + 1L ];  /* JOINT LUMPED DA MPING */ 
 
 /* MAX AND MIN DISPLACEMENTS */ 
 double  u_max[ A_JT_DOF + 1L ]; /* MAXIMUM DISPLAC EMENT */ 
 double  u_min[ A_JT_DOF + 1L ]; /* MINIMUM DISPLAC EMENT */ 
 double  t_max[ A_JT_DOF + 1L ]; /* TIME OF MAXIMUM  DISPL */ 
 double  t_min[ A_JT_DOF + 1L ]; /* TIME OF MINIMUM  DISPL */ 
 
 /* COORDINATES */ 
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 A_JT_COORD co;   /* JOINT COORDINATES           */  
 A_JT_COORD co_i;   /* INITIAL JOINT COORDINATES   */ 
 
  } A_JT_JOINT; /* JOINT DATA STRUCTURE */ 
 
#endif 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_mac.h 
 
  @(#) MACro definitions 
 
*     ABSTRACT- This include files includes all the  macros in the macro 
  model program 
*************************************************** **************************/ 
 
#ifndef A_MAC_H 
#define A_MAC_H 
 
/*********************************/ 
/* DEFINE JOINT AND ELEMENT DOFS */ 
/*********************************/ 
 
#define  A_JT_DOF  6L 
#define  A_CFT_NUM_DOF_END 6L 
#define  A_CFT_NUM_DOF  12L 
#define  A_STL_NUM_DOF_END 6L  
#define  A_STL_NUM_DOF  12L 
 
/******************************/ 
/* DEFINE SIZE OF DATA ARRAYS */ 
/******************************/ 
 
#define  A_NUM_ACCLG_PTS 4200L 
#define  A_NUM_LH_PTS  50L 
 
/*******************************/ 
/* DEFINE MISCELLANEOUS MACROS */ 
/*******************************/ 
 
#define  PI  3.1415926536 
#define POS  1L 
#define  NEG  -1L 
#define NO  0L 
#define YES  1L 
#define STATIC  1L 
#define DYNAMIC 2L 
#define EIGEN  3L 
#define LOWORDER 0L 
#define HIGHORDER 1L 
#define SMALL  0.0000000001 
 
/***************************/ 
/* CHARACTER STRING MACROS */ 
/***************************/ 
 
#define  A_FILE_NAME_LEN 65L  
    /* LENGTH OF FILE NAMES  */ 
#define  A_KEYWORD_LEN 16L  
    /* LENGTH OF KEYWORDS   */ 
#define A_DESIG_LEN 20L 
    /* LENGTH OF SHAPE DESIGNATION   */ 
 
/********************************/ 
/* CONSTANT ACCELERATION MACROS */ 
/********************************/ 
 
#define A_BETA   0.25 
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#define A_GAMMA  0.5 
 
/*****************************/ 
/* CONCRETE STIFFNESS MACROS */ 
/*****************************/ 
 
/* STATUS OF THE CONCRETE STIFFNESS (FULL OR REDUCE D DUE TO CRACKING) */ 
#define FULL   0L 
#define REDUCED  1L 
 
/**************************/ 
/* PLASTICITY FLAG MACROS */ 
/**************************/ 
 
/* TYPE OF KINEMATIC HARDENING: MROZ OR TSENG */ 
#define MROZ  1L 
#define TSENG  2L 
 
/* STATE: ELASTIC, PLASTIC, OR PLASTIC FOR FIRST ST EP */ 
#define  EL  0L 
#define  PL  1L 
#define PL_IN  2L 
 
/* HINGE STATUS:  LOADING OR UNLOADING */ 
#define LOAD  0L 
#define  UNLOAD  1L 
 
/* SURFACE FORCE PT LIES ON:  NONE, LOADING SURF, B OUNDING SURF, OR BOTH */ 
#define NONE  0L 
#define LS  1L 
#define BS  2L 
#define BOTH  3L 
 
/* FORCES TO USE:  BEGINNING OF STEP FORCES, END OF  STEP FORCES */ 
#define  F1  1L 
#define  F2  2L 
 
#endif 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_param.h 
 
  @(#) various structural PARAMeters 
 
*     ABSTRACT- This include file contains the data  structure for the  
  the size of the structural model, the global stif fness matrix, 
  time, and tolerances. 
*************************************************** **************************/ 
 
#ifndef A_PARAM_H 
#define A_PARAM_H 
 
#include "a_mac.h" 
 
typedef struct  { /* 'accel' */ 
  long num_pts; /* NUMBER OF ACCELEROGRAM POINTS       */ 
  long curve;  /* CURRENT PORTION OF ACCELEROGRAM     */ 
  double ag;  /* CURRENT GLOBAL BASE ACCELERATION    */ 
  double angle;  /* ORIENTATION OF EQKE LOADING         */ 
  double a_pt[ A_NUM_ACCLG_PTS + 1L ]; /* ACCLGRM A CCEL COORDS  */ 
  double t_pt[ A_NUM_ACCLG_PTS + 1L ]; /* ACCLGRM T IME COORDS   */ 
  } A_ACCEL; /* ACCELEROGRAM DATA */ 
 
typedef struct { /* 'dyn' */ 
  long d_option; /* INPUT DAMPING OPTION         */  
  double a[ 8L ]; /* VECTOR OF INTEGRATION CONSTANT S     */ 
  double damp;  /* DAMPING RATIO          */ 
  double dcoeff_k; /* STIFFNESS PROPORTIONAL DAMPIN G COEF */ 
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  double dcoeff_m; /* MASS PROPORTIONAL DAMPING COE FF.    */ 
  } A_DYNAMIC; /* DYNAMIC ANALYSIS DATA */ 
 
typedef struct { /* 'eigen' */ 
  double freq;  /* MODAL FREQUENCY          */ 
  double period;  /* MODAL PERIOD          */ 
  } A_EIGEN; /* EIGENANALYSIS DATA  */ 
 
typedef  struct { /* 'flag' */ 
  long analysis; /* TYPE OF ANALYSIS (1 = STATIC,  
      2 = DYNAMIC, 3 = EIGEN)        */ 
  long test_num; /* CODE FOR 'cftmacro.plot' OUTPUT      */ 
  long elem_wt; /* ADD ELEMENT WEIGHTS AS JOINT LOA DS? */ 
  long stl_kin; /* STEEL KINEMATIC HARDENING METHOD     */ 
  long cft_kin; /* CFT KINEMATIC HARDENING METHOD      */ 
  long kg;  /* INCLUDE GEOMETRIC STIFFNESS?        */ 
  long order;  /* ORDER OF Kg (0 = LOW, 1 = HIGH)     */ 
  long kp;  /* INCLUDE MATERIAL NONLINEARITIES?    */ 
  long scaleback; /* SCALE BACK CURRENT STEP         */ 
  long iso;  /* INCLUDE ISOTROPIC HARDENING?        */ 
  long drift;  /* PERFORM FORCE PT DRIFT CONTROL?     */ 
  long echo_input; /* ECHO SELECTED INPUT PARAMETER S?     */ 
  long  suppress; /* SUPPRESS OUTPUT OF SELECT PARA MS?   */ 
  long maxmin;  /* PRINT MAX AND MIN F'S AND DISPLS ?   */ 
  } A_FLAGS; /* PROGRAM FLAGS */ 
 
typedef  struct { /* 'lhist' */ 
  long num_lhpts; /* NUMBER OF LOAD HISTORY POINTS       */ 
  long curve;  /* CURRENT SEGMENT OF LOAD-HIST CURV E  */ 
  double ldfrac1; /* % TOTAL APPLIED LOAD LAST STEP       */ 
  double ldfrac2; /* % TOTAL APPLIED LOAD CURRENT S TEP   */ 
  double time_pt[ A_NUM_LH_PTS ]; /* LOAD HISTORY T IME POINTS   */ 
  double load_pt[ A_NUM_LH_PTS ]; /* LOAD HISTORY L OAD POINTS   */ 
  } A_LOADHIST; /* LOAD HISTORY PARAMETERS */ 
 
typedef  struct { /* 'nr' */ 
  long conv;  /* FLAG TO SIGNAL CONVERGENCE 
      0L = SOLUTION HAS NOT CONVERGED 
      1L = SOLUTION CONVERGED        */ 
  long iter_ct; /* CURRENT ITERATION NUMBER         */ 
  long iter_max; /* MAXIMUM NUMBER OF ITERATIONS        */ 
  double dq_last; /* TOTAL INCR DISPL FOR LAST ITER ATION */ 
  double dq_curr; /* TOTAL INCR DISPL FOR CURRENT I TER.  */ 
  } A_NEW_RAPH; /* NEWTON-RAPHSON PARAMETERS  */ 
 
typedef  struct { /* 'size' */ 
  long num_jts; /* NUMBER OF JOINTS IN THE STRUCTUR E   */ 
  long num_dofs; /* NUMBER OF GLOBAL DEGREES-OF-FRE EDOM */ 
  long num_elems; /* NUMBER OF ELEMENTS IN THE MODE L     */ 
  long num_cft_elems; /* NUMBER OF CFT MACRO ELEMEN TS        */ 
  long num_stl_elems; /* NUMBER OF STEEL MACRO ELEM ENTS      */ 
  long num_jt_loads; /* NUMBER OF JOINT LOADS         */ 
  long num_lhs; /* NUMBER OF LOAD HISTORIES          */ 
  long max_lhpts; /* MAX NUMBER OF LOAD HISTORY POI NTS   */ 
  long num_acclgms; /* NUMBER OF ACCELEROGRAMS          */ 
  long max_acclpts; /* MAX NUMBER OF ACCELEROGRAM P OINTS   */ 
  long num_sky; /* NUMBER OF SKYLINE K TERMS         */ 
  long num_modes; /* NUMBER OF MODES DESIRED         */ 
  } A_MODEL_SIZE; /* SIZE OF STRUCTURAL MODEL */ 
 
typedef  struct { /* 'time' */ 
  long prstep;  /* PRINT RESULTS EVERY __ STEPS  */  
  long count;  /* OUTPUT COUNTER          */ 
  double a_step;  /* SCALED BACK (APPLIED) TIME STE P     */ 
  double x_step;  /* UNAPPLIED PORTION OF INPUT T S TEP   */ 
  double step;  /* INPUT TIME STEP          */ 
  double total;  /* TOTAL AMOUNT OF TIME         */  
  } A_TIME;  /* TIME PARAMETERS */ 
 
typedef  struct { /* 'tol' */ 
  double conv;  /* NEWTON-RAPHSON CONVERGENCE TOL.     */ 
  double eigen;  /* EIGENSOLVER CONVERGENCE TOL.        */ 
  double surf;  /* LOADING AND BOUNDING SURFACE TOL S.  */ 
  } A_TOLERANCE; /* PROGRAM TOLERANCES */ 
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#endif 
 
 
 
 
 
 
/************************************************** *************************** 
 ************************************************** *********** 
 * DEPARTMENT OF CIVIL ENGINEERING - UNIVERSITY OF MINNESOTA * 
 ************************************************** *********** 
 
*     FUNCTION- a_stl_el.h 
 
  @(#) STeeL ELement data structures 
 
*     ABSTRACT- This include files contains the dat a structure definitions 
  pertaining to the steel macro beam-column finite element 
*************************************************** **************************/ 
 
#ifndef  A_STL_EL_H 
#define  A_STL_EL_H 
 
#include "a_mac.h" 
 
typedef  struct { 
 double  p;  /* AXIAL FORCE    */ 
 double  my;  /* BENDING MOMENT ABOUT Y AXIS   */ 
 double  mz;  /* BENDING MOMENT ABOUT Z AXIS   */ 
 } A_STL_FORCES; 
 
typedef  struct { 
 /* ELEMENT AND JOINT NUMBERS */ 
 long  el;  /* ELEMENT NUMBER   */ 
 long  i;  /* I JOINT    */ 
 long  j;  /* J JOINT    */ 
 long            mcode[A_STL_NUM_DOF+1L]; /* ELEMEN T DOF CODE  */ 
 long            release;        /* FLAG TO SIGNAL MEMBER RELEASE 
      0L = RELEASE  
      1L = RELEASE             */ 
 
 /* SECTION PROPERTIES */ 
 double  area;  /* GROSS AREA OF STEEL SECTION */ 
 double  i_x;  /* TORSIONAL CONSTANT   */ 
 double  i_y;  /* Y-AXIS MOMENT OF INERTIA  */ 
 double  i_z;  /* Z-AXIS MOMENT OF INERTIA  */ 
 double  i_p;  /* POLAR MOMENT OF INERTIA  */ 
 double  s_y;  /* Y-AXIS SECTION MODULUS  */ 
 double  s_z;  /* Z-AXIS SECTION MODULUS  */ 
 double  z_y;  /* Y-AXIS PLASTIC MODULUS  */ 
 double  z_z;  /* Z-AXIS PLASTIC MODULUS  */ 
 
 /* LENGTH AND DIRECTION COSINES */ 
 double  l;  /* ELEMENT LENGTH    */ 
 double  l_last;  /* PREVIOUS ITER ELEMENT LENGTH * / 
 double  iend_x;  /* GLOBAL X COMP. OF I-END VECT  */ 
 double  iend_y;  /* GLOBAL Y COMP. OF I-END VECT  */ 
 double  iend_z;  /* GLOBAL Z COMP. OF I-END VECT  */ 
 double  outp_x;  /* GLOBAL X COMP. OF OUT-OF-PLANE  VECT*/ 
 double  outp_y;  /* GLOBAL Y COMP. OF OUT-OF-PLANE  VECT*/ 
 double  outp_z;  /* GLOBAL Z COMP. OF OUT-OF-PLANE  VECT*/ 
 
 /* MATERIAL PROPERTIES */ 
 double  fy;  /* YIELD STRENGTH OF THE STEEL */ 
 double  emod;  /* ELASTIC MODULUS   */ 
 double  gmod;  /* SHEAR MODULUS   */ 
 double  kpi;  /* WEIGHT OF STEEL MEMBER  */ 
 double  mass;  /* TOTAL MASS OF MEMBER  */ 
 double  w1;  /* DISTRIB DEAD LOAD ON MEMBER   */ 
 double  w2;  /* DISTRIB LIVE LOAD ON MEMBER   */ 
 double  mult[ A_STL_NUM_DOF + 1L];  /* DISTRIB LOA D MULT*/ 
  
 /* PLASTICITY PARAMETERS */ 
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 long  ls[ 2L ]; /* LOADING SURFACE TYPE  */ 
 long  bs[ 2L ]; /* BOUNDING SURFACE TYPE  */ 
 long  state[ 2L ]; /* STATE OF PLASTICITY MODEL  
      0L = EL (elastic) 
      1L = PL (plastic) 
      2L = PL_IN (init plast.) */ 
 long  status[ 2L ]; /* FLAG TO SIGNAL UNLOADING  
      0L = LOAD (loading)  
      1L = UNLOAD (unloading) */ 
 long  surf[ 2L ]; /* FLAG - SURFACE EQN TO CHECK 
      0L = NONE (elastic) 
      1L = LS (loading surf) 
      2L = BS (bounding surf)  
      3L = BOTH (both surfs)   */ 
 double  ls_rad[ 2L ]; /* RADIUS OF LOADING SURFACE   */ 
 double  bs_rad[ 2L ]; /* RADIUS OF BOUNDING SURFAC E  */ 
 double  ls_eqn[ 2L ]; /* VALUE OF L.S. EQUATION  * / 
 double  bs_eqn[ 2L ]; /* VALUE OF B.S. EQUATION  * / 
 double  rho[ 2L ]; /* RATIO:  bs_rad/ls_rad  */ 
 double  dist[ 2L ]; /* DISTANCE BETWEEN SURFACES  */ 
 double  dist_in[ 2L ]; /* INITIAL DISTANCE   */ 
 double  norm[ 2L ]; /* NORMAL TO LOADING SURFACE  */ 
 A_STL_FORCES ls_cent[ 2L ]; /* CENTROID OF L.S.   */ 
 A_STL_FORCES bs_cent[ 2L ]; /* CENTROID OF B.S.   */ 
 A_STL_FORCES conj[ 2L ]; /* CONJUGATE FORCE POINT ON B.S. */ 
 A_STL_FORCES grad[ 2L ]; /* GRADIENT VECTOR OF FOR CE PT. */ 
 
 /* KINEMATIC HARDENING PARAMETERS */ 
 A_STL_FORCES mroz[ 2L ]; /* DIRECTION OF MROZ VECT OR  */ 
 A_STL_FORCES tseng[ 2L ]; /* DIRECTION OF TSENG VE CTOR  */ 
 A_STL_FORCES dls_kin[ 2L ]; /* LS RAD CHANGE DUE T O KIN HARD */ 
 A_STL_FORCES dbs_kin[ 2L ]; /* BS RAD CHANGE DUE T O KIN HARD */ 
 A_STL_FORCES k1[ 2L ]; /* HARDENING COEFFICIENT  * / 
 A_STL_FORCES k2[ 2L ]; /* HARDENING COEFFICIENT  * / 
 A_STL_FORCES kp[ 2L ]; /* PLASTIC STIFFNESS   */ 
 A_STL_FORCES kpb[ 2L ]; /* BOUNDING PLASTIC STIFFN ESS  */ 
 
 /* NOMINAL STRENGTHS */ 
 double        po;   /* NOMINAL AXIAL LOAD CAPACITY    */ 
 double  myy;  /* Y-AXIS YIELD MOMENT   */ 
 double  mzy;  /* Z-AXIS YIELD MOMENT   */ 
 double        myo;  /* NOMINAL Y-MOMENT CAPACITY     */ 
 double        mzo;  /* NOMINAL Z-MOMENT CAPACITY     */ 
 
 /* MEMBER DISPLACEMENTS */ 
 double  du[ A_STL_NUM_DOF + 1L ]; /* INCR DISPLS  */ 
 double  u2[ A_STL_NUM_DOF + 1L ]; /* END-OF-STEP D ISPLS */ 
 double  rz_y[ 2L ]; /* MAJOR AXIS 'YIELD' ROTATION  */ 
 double  duct[ 2L ]; /* ELEMENT END DUCTILITY RATIO  */ 
 
 /* MEMBER FORCES */ 
 double  sratio[ 2L ];        /* STRESS RATIOS  */ 
 double  df_i[A_STL_NUM_DOF+1L];/* ITERATION FORCES       */ 
 double  f1_i[A_STL_NUM_DOF+1L];/* BEG-OF-ITER FORC ES    */ 
 double  f2_i[A_STL_NUM_DOF+1L];/* END-OF-ITER FORC ES    */ 
 double  f1[A_STL_NUM_DOF+1L];  /* FORCES AT STEP n       */ 
 double  f2[A_STL_NUM_DOF+1L];  /* FORCES AT STEP n  + 1  */ 
 
 /* MAXIMUM AND MINIMUM VALUES */ 
 double  sratio_max[ 2L ];  /* MAX STRESS RATIO  */  
 double  t_sratio[ 2L ];  /* TIME OF MAX STRESS   * / 
 double  duct_max[ 2L ];  /* MAX DUCTILITY RATIO  * / 
 double  t_duct[ 2L ];   /* TIME OF MAX DUCT     */  
 double  f_max[A_STL_NUM_DOF+1L]; /* MAX FORCES    */ 
 double  f_min[A_STL_NUM_DOF+1L]; /* MIN FORCES    */ 
 double  t_max[A_STL_NUM_DOF+1L]; /* TIME STEP OF M AX F'S*/ 
 double  t_min[A_STL_NUM_DOF+1L]; /* TIME STEP OF M IN F'S*/ 
 
 /* TRANSFORMATION MATRIX */ 
 double  lambda[ A_STL_NUM_DOF + 1L ][ A_STL_NUM_DO F + 1L ]; 
     /* GLOBAL TO LOCAL TRANSFORM  */ 
 
 /* ELEMENT STIFFNESS MATRICES */ 
 double  kt[ A_STL_NUM_DOF + 1L ][ A_STL_NUM_DOF + 1L ]; 
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     /* LOCAL ELEMENT TANGENT K   */ 
 
 double          kr[ A_STL_NUM_DOF + 1L ][ A_STL_NU M_DOF + 1L ]; 
     /* LOCAL PLASTIC REDUCTION K     */         
 
  } A_STL_BC; /* STEEL BEAM-COLUMN ELEMENT  */ 
 
#endif 
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Appendix D 

 

List of Symbols 

 
 
aBS

p , aBS
my , aBS

mz = coordinates of bounding surface backforce vector in force-space 

{ }BSa  = unnormalized bounding surface backforce vector 

{ }BSA  = unnormalized bounding surface centroidal vector 

ai  = constant coefficients for quadratic form of cross-section strength surface equation 
aLS

p , aLS
my , aLS

mz = coordinates of loading surface backforce vector in force-space 
{ }LSa  = unnormalized loading surface backforce vector 

{ }LSA  = unnormalized loading surface centroidal vector 

A c = area of concrete 
A i  = area of fiber element i  
A s = area of steel  
A t  = total area of CFT  
b = width of rectangular CFT  
bi  = coefficients for cubic form of cross-section strength surface equation 
ci  = coefficients of cross-section strength surface equation 
CFT = concrete-filled steel tube 
{ } { }BSLS dada ,  = incremental loading and bounding surface centroid movement 

{ } { }isoBSisoLS dada ,  = incremental surface centroid movement due to isotropic hardening  

{ } { }kinBSkinLS dada ,  = incr. surface centroid movement due to kinematic hardening  

{ } { } { }dqdqdq ji ,,  = i-end, j-end, and total incremental element displacement vectors 

{ }edq  = incremental elastic element displacements 

{ }pdq  = incremental plastic element displacements 

dRLS, dRBS = incremental change in loading surface and bounding surface radii  
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dWp = incremental plastic work 

{ } { } { }dSdSdS ji ,,  = i-end, j-end, and total incremental element force vectors 

{ }*dS  = incr. force vector relating plastic stiffness with plastic displacement vector 
d di jλ λ,  = magnitude of incremental plastic displacement at element ends i and j 

{ }λd  = vector of incremental plastic displacement magnitudes 
D = depth of rectangular CFT 
DOF = degree-of-freedom 
e = eccentricity of applied load  
ey  = eccentricity of applied load in y-direction 

ez = eccentricity of applied load in z-direction 
E A⋅  = axial rigidity 
( )cftAE ⋅  = effective axial rigidity of CFT section 

Ec  = concrete modulus of elasticity 
( )newcE  = updated value of concrete modulus of elasticity  

E I⋅  = flexural rigidity  
( )cftIE ⋅  = effective flexural rigidity of CFT section 

Es  = steel modulus of elasticity 
Esh = steel strain hardening modulus 
f = normalized loading or bounding surface function  
f c  = concrete stress (compression) 
f c

'  = characteristic 28-day concrete cylinder strength 
f cl  = final concrete compressive stress 
f ct = concrete stress (tension) 
f r  = concrete rupture (tensile) strength 
f s  = longitudinal stress in steel tube 
f u  = ultimate strength of steel tube 
f y  = yield strength of steel tube 

F = total internal cross-section force; transverse force 
{ }F  = conjugate vector to { }'F  on loading surface  

{ }'F  = vector at intersection of bounding surface and incremental force vector extension 
G J⋅  = torsional rigidity 
( )cftJG ⋅  = torsional rigidity of CFT section 

Gs = shear modulus of elasticity of steel 
i = cross-section fiber element; finite element end 
I c = moment of inertia of concrete 
I s = moment of inertia of steel 
j = finite element end 
Js = torsional moment of inertia of steel 
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k e  = total element stiffness matrix 

k e
e  = element elastic stiffness matrix 

( ) ( ) ( )mzemyepe kkk ,,  = elastic stiffness terms--axial, minor and major axis bending 

k g
e  = element geometric stiffness matrix 

k p
e  = element plastic stiffness matrix 

( ) ( ) ( )
mzpmyppp kkk ,,  = plastic stiffness terms--axial, minor and major axis bending 

( ) ( ) ( )
mz

b
pmy

b
pp

b
p kkk ,,  = bounding stiffness terms--axial, minor and major axis bending 

k r
e  = element plastic reduction stiffness matrix 

k T
e  = element elastic tangent stiffness matrix 

L = member length; element length 
my  = normalized minor axis (y-direction) bending moment, My/Myo 

mz = normalized major axis (z-direction) bending moment, Mz/Mzo 
M = resultant bending moment 
M o  = ultimate bending moment in presence of no axial load 
M y  = minor axis (y-direction) bending moment 

M yld  = yield moment 

M yo = ultimate minor axis bending moment in presence of no axial load 

M z = major axis (z-direction) bending moment 
M zo = ultimate major axis bending moment in presence of no axial load 
n = parameter for ascending branch of concrete stress-strain curve 
ni  = i th exponent of cross-section strength surface equation 
{ } { } ji nn ,  = gradient vectors at i- and j-end of element 

N = parameter for strain hardening curve of steel stress-strain curve 
{ }N  = element gradient vector 
NPr = non-proportional applied loading 
p = normalized axial load 
P = applied axial load; axial force 
Pco = ultimate axial strength of concrete core of CFT 
Pe = Euler buckling load 
Peq = axial strength of CFT in tension using cross-section strength surface equation 

Po  = ultimate axial load in the presence of no bending 
Pr = proportional applied loading 
Pso = ultimate axial strength of steel tube of CFT 
Ptens = axial strength of CFT in tension 
Q = applied shear 
Qmax, Qmax

'  = maximum cyclic shears 
R = rotation 



269 

RBS = bounding surface "radius" 
( ) ( ) ( ) finalBSmBSinitBS RRR int,  = initial, intermediate, and final bounding surface radii 

( ) ( )oldBSnewBS RR ,  = updated and previous step bounding surface radii 

RLS  = loading surface "radius" 
( ) ( ) finalLSinitLS RR ,  = initial and final loading surface radii 

( ) ( )oldLSnewLS RR ,  = updated and previous step loading surface radii 

{ }s  = normalized force vector 
S = section modulus of steel tube 
S S1 2,  = force axes in two-dimensional force-space  

{ }S  = end-of-step force vector 

{ }'S  = conjugate force vector to { }S  
SRC = steel-reinforced concrete 
t = thickness of steel tube 
t final  = time at end of load step 
u = displacement 
{ }u  = unit vector denoting element orientation 
U U U UT p my mz, , ,  = elastic strain energy--total, axial, minor and major axis bending 

V = transverse applied load 
Wp = total accumulated plastic work 

x n = distance from top fiber of cross-section to neutral axis 
y i  = y-distance from fiber element i to neutral axis 
zi  = z-distance from fiber element i to neutral axis 
{ }LSα  = normalized loading surface centroid 

{ }BSα  = normalized bounding surface centroid 

α = angle of load eccentricity (0° = major axis bending, 90° = minor axis bending) 
β = concrete flexural rigidity reduction factor 
δ = member mid-height deflection; distance between loading and bounding surfaces 
δ in  = initial distance between loading and bounding surfaces 
∆ = member end deflection 
∆ε  = fiber analysis strain increment 
∆φ  = fiber analysis curvature increment 
∆θ  = fiber analysis increment in neutral axis orientation 
ε c = concrete strain (compression) 
ε ct  = concrete strain (tension) 
ε lb  = strain at which local buckling of the steel tube occurs 
ε max = maximum strain in the steel 
εo  = concrete strain at f'c 

ε s = steel strain 
ε sh = strain at the onset on strain hardening of the steel 
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ε top = strain at top fiber of cross-section 

ε y  = strain at yield stress of steel tube 

η ηLS BS,  = magnitude of centroid movements due to isotropic hardening 

θ = angle between neutral axis and centroidal axis of cross-section; rotation 
ϕ  = normalized axial force coordinate of CFT surface centroid  
ϕcalc = calculated normalized axial force coordinate of CFT surface centroid 
ϕ fa  = fiber analysis normalized axial force coordinate of CFT surface centroid 
{ }BSΦ  = unnormalized bounding surface offset vector 

{ }LSΦ  = unnormalized loading surface offset vector 

{ }ϑ  = Tseng kinematic hardening vector 

κ κ1 2,   = calibrated plasticity coefficients 

( ) ( ) ( )newfinalinit 222 ,, κκκ  = initial, final, and updated values of κ2  

Λ  = diagonal matrix of magnitude of bounding surface translation 
ξEc = rate of concrete elastic modulus decrease 
ξκ2  = rate of change in κ2  
ξ ξLS BS,  = isotropic softening rates of loading and bounding surfaces 

ρds = distance between surfaces in Tseng kinematic hardening formulation 
σ σ1 2,  = stress axes in two-dimensional stress-space  

σ i  = stress in fiber element i  
{ }τ  = temporary vector in Tseng kinematic hardening formulation 

{ }υ  = Mroz kinematic hardening vector  

φ = curvature 
Ωp  = normalized accumulated plastic work 

( )
intmpΩ  = normalized plastic work at point of maximum bounding surface radius 

{ } = vector 

 = matrix 

{ }  = magnitude of given vector, { } 
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