
Northeastern University

Department of Civil and Environmental
Engineering Reports

Department of Civil and Environmental
Engineering

September 26, 2014

Laser-based structural sensing and surface damage
detection
Burcu Guldur
Northeastern University

Jerome F. Hajjar
Northeastern University

Report No. NEU-CEE-2014-03

This work is available open access, hosted by Northeastern University.

Recommended Citation
Guldur, Burcu and Hajjar, Jerome F., "Laser-based structural sensing and surface damage detection" (2014). Department of Civil and
Environmental Engineering Reports. Report No. NEU-CEE-2014-03. Department of Civil and Environmental Engineering,
Northeastern University, Boston, Massachusetts. http://hdl.handle.net/2047/d20015559

http://iris.lib.neu.edu/civil_env_eng_rep
http://iris.lib.neu.edu/civil_env_eng_rep
http://iris.lib.neu.edu/civil_env_eng
http://iris.lib.neu.edu/civil_env_eng
http://hdl.handle.net/2047/d20015559


Northeastern University was founded in 1898, as a private research university. Northeastern University is 

a leader in worldwide experiential learning, urban engagement, and interdisciplinary research that meets 

global and societal needs. Department of Civil and Environmental Engineering has over 100 years of 

history and tradition in research, teaching and service to the community, making important contributions 

to the development of our civil infrastructure and the environment, both nationally and internationally. 

 

Contact: 

Department of Civil & Environmental Engineering 

400 Snell Engineering Center 

Northeastern University 

360 Huntington Avenue 

Boston, MA 02115 

(617) 373-2444 

(617) 373-4419 (fax) 

 

The authors thank M. L. Wang, D. P. Bernal, M. MacNeil, M. Clifford at DGT Survey Group, 

and Faro Technologies for their contributions to this research. This material is based upon work 

supported by the National Science Foundation under Grant No. IIS-1328816 and Northeastern 

University. Any opinions, findings and conclusions or recommendations expressed in this 

material are those of the authors and do not necessarily reflect the views of the National Science 

Foundation. 

 

Northeastern University 

Boston, Massachusetts 

September 2014 



i 
 

Abstract  
 

Damage due to age or accumulated damage from hazards on existing structures 

poses a worldwide problem. In order to evaluate the current status of aging, deteriorating 

and damaged structures, it is vital to accurately assess the present conditions. It is 

possible to capture the in situ condition of structures by using laser scanners that create 

dense three-dimensional point clouds. This research investigates the use of high 

resolution three-dimensional terrestrial laser scanners with image capturing abilities as 

tools to capture geometric range data of complex scenes for structural engineering 

applications. Laser scanning technology is continuously improving, with commonly 

available scanners now capturing over 1,000,000 texture-mapped points per second with 

an accuracy of ~2 mm. However, automatically extracting meaningful information from 

point clouds remains a challenge, and the current state-of-the-art requires significant user 

interaction. The first objective of this research is to use widely accepted point cloud 

processing steps such as registration, feature extraction, segmentation, surface fitting and 

object detection to divide laser scanner data into meaningful object clusters and then 

apply several damage detection methods to these clusters. This required establishing a 

process for extracting important information from raw laser-scanned data sets such as the 

location, orientation and size of objects in a scanned region, and location of damaged 

regions on a structure. For this purpose, first a methodology for processing range data to 

identify objects in a scene is presented and then, once the objects from model library are 

correctly detected and fitted into the captured point cloud, these fitted objects are 

compared with the as-is point cloud of the investigated object to locate defects on the 

structure. The algorithms are demonstrated on synthetic scenes and validated on range 
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data collected from test specimens and test-bed bridges. The second objective of this 

research is to combine useful information extracted from laser scanner data with color 

information, which provides information in the fourth dimension that enables detection of 

damage types such as cracks, corrosion, and related surface defects that are generally 

difficult to detect using only laser scanner data; moreover, the color information also 

helps to track volumetric changes on structures such as spalling. Although using images 

with varying resolution to detect cracks is an extensively researched topic, damage 

detection using laser scanners with and without color images is a new research area that 

holds many opportunities for enhancing the current practice of visual inspections. The 

aim is to combine the best features of laser scans and images to create an automatic and 

effective surface damage detection method, which will reduce the need for skilled labor 

during visual inspections and allow automatic documentation of related information. This 

work enables developing surface damage detection strategies that integrate existing 

condition rating criteria for a wide range damage types that are collected under three 

main categories: small deformations already existing on the structure (cracks); damage 

types that induce larger deformations, but where the initial topology of the structure has 

not changed appreciably (e.g., bent members); and large deformations where localized 

changes in the topology of the structure have occurred (e.g., rupture, discontinuities and 

spalling). The effectiveness of the developed damage detection algorithms are validated 

by comparing the detection results with the measurements taken from test specimens and 

test-bed bridges.   
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List of the Common Terms  
 

The list below contains the definitions of common terms that are used most 

frequently throughout this work. 

 

Graph Representation of the skeleton of an object, consisting of 

vertices or nodes and lines or edges that connect them.  

Intensity value Number varying from 0 to 1 that is stored for each pixel (2D) 

or voxel (3D) of a grayscale digital image. 

Neighborhood points  Set of k nearest points (‘k nearest neighbors) determined based 

upon a distance criterion for a given query point.  

Point cloud Set of data points in a given coordinate system representing the 

external surfaces in a scene. 

Point cluster Segmented portion of a point cloud.  

Range data Distances to points in a scene from a given point, generally 

associated with the sensor device. 

Skeleton Thin version of a shape that is equidistant to the boundaries of 

the cross section of the shape and that represents geometrical 

and topological properties of the shape, such as its 

connectivity, topology, length, direction, and width.  

Skeletonization Process of extracting the skeleton of a shape.  

Surface patch Extracted portion of a point cluster used to compute the local 

properties. 



xix 
 

Voxel  Single sample or data point on a regularly spaced, three-

dimensional grid. 

Voxelization Process of converting geometric objects from a continuous 

geometric representation into a set of voxels that approximates 

the continuous object. 
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1. Introduction  

In 2013, the American Society of Civil Engineers (ASCE) released the most recent 

ASCE Report Card for America’s infrastructure; this report depicts the current condition 

and performance of the nation’s infrastructure (ASCE., July 2014). In this report, the 

average grade for all infrastructure types was a D+, and the grade given for bridges 

specifically was a C+. At this time, a significant percentage of the nation’s bridges are 

either functionally obsolete, meaning those bridges were built using outdated standards, 

or structurally deficient, meaning those bridges are not safe because one or more of their 

major components have deteriorated. Even though this percentage has decreased over the 

last decade due to the increasing efforts of states, still 25% of the nation’s bridges are in 

either deficiency category. This demonstrates the importance of accurately assessing the 

current status of aging, deteriorating and damaged structures and taking necessary 

precautions based on these up-to-date assessment results. This research investigates the 

use of high resolution three-dimensional terrestrial laser scanners with image capturing 

abilities as tools to capture geometric range data of complex scenes for structural 

engineering applications. 

In recent years, applications of improved non-destructive testing methods for 

assessing the current conditions of structures have become more frequent. The traditional 

methods along with the new techniques have been increasingly used for determining and 

tracking structural integrity and assessing the nature of damage in a structure; some of the 

common methods include tap tests, impact-echo, ultrasonic measurements, acoustic 

emissions, gamma-ray radiography, ground penetrating radar, etc. (Chang et al., 2003; 

Sohn et al., 2004). 
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Even though non-destructive evaluation technologies for structures have improved 

significantly, visual inspection is still the primary tool to assess conditions of structures 

such as bridges and transportation infrastructure, power generation and transmission 

systems, above-ground pipeline systems, rail systems, dams and levee systems, and other 

exposed infrastructure. These inspections are important to track any changes that occur 

on structures during two successive inspections and also to ensure that the structures 

satisfy all applicable serviceability requirements. However, the results obtained through 

visual inspections may lack consistency that is essential to assess the current condition of 

structures effectively; moreover, such inspections are time consuming and even 

dangerous in some cases. There is a significant potential for variability in condition 

ratings, element-level inspection results, inspection notes, and photographs that are 

obtained during routine inspections. Since the allocations of construction, maintenance, 

and rehabilitation resources are often done based on the recorded condition ratings, this 

variation in these ratings is especially important. At the same time, these recorded 

condition ratings are also important parameters in load rating calculations. Depending on 

the severity of structures’ current conditions, load ratings are used for determining further 

actions.  

The Federal Highway Administration's Nondestructive Evaluation Validation Center 

(NDEVC) performed a study to evaluate the accuracy and reliability of visual bridge 

inspection in 2000, and the findings of this study are discussed in Phares et al. (2004). 

The study was conducted on two in-service and five decommissioned bridges by 49 

inspectors from 25 states. For this study, the standard condition rating system given in the 

National Bridge Inventory (NBI), which was prepared by the Federal Highway 
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Administration (FHWA), is used. The condition ratings vary from 0 to 9, where 0 

represents the failed condition and 9 the excellent condition. The results of the study 

showed that for individual bridge components, 95% of primary element condition ratings 

vary from the average with a standard deviation of two rating points; and only 68% of the 

condition ratings have a standard deviation of one rating point. Although the mentioned 

study was completed over a decade ago, the routine inspections for bridges still suffer 

from similar issues. Thus, it is important to develop new inspection strategies, which 

benefit from evolving data capturing technologies such as laser scanning to record and 

access the current conditions of structures effectively.  

In this research, in order to capture the current condition of structures and to perform 

automated condition assessment, new camera-integrated laser scanner based inspection 

strategies have been developed. These strategies use camera-integrated laser scanners as 

an inspection tool that performs damage detection and characterization. Since the camera-

integrated laser scanners are capable of capturing point clouds that provide information 

on the entire structure, in contrast to the current strategies, it is possible to develop a 

quantitative and systematic inspection strategy that involves no human/computer 

interaction. This approach allows the inspection information to be retained for future 

investigation, and it provides opportunity for comparative investigation over time. 

Laser scanning capabilities have advanced significantly in recent years and have 

gained more recognition as a tool for applications in numerous fields. In the civil 

engineering domain, laser scanning technology has been used for several applications that 

include health monitoring, damage detection, etc. Some of the key laser scanner-based 

applications include monitoring civil infrastructure systems such as long span bridges to 
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obtain direct measurements of absolute displacement time histories at predefined 

locations (Chen et al., 2011), using laser scanners with wireless leave-in-place sensor 

motes for in-situ detection and for monitoring metal fatigue (Buckner et al., 2008), 

comparing displacements measurements obtained by laser scanners with other static 

deformations sensors such as linear variable displacement transducers (LVDTs), electric 

strain gages and long gage fiber optic sensors (Park et al., 2007), using terrestrial laser 

scanner datasets to perform concrete surface damage recognition using mean and 

Gaussian curvatures of the surface of structures (Teza et al., 2009), locating and 

quantifying the damaged areas by using reference planes, which represent the intact 

condition of the surface of the investigated structure (Liu et al., 2011), using laser 

scanning for bridge under-clearance measurements to assess damage and to help 

engineers to develop bridge improvement planning (Liu et al., 2011). However, using 

laser scanners for inspecting existing structures and performing condition assessments is 

a relatively new and expanding research area. Possible future applications may involve 

rapid inspection of existing structures by using laser scanner mounted unmanned aerial 

vehicles  

As mentioned previously, laser scanning technology has been evolving notably in 

recent years. Current commercial laser scanners are more accurate, more compact and a 

lot cheaper than they were a decade ago. It is now possible to collect millions of texture 

mapped data points that are accurate to within millimeters (FARO Technologies Inc., 

July 2014). However, one limiting factor preventing laser scanners from being widely 

utilized in more fields is the challenge of extracting useful feature information from large 

3D datasets. These extracted features may then be tied to more complex structural models 
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or procedures, particularly of damaged structures. A laser scanner is capable of recording 

the location of a large quantity of points in space; however, reducing the data to useful 

information about the scene, including identification of objects without the use of pre-

established object markers, is difficult. There is currently no comprehensive software 

available to take range data and produce useful models for structural engineering 

applications through automated methods. 

In this research, in order to extract meaningful clusters from laser point clouds, 

widely accepted point cloud processing algorithms are implemented. The processing 

steps of these algorithms are registration, neighborhood size selection, outlier point 

detection, curvature estimation, extraneous point detection, feature detection, and object 

detection. These steps are used to extract the location, orientation, and sizes of objects in 

a scene. Once the objects are identified, either three-dimensional information or surface 

information of the detected objects is used to locate defects and quantify their magnitude. 

Two separate damage detection strategies are developed to perform damage detection. 

First, a graph-based damage detection method, which uses both global and local 

properties of detected objects, is developed. This method is used to compare the as-is 

conditions of individual objects with either the predicted or user-defined properties of the 

same object. Second, a surface normal-based damage detection method, which uses the 

local surface properties instead of using the global object properties, is established. This 

method is used to detect localized damage, which can be extracted by using the 

underlying surface properties along with the texture-mapped images. 
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1.1 Objectives and Scope 

The main objective of this research is to establish enhanced inspection strategies for 

large-scale structures and infrastructure systems including bridges and transportation 

infrastructure, power generation and transmission systems, above-ground pipeline 

systems, rail systems, dams and levee systems, and other exposed infrastructure, and to 

propose a new automated strategy for damage quantification and documentation that will 

enhance the current practice for infrastructure inspection, where trained inspectors 

examine each structural component separately. This research aims to provide solutions 

for different damage types and states. The damage states are organized into three 

categories: small deformations, large deformations with no change in topology, and large 

deformations with localized change in topology. This research focuses on enhancing 

current visual inspection methods and developing automated geometry reconstruction and 

damage detection strategies to locate and quantify the surface defects that fall under the 

listed damage categories.  

 

1.1.1 Small Deformations  

For loadings that cause only small deformations, the most important damage types 

to capture are cracks and corrosion. For these types of deformations, using only laser 

scanners for damage detection may not be adequate. Thus, texture-mapped 3D point 

clouds, which are obtained by ubiquitous mapping of registered photographic images 

onto a 3D point cloud, should be used for enhanced visual inspection.  

This research aims to improve the current visual inspection methods and to focus 

especially on structures with difficult access, or where frequent inspection is needed. 
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High-resolution images mapped on point clouds are used for automatically specifying 

locations of cracks, spalling, etc. with point cloud-based damage detection; and for 

developing strategies for storing and viewing this information.  

 

1.1.2 Large Deformations with No Change in Topology 

For deformations that are large enough to be documented, it is required to record 

alignment issues at important points of the structure for identifying damaged structural 

elements in order to track the changes on structures during their lifetime successfully. 

This will be accomplished by detecting and classifying individual members of a structure 

and comparing these members with their pre-defined library representations. 

The focus of this research is to develop a sufficient member inspection technique 

that uses lasers and/or cameras as sensors that can access the structure at all stages and 

develop methods to assess geometry before and after deformation.  

 

1.1.3 Large Deformations with Localized Change in Topology  

In a heavily damaged structure, some portions of the structure may have been 

severed while the majority of the topology of the structure has remained intact, and this 

may result in localized changes in the structure’s topology. In this case, it is critical to 

investigate the fracture locations and take precautions before further damage occurs. The 

damage types investigated under this category are ruptures, concrete spalling, steel 

delamination, and points of discontinuity. 

This research aims to create an automated damage detection and localization system 

which detects separate objects from raw 3D point clouds, and compares the current 
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condition of an object with the best-match from a pre-built object library. This method 

will be effective in determining the location of damaged members as well as quantifying 

the severity of damage.  

To achieve these described objectives, the following new methods and algorithms 

have been developed in this work for texture-mapped point clouds: 

 A surface-normal based damage detection method that only uses the 3D 

coordinate information for locating rupture, spalling, delaminations (Section 

7.3.2). 

 An improved surface-normal based damage detection method that also uses 

the intensity information along with 3D coordinate information for locating 

small deformations such as cracks, corrosion (Section 7.3.3). 

 A graph-based damage detection method for detecting alignment issues, 

points of discontinuity (Section 7.2.2). 

 Automated defect clustering method for processed point cloud regions that 

have more than one defect (Section 7.3.5). 

 A mesh grid-based defect area and volume computation method (Section 

7.3.6.2). 

 An improved clustering method for segmenting the detected cracks (Section 

8.1). 

 Automated crack length and width extraction method (Section 8.2). 

 A decision-making system based on detected defects for automated 

condition rating assignment to investigated items of the structure. (Section 

10.5). 
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At the same time, several algorithms and/or methods from the literature have been 

adapted and implemented for the purposes of this research; these include:  

 A global feature-object detection method to perform structural sensing. 

(Section 6.3). Common point cloud processing algorithms that include 

registration, outlier removal, extraneous point removal, feature extraction, 

region growing are implemented. The segmented surfaces are then used for 

detection several defined objects from the investigated point clouds. 

 A graph-based object detection method that generates skeletons from cross-

section cuts of a voxelized cluster through skeletonization in order to detect 

common structural members (Section 6.4). Available skeletonization 

algorithms are used to extract the skeleton from the cross-section cuts.  

These then form the basis for a new algorithm for object detection that is 

developed based on the use of a library generated from common structural 

shapes. 

 A convex hull-based damage area and volume quantification method for 

point clouds (Section 7.3.6.1). 

 A method that converts cross-section voxel representation automatically into 

a polygon for computing the changes in the cross-section through area 

calculation and determining the total volume change on the investigated 

member (Section 7.2.3). Available polygon generating algorithms are used 

specifically for extracted member cross-sections, and the obtained results are 

then used for computing cross-section changes to document associated 

damage.   
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 An artificial neural network classifier for extracting true positives from 

detected crack clusters from point clouds (Section 8.5). 

Several datasets are used as the proof-of-concept for all the damage states listed in 

Sections 1.1.1-1.1.3.  

 

1.2 Organization 

Chapter 1 of this dissertation presents limitations of the current routine visual 

inspection methods and discusses the use of laser scanning technology to improve the 

current practice. Chapter 2 follows by describing previous research that has been 

completed regarding point cloud and image processing, which consist of steps to process 

the three-dimensional datasets collected via laser scanners, and also regarding laser- and 

image-based surface damage detection methods. This chapter also discusses the current 

visual inspection methods for bridges. Even though the developed algorithms are general 

and applicable to any structure that has visible surfaces, the primary scope of this 

research is on bridges. Thus, while discussing the current visual inspection strategies and 

condition rating criteria, only the strategies for bridges are included. Chapter 3 describes 

the research methodologies that have been developed as part of this project. Chapter 4 

lays out the equipment specifications for several sensors that are used in this research.  

Starting with Chapter 5 and continuing in Chapter 6, both readily available and 

developed point cloud processing algorithms are discussed. Chapter 5 focuses on the 

point cloud processing algorithms that are implemented for this research; these 

algorithms include registration, neighbourhood size selection, outlier point detection, 

surface normal estimation, curvature estimation, extraneous point detection, and feature 
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detection. Chapter 6 begins with discussing point feature histograms, which are used to 

identify the underlying surfaces. Once the surface type is determined, it is followed by 

object detection. This chapter describes two object detection methods, which are used in 

different situations. First, a global-feature based object detection method that operates on 

the global properties of individual objects is introduced. Then, a graph-based object 

detection method, which is more suitable for localized detection is discussed. The 

applications of both object detection methods are shown for several datasets.  

Chapter 7 begins by discussing the developed surface damage detection methods. In 

this chapter, two surface damage detection methods are described. The graph-based 

damage detection method uses three-dimensional information associated with each object 

to localize and quantify element damage. The surface normal-based damage detection 

method is dependent on the extracted surface information. This chapter discusses both 

methods in detail and provides several application examples. Chapter 8 continues 

discussing the damage detection methods by presenting a strategy for improving crack 

detection through implementation of a cluster optimization algorithm, which is 

specifically developed for cracks. This chapter also discusses the implementation of 

artificial neural network for improving the accuracy of the developed crack detection 

algorithms. 

Chapter 9 focuses on combining current visual inspection methods given for bridges 

with camera integrated laser-based surface damage detection. The visual inspection 

strategies from several states are presented. This chapter also discusses the importance of 

repeatability and accuracy of condition rating determination for load rating calculations 

on bridges.  
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Chapter 10 presents the results obtained from the investigated datasets by using the 

methods described for object detection, damage detection, and condition rating. In each 

section of this chapter, first, the description of a dataset is given and then, the results 

obtained for that dataset are included. Finally, Chapter 11 ends the dissertation with 

summary and conclusions and several proposals for future work.  
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2. Background 

There are thousands of structures such as large dams and bridges that have been now 

operating for more than five decades and have age related problems. Assessing the 

current condition of structures such as these has always been important due to their 

impact on the landscape where they are built. The main aim of routine inspection 

activities is to assess structural safety condition of these structures, and it is a significant 

concern for authorities (Committee on the Safety of Existing Dams., 1983). 

This research investigates the use of camera-integrated laser scanners as a tool for 

improving the current visual inspection strategies. In order to develop new strategies that 

involve laser scanners, it is important to understand the available scanner options and 

limitations associated with them. Thus, this chapter starts by explaining laser scanning 

technology, available options, limitations, and sources of errors. This discussion is 

followed by a description of how laser scanning and image processing are currently used 

for civil engineering applications.  

Once the defect scope is determined, the next step is to develop several strategies 

that involve processing texture-mapped laser scanner datasets for locating and 

quantifying visible damage. However, raw laser scanner datasets are not suitable to be 

directly processed for damage detection. Thus, readily available point cloud processing 

algorithms, which are commonly used on laser scanner datasets, are investigated. These 

algorithms are used to reduce point clouds into meaningful clusters, which either 

represent objects or surfaces. An extensive literature review is performed on this topic to 

determine the most suitable algorithms for the applications in this work. In the section 
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that follows point cloud processing literature review, several studies on laser-based 

modeling are represented.  

Next, the previous research on laser- and/or image-based damage detection is 

investigated. First, the studies that involve laser scanner-based damage detection are 

described. Second, the image-based damage detection applications are discussed. Finally, 

the studies, for which a combination of laser scanners and cameras are used, are laid out. 

This chapter concludes with a description of the current visual inspection strategies for 

bridges, which are later used for assessing the condition of individual elements 

automatically based on detected surface damage. 

 

2.1 3D Laser Scanners 

3D laser scanning can be described as the controlled steering of laser beams that is 

used to get a distance measurement at every point on the surface of investigated shapes. 

The scanned shapes can be objects, buildings, bridges, landscapes, and etc. 3D laser 

scanners capture data from the surface of shapes. The collected datasets can either consist 

of only the geographic coordinates of each point on the surface, or they can have color 

information in additional to the geographic coordinates. 

There are two well-established categories that divide all 3D laser scanners into two 

types: contact and non-contact laser scanners. Non-contact laser scanners are then divided 

into two main categories: active and passive scanners (Curless, 1999; Bernardini and 

Rushmeier, 2002).  

Contact 3D scanners require physical touch with the surface of investigated shapes. 

Shapes are positioned and held in place by a fixture on a precision surface plate, which 
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has a specific maximum surface roughness. The contact scanners either consist of a 

carriage system with rigid arms that are perpendicular to each other, where each axis 

glides along a track, or an articulated arm with rigid bones and high precision angular 

sensors.  

Non-contact active 3D scanners are used to probe an object or environment by 

emitting either radiation or light. Radiation passes through objects and light is reflected 

from the surface. Some possible emission types can be listed as ultrasound, x-ray and 

light. There are several types of non-contact active laser-scanners; however, they can be 

grouped under two categories: surface-based scanners that are classified as time-of-flight, 

triangulation-based, conoscopic, hand-held, structured light, and modulated light; and 

volumetric scanners that include computed tomography (CT), magnetic resonance 

imaging (MRI), industrial computed tomography, and micro-tomography. The 3D 

scanners that are used in this research are all non-contact active 3D scanners, and they 

fall under either the time-of-flight scanners category or the triangulation-based scanners 

category.  

Time-of-flight 3D laser scanners use laser light to collect geographic location 

information from the surface of structures by using a time-of-flight laser rangefinder. The 

round-trip time of a pulse of light is timed by the rangefinder. This recorded round-trip 

time is used to determine the travel distance. If the recorded travel time is  , then the 

distance to the object can be represented as    
 

, where   is the speed of light. Since travel 

distance represents twice the distance between the scanner and the surface, only half of 

the travel distance is used to calculate the distance of a surface point from the scanner. 

Time-of-flight laser scanners are divided into two categories as well: pulse–based or 
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phase-shift systems. Pulse-based systems use straight laser beams with constant power; 

however, phase-shift systems modulate the power of the laser beams. For phase-shift 

systems, the scanner compares the phase of the sent laser beam with the phase of the 

received laser beam (Pfeifer and Briese, 2007). Time-of-flight 3D scanners are classified 

as mid- to long-range scanners with a focal distance larger than 2 meters. The 

representation of the operating principles for pulse-based time-of-flight 3D laser scanners 

is shown in Figure 2.1, and in Figure 2.2, the operating principles for phase-shift time-of-

flight 3D laser scanners are represented.  

 

Figure 2.1: Representation of operating principles for pulse-based time-of-flight 3D laser 
scanners (Janos, July 2014). 

 

 

Figure 2.2: Representation of operating principles for phase-shift time-of-flight 3D laser scanners 
(Janos, July 2014). 
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Similar to time-of-flight 3D laser scanners, triangulation-based 3D laser scanners are 

also non-contact active scanners that use laser light to collect surface point locations. 

However, instead of a rangefinder, this scanner system uses cameras to exploit the 

location of the laser dot, which shines on the surface. These scanners are called 

triangulation-based 3D scanners because the laser dot, the camera and the laser emitter 

form a triangle. Since the distance between the camera and the laser emitter and their 

angle with each other and the third corner defined by the laser dot are known, it is 

possible to compute the size of the triangle that gives the location of the laser dot (Pfeifer 

and Briese, 2007). Triangulation-based 3D laser scanners are classified as short range 

laser scanners with a focal distance smaller than 1 meter. The representation of the 

operating principles for triangulation-based 3D laser scanners is shown in Figure 2.3. 

 

Figure 2.3: Representation of operating principles for triangulation-based 3D laser scanners 
(Geomatic 3D Systems Inc., May 2014). 

 
The second group of non-contact types of laser scanners consists of non-contact 

passive 3D laser scanners. Non-contact passive 3D scanners, which are the second major 

non-contact type scanners, detect reflected ambient radiation; however, they do not emit 

any type of radiation. Since visible light is already an ambient radiation, it can be 

detected by non-contact passive 3D scanners. These types of scanners are generally less 
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expensive than the non-active 3D scanners since they do not need sophisticated hardware. 

Some of the available systems can be listed as stereoscopic and photometric.  

 

2.2 Key Specifications and Sources of Error for Time-of-flight and 

Triangulation-based 3D Laser Scanners 

As mentioned, the two major types of laser scanners used in this research are time-

of-flight laser scanners, which have a longer range, and triangulation-based laser 

scanners, which have a shorter range. Both types have their own advantages and 

challenges relative to their suitability for different applications. Since the main focus is 

on time-of-flight and triangulation-based 3D laser scanners, only the key specifications 

and sources of error associated with these types of 3D laser scanners are investigated.  

 

2.2.1 Key Specifications 

There are three key specifications that define the performance characteristics of 

3D laser scanners: accuracy, precision, and resolution. Error sources that affect these 

performance characteristics need to be investigated in order to understand the limitations 

of 3D laser scanners.  

Accuracy is defined as the degree of agreement between a measurement and the 

conventional true value of the quantity being measured. Triangulation-based laser 

scanners are generally more accurate compared to the time-of-flight scanners. Timing the 

round-trip of a light beam is difficult due to the high speed of light; thus, the accuracy of 

the distance measurement is relatively low (Reshetyuk, 2006).  
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Precision, on the other hand, is the degree of repeatability in a measurement. 

Accuracy is generally confused with precision in the system specifications. Precision can 

be estimated if all the systematic errors influencing the 3D laser scanner measurements 

have been corrected, and the standard errors are taken into account. Precision is related to 

the hardware properties instead of the used system; thus, it is not possible to give a 

comparison between time-of-flight and triangulation-based scanners on a precision basis 

(Gordon and Lichti, 2004). 

Finally, resolution is defined as the size of the smallest discernable feature that 

can be detected by the scanner. It is important to differentiate range resolution and 

angular resolution. Range resolution is the minimum detectable range change, whereas 

angular resolution is the smallest discernable feature size on a homogeneous surface. 

Angular resolution is directly dependent on the beam divergence angle and the sampling 

interval. Angular resolution is especially important for damage quantification. Low-

resolution data is typically not detailed enough to extract important features. On the other 

hand, high-resolution data is harder to process and increases the computational cost. As 

computational power is improving rapidly, the ability to use higher-resolution lasers with 

real-time processing of data will increase (Reshetyuk, 2006).  

 

2.2.2 Sources of Errors 

The sources of errors that cause problems on the described key specifications can 

be divided into two main groups: internal (instrumentation) and external (object-related, 

environmental, and methodological errors) (Gordon and Lichti, 2004). A more distinctive 
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separation can be given as instrument, object-related, environmental and methodological 

errors (Staiger, 2005; Reshetyuk, 2006).  

Instrument errors are dependent on the technical specifications of 3D laser 

scanners, where these technical specifications are directly affected from the scanner 

design. Instrument errors can either be fundamental, or they might be specific to the 

scanner hardware. Fundamental errors, which are related to the laser rangefinder or beam 

deflection unit, represent the natural limitations of laser scanning. However, errors 

specific to the scanner hardware, which are related to the laser rangefinder, beam 

deflection unit, and axes errors, can either be removed or minimized through better 

system design or calibration. This category contains an error type that is called “mixed-

pixels”. This type of error is especially important since it might affect the results of the 

algorithms implemented in this research. As the laser beam hits the edge of an object, 

there is an inevitable loss in accuracy since a light beam splits into two separate pulses 

with different trajectories after it hits an edge on the structure. This results in recording 

two data points from two different locations for only one laser pulse. These inaccurate 

points are later removed from the point cloud before further processing; however, the 

object dimensions extracted from the resulting point cloud has accuracy issues (Tang et 

al., 2009).  

Object-related errors are associated with the scanned surfaces. The most important 

cause of the error is reflectance. Since the 3D laser scanners receive the emitted laser 

beams that are reflected from the scanned surfaces, the reflectance of the underlying 

surface is an important parameter. Reflectance can be taken as the ratio between the 

reflected and incident power (Ingensand et al., 2003). Reflectance is dependent on the 
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following factors: material properties that include electric permittivity, magnetic 

permeability and conductivity; surface color; wavelength of laser; incidence angle of the 

laser beam; surface roughness; polarization; temperature; moisture of the surface (Nayar 

et al., 1991; Jelalian, 1992; Curless, 1999; Ingensand et al., 2003).   

Some of the environmental errors can be listed as ambient temperature, pressure, 

relative humidity, illumination, vibration, etc. Understanding the influence of these 

factors on the measurements is important since they result in measurement errors, and 

they are difficult to control.  

Finally, methodological errors are results of the followed surveying strategy.  The 

three main sources of the methodological errors are the density of the laser spot that 

depends on the sampling resolution, the range to the object and the chosen approach for 

geo-referencing the points (Staiger, 2005).  

 

2.2.3 Incomplete data 

Another source of error, which causes problems for further processing steps, is 

incomplete datasets. Incomplete datasets can be a result of either incomplete laser 

scanning due to occlusion, or insufficient access to all parts of the structure. In this case, 

point cloud and image processing algorithms may result in false positives or can fail to 

detect important features that are mandatory for further processing. Thus, it is important 

to know the properties of a candidate point cloud so as to avoid any unexpected results, 

and also to develop methodologies that will overcome occlusion. 

 



22 
 

2.3 Laser Scanning and Image Processing Applications in Civil Engineering  

This section investigates the possible application areas for laser scanning and 

imaging in civil engineering. Current approaches used for routine inspections involve 

collecting information with a visual inspection carried out by expert personnel (Chang et 

al., 2003; Sohn et al., 2004). Thus, most methodologies are subjective and non-

repeatable, and the documentation of inspections is difficult.  

Laser scanners do not require direct access to the object, and this resolves some of 

the limitations of conventional sensors that have to be installed on structures (Vezočnik et 

al., 2009). In recent years, usage of laser scanners and/or cameras for various engineering 

surveying applications such as monitoring field displacement, deformation monitoring, 

damage detection, and damage documentation has increased rapidly (Monserrat and 

Crosetto, 2008; Lindenbergh et al., 2009; Olsen et al., 2009; Rabah et al., 2013; Torok et 

al., 2013; Adhikari et al., 2014). In this context, cameras are mainly used for applications 

such as crack, corrosion and change detection etc. (Lee and Park, 2011). 

 

2.4 Laser Scan Processing for Modeling and Damage Detection 

As mentioned, in order to perform damage detection on point clouds, first the 

investigated point cloud has to be divided into meaningful clusters. This is achieved by 

implementing several point cloud processing algorithms for object and/or surface 

extraction. This section explores previous research that focuses on point cloud 

processing.  

Prior to point cloud processing, recorded point clouds are just 3D datasets that 

give the geographic location of each point on the surface of a structure. Objects and other 
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features in a scene and their relationship with each other can be deducted by 

implementing well-recognized point cloud processing steps. This information can then be 

used to determine possible damage locations on the structure, which is explained in 

Chapter 7 in detail. 

The main steps of point cloud processing can be listed as registration, sharp 

feature detection, segmentation, and object detection. For this work, literature regarding 

data processing methods for all steps was explored, and some algorithmic extensions 

were developed and implemented. 

 

2.4.1 Registration 

3D point clouds are generated through capturing multiple scans of a scene since a 

laser scanner’s field of view does not cover the whole structure. In order to have a 

complete 3D point cloud of a structure, it is necessary to change the location of the laser 

scanner after each scan and then register all recorded scans with each other. Registration 

is a mandatory pre-processing step required when multiple scans are taken to capture a 

scene (Besl and McKay, 1992; Yu et al., 2001; Gelfand et al., 2005; Barnea and Filin, 

2008).  

Automatically computing a three-dimensional rigid transformation that aligns two 

point clouds is a problem that frequently arises in three-dimensional modeling of large-

scale environments and in structural change detection (Smith et al., 2008). Researchers 

generally present robust algorithms that can estimate and verify this transformation even 

in the presence of widely-differing scanning viewpoints and substantial structural 

changes in the environment between scans.  
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The most common registration and refining method in literature is called 

“Iterative Closest Point (ICP)” (Menq et al., 1992; Yang and Medioni, 1992). ICP starts 

from an initial transformation estimate, and uses this estimate to map points from one 

scan onto the second scan in order to establish temporary correspondences between 

points in the two scans. These correspondences are then used to refine the estimate. The 

process iterates until a convergence criterion is met (Besl and McKay, 1992).  

 

2.4.2 Feature Detection 

Detecting feature points is one of the most important steps of point cloud 

processing. Feature points are detected through either mesh or point based feature 

detection methods. A feature point can either be a part of a corner where three or more 

surfaces connect, or a line or edge that connects two surfaces. These features can be 

detected in a point cloud by searching through the points looking for those whose normal 

vectors vary greatly from their neighbors (Rabbani et al., 2006; Demarsin et al., 2007). 

High normal vector variation between neighboring points represents an abrupt change of 

surface orientation. Once the feature points are detected, the most distinctive points are 

labeled as key-points and these key-points are used for monitoring and surface 

reconstruction purposes. The feature extraction problem is especially related to surface 

reconstruction, which has important applications in laser range scanning.  

There are two general approaches for processing raw point clouds for feature 

detection: point-based methods and mesh-based methods. The point-based methods begin 

processing a data set by directly utilizing the points themselves (Pauly et al., 2002; 

Daniels et al., 2007; Demarsin et al., 2007). However, mesh based methods begin by 
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creating a triangulation or surface reconstruction of the cloud (Benkő et al., 2001; Huang 

and Menq, 2002). Point based methods have the advantage of using the point set exactly 

as is, without introducing any smoothing or loss of sharp features. Also, when working 

from a point set directly, the step of generating a consistent mesh, which can be very 

difficult and time consuming for irregular or noisy point sets, is avoided (Vančo and 

Brunnett, 2007). There has been less work done on point-based methods compared to 

mesh-based methods, even though the point-based methodology in lieu of a mesh-based 

methodology allows processing of the point cloud without the difficulty of generating a 

mesh and introducing smoothing (Vosselman et al., 2004).  

 

2.4.3 Segmentation 

Numerous approaches have been explored for geometric surface modeling from 

unstructured point clouds. Surface modeling requires several of the mentioned preceding 

steps: registration, feature detection, and segmentation. In this section the focus will be 

on segmentation, the last step before surface reconstruction, which is performed by 

aggregating points with similar attributes together (Dorninger and Nothegger, 2007). A 

point cloud is segmented by labeling each point in a point cloud, so that the points 

belonging to the same surface or region are given the same label (Zhan et al., 2010).  

There are mainly three categories of segmentation: edge-based segmentation, 

surface-based segmentation and hybrid segmentation. The edge-based segmentation 

algorithms use features including normal vector, gradients, principle curvatures, etc. in 

order to extract the points belonging to surface edges. Since each separate surface edge 

expresses different features, once the edge points are determined, they are tracked to 
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obtain surface borders. The points within borders are grouped together (Fan et al., 1987; 

Sappa and Devy, 2001; Meyer and Marin, 2004). The region-growing methods use 

continuous surfaces that have homogeneity or similar geometrical properties for 

segmentation (Besl and Jain, 1988; Pu and Vosselman, 2006; Rabbani et al., 2006). 

Finally, the hybrid segmentation uses more than one property to process uncategorized 

points in a scan. Those properties may be geo-metrical, image-metrical, or texture-

metrical (Lucieer and Stein, 2005; Liu and Xiong, 2008).  

Segmentation simplifies decision making and data analysis by representing 

compound objects, which are defined by multiple points, by segments. Further steps such 

as object detection, recognition or reconstruction also become easier once the complex 

objects are represented by segments extracted from point clouds. Segmentation also 

reduces the data volume significantly; it is especially effective when handling the 

individual segments only, instead of the original point cloud for post-processing.  

 

2.4.3.1 Region Growing for Segmentation 

The main segmentation method implemented for this research is “region 

growing”. This section provides background information on some of the key region 

growing-based segmentation studies. The purpose of region growing algorithms is to 

group the points that share similar properties such as smoothness constraint. Thus, the 

output of these algorithms is the set of clusters, where each cluster consists of a group of 

points that are considered to be a part of the same smooth surface.  

Surface extraction through region growing is based on the assumption of surface 

coherence (Besl and Jain, 1988; Vieira and Shimada, 2005). This indicates that almost 
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every point sampled from an object’s surface will be geometrically related to its nearby 

points despite the presence of noise and they will all lie near a single, smooth surface.  

The concept of region growing, which is used to merge points in a scan into 

groups that can be approximated by surfaces, was first introduced for images by Besl 

(1988) and Besl and Jain (1988); thereafter adapted for gridded height data in Sapidis and 

Besl (1995). This approach was first implemented for segmenting dense, unstructured 

meshes (Vieira and Shimada, 2004; Vieira and Shimada, 2005), and then it was further 

extended into a method for automatic surface extraction from point clouds (Vieira and 

Shimada, 2009).  

 

2.4.4 Object Detection 

Shape searching and object retrieval is the last and the most important step of 

point cloud processing for both laser-based modeling and automated damage detection 

from 3D range data. There are many approaches that have been investigating shape-based 

retrieval of 3D data; and they can be listed as computer vision (Pope, 1994), mechanical 

engineering (Kriegel et al., 2003), artifact searching (Rowe et al., 2001), molecular 

biology (Kastenmüller et al., 1998), and chemistry (Bruno et al., 1997). Research in 

vision and computer graphics has been dominating the 3D shape searching area so far, 

where researchers have specifically focused on the ‘shape matching’ problem. However, 

computer-aided design (CAD) and engineering applications of 3D shape searching 

require many different considerations other than the shape matching problem. In addition 

to shape matching, advanced clustering and automated classification methods are 

required (Iyer et al., 2005). 
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Many of the 3D shape searching techniques related with this research can be 

classified based on shape representations: global feature-based, graph-based, histogram-

based and 3D object recognition-based.  

Global feature-based methods use global properties of the 3D model such as 

moments, invariants, Fourier descriptors, and geometry ratios. In Zhang and Chen (2001) 

calculating these features effectively from the mesh representation of an object were 

demonstrated. The limitations of global feature-based methods are that they fail to 

discriminate among locally dissimilar shapes, cannot capture the specific details of a 

shape and are not very robust (Iyer et al., 2005). 

An important shape characteristic of 3D models is the topology. Graph-based 

methods use topology for shape searching and retrieval. Generally, relational data 

structure such as graphs and trees are used to represent topology. Subsequently, a graph 

or tree comparison can be used to estimate the similarity between two shape 

representations. Tree comparison is faster and easier compared to graph comparison; 

however, most engineering components cannot be represented as trees. On the other 

hand, with the increase in graph size, graph comparison costs increase proportionally. 

Other applications include exact or inexact matching techniques applied on topological 

graphs. Exact matching methods work best in the absence of noise, whereas inexact 

matching methods compute a measure of similarity even in the presence of noise. 

Topological graphs allow representation of 3D models at multiple levels of detail and 

facilitate matching of local geometry (Iyer et al., 2005). Some 3D shape matching 

approaches use boundary representation (B-Rep) for determining similarity, B-rep is 

represented as a graph. Shape matching is achieved by determining similarity between 
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corresponding B-Rep graphs (Tangelder and Veltkamp, 2004). However, there are many 

other approaches that convert the surface representation of a 3D model into a simpler 

topology preserving representation such as Reeb graphs (Reeb, 1946), shock graphs (Cyr 

and Kimia, 2001) and skeletal graphs (Sundar et al., 2003). Even though these 

approaches are faster than B-Rep comparisons, they often result in the oversimplification 

of shape that causes major problems in large 3D databases. There are also some other 

approaches that use B-Rep graphs for deriving graph invariants such as number of nodes 

and edges, degrees of nodes, and eigenvalues directly for fast shape comparison. 

Histogram-based techniques use sampled points on the surface of the 3D model to 

extract characteristics. Histograms or distributions are created based on the frequency of 

occurrence of these characteristics. A distance function, which compares histograms, is 

used to determine similarity. The number of sampled points is especially important in 

determining the accuracy and effectiveness of histogram-based techniques, higher 

accuracy can be achieved by using a larger number of sampled points. However, the 

robustness of the method is inversely related to the number of sampled points. 

Histogram-based methods can be collected under two main categories: shape histograms 

(Ankerst et al., 1999) and shape distributions (Osada et al., 2002).  

Finally, context-based object detection approach consists of 3D object 

recognition-based methods. The computer vision community has studied 3D object 

recognition techniques extensively. There are many available methods that have been 

developed for 3D object recognition. Some of them are based on aspect graphs 

(Koenderink and Van Doorn, 1976), extended Gaussian images (Horn, 1984), super-

quadrics (Solina and Bajcsy, 1990), spin images (Johnson and Hebert, 1999), and 
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geometric hashing (Lamdan and Wolfson, 1988). Some applications use multiple images 

of each object are used to obtain the features of all surfaces and combined for model 

construction, thus the specific viewing direction is not affecting the object recognition 

(Yi and Chelberg, 1998; Lee and Park, 2011).  

 

2.5 Laser-based Modeling 

Point cloud processing is the first step for understanding and deducting 

meaningful information from 3D range data. This process forms a solid foundation for 

developing methods that are useful for civil engineering applications since extracting 

important features from point clouds is vital.  

Laser-based modeling, which is one of the major civil engineering applications 

for laser scanning, includes incorporation of laser-scan data with the generation or 

validation of both computer-aided design (CAD) models and building information 

models (BIMs). CAD models generally represent structures with sets of independent 

planer surfaces, whereas BIMs, which provides adjacency relationships between 

connected elements in a model, represent facilities in a semantically rich manner. The 

modeling of a BIM from a given point cloud involves three tasks, which are modeling the 

geometry of the components, assigning material properties and an object category to a 

component and finally, establishing relationships between components (Huber et al., 

2011). Some key examples of laser-based modeling from literature are discussed in the 

following paragraph. 

In a prior study, laser scanners have been used to augment measurements from 

other sensors to determine the geometry of existing structures (Gielsdorf et al., 2004). In 
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another application, Vosselman et al. (2004) reviewed several techniques that can be used 

for recognizing specific geometric shapes in order to implement an automatic processing 

of the point clouds. Industrial components are modeled from point clouds into surfaces 

without using triangulation but by using a feature-based strategy and surface feature-

based strategy (Ke et al., 2006). Accurate 2D plan models of building interiors have also 

been created by an automated method in which 3D point cloud data was used as input 

(Okorn et al., 2010). Adan et al. (2011) discussed a method that converts raw 3D point 

data to a semantic model automatically. This method identifies objects in an indoor 

environment including walls, floors, ceilings, windows and doorways even in the 

presence of significant clutter and occlusion. Ip and Gupta (2007) used a partial 3D point 

cloud of an artifact for retrieving the CAD model consists of polygonal meshes for 

segmenting the point cloud and searched for a potential model match.  

Arayici (2008) summarized the research on creating BIMs of existing structures 

using point clouds captured by 3D laser scanners. This study highlights that this process 

requires adapting automated data processing and pattern recognition techniques. Another 

extensive review for extracting as-built building information models from laser point 

cloud is given in Tang et al. (2010).  

 

2.6 Laser-based Damage Detection 

The second major aspect relevant to civil engineering application, which follows 

laser-based modeling and is also the core focus of this research, is laser-based damage 

detection. In the past two decades, researchers developed several methodologies for using 

laser scanning technology for both monitoring structures and detecting damage.  
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The common characteristic of most of the current approaches used for monitoring 

is to measure with high accuracy displacements, strains, pressures, or related quantities of 

a small number of points or collect information with visual inspection carried out by 

expert personnel (Chang et al., 2003). Thus, most methodologies are based on a discrete 

sample instead of sampling the complete surface. Currently, available instruments such as 

linear variable differential transformers (LVDTs), cable-extension position transducers, 

accelerometers and other optical systems that are commonly used in laboratory or field 

testing of structures similarly capture position and displacement. They record 

measurements often with greater accuracy than common laser scanners, but these 

measurements are feasible only for pre-selected discrete points. However, laser scanners 

provide opportunity to develop new health monitoring methods, which do not require 

sensors mounted on structures (Mosalam et al., 2014).  

The most common application is tracking user-defined key-points on structures 

over a time period. Key-points can either be reflectors, which are mounted on the surface 

of structures, or distinctive feature points that can be successfully located and monitored 

in each successive 3D data set. This application could be developed further for use in 

health monitoring of existing structures. Recently, work has been done exploring the use 

of lasers for tracking in-situ deformation of undamaged structural components, such as 

beams and columns (Hawarey and Falk, 2004; Gordon and Lichti, 2007; Park et al., 

2007). In another study, in order to monitor civil infrastructure systems such as long span 

bridges and to obtain direct measurements of absolute displacement time history at 

predefined locations (laser tracking references), a new vision-based approach, which 

consists of high-resolution depth cameras, has been developed (Wahbeh et al., 2003). 
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Laser scanners are also used for applications such as long term deflection monitoring, 

gage-free stress and strain estimation, etc. Another application is long-term monitoring 

where deformations are measured at historical buildings to derive changes at different 

epochs. Commercial software is used for forming 3D models of buildings and this model 

is used for computation of deformations (Sternberg, 2006). Buckner et al. (2008) used 

laser scanners with wireless leave-in-place sensor motes for in-situ detection and for 

monitoring metal fatigue. Fatigue related changes in the surface were detected by the 

device. Experiments showed that this device can track early stages of fatigue 

development at monitored locations, when cracks are smaller than 50μm in length. It is 

also very important to test the accuracy of the measurements recorded with laser scanners 

and in order to test laser accuracy, a study is performed to investigate the capabilities of 

laser scanners for certain civil engineering applications. Two detailed laboratory 

measurements and some field measurements were performed for confirming the accuracy 

of stated by manufacturer and for examining the effect of different materials, colors and 

incident angle; and found that laser scanners limited accuracy may problems for 

engineering surveying applications (Berenyi et al., 2010). Another study was performed 

on a simply supported steel beam to compare displacements measurements obtained by 

laser scanners with other static deformations sensors such as linear variable displacement 

transducers (LVDTs), electric strain gages and long gage fiber optic sensors. The results 

show that maximum deflections estimated by laser scanners are less than 1mm and within 

1.6% of the ones measured by LVDTs. This study also showed that the maximum stress 

value estimated by laser scanners are close to the directly measured value with long gage 

fiber optic fibers (Park et al., 2007). In addition, advanced lasers are able to complete on 
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the order of thirty complete scans per second, thus enabling these lasers to be used to 

record the movement of a structure during many types of dynamic experimental testing 

(Siringoringo and Fujino, 2009).  

Another commonly investigated application for laser scanners is to track changes, 

mostly during construction, by comparing two successive scans that are recorded 

throughout the process. In some studies, the algorithms attempt to locate objects in the as-

built geometry based on the BIMs of the as-designed geometry. Tracking of components 

within a point cloud during construction has been investigated in Bosche and Haas (2008) 

and Chi et al. (2009). In another study, laser scanners are used to conduct quality 

assurance. Modeled and the as-is conditions of the structure are compared to identify 

potential errors in the model (Anil et al., 2013). Bosché (2010) displayed a method for 

detecting 3D CAD model objects automatically in point clouds and for performing 

dimensional compliance control. Kim et al. (2013) performed an automated construction 

process measurement in three phases: alignment of the as-built data with the as-planned 

model, matching of the as-built data to information in the BIM, and revision of the as-

built status. Son and Kim (2010) discussed a method that uses laser scanner data and 

images for 3D structural component recognition, in order to monitor the construction 

progress. Shih and Wang (2004) use point clouds in order to compare the work process at 

a construction site with the original construction schedule. Turkan et al. (2012) 

mentioned that even though the laser scanning technology has been investigated in 

construction industry, it couldn’t reach to its full potential possibly due of the complexity 

of the available commercial 3D data processing software packages. Thus, their study 
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proposes a system that combines 3D object recognition with schedule information for 

tracking the construction progress.  

A more recently developed application is to capture in situ damage or collapse of a 

structure by using laser scanners, in which individual laser scans of a scene may be 

captured from different viewpoints to permit the creation of a complete 3D record of a 

damaged structure (Olsen et al., 2009). These types of applications enable localization 

and quantification of surface damage in order to enhance the current visual inspection 

strategies. In Anil et al. (2013), laser scanners are used to represent crack information on 

the surface of structures using a BIM approach. Teza et al. (2009) used terrestrial laser 

scanner datasets to perform concrete surface damage recognition using mean and 

Gaussian curvatures of the surface of structures. Liu et al. (2011) used reference planes, 

which represent the intact condition of the surface of the investigated structure, in order 

to located and to quantify the damaged areas. Laser scanning is used for bridge under-

clearance measurements to assess damage and to help engineers to develop bridge 

improvement planning (Liu et al., 2011). Some other applications such as post blast 

assessment and bridge deflection measurements are also discussed in the extension of the 

same study (Chen, July 2014). There have been also some studies that investigate the 

performance of laser scanners for detecting the investigated damage types. In a study, the 

performance of laser scanners for detecting thin cracks for damage assessment of 

reinforced concrete frames is characterized (Anil et al., 2013). The limits for the 

terrestrial laser scanner-based crack detection were discussed in Laefer et al. (2014). The 

performance of several surface flatness detection algorithms that operate on concrete 



36 
 

surfaces and a set of laser scanners used to collect surface scans are evaluated in Tang et 

al. (2010). 

Laser scanning technology is also used for condition assessment of wide areas as 

well. The terrestrial-LIDAR technologies are used to visualize the surface and structural 

deformations in Kayen et al. (2006). Olsen and Kayen (2014) discussed the challenges 

and benefits of using 3D laser scanning on post-disaster reconnaissance efforts. Kashani 

et al. (2014) used the terrestrial laser scanners to perform damage assessment on the 

structures affected from tornados and to use this information to estimate the wind speeds. 

Long-range Doppler wind light detection and ranging (LIDAR) are used to collect 

measurements at wind farms in order to perform applications such as mapping wind 

turbulence and wakes, analyzing turbine-to-turbine interaction, and etc. (Bingöl et al., 

2010; Käsler et al., 2010; Trujillo et al., 2011; Hirth et al., 2014). In another application, 

terrestrial laser scanners are used to perform damage assessment after the 2010 Chile 

earthquake and tsunami (Olsen et al., 2012).  

 

2.7 Image Processing for Damage Detection  

Although laser scanners provide dense data sets that cover the surface of structures, 

without image information it is not possible to detect some damage types directly from 

raw point clouds. These damage types include minor cracks and corrosion, which can be 

detected from images by using self-learning algorithms such as artificial neural networks 

(Kaseko and Ritchie, 1993), fuzzy-logic algorithms (Cheng et al., 1999) etc. Image 

processing for extracting feature information is a very well-researched area and its 

contents are extensive. Some of the possible feature extraction and damage detection 
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methods for images can be listed as geometric feature extraction, spectral feature 

extraction and textural feature extraction. It will be out of scope to discuss all of these 

methods in detail so only the main category names are listed. Additional examples of 

research conducted in this area are presented in the following paragraph.  

Jahanshahi et al. (2011) have developed an integrated inspection software tool, 

which consists of inexpensive digital cameras for evaluating defect evolution in 

structures. Visual assessment of structure’s condition is done with the cameras mounted 

on the bridge that are remotely controlled by an inspector. In order to supplement current 

bridge visual inspection, a new automated remote bridge-inspection technique called 

spatial integrated small-format aerial photography is proposed. This system offers a low-

cost solution for bridge surface imaging. Images taken from airplanes, at an elevation 

1000 ft. from the ground, are used for detecting cracks and joint openings on bridge 

decks and highway pavements (Chen et al., 2011). Abdel-Qader et al. (2003) provided a 

comparative study on four image-based crack-detection techniques performed on 

concrete images that can be listed as fast Haar transform (Haar, 1910), fast Fourier 

transform (Cooley and Tukey, 1965), Sobel (Sobel and Feldman, 1968) and Canny 

(Canny, 1986). Higgins and Turan (2011) used close-range photogrammetry to extract 

gusset plate geometry, in order to ensure that the drawings actually reflect the as-built 

conditions. An unsupervised principle component analysis (PCA) based algorithm is used 

to determine the crack locations in concrete bridge decks in order to automate the 

inspection strategies (Abdel-Qader et al., 2006). A wider area application is discussed in 

Chen and Hutchinson (2010), where satellite images are used to classify the urban 

structural damage.  
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Even though the major form of the input data is 2D images, 3D images are also used 

for automated damage detection. Instead of 2D image descriptors, 3D volume descriptors 

of the generated object model are used for crack detection (Torok et al., 2012; Torok et 

al., 2013). 

 

2.8 Combined Laser and Image Processing for Damage Detection  

New developments in laser scanning technology now enable capturing 3D point 

clouds with color information, which can also be referred to as texture-mapped point 

clouds. This new development opens up new research possibilities, which have not been 

investigated much so far. Even if the number of examples is limited; there is research, 

where laser scanners coupled with cameras, are used for creating photo-realistic models 

of structures. This is especially common in the area of historical preservation. 3D laser 

scans and images are gathered together to create exact replicas of existing structures in 

digital environment for preserving cultural heritage.  

Virtual geometric models from real buildings, terrains, or infrastructure systems 

are obtained by benefiting from the recent advances in laser scanning technology and 

using related 3D processing algorithms (Varady et al., 1997; Huber et al., 2011). 

Moreover, real texture mapped 3D models are obtained by mapping photographic images 

onto geometric models, which enables combined usage of lasers along with high-

resolution cameras (Zalama et al., 2011). Li-Chee-Ming et al. (2009) managed to create 

these models by using image data automatic 3D point cloud registration, automatic target 

recognition used for geo-referencing, automatic plane detection algorithm used for 

surface modeling, and texture mapping. Li et al. (2008) used the LiDAR data and 
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imagery for performing post-earthquake assessment, in order to determine the building 

damage degree. General overview of remote sensing and GIS applications for damage 

assessment are discussed in Yamazaki (2001). An extended summary of the optical 

techniques, which include satellite images and LiDAR technology, is given in Olsen et al. 

(2013). 

 

2.9 Current Inspection Strategies for Bridges 

The most recent ASCE Report Card for America’s infrastructure, which depicts the 

condition and performance of the nation’s infrastructure, was released in 2013 (ASCE., 

July 2014). In this report, the average grade for all infrastructure types was given as D+, 

which demonstrates the importance of assessing the current condition of our 

infrastructure and taking necessary precautions based on these up-to-date assessment 

results. Even though this health assessment is crucial for large structures such as bridges, 

power transmission lines or dams, which were graded as C+, D+ and D, respectively, 

such inspections are generally conducted by using the data collected from discrete sensor 

locations and/or visual inspections that are carried out by trained experts.  

Both of the inspection methods described above has challenges. First, even if the 

sensors mounted on structures record accurate data for any measured quantity, they do 

not represent the complete surface behavior of the investigated structure since they are 

discretely located. Second, visual inspections often involve shutting down a portion of the 

structure and sending out trained experts for executing the inspections. This method is 

dangerous, time consuming, expensive, and subjective, since the results of each 

inspection depend on the personal judgment of the inspector.  
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Since the visual inspection of each structure type has different criteria, it is 

important to select a certain structure with well-defined inspection strategies as a baseline 

for categorizing particular damage types detected from laser scan data. Even though the 

developed damage detection algorithms can perform on different types of structures, for 

this research, visual inspection strategies for bridges are adopted since they consist of 

many exposed members..  

The Federal Highway Administration (FHWA) requires that structure inventory 

and appraisal data should be entered into the State or Federal agency inventory within 90 

days of the date of inspection for State or Federal agency bridges and within 180 days of 

the date of inspection for all other bridges. This data entry includes routine, in-depth, 

fracture critical, underwater, damaged and special inspections. It also includes existing 

bridge modifications that alter previously recorded data for new bridges and changes in 

load restrictions or closure status. The following Structure Inventory and Appraisal 

(SI&A) items receive an overall condition rating: Deck, superstructure, substructure, 

channels and culverts.  

Inventory items pertain to the characteristics of a bridge. For the most part, these 

items are permanent characteristics that only change when the bridge is altered in some 

way, such as reconstruction or load restriction. Inventory items include identification, 

structure type and material, age and service status, geometric data, classification, load 

rating and posting status, proposed improvements, and inspection history. On the other 

hand, appraisal items are a judgment of a bridge component condition in comparison to 

current standards. Appraisal items are used to evaluate the structure based on the level of 

service it provides on the highway system. Appraisal rating items include condition rating 
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items, structural evaluation, deck geometry, vertical and horizontal under-clearances, 

waterway adequacy, approach roadway alignment, traffic safety features, and scour 

critical bridge status.  

This research mainly concentrates on condition rating items, which compares the 

current physical state of the structure to what it was the day it opened, and structural 

evaluation, which gives the overall condition of the structure based on all major 

deficiencies, including its ability to carry the required loads. Sample condition rating 

guidelines from different states are adapted in this work to classify the damage severity 

and to assign labels to the detected damage in a well-known format. As an example, 

Table 2.1, which is taken from Manual Bridge Inspection Manual of Ohio, gives the 

summary of condition rating guidelines for the deck, superstructure and substructure. 

More detailed damage descriptions and condition rating criteria for several items are 

described in Chapter 9. 
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Table 2.1: Summary of condition rating guidelines for deck, superstructure and substructure 

(Ohio Department of Transportation., 2010). 
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3. Research Methodology 

This chapter discusses the research methodologies that have been implemented in 

this research. Figure 3.1 lays out the general research map. The steps for developing and 

implementing algorithms for damage detection by using laser scanners with and without 

integrated high-resolution cameras are discussed respectively in the following chapters 

entitled “Laser Data Processing towards Object Detection” (Chapter 5), “Object 

Detection for Modeling and Damage Detection” (Chapter 6), and “Camera Integrated 

Laser-based Surface Damage Detection” (Chapter 7). The developed methods are 

calibrated and validated using several point cloud dataset that are collected with laser 

scanners. Introductory information on the investigated datasets is given in Section 4.1.  

In this chapter, first the detectable damage types, which can be located and 

quantified by using laser scanning and/or imaging, are discussed in Section 3.1. Then, the 

research strategies are laid out in Section 3.2. 

 

3.1 Summary of Detectable Damage Types 

Although laser scanner and camera technologies are improving rapidly and high-

end solutions are getting less expensive, these types of sensors can only record surface 

data, thus restricting the detectable types of damage.  

This research mainly focuses on detecting visible damage on concrete and steel 

structures and quantifying this damage in an automated fashion. Quantification of visible 

damage is important because extensive damage at a critical location or member in large 

structures can cause large changes in stresses at other locations. Possible concrete 

damage types that can be captured with laser scanners include cracking, spalling and 
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cross-section changes; and steel damage types include corrosion, cracking, bent 

members, ruptures, points of discontinuity and cross-sectional changes. Table 3.1 outlines 

the possible damage types that can be detected with laser scanners and/or cameras along 

with the point cloud processing and image processing steps that should/could be followed 

for each input data type for detecting a certain type of damage. 

In this research, we are focused on developing algorithms for detecting damage 

types that are associated with significant volumetric change and/or the damage types that 

can be differentiated by using texture information. Investigated damage types include 

large cracks (cracks with widths smaller than approximately 5 mm, depending on the 

laser sensor used, are not detectable), corrosion, bent members and alignment issues, 

points of discontinuity, ruptures, and spalling.  

 

 

Figure 3.1: Research map. 
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Table 3.1: Detectable damage types and methods for detection. 
 

 

Optional Pre-
Data

Type of Visible Damage Close Range Long Range Images Point Cloud Processing Image Processing Point Clouds Point 
Clouds

Images

Cracks and tears Yes Depends on the 
resolution

Camera Distance, 
Camera Orientation and 

Resolution 
Depth Images

Region Based Segmantation, 
Chain Codes, Boundary 

Following, Boundary Descriptors, 
Regional Descriptors, Patterns and 

Pattern Classes

N/A N/A Training 
images

Corrosion Yes Depends on the 
resolution

Camera Distance, 
Camera Orientation and 

Resolution 
Depth Images

Region Based Segmantation, 
Chain Codes, Boundary 

Following, Boundary Descriptors, 
Regional Descriptors, Patterns and 

Pattern Classes

N/A N/A Training 
images

Bent members and alignment 
issues Yes Yes N/A

Registration, Outlier Removal 
Keypoint Detection, Feature 
Detection, Segmentation for 

Region Growing, Object 
Detection

N/A BIM/FEM
Object 
Library N/A

Points of discontinuity or 
restraint Yes Yes N/A

Registration, Outlier Removal 
Keypoint Detection, Feature 
Detection, Segmentation for 

Region Growing, Object 
Detection

N/A BIM/FEM
Object 
Library N/A

Ruptures Yes Depends on the 
resolution

Camera Distance, 
Camera Orientation and 

Resolution 

Registration, Outlier Removal 
Keypoint Detection, Feature 
Detection, Segmentation for 

Region Growing, Object 
Detection

Region Based Segmantation, 
Chain Codes, Boundary 

Following, Boundary Descriptors, 
Regional Descriptors, Patterns and 

Pattern Classes

BIM/FEM Object 
Library

Training 
images

Spalling Yes Yes N/A

Registration, Outlier Removal 
Keypoint Detection, Feature 
Detection, Segmentation for 

Region Growing, Object 
Detection

N/A BIM/FEM
Object 
Library N/A

Laser Scanners Required Pre-Data
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3.2 Research Strategies 

In this research, the aim is to develop new methods coupled with existing algorithms 

for detecting different types of damage on structures. This requires laying out algorithmic 

steps that are needed for each damage type separately.  

As represented in Figure 3.1, regardless of the damage type, it is necessary to go 

through point cloud processing steps to extract important features from 3D point clouds. 

Thus, the first aim is to detect objects and/or surfaces from raw 3D point clouds by 

implementing algorithms for each step of point cloud processing, which includes 

registration, neighborhood size selection, outlier removal, curvature estimation, 

extraneous point removal, feature detection, region growing for segmentation, and object 

detection. Detected object properties can either be used for developing strategies for 

damage detection or for geometric modeling.  

As stated in Section 1.1, detection of damage is addressed in three different 

categories related to the level of deformation and damage seen in the structure. These 

three categories are small deformations (enhanced visual inspection), large deformations 

with no change in topology (automated damage detection), and large deformations with 

localized change in topology (automated damage detection and geometry reconstruction). 

Table 3.1 represents the damage types that are in the scope of this research, along with 

the point cloud processing and image processing steps that should/could be followed for 

detecting a certain type of damage. The following sections briefly summarize the 

research methodologies that are developed for each of the three damage levels. 

It is also possible to use the as-is representations of individual elements or the 

surfaces, which are extracted from point clouds, to create a new finite element model or 
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alter an existing finite element model based on the detected surface damage. These 

models can be analyzed under both static and dynamic loading to assess the current 

condition of the investigated structures in detail. Finite element model generation is not in 

the scope of this research; however, it is discussed in the “Future Work” chapter, Chapter 

11.  

 

3.2.1 Methods for Small Deformations  

Some of the small damage types can be listed as cracks, corrosion, etc. These 

damage types can be detected by processing texture-mapped point clouds, which include 

color information as well as the geographic locations of points.  

The locations of the defect points are extracted using the damage detection strategies 

discussed in Chapters 7 and 8. The defect points are clustered, and each cluster, which 

represents a defect, is quantified automatically. 

Either one or a combination of soft computing methods, such as 

unsupervised/supervised classification, minimum distance classification, maximum 

likelihood classification, fuzzy-logic algorithms, artificial neural networks, or genetic 

algorithms, can be used for locating and quantifying the cracks. Since the main goal is to 

achieve automated detection, this research is focused on unsupervised and self-learning 

algorithms. In this research, an artificial neural network is implemented for automated 

crack detection, and the details are given in Chapter 8.  

This research focuses on detecting large cracks and corroded areas, where change in 

surface topology is observed.  
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3.2.2 Methods for Large Deformations with No Change in Topology  

It is possible to detect large deformations with no change in topology by first 

individually detecting every element from the processed laser scan. This can be achieved 

by extracting feature information from the point clouds. These features are used for 

clustering the investigated point cloud into discernible elements. These clusters are 

matched with the objects from a pre-built library using context-based shape matching and 

object retrieval methods. Detected objects are gathered together to create a geometric 

model of the structure. Each point cluster is compared with the corresponding intact 

object, in order to locate the large deformations. 

The comparison between detected clusters and the objects from the library is 

completed by converting their point cloud representations into voxel grids. Each voxel 

grid will be treated as a stack of 2D binary images. In this context, each binary image 

represents the perimeter of the cluster or the object at a certain distance along the length 

of the member. The perimeter values obtained from the clusters, and the library objects 

will be compared with each other, and this will used to document both the location and 

the severity of the damage. 

The most significant example of this damage type is bent members.  Our focus is 

on determining any misalignment in each individual member. 

 

3.2.3 Methods for Large Deformations with Localized Change in Topology  

As mentioned in Section 1.1.3, it is possible to observe localized changes in the 

structure’s topology even though the majority of the topology of the structure has 
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remained intact. It is important to locate and quantify this damage, in order to take the 

necessary precautions before further damage occurs.  

Several surface- and component-based damage detection strategies are developed for 

defect detection, localization, and quantification. These strategies are discussed in 

Chapters 7 and 8 in detail. For surface-based damage detection, the locations of the 

defects are extracted by using the estimated and/or initial surface properties. The points 

that deviate from the expected processing results are labelled and then, these damaged 

points are automatically clustered and quantified. For element-based damage detection, 

cross-sectional properties extracted from the investigated point clusters are used to 

determine the object type. Once the object is recognized, the cross-section information is 

used to automatically compute the local defects that exist on objects. The damage 

detection is performed at the cross-section level and then, the findings are extracted to 

compute the overall damage in 3D.  

This last section covers the final three damage types that are included in our scope: 

ruptures, points of discontinuity, and spalling.  
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4. Equipment Specifications 

3D scanning technology as discussed in Chapter 1 is used to capture 3D data clouds 

that represent the whole surface of the structure. This captured data can be used to create 

a digital model for reverse engineering, quality assurance, inspection, CAD-to-part 

comparison, factory planning, investigation, and automatic object and damage 

recognition in modelling. This chapter focuses on the specifications of the 3D scanners 

utilized for this research and the resulting properties of the collected point clouds, which 

are presented in Section 4.1.  

In this research, three different 3D scanners were used to capture point clouds from 

varying specimens. The list of the 3D scanners used in this work is given in Table 4.1. 

Table 4.1: List of the available laser scanners.  
 

Laser Scanner 
FARO Photon 80 
FARO Focus 3D  
Microsoft Kinect  

 
Both terrestrial laser scanners manufactured by FARO Technologies Inc., including 

the FARO Photon 80 and the FARO Focus 3D, use phase-shift measurement technology. 

The principle of this method is to compare the phases of the emitted and the received 

signals. The distance is measured by analyzing the shift in the wavelength of the return 

beam. These types of terrestrial laser scanners emit a periodical signal of moderate 

intensity.  

The FARO Photon 80 was launched by FARO Technologies Inc. at the end of 2008. 

The specifications of this terrestrial laser scanner are given in Table 4.2. The range values 

given in Table 4.2 depend on ambiant light for this scanner. At moderate ambient 

lightning, a full range is observed on 90% matte white surfaces. Tests also showed that 
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bright sunshine shortens the actual scanner range. Another important point is that the 

systematic error given in Table 4.2 is measured on stationary orthogonal 90% reflectivity 

reference paper in averaging mode (FARO Technologies Inc., July 2014).  

The second laser scanner is the FARO Focus 3D, which was released by FARO 

Technologies Inc. at the end of 2011. At the time of its release, this terrestrial laser 

scanner was the smallest and the most advanced laser scanner on the market, with a built 

in multi-sensor hardware feature, which is a combination a height sensor with a compass 

to complement the device’s existing dual axis compensator. This new sensor improves 

the automatic registration and reduces the post-processing work since it defines the height 

and the orientation against a set of points for each scan. Similar to its predecessor, the 

range values listed in Table 4.2 are dependent on ambient light and this might act as a 

source of noise. Bright ambient light (e.g., sunshine) may shorten the actual range of the 

scanner to lesser distances. The range can even be more than 120 m for normal incidence 

on high-reflective surfaces in low ambient light. The ranging error is defined as the 

systematic measurement error around 10 m and 20 m (FARO Technologies Inc., July 

2014).  

Microsoft Kinect uses an infrared (IR) projector and sensor system (one non-RGB 

and one RGB camera), which is a common combination in both industrial manufacturing 

and inspection applications. The IR projector throws out infrared light so that the other 

non-RGB camera captures the depth information in 3D space. There is a specific angle 

between the emitter and the sensor in order to recover the depth from triangulation. Some 

of the key specifications of the Microsoft Kinect are given in Table 4.2.  
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Table 4.2: Equipment specifications. 
 

 Properties FARO 
Photon 80 

FARO Focus 
3D Kinect 

Ranging Unit 

Minimum Range (m) 0.6 0.6 0.8 
Maximum Range (m) 76 120 3.5 

Measurement Speed 120000 
(points/sec) 

976000 
(points/sec) 30 (frames/sec) 

System Distance Error ±2mm at 
25m ±2mm ±1cm at 2m 

Color Unit 

Resolution (pixel) Optional Up to 70x106 640 x 480 

Dynamic Color Feature N/A 
Automatic 

adaptation of 
brightness 

N/A 

Deflection 
Unit 

Vertical Field of View (°) 320 305 40 
Horizontal Field of View 

(°) 360 360 58 

Vertical Resolution (°) 0.009 0.009 N/A 
Horizontal Resolution (°) 0.00076 0.009 N/A 

Angular Resolution 
(horizontal/vertical) ±0.009 N/A N/A 

Maximum Vertical Scan 
Speed (rpm) 2880 5820 N/A 

Laser (Optical 
Transmitter) 

Laser Power (CW 
average, mV) 20 20 N/A 

Laser Class 3R 3R 1 
Wavelength (nm) 785 905 750 - 900 

Beam Divergence (°) 0.009 0.011 N/A 
Beam Diameter at Exit 

(mm) 3.3, circular 3.0, circular N/A 

Multi-sensor 

Inclination Sensor 
Accuracy (°) 0.1 0.015 N/A 

Inclination Sensor 
Resolution (°) 0.001 N/A N/A 

Inclination Sensor Range ±15 ±5 ±27 

Hardware 
Specifications 

Ambient Temprature (°C) 5-40 5-40 0-40 (indoor) 

Humidity Non 
condensing 

Non 
condensing N/A 

Weight (kg) 14.5 5 1.4 

Power Supply Battery – 6 
hours 

Battery – 5 
hours USB 2.0 
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4.1 Available Datasets 

In order to test the accuracy and the efficiency of the developed algorithms for both 

object and damage detection, several datasets have been collected and processed. The 

complete list of the datasets and their properties such as the total number of points, 

location, 3D scanner used for data collection, and color data availability are given in 

Table 4.3. 

The first data set is a synthetic point cloud that is used for validating the 

effectiveness of the point cloud processing algorithms. This data set was used to validate 

the effectiveness of the point cloud processing algorithms described in Chapter 5 and also 

the global feature-based object detection method given in Section 6.3. The results are 

used to explain the algorithms in Chapter 5 and Section 6.3. 

The second dataset is from a small steel frame experimental test specimen that 

consists of three C-sections. This dataset was collected with the Microsoft Kinect, so the 

accuracy of the data is worse than the ones collected via terrestrial laser scanners. This 

point cloud was mainly used to calibrate the graph-based object detection method 

described in Section 6.4. It was also used to validate the efficiency the graph-based 

damage detection algorithms given in Section 7.2 to show that the algorithms are working 

on the steel testing frame. The results are given in Chapter 10. 

The third dataset is coming from the rocking frame experimental test specimen that 

was tested at Multi-axial Full-scale Substructure Testing and Simulation (MUST-SIM) 

facility at the University of Illinois at Urbana-Champaign (Eatherton et al., 2014). Only a 

portion of this dataset was used to validate the extraneous point removal algorithms 
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described in Section 5.6 and to test the graph-based object detection method given in 

Section 6.4. The results are given in Chapter 10. 

The fourth dataset is collected from a concrete frame experimental test specimen 

that was used for research on progressive collapse of reinforced concrete structures 

(Sasani et al., 2007). This data set was used to calibrate and validate the damage detection 

algorithms described in Chapter 7. The details of the test and the results of the damage 

detection algorithms are given in Chapter 10.  

The fifth point cloud data is collected from a collapsed bridge that was located in 

Dekalb County, IL (Borello et al., 2009; Borello et al., 2010). A portion of this dataset 

was used to test the global feature-based object detection method described in Section 6.3 

and also the damage detection algorithms given in Chapter 7. The details on the bridge 

and the results of the damage detection algorithms are included in Chapter 10. 

The final dataset is recently collected from one span of the Bowker Overpass, 

which is located in Boston, MA. This dataset was processed both for object detection 

given in Chapter 6 and for damage detection described in Chapter 7. All the necessary 

information on the overpass and the results are included in Chapter 10. 
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Table 4.3: List of the available laser data sets.  
 

Name Total Number 
of Points Location Device Used for 

Scanning Color Data 

Synthetic Point 
Cloud 27,370 N/A N/A N/A 

Steel Testing 
Frame 893,937 

Northeastern 
University, Boston, 

MA 
Microsoft Kinect N/A 

Rocking Frame 1,223,416 

University of 
Illinois, Urbana-

Champaign, 
Urbana, IL 

Faro Photon 80 N/A 

Concrete Testing 
Frame 1,215,389 

Northeastern 
University, Boston, 

MA 
Faro Focus 3D Available 

DeKalb County 
Collapsed Bridge 6,131,734 DeKalb County, IL Faro Photon 80 N/A 

Bowker 
Overpass Over 40 billion Boston, MA Faro Focus 3D Available 
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5. Laser Data Processing towards Object Detection 

Point cloud processing begins with extracting information from each individual 

point of the complete dataset and then employing relationships between these points to 

derive properties of the underlying surface and object. In order to achieve this, it is 

required to pick appropriate methodologies for each of the associated point cloud 

processing steps, including: registration, neighborhood size selection, outlier point 

removal, curvature estimation, extraneous point removal, feature extraction, region 

growing and segmentation, surface fitting and object detection. This chapter discusses the 

details of the listed point cloud processing step towards object detection. The object 

detection methods are later discussed in Chapter 6. 

For initial algorithmic development in this chapter, three of the datasets listed in 

Table 4.3 are used. The most frequently used data set is the synthetic point cloud. This 

synthetic point cloud consists of simple surfaces and it serves as an example to check 

basic functionality of algorithms. In addition to the synthetic point cloud, the point clouds 

of both rocking frame and concrete testing frame were processed to determine and 

address the challenges of actual laser scan data.  

 

5.1 Registration 

Registration, which aligns and combines multiple data sets into a single set of 

range data, is a pre-processing step required if multiple scans are taken to capture a scene. 

Scan registration is now a tool that is commonly available as part of the laser 

manufacturer software programs.  
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For this research, three separate 3D scanners are used. Detailed explanation of the 

used hardware and their specifications are given in Chapter 3. Each 3D scanner has its 

own registration software that uses different point cloud registration strategies. Thus, the 

details of the registration software for each scanner are described below. The list of the 

laser scanners and their corresponding registration software is given in Table 5.1. 

Table 5.1: List of laser scanners and corresponding registration software. 
 

Laser Scanner Registration Software 
Faro Photon 80 Scene (2009 version) 
Faro Focus 3D  Scene 3D 

Microsoft Kinect  ReconstructMe 
 

Both Faro laser scanners use registration software called Scene, which is software 

provided by FARO Technologies Inc. This software provides automatic search for 

reference spheres and black and white reference targets, which are mounted several 

locations around the investigated structure. These targets are used as the keypoints for the 

registration software and successive scans are automatically combined together. The new 

versions of the software also provide targetless scan replacement by automatic 

identification of several sharp features. However, due to accuracy concerns, this method 

is not utilized for the point clouds used in this research. The new version of the software 

also provides automatic coloring of the scans with high-resolution color photographs 

coming with FARO color option (FARO Technologies Inc., July 2014).  

The software used with the Microsoft Kinect sensor is called ReconstructMe 

(PROFACTOR., July 2014). It is a 3D real-time scanning system developed by 

PROFACTOR. ReconstructMe has the same principles of an ordinary video camera; 3D 

scan is constructed by moving the object to be modeled. An average rate for scanning 

with compatible scanners is usually 20-30 frames per second. This software is also 
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capable of capturing and processing the color information of the object being scanned, if 

the sensor provides the necessary color stream. However, the best scanning results are 

obtained for non-planar and non-symmetric objects, which make it an inefficient solution 

for scanning the symmetric objects that are common in civil engineering structures. Also, 

it is not compatible with terrestrial laser scanners, and it is mainly developed for indoor 

usage.  

The provided registration processes identified above were sufficiently accurate; 

therefore, additional work on registration was not warranted. 

 

5.2 Neighborhood Size Selection 

The next step after registration, in point cloud processing, is to select a local 

neighborhood of points around each point in order to extract local properties. This 

method is the basis of all the following processing steps, including outlier removal, 

feature extraction and object detection, since it provides information on local properties 

of each point in an unorganized point cloud.  

In this work, the ‘k nearest neighbors’ (   ) method is used (Hoppe et al., 1992; 

Rabbani et al., 2006; Vančo and Brunnett, 2007). For a given data set of   of    points, a 

    search establishes the   closest points within   to a query point    or set of points.  

For this research, a special case of the Minkowski metric, shown in Equation 5.1 

below, is used as the distance metric     to find the neighborhood points for each   , for 

a given  . This special case is also denoted as the ‘Euclidian distance’ and is established 

in Equation 5.2 by using     in Equation 5.1. Given an         data matrix of a point 

cloud   , which is examined as             row vectors   ,   , ...,    , and         
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data matrix of a point cloud   , which is examined as             row vectors   ,   , 

...,    , the various distances between the vector    and    are calculated as follows: 

 

     √∑|       |
 

 

   

 

 

5.1 

 
    

                    5.2 

The neighborhood is defined as the k closest points; k can either be defined by the 

user or determined adaptively. The local surface properties related with each investigated 

point are dependent upon the size of the neighborhood k. The size of the neighborhood 

was initially set as a minimum value. Later, this neighborhood size is incrementally 

increased to determine the optimum value that would provide adequate robustness to 

measurement noise while still reflecting local surface properties (details are given in 

Section 7.1.1). The size of the neighborhood   has to be sensitive to the level of detail 

required by the application. For example, if the aim is to detect cracks from the surface 

data, then   needs to be small enough to capture those.  

Deciding the neighborhood size   that would reflect the characteristics of the 

query point     , for a certain feature representation effectively, is a common issue for 

the computer graphics research community. Pauly et al. (2003) proposes a solution that 

computes several feature values over multiple-scales and then, track the jumps in the 

feature value curve. For example, if the surface normals are used as the feature 

representation, the jumps in the surface curvature estimate   , which is described in 

Section 5.5, can be used to look for the locations where strong deviations in the normal 
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direction occur. This information can then be used to determine the critical size of the 

neighborhood.  

For this research, the neighborhood size is automatically computed for each defect 

type by using the surface data resolution. It should be noted that the point cloud 

resolution poses a threshold for the minimum detectable damage size. The computation 

process for the   values for varying defect types, and their effect on the obtained results 

are discussed in Chapter 7. 

 

5.3 Outlier Point Detection 

Point clouds that are captured by laser scanners often have varying point 

densities. The overall accuracy of the captured point clouds are affected by several 

factors such as the sparse outliers due to measurement errors, outliers due to the splitting 

of laser beams at the edge of an object (a phenomenon known as jump edges, depth 

discontinuities, or occlusion boundaries), etc. Since these outlier points could affect the 

estimated local point cloud characteristics such as surface normals or curvature changes, 

leading to errors in later processing steps, it is critical to identify and remove them early 

in the process. 

For this work, two outlier methods are implemented, including a radius-based 

outlier algorithm and a statistical outlier removal algorithm. Details of these two methods 

are discussed below.  
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5.3.1 Radius-based Outlier Removal 

The radius-based outlier removal algorithm by Rusu et al. (2008) is the first 

method that is implemented. For radius-based outlier removal, after the local 

neighborhood size   is determined, the Euclidean distance to each point in the 

neighborhood    is computed for each individual point        and stored.   represents 

the unfiltered point cloud. A search radius   for outlier removal is then defined by the 

user. This   value is used to create a virtual sphere around the point of interest. The 

distance    for each neighborhood point is checked to see if the entire neighborhood 

points for    are falling into the sphere defined by  . At the end, any point that fails to 

meet this criterion was removed from the original  .  

In Figure 5.1, the process of radius-based outlier removal is demonstrated in 2D. 

For the example given in Figure 5.1, the Euclidian distance is labelled as    the search 

radius is shown as   and the neighborhood size   is equal to 4. Black, green and blue 

points are investigated. For the given   and  , neither the black nor the blue points are 

satisfying the criterion, which states that all the neighborhood points should fall inside the 

sphere defined by   and centered on the green point. In this case, both black and blue 

points are labelled as outliers and removed from  . Green point is the only point of 

interest that meets the given criterion.  
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Figure 5.1: The demonstration of radius-based outlier removal algorithm after O'Artista and 

Beintum (2010). 

 

5.3.2 Statistical Outlier Removal 

The second method implemented for outlier removal is statistical outlier removal, 

which is also discussed in Rusu et al. (2008) in detail. This method uses the distribution 

of point-to-neighbors’ distances in   in order to identify the outlier points. This 

distribution is assumed to be Gaussian with a mean and standard deviation. Thus, the 

mean Euclidean distance  ̅  to each point in the neighborhood is computed for each point 

in the point cloud. The mean    and standard deviation    of  ̅  are then computed in 

order to determine significant characteristics of the entire point cloud. The main purpose 

is to retain all points whose  ̅  to the   closest points is similar to the   , which is 

computed for the rest of the points. Thus, if  ̅          or  ̅         , where 

  is the standard deviation multiplier that restricts the density for any point, the point is 

removed from the data set. The remaining point cloud    is given by Equation 5.3, where 

   represents the query point. 

    {    |           ̅             5.3 
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Figure 5.2 shows an illustrative example for the effects of the statistical outlier 

removal on a sample dataset. The statistical outlier removal is applied to a point cloud 

data of 18695 points   . The   for the example is taken as 16, with    . The resulting 

outlier set is 496 points   , and    has 18199 points. Figure 5.2 represents the plot for 

both raw and reduced data sets, where the vertical axis shows  ̅  for each point and the 

horizontal axis is used to show the point index. Blue bars belong to the raw data set and 

red bars represent  ̅  values for the resulting   . It can be observed from the graph that 

the reduced point cloud    has a uniform  ̅  value for the remaining data set. Table 5.2 

summarizes the information discussed in this paragraph.  

Table 5.2: Statistical outlier removal example.  
 

            
18695 16 1 496 18199 

 

 

Figure 5.2: Results of statistical outlier removal example. 
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5.3.3 Comparison Between Radius-based and Statistical Outlier Removal Methods  

The outlier removal is the second step after     for both the point cloud 

processing methods towards object detection and the developed damage detection 

algorithms. It is significantly important because the results of the further steps are directly 

affected by the results of the outlier removal.  

In order to represent the differences between the two proposed methods; an 

example, which compares the results of the radius-based and statistical outlier removal 

methods, is discussed in this section. Figure 5.3 represents the data used for this example. 

Data is extracted from one of the columns of the point cloud of the concrete testing 

frame; the extraction location is shown with a red rectangle in Figure 5.3(a), and Figure 

5.3(b) represents the point cloud. Figure 5.4 represents the results after the outlier 

removal, where black rectangles indicate the locations of the close-up views shown in 

Figure 5.5. The summary of the results are given in Table 5.3.  

 

  
(a) (b) 

Figure 5.3: (a) The complete scan of the collapsed test setup; and (b) the raw point cloud data 
used in comparison example.  
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(a) (b) (c) 

Figure 5.4: (a) Raw point cloud; (b) resulting data set after radius-based outlier removal; and (c) 
the resulting data set after statistical outlier removal.  

 

Table 5.3: Comparison between radius-based and statistical outlier removal methods.  
 

Method       (in)         
Radius-based Outlier 

Removal 18695 16 0.25 N/A 188 18507 

Statistical Outlier Removal 18695 16 N/A 2 215 18480 
 

The raw point cloud has a significant number of outlier points (Figure 5.5(a)), 

whereas the processed point clouds shown in Figure 5.5(b) and Figure 5.5(c) have a 

notably fewer number of outlier points. It should also be noted that statistical outlier 

removal has better results compared to radius-based outlier removal. Since the statistical 

outlier removal method fits a Gaussian distribution to the neighborhood points to 

compute the necessary parameters for point removal, this method automatically includes 

the effects of resolution changes on the surface of structures in the computations. 

However, the parameters of the radius-based outlier removal are user-defined and they 

are not dependent on the point resolution. Thus, even though the number of the outlier 

points    is similar for both of the described methods, it can be observed in Figure 5.5(b) 

and Figure 5.5(c) that the radius-based outlier removal method is not as effective as the 

statistical outlier removal method, since some of the outlier points are still present in the 

end result obtained by using radius-based outlier removal. The outlier locations are 
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marked with the black rectangles in Figure 5.5. The radius-based outlier removal method 

fails to remove some outlier points that do not belong to the surface.  

 

   

(a) (b) (c) 
 

Figure 5.5: Close-up view for (a) raw point cloud; (b) resulting data set after radius-based outlier 
removal; and (c) resulting data set after statistical outlier removal. 

 

Table 5.4 represents the summary of the parameters and corresponding ranges for 

both outlier removal methods. The process for determining the outlier removal 

parameters are discussed in Chapter 7. 

 
Table 5.4: Parameters and corresponding ranges for given outlier removal methods. 

 
Method Parameters Range  

Radius-based Outlier Removal 
Neighborhood size*,    >3 

Search radius*,    0.1 in. – 2 in. 

Statistical Outlier Removal 
Neighborhood size*,    > 3 

Standard deviation multiplier,   0.0 – 3.0 
* Either neighborhood size or search radius has to be defined for each run. 

 

The statistical outlier removal method is used for the following steps of this 

research. This method both yields better results and also reduces the parameter number 

that has to be specified by the user to only a single value,  , when the standard deviation 

multiplier   is kept at a default value. In contrast, the radius-based outlier method always 

required two input parameters,   and  .  
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5.4 Surface Normal Estimation 

The local feature representation of a query point    can be estimated by using the 

neighborhood points    once the neighborhood size   is determined. Surface normal 

estimation is essential because it captures the local properties of every query point    in a 

given point cloud  , and the obtained local feature representation can be used to capture 

the geometry of the underlying sampled surface around investigated   . It is especially 

important for our applications since the surface normal-based damage detection algorithm 

discussed in the Section 7.3 is a direct extension of this method. Table 5.5 lists the 

parameters and the ranges associated with them for surface normal estimation. The 

selection process for the surface normal estimation parameters for varying defect types 

are discussed in Chapter 7. 

 
Table 5.5: Parameters and corresponding ranges for given surface normal estimation. 

 
Method Parameters Range  

Surface Normal Estimation Neighborhood size,    >3 
 

There are several available surface normal estimation methods that exist as 

discussed in Klasing et al. (2009); for this research, a first order 3D plane fitting based 

method based on Berkmann and Caelli (1994) is implemented for computing the surface 

normal associated with each   . A least-squares plane fitting estimation in   , which was 

described in Shakarji (1998), is used to determine the normal to a point on the surface, by 

estimating the normal of a plane tangent to the fitted surface. A point    and a normal 

vector  ⃗  is used to represent the plane, and the distance from a point       to the plane 
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is defined as             ⃗ . A least-square approach is used to compute the values of 

   and  ⃗  such to achieve     , where the centroid of    is computed by Equation 5.4:  

 
     ̅   

 

 
 ∑  

 

   

 
5.4 

Thus, the solution for estimating the surface normal  ⃗  is reduced to an analysis of 

the eigenvectors and eigenvalues of a covariance matrix created from the nearest 

neighbors of   . The covariance matrix         of    is expressed as in Equation 5.5 

and 5.6:  

 
   

 

 
 ∑     ̅       ̅  

 

   

 
5.5 

 

      ⃗⃗⃗         ⃗⃗⃗      {       5.6 

 
where    is the  -th eigenvalue of the covariance matrix, and   ⃗⃗⃗   the  -th 

eigenvector.   is symmetric and positive semi-definite, and its eigenvalues are real 

numbers,     . The eigenvectors   ⃗⃗⃗   form an orthogonal frame that corresponds to the 

principle components of   . These components are obtained by using Principle 

Component Analysis (PCA); the MatLab function,         , is used for this 

computation. The eigenvector   ⃗⃗⃗⃗ , which corresponds to the smallest eigenvalue   , where 

          , is therefore the approximation of   ⃗  {          or   ⃗ .  

Figure 5.6(a) represents a portion of the concrete testing frame’s point cloud that 

is filtered with the statistical outlier removal method; the complete point cloud is given in 

Figure 5.3. Figure 5.6(b) is showing the neighborhood example for a single query point 
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   where       Figure 5.7(a) represents the result of the least squares plane fit for the 

query point    given in Figure 5.6(b), where the light and dark blue lines shows the 

shortest distance to the fitted plane along   axis from the points that fall on either side of 

the fitted plane. In Figure 5.7(b), the black arrow shows the result of the estimated normal 

for the given query point   , where    is the origin of the estimated normal vector. 

 

  
(a) (b) 

 
Figure 5.6: (a) Resulting point cloud after statistical outlier removal for raw data extracted from 
testing frame (Figure 5.3); and (b) the example neighborhood representation for a selected query 

point pq. 
 

  
(a) (b) 

 
Figure 5.7: (a) Plane fitting result for the selected query point pq  from the previous figure; and 

(b) representation of the computed normal vector.  



70 
 

 There is not a clear mathematical way to correctly estimate the orientation of the 

normal computed via Principle Component Analysis (PCA) since the computed normal 

vectors are inconsistently oriented over a point cloud dataset  . However, this problem 

has a trivial solution if the viewpoint    is known. The viewpoint is an additional input 

parameter that represents the location of the scanner with respect to the investigated 

surface points. In order to prove that all the computed normals are oriented towards the 

viewpoint    each computed normal   ⃗⃗  ⃗ should satisfy the Equation 5.7.  

    ⃗⃗  ⃗             5.7 

 

5.5 Curvature Estimates 

Another important property of the surface that can be deduced from    is the 

curvature estimate associated with each point. The curvature estimate both provides 

information about the properties of the underlying surface and also can be used to remove 

extraneous points. Similar to surface normal estimation, there are many methods to 

compute the surface curvature at a specific point. However, most of them require that the 

surface is already represented with a triangular mesh and are sensitive to noise 

(Koenderink and van Doorn, 1992; Dyn et al., 2001; Hetzel et al., 2001). Thus, these 

methods are not suitable for our applications that require curvature estimation directly 

from the surface points, not from triangular meshes. 

The eigenanalysis (PCA) presented earlier can also be used to compute a 

similarity measure based on the surface curvature around    in addition to the surface 

normal estimates. The eigenvalues    obtained from the covariance matrix   are used to 

approximate the surface variations (Pauly et al., 2002). From the eigenvalues (      
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  ) of the covariance matrix, the variation at   denoted by    along the surface normal  ⃗  

is estimated with Equation 5.8. Equation 5.8 shows that the change of the curvature in a 

neighborhood    centered around    can be approximated by the ratio between the 

minimum eigenvalue and the sum of the eigenvalues and the result will be invariant 

under scaling. As an example, it can be concluded that all points in    are on the plane 

tangent to the surface if variation    has small values.  

 
    

  

        
 

5.8 

If all the points lie on a plane then      and the maximum surface variation 

   
 

 
 is assumed for completely isotropically distributed points. The surface variation is 

not an intrinsic property since it is dependent on the neighborhood size   (Pauly et al., 

2002). The parameters and the given range for them are listed in Table 5.6. The selection 

process for the curvature estimation parameters are discussed in Chapter 7. 

Table 5.6: Parameters and corresponding ranges for given curvature estimation. 
 

Method Parameters Range  
Curvature Estimation Neighborhood size,    >3 

 

5.6 Extraneous Point Detection 

Extraneous objects that are not a part of the structure and will cause errors for 

processing the surrounding surfaces. Points detected for small, complex details exhibit 

high surface variation. To address this, the mean value of the computed variations    and 

their standard deviation    are computed for the entire point cloud     remaining after 

outlier removal. If            or           , where   is the standard 

deviation multiplier that restricts the density for any point, the point is removed from 
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  .The remaining point cloud after extraneous point removal     is given as Equation 5.9, 

where    represents the each query point. 

     {     |                        5.9 

Figure 5.8(a) shows the complete point cloud of a laboratory specimen that was 

tested at Multi-axial Full-scale Substructure Testing and Simulation (MUST-SIM) 

facility at the University of Illinois at Urbana-Champaign (Eatherton et al., 2014). Figure 

5.8(b) represents a part of the point cloud of the laboratory specimen which is occluded 

with details such as cables and clamps.  

 

 

 

(a) (b) 
Figure 5.8: (a) Complete point cloud of the test setup at the MUST-SIM facility; and (b) a part of 

the point cloud of the test setup that is used for outlier and extraneous point detection. 
 

Figure 5.9(a) represents the results of radius-based outlier removal method on the 

set of points shown in Figure 5.8(b) where the neigborhood size   is taken as 16 and 

radius   is      . The surface points are shown in blue, and the detected outliers are 

shown in green. Figure 5.9(b) shows the results of the extraneous point removal, which is 

performed after the radius-based outlier removal. The extraneous points are shown in red. 
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(a) (b) 

Figure 5.9: (a) Results of the radius-based outlier removal; and (b) results of extraneous point 
removal applied on a portion of the testing frame given in Figure 5.8. 

 
 It is evident from Figure 5.9(a) that the radius-based outlier removal method 

removes the points that are not meeting a certain radius   criteria; thus, the results are not 

dependent on the underlying surface properties. This method is not efficient in detecting 

the points representing the bolts or the clamps since the points associated with these 

features satisfy the   criteria. However, extraneous point removal uses the surface 

variations for point reduction, so the points associated with the bolts and clamps are 

detected by capturing the locations of high regional surface variations. The results of the 

extraneous point removal method for bolts and clamp is shown in Figure 5.10. The 

parameters and the corresponding ranges are listed in Table 5.7. 

 

 

 

(a) (b) 
Figure 5.10: Results of the extraneous point removal where the bolts and clamp is shown with 

rectangles and (b) side view of the clamp points detected by using the changes in surface 
variation.  

Bolts Clamp 



74 
 

Table 5.7: Parameters and corresponding ranges for given extraneous point removal. 
 

Method Parameters Range  

Curvature Estimation 
Neighborhood size,    >3 

Standard deviation multiplier,   0-3 
 

5.7 Feature Detection 

A sharp feature can either be a corner where three or more surfaces connect, or a 

line or edge that connects two surfaces. These sharp features can be detected in a point 

cloud by searching through the points looking for those whose normal vectors vary 

greatly from their neighbors (Rabbani et al., 2006). High normal vector variation between 

neighboring points represents an abrupt change of surface orientation. Since the point 

cloud datasets that we acquire represent a set of point samples on the real surface, there 

are two possibilities for determining a normal: obtaining the underlying surface from the 

acquired point cloud dataset, using surface meshing techniques, and then computing the 

surface normals from the mesh; or using approximations to infer the surface normals 

from the point cloud dataset directly. In our research, we implemented a method that 

addresses the latter. Once the surface normals are determined, these are used for 

classifying feature points in an unorganized point cloud. 

The method implemented to perform feature point extraction from unorganized 

point clouds is building off the work of Weber et al. (2010). This method identifies the 

feature points by using Gauss map clustering on local neighborhoods without user 

interaction and with no surface reconstruction. Details of the method are discussed below. 
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5.7.1 Gauss Map Clustering 

The method implemented for feature point extraction is based on Gauss map 

clustering. This method is specifically used for determining sharp features. After 

determining the local neighborhood    for each point, a Gauss map for each point is 

formed. First, all possible        triangulations of a query point    with its 

neighborhood points are produced, where   is the number of neighborhood points. The 

normal vector  ⃗  of each triangle is then calculated and mapped onto a unit sphere 

centered at   . Figure 5.11 represents an example of Gauss map clustering for a sharp 

feature point shown as a red dot. In Figure 5.11, the neighborhood points are shown with 

green dots and the surface points that do not satisfy the neighborhood criteria are shown 

with black dots. Once the Gauss map is formed, each point undergoes a flatness test to 

determine whether the investigated point belongs to a surface or to a feature (Weber et 

al., 2010). 

Characteristics of Gauss maps differ depending on the type of surface (such as 

flat, curved etc.) on which the point is located. This property is used to differentiate a 

surface point from a feature point. In this work, all possible triangulations associated with 

one point and projected normal vectors were used in order to overcome normal vector 

orientations issues. Normal vectors are projected as points on a defined unit sphere 

centered at    to form clusters, and the half the number of clusters,    

 
, on the unit 

sphere is used to determine whether or not a point belongs to a feature. Half of the total 

number of the clusters is used since the projected normals double the obtained cluster 

number.  
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An angle measure is introduced for completing this clustering step. The angle 

between any two normal vectors     is measured and this angle is compared with a 

threshold value     (sensitivity parameter). The sensitivity parameter is defined between 

   to    . If the calculated angle between two normals is smaller than the threshold 

value, these vectors are gathered in the same cluster. The clustering criteria is given by 

the Equation 5.10. 

 ‖     ‖                5.10 

 
This process is repeated until the minimum number of clusters, where angle 

measured between each cluster couple is greater than    , is achieved. Figure 5.12 shows 

the results of the gauss map clustering for two different surface types. In Figure 5.12(a), a 

flat surface with only one cluster is shown whereas in Figure 5.12(b), a sharp feature 

point that is located at the edge of two intersecting surfaces.  

 

 

Figure 5.11: Example of gauss map clustering of an edge point represented by red dot where the 
green points represent the neighborhood points that participated in triangulation.  
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(a) (b) 

Figure 5.12: Gauss map clustering results for (a) a point on a flat surface; and (b) an edge point.  
 

 
Once the clustering is finished, the total number of clusters,    

 
, at each point is 

investigated. If there is only one cluster left, the point is classified as belonging to a flat 

surface. However, if two, three or four clusters remain, then it is concluded that the point 

belongs to a sharp feature.  

By using a least-squares approach, a curve is then fit to extracted feature points to 

represent each edge mathematically. Linear segments are used initially in this 

implementation, as it is a common form for most structural engineering shapes such as 

columns and beams. Figure 5.13 shows the detected edge points on the synthetic point 

cloud and Table 5.8 shows the typical parameters and respective ranges used in 

algorithms for gauss map clustering. In this research,   (or  ) is computed automatically 

for the outlier removal method, since it is observed that these calculated values are 

adequate for removing the outlier points in the available datasets, listed in Chapter 4, and 

the     is taken as    .  
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Figure 5.13: Edge points detected on synthetic point cloud. 

 

Table 5.8: Parameters and corresponding ranges for gauss map clustering. 
 

Method Parameters Range 

Gauss Map Clustering 
Neighborhood size*,   >3 

Search radius*,   0.1 in. – 2 in. 
Sensitivity parameter,     0º - 10º 

* Either neighborhood size or search radius has to be defined for each run. 

 

5.8 Region Growing for Segmentation 

Generally, a set of planar surfaces can be used to describe the geometry of man-

made structures and these separate segments can be detected after processing point cloud 

data. Once the feature points are extracted and removed from the point cloud, the 

remaining points      with similar properties are divided into segments.     , which is also 

referred as   , represents the remaining points from a point cloud dataset after the 

statistical outlier removal, extraneous outlier removal and feature point removal are 

applied respectively. 



79 
 

Region growing is a method of segmentation that begins with individual points 

and collects neighboring points based on defined criteria to build up segments. In this 

work, in order to achieve segmentation, a region growing algorithm with a smoothness 

constraint was implemented since the methods using only the curvature or higher 

derivatives for segmentation usually result in over-segmentation (Rabbani et al., 2006). 

The implemented algorithm groups the processed points together to create segments by 

using the estimates of the surface normals at each query point   . The method for 

computing the surface normals is discussed in Section 5.4 in detail.  

The implemented method uses local surface normals and point connectivity to 

find smoothly connected areas in a point cloud. It begins by selecting a seed point    

from   , which already excludes the sharp features, and then checking surrounding points 

to determine if they belong in the same segment   . Whether a point    should be added 

to the segment being grown is determined based upon the angle between its normal    

and the normal of the current seed point   . If the angle    is less than a threshold value 

   , then the current point is added to the current region   . The process of region 

growing explained in the following steps:  

1. Select a seed point from    for the region growing process based on the 

associated surface variation    computed for each query point   . The process 

of curvature estimation is explained in Section 5.5. The point with the 

minimum    is selected as the initial seed point   . 

2. Select an specific angle    as the smoothness threshold for the angle between 

the normals of the current seed point    and its neighborhood points   , where 

   represents the normal estimation for    that is a member of neighborhood 
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points    of   .    is calculated for each   by using the     method 

described in Section 5.2. The region growing constraint can be represented 

with the Equation 5.11 if the smoothness angle threshold is expressed in 

radians. The absolute value of the dot product is taken in order to account for 

the      ambiguity. If the Equation 5.11 is satisfied for   , then this point is 

added to the current segment   . 

 ‖     ‖        5.11 

3. If all the points are segmented, then finalize the region growing process. If 

not, pick new seed point    based on the surface variation of the remaining 

points.  

4. Apply the step 2 and step 3. If there are still remaining points, list them based 

on their surface variation    and pick the point with the least   as   . 

5. Add the current region to the segmentation and repeat step 3. 

6. Finalize the segmentation.  

 

The result of region growing algorithm on the synthetic point cloud is shown in 

Figure 5.14; each color indicates an individual segment recognized by the algorithm. 

Table 5.9 lists the important parameters and corresponding ranges given for region 

growing segmentation. In this research, a fixed value for    is used,      . 
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Figure 5.14: Segmentation results for the synthetic point cloud. 
 

Table 5.9: Parameters and corresponding ranges for region growing segmentation. 
 

Method Parameters Range 
Region Growing Segmentation Angle threshold,    0º-10º 
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6. Object Detection for Modeling and Damage Detection 

The final step of the point cloud processing prior to damage detection is object 

detection. This step is required to extract the underlying surface properties from point 

cloud data. Since the damage detection algorithms operate based on both local and global 

properties of the underlying objects, for specific damage detection algorithms it is 

essential to first identify the underlying object/surface properties from the segmented 

regions in order to perform the necessary post-processing steps for damage localization 

and quantification.  

Generally, segmented regions do not represent an entire object but portions of it. 

This may be due to occlusion or just because how the objects are connected with each 

other in a scene. Thus, the segmented regions need to be classified geometrically based 

on their surface properties such as plane, cylinder, sphere, and etc. Once the surfaces are 

characterized, the appropriate quadratic surface equations are used for fitting. The 

coefficients of the quadratic equation computed via regression are used to store the 

geometric properties of the investigated segmented region. Then, the segmented regions 

are either left as-is or combined with the adjacent regions to create point clusters 

depending on their local properties. These point clusters are used to individually identify 

the objects in a scene. Later, the detected objects are used for damage localization and 

quantification. Either the entire 3D representation of an object is used to compare the 

original state of an item with its current conditions, or the surface properties of each 

region are used for the surface-based damage detection as described in Chapter 7. 

First, a point feature histogram (   ) based method is used for extracting the 

primitive geometric representations of the segmented regions. The details of this method 
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are described in Section 6.1. In Section 6.2, the general quadratic equation is given, and 

its application for surface property estimation is described in detail. Then, the related 

regions are combined to create point clusters. The objects in the scene are detected from 

point clusters as described in Sections 6.3 and 6.4.  

Sections 6.3 and 6.4 summarize two different object detection methods that are 

implemented for this research: a global feature-based object detection method and a 

graph-based object detection method. The global feature-based method uses the 3D 

representation of an object for detection, and the graph-based method allows object 

detection at both the local and global scales. Both of these methods have advantages and 

disadvantages.  

First, the global feature-based object detection is beneficial if the global properties 

of the investigated object are intact, in our case not damaged. Thus, it is commonly used 

for classifying objects in an environment for creating information models, e.g. BIM. 

However, local defects on a scanned object might result in distinctive alterations in the 

calculated global properties, and this will affect the accuracy of the object detection.  

Second, the graph-based object detection method is more flexible since the object 

recognition is based on the local properties instead of the global ones. Therefore, even if 

a portion of the investigated object is damaged, it is still possible to use this method to 

determine the object type from the undamaged portion. On the other hand, since the 

objects are generally defined in 2-D, it is harder to extract point clusters for separate 

objects even if the object type is known.  

In our research, our main focus is on damage detection. Thus, most of the damage 

detection methods, which are developed and explained in Chapter 7, are based on graph-
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based object detection; however, both approaches are used depending on the specific type 

of damage.  

 

6.1 Point Feature Histograms 

In the introduction of this chapter, the necessity of identifying the underlying 

surface type before performing a surface fitting is mentioned. In order to perform the 

surface characterization, a point feature histogram based method is implemented. This 

method is used for both classification and for feature extraction of point clouds through a 

covariance-based procedure (Belton and Lichti, 2006; Rusu, 2009). The computation 

steps for both the covariance matrix and the surface normals are discussed in related 

sections of Chapter 5. 

Point Feature Histograms (PFH), which are calculated based on surface normals, 

are informative pose-invariant local features that represent the underlying surface model 

properties at a point   . Their computation is based on the combination of certain 

geometrical relations between   ’s nearest   neighbors. This method uses the interactions 

between the directions of the estimated normals to compute the surface variations. PFH’s 

mainly incorporate 3D point coordinates and estimated surface normals, but at the same 

time they combine other properties such as curvature,     order moment invariants, etc.  

A PFH determined at a point    relies on the presence of 3D coordinates and 

estimated surface normals, and it is computed as follows: first, for each point   , all of 

  ’s   nearest neighbors (     enclosed in the sphere with a given radius   are found; 

second, a natural moving Darboux     frame is constructed on the surface for every pair 

of points    and           in the  -neighborhood of    and their estimated normals   ⃗⃗  ⃗ 
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and   ⃗⃗  ⃗ where     ⃗⃗  ⃗,                ⃗ , and   ⃗⃗    ⃗      . In this context,    is the 

point with a smaller angle between its associated normal and the line connecting the 

points    and   . The angular variations of   ⃗⃗  ⃗ and   ⃗⃗  ⃗ are computed by using the geometric 

relations between the Darboux frame of both    and   . 

The features can be separately computed and grouped for both convex and 

concave shapes since PFH computation is based on normal information. These features 

are informative enough to differentiate between points lying on different surfaces when 

the computation parameters are chosen carefully. Figure 6.1 presents     signatures for 

points lying on three different surfaces types, namely a plane, sphere with a radius of 

    , and a cylinder with a radius of     . For this application   is taken as   since a 

synthetic point cloud dataset with a low point density is used. In order to illustrate that 

the features are discriminative, a confusion matrix with gray values representing the 

distances between the mean histograms of different shapes is assembled. This confusion 

matrix is obtained by using the Histogram Intersection Kernel (Barla et al., 2003), and it 

is given at the top left part of the Figure 6.1. Table 6.1 represents the parameters and the 

typical corresponding ranges used for computing point feature histograms. The values for 

these parameters are kept the same with the values used in the statistical outlier removal 

method described in Section 5.3.2.     computations are done by using the 

implemented Point Cloud Libray (PCL) algorihms (Rusu and Cousins, 2011). 

 
Table 6.1: Parameters and corresponding ranges for point feature histogram. 

 
Method Parameters Range (or default value) 

FPFH based classification 
Neighborhood size*,    >3 
Search radius*,    0.1 in.– 2 in. 

* Either neighborhood size or search radius has to be defined for each run.  
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Figure 6.1: Example of point feature histograms for points lying on simple 3D geometric surfaces 
after Rusu (2009). 

 

6.2 Surface Fitting  

Once the surfaces that define the segmented regions are categorized, the 

corresponding mathematical representation of each surface is used for fitting that is used 

to compute the surface parameters. For each segment, surface fitting is performed by 

using the appropriate regression model (e.g., ordinary least squares) depending on the 

underlying surface type (Dai and Newman, 1998).  

Simple surfaces (planes, cylinders, spheres, cones, etc.) can be represented by 

quadratic equations. The general equation for an arbitrary quadric surface in Cartesian 

space is given by Equation 6.1 (Breyer, 1987). Depending on the categorized surface 

type, the equation of the quadratic surface varies (Adams, 1999). The appropriate version 

of the general quadratic equation is then used to estimate the surface parameters of each 

region. It should be noted that, in this research, surface fitting is only performed on 
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simple surfaces, including (as listed earlier) planes, cylinders, spheres, cones, etc. since 

the investigated objects are composed of either only one of the listed surface types or a 

combination of several surface types.  

 

                                            6.1 
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For a set of segmented points representing a surface, the coefficients are estimated 

by solving a group of m equations (Equations 6.2 - 6.4.). This approach is implemented 

for each segment, which is identified during region growing described in Section 5.8. The 

detected surfaces and the computed parameters are later used for object detection.  
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6.3 Global Feature-based Object Detection 

The first object detection method builds on the surface fitting described in the 

previous section. Once the point cloud has been transformed into a collection of surfaces 

bounded by edges, and the surface properties are extracted, the next step is to determine 

how those surfaces combine to form objects. Identifying objects in a scene is an 

important part of point cloud processing leading towards structural engineering 

applications. 

One way of defining an object is as a set of connected surfaces, where generally 

an input range data is used to create a symbolic description of the object in terms of the 

visible surface patches. An object definition using this approach is organized like a graph 

with the vertices representing surfaces, and the edges representing proximity and relative 

orientation. The object graph is matched with the model graph from a pre-defined model 

base for recognizing the objects in a scene. Various features of each surface of object 

models are stored for construction of a model base; these features are compared with the 

computed surface parameters in order to enhance the matching results. This step is 

performed to prevent false detections resulted due to the objects that have similar surface 

connectivity information but have varying surface properties. 

When two or more surfaces are identified as neighbors, the angle between their 

average normals is computed and stored for checking potential model matches. Once the 

surfaces with common feature points are linked together, they are checked for 

compactness. This step is performed to avoid grouping of surfaces, which are parts of 

adjacent objects but sharing common feature points, within the same point cluster. The 

collection of surfaces and inter-surface relationships are matched against a predefined 
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object library. The model matching results are checked against a dissimilarity measure. 

Every feature stored in the object library is checked, and the best match is extracted for 

each detected object in a scene. The object detection algorithm in this work is looking for 

an overall similarity of minimum 85% for both global and local features in order to match 

the detected object with the corresponding model representation.  

The objects in the library are generically defined based on geometric primitives 

and their relative relationship, allowing expansion for new objects. Each object definition 

contains information to identify the object (surface types and relative orientations) and 

describe the object for storage after detection. The description of the object contains 

methods to describe the location and orientation of the object in space and methods to 

describe its geometric properties, for example, length, width and height for a cuboid. The 

result is a description of each object in a scene in simple form that can then be used to 

track location, orientation, and size. These recorded properties could be scaled and used 

for detecting similar objects with different geometric properties. In this way, the 

developed object library can be used for different point clouds that contain similar objects 

with varying geometric properties. Table 6.2 shows the common parameters and defined 

ranges for these parameters for global feature based object detection. In this research, the 

maximum dissimilarity measure is defined as 15% for both local and global object 

matching.  

To determine the effectiveness of the algorithms, examples from the point cloud 

of DeKalb County Bridge is used. Figure 6.2 is showing a portion of the test-bed bridge 

point cloud (a) and it is also representing sharp features and detected piers along with the 
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detected pier cap surfaces (b). A cylinder, which has varying length, was defined in the 

object library and matched with the pier surface (Walsh et al., 2013). 

 

Table 6.2: Parameters and corresponding ranges for global feature-based object detection. 

Method Parameters Range 

Global Feature-based Object 
Matching 

Local dissimilarity measure 0% - 15 % 
Global dissimilarity measure 0% - 15 % 

 
 

  
(a) (b) 

 
Figure 6.2: (a) Scan data of DeKalb County Bridge with section utilized for data processing; and 
(b) DeKalb County Bridge point cloud with four piers detected as cylinders and pier cap surfaces 

detected as planes. 
 

This method is effective for modeling an undamaged structure by differentiating 

objects in a scene. However, since the object representations in the library consist of 

global properties for each object, variances in local properties reduce the effectiveness of 

the method. Thus, the method is suitable for detecting objects in a scene for which the 

geometries of the objects are either intact or have minor defects, but it is not successful 

for object detection where significant changes in the global properties of mentioned 

objects occurs. 
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 In order to detect objects from geometrically altered situations, another object 

detection method, which is called graph-based object detection, is implemented. Graph-

based object detection method is described in the following section.  

 

6.4 Graph-based Object Detection 

This section presents a skeleton-based approach for object detection. This method 

involves performing two main feature extraction steps on deducted point clusters 

obtained through grouping segmented regions. The connectivity information described in 

the previous section is used to find the surfaces that are part of the same object, and the 

points associated with each surface (segmented regions) are grouped together to form 

point clusters. First, the voxel model of the unorganized point cluster is extracted, and 

this model is used to create a 3D binary image. Second, this 3D binary image is divided 

into 2D binary images along the length of the cluster (cross-section cuts). Subsequently, 

these images are processed by thinning and/or distance transform to produce skeleton 

graphs, and they are also used to calculate 2D shape descriptors. 2D shape descriptors 

and skeleton graphs are matched with the objects from a pre-built object library in which 

the object information is stored in terms of shape descriptors and skeleton graphs. 

The main advantage of this method over the global feature-based object detection 

method, is that it can be used on incomplete point clouds as well. The cross-sections, 

which store 2D shape information, are used for object detection. This qualifies the graph-

based object detection as a suitable method to create skeletons for searching objects 

within point clouds composed of defected members.  
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6.4.1 Voxelization 

The initial requirement of the graph-based object detection method is an effective 

skeletonization that will later be used for object recognition. This object recognition 

method is a more comprehensive version of the one described in the previous section: the 

global feature-based object detection.  

Voxelization is the first step for creating a skeleton from a point cluster. It is the 

process of converting the geometric representation of a point cloud into a set of voxels 

that accurately represents the investigated point cloud within a discrete voxel space. It is 

an important tool to extract both 2D and 3D information from unorganized point clouds. 

Most of the existing voxelization methods that are used for operating on surface 

representations of objects (such as aerial laser scanner or terrestrial laser scanner data) 

could be divided into two sub-categories: surface-based voxelization methods (Gibson, 

1995) and point-based voxelization methods (Nehab and Shilane, 2004). The 

representations of both surface-based and point-based methods are shown in Figure 6.3. 

The voxelization method used for this research is a point-based voxelization technique, 

which does not require an initial surface model of the object, and hence allows direct 

point cloud processing.  

 

  
 

(a) Points (b) Surface-based (c) Point-based 
 

Figure 6.3: (a) A sample point set, (b) surface-based voxelization (also called surface meshing) 
result, and (c) point-based voxelization result. 

 



93 
 

The set of input points from each point cluster, which are rotated to fit a given 

axis by using the results of orthogonal linear regression (Jolliffe, 2002), are given as 

   {          , where    is the number of points, and each point    is in the form of 

              . Principle component analysis, which is used to compute the eigenvalues 

  and the eigenvectors    in Section 5.4, is used to determine the direction of the fitted 

line. The direction vector that defines the fitted line is represented by the coefficients of 

the first principle component. This direction vector   ⃗⃗⃗⃗  and a reference rotation vector   , 

which is taken as [     ] ( -direction) of a reference coordinate system, are used for 

rotation. All the points in   are rotated to align with    by using the Equation 6.5 and 

Equation 6.6. First, the rotation matrix   is computed by using the Rodriques’ rotation 

formula. The original   is then multiplied with   to get the rotated point cloud     . This 

step is performed to enable the selection of a height function along the  -axis. The height 

function increment   , which also refers to the resolution in  -direction, is an input 

parameter defined by the user. Its value is determined based on the requirements of the 

investigated defect type.  

 
[  ⃗⃗⃗⃗ ]      ⃗⃗⃗⃗       [

    ⃗⃗⃗⃗    ⃗⃗⃗⃗  
  ⃗⃗⃗⃗      ⃗⃗⃗⃗  
   ⃗⃗⃗⃗    ⃗⃗⃗⃗   

]    

6.5 

 

          [  ⃗⃗⃗⃗ ]             ⃗⃗⃗⃗   ⃗⃗⃗⃗ 
 
    6.6 

where   is the angle between   ⃗⃗⃗⃗  and   .  

The voxelization method implemented here is explained in (Hinks, 2011), and it 

consists of three main steps. These steps can be listed as construction of a voxel grid 

based on the laser point clouds, mapping of the given laser point cloud to the generated 
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voxel grid, and determination of active voxels based on the performed point mapping. 

The bounds of the voxel grid assure that every point       has an accurate voxel 

mapping. These bounds are defined by the minimum and maximum values of all points in 

  along  ,  , and  -directions:            ,            , and            . The voxel 

grid dimensions in   and  - directions are determined by using a targeted resolution 

value    (     ) provided by the user or computed based on the point cloud resolution. 

However, the voxel grid dimension in  -direction is defined as      . The number of 

voxels along each axis   ,    and    is determined by using Equations 6.7 - 6.9. Figure 

6.4 represents samples of a voxel grid and a single voxel. 
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(a) Voxel grid (b) Voxel (  ,   ,   ) 

 
Figure 6.4: Representation of (a) a sample voxel grid and (b) a single voxel. 
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Once the suitable voxel grid is created, active voxels are determined based on the point 

mapping results. Mapping is performed by using Equations 6.10 - 6.12. Voxels that 

contain more points than a given threshold value    are marked as an active voxel. In this 

research the threshold value    is taken as  , thus each voxel that has at least one point is 

marked as active. This process converts the 3D dataset into a 3D binary image. The 

parameters and the corresponding ranges for the described voxelization method are given 

in Table 6.3. The selection process for the given parameters is discussed in Chapter 7. 
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where ⌈ ⌉ operator rounds down the computed voxel coordinates to the closest integer 

value. 

As explained above, the voxel grid is a volumetric representation, and for      

it can be treated as a 3D binary image that builds up from 2D binary images. 3D binary 

images can be separated into their building blocks by using a height function. Each  -

layer of the 3D binary image represents a 2D binary image. Figure 6.5(a) represents the 

voxel representation of an example structural steel C-section, and Figure 6.5(b) shows 

one of the binary images that forms the voxel grid. The point cloud cluster used for 

Figure 6.5 is extracted from the steel lab frame dataset. 
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(a) (b) 

Figure 6.5: (a) 3D voxel grid of a C-section; and (b) 2D binary image at z=4”. 
 
 

Table 6.3: Parameters and corresponding ranges for voxelization. 
 

Method Parameters Range  

Voxelization 
Voxel grid dimension,   -,   0.03 in. – 0.5 in. 
Height function increment,    0.1 in. – 2 in. 

 

6.4.2 Skeletonization 

Skeletonization, which follows voxelization, is one of the most important steps in 

graph-based object detection since the topology is an essential shape characteristic for 

both 2D and 3D models. Graphs and trees are the two major relational data structures that 

are used for topology representations.  

The skeleton of a model is computed by using skeletal graph-based techniques, 

and the shape descriptors of the model are obtained by converting this skeleton into a 

skeletal graph (Iyer et al., 2005). Some of the common skeletonization methods include 

distance transform (Niblack et al., 1992), thinning (Lee et al., 1994) and Voronoi-based 

methods (Hisada et al., 2001). The skeletonization methods used for this research include 

thinning and distance transform.  
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  Both thinning and distance transform are used to create skeletons from 2D binary 

images. Thinning is used for creating skeletons of the objects in the object library where 

the objects are represented with filled cross-sections, whereas distance transform, is used 

for the 2D binary images that are extracted from voxel grids generated from the point 

cloud. In latter case, distance transform is chosen because the binary images deducted 

from the point clouds form only the perimeter of the cross-sections, and in some cases 

these are incomplete. Thinning cannot be applied on a binary image, which consists of an 

incomplete perimeter of a cross-section, since it is only applicable on closed-loops.  

  Thinning (or morphology) is used to transform a digital image into a simplified 

and topologically equivalent image. Thinning is an iterative pixel-deletion process. The 

criteria for the pixel-deletion are defined such that the connectivity of the image pattern is 

preserved. In this research, thinning is achieved by a MatLab function called         

with the option of ‘    ’, which is based on Lam et al. (1992).  

  The distance transform method computes the Euclidian distance transform of a 

binary image; this is achieved by assigning a distance value to each pixel, which is the 

distance between that pixel and the nearest non-zero pixel. Pixels with the highest 

Euclidian distance values are then connected together to create a skeleton of a given 

cross-section. The MatLab function called        is used for this operation. The default 

distance measure used for the distance transform is the Euclidian distance (Maurer Jr et 

al., 2003). However, other options such as chessboard, cityblock or quasi-euclidian can 

also be used as distance measures (Rosenfeld and Pfaltz, 1966). Examples of 2D and 3D 

skeletons are shown for a C-section in Figure 6.6. 
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(a) (b) (c) 
 

Figure 6.6: (a) Example C-section with the direction of height function, (b) 2D skeleton 
representation, (c) 3D skeleton representation.  

 

6.4.3 Expanded Object Library 

  The object library is an essential part of object recognition process. In order to 

recognize objects clustered in the field, isolated objects are compared to objects in a 

object library. As mentioned in Section 6.3, the object library is composed of a variety of 

object descriptions starting with simple prismatic shapes such as rectangular prisms, 

cylinders, etc. More sophisticated objects are also included, which are created based on 

section properties taken from the AISC Steel Construction Manual (AISC., 2011) for W, 

M, S, HP, C, MC, WT, MT, ST shapes and angles. In order to detect objects by using 

skeletons as well, some additional representative information on the objects are stored in 

the object library. For each object, a list of entities that are representing the object’s 

cross-section are added to the object library; this additional information includes a cross-

section’s  filled binary image, perimeter binary image, 3D point cloud at z=0, 2D image 

descriptors associated with both binary images, and skeleton properties.  

Two-dimensional shape descriptors, which are also called image moments, are 

particular weighted average (moment) of the image pixels’ intensities, or a function of 

such moments. Once the cross-section of a cluster is extracted as a binary image, 
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calculated image moments are useful to describe and detect objects. In this research, the 

Hu set of invariant moments was used (Hu, 1962). This set consists of seven moment 

invariants, which are invariant under translation, changes in scale and rotation. Moment 

invariants were calculated and stored for each model section in the library. Hu’s seven 

moment invariants are given by Equations 6.13 - 6.19. 
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where   and   represent the pixel coordinates.   

  An example of how a typical C-section was characterized in the library is shown 

in Figure 6.7. Figure 6.7 consists of the hollow and filled representations of the C-section, 

its skeleton obtained through skeletonization methods, key-points detected from the 

skeleton and image invariants. These properties are stored for every single section and 

later used for object detection and model fitting.  

 

 

  

I1 9.1792 
I2 55.8758 
I3 66.2719 
I4 13.5370 
I5 38.8079 

  

I6 -101.1878 
I7 -9.6898 

Corners 2 
Key-points 6 

Parts 3 
 

Figure 6.7: An example of a model library representation of C-sections. 
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6.4.4 Object Detection and Model Fitting 

Object detection was completed by using already extracted properties of the 

examined point cloud sections at varying elevations along  -axis     where   represent 

the section number, and performing a search in the object library in order to find the best 

match. All available information, which includes moment invariants and skeleton 

properties, is compared with the entries in the object library, and the closest match    is 

found. Similar to global feature-based object detection, an overall similarity of minimum 

85% for local features is enforced in order to match the detected object with the 

corresponding object representation.  

Model fitting is performed by using the Iterative Closest Point (   ) approach 

(Besl and McKay, 1992), which is a common method for point cloud registration. There 

are four common steps of     algorithms. First, the points in both     and    are 

associated by the neighbor criteria where for each point in     the closest point in    is 

found. These correspondences are weighed, and the outliers are removed from the     

dataset. Second, the transformation parameters rotation and translation are estimated by 

using a mean square cost function. Third, the points are transformed by using the 

estimated parameters. This transform aligns each point to its match found in the first step. 

Finally, the iterations are continued until a defined threshold criterion is met. Table 6.4 

represents the parameter and their corresponding ranges used in algorithms during graph-

based object detection. In this research, the maximum dissimilarity measure is defined as 

    for both local and global object matching. The maximum correspondence distance 

is kept constant at      ; and the maximum number of iterations is defined as 100.  
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3D model point cloud at     associated with   , which is a component already 

stored in the model library, was used to register each     in order to find the section that 

minimizes the error function and the best match was labeled as   . The error is defined 

by the the sum of the squares of all errors between    and each    ; the error value for 

each section in the point cloud data at different elevations was recorded as    .    is 

assumed to represent the as-built condition of the section. Once the    section is chosen, 

ICP algorithm is repeated for each section extracted from point cloud section and new 

error values were recorded as e1i. If                , then    is defined as the new    

Section. The    section was then used for cross-sectional change detection. Figure 6.8 

shows examples of detected    and    and    .  

 

   
 

(a) Model    (b) Best match    (c) Example section cut     
 

Figure 6.8: (a) Detected C-section M0 ; (b) best match B0; and (c) example section CSi. 
 

 

The graph-based object detection algorithm is also looking for an overall 

similarity of minimum 85% for both global and local features in order to match the 

detected object with the corresponding model representation.  
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Table 6.4: Parameters and corresponding ranges for the graph-based object detection and model 
fitting. 

 

Method Parameters Range (or default 
value) 

Iterative Closest Point 

Maximum correspondence 
distance 0.4 in. – 2 in. 

Number of iterations 50 - 100 
Transformation Epsilon 1.00E-08 

Euclidian Fitness Epsilon 1.0 

Graph-based Object Matching 
Local dissimilarity measure 0 - 15 % 
Global dissimilarity measure 0 - 15 % 
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7. Camera Integrated Laser-based Surface Damage Detection 

The object representations can be utilized for obtaining either the geometric or 

finite element model of structures once the objects are detected accurately by using the 

strategies described in Chapter 6. The defect localization and quantification can be 

achieved by developing new strategies for comparing the captured data, which represents 

the as-is condition of the structure, with the correctly detected and fitted objects from 

model library. This general methodology allows to categorize and develop damage 

detection strategies for a wide range of damage types that fall under three main categories 

described as: small deformations already existing on the structure; damage types that 

induce larger deformations, where the initial topology of the structure has not changed 

appreciably; and large deformations, where localized change in the topology of the 

structure has occurred. A detailed list of investigated damage types includes bent 

members, misalignments, spalling, section loss, rupture, points of discontinuity, and 

cracks.  

There are two major damage detection methodologies based on modal comparison 

implemented for this research: graph-based damage detection and surface normal-based 

damage detection. Both of these methods build on the methods described in Chapter 5, 

where laser data processing towards object detection is discussed. Chapter 9 describes 

how to use current visual inspection methods to interpret the obtained results and report 

them efficiently through combining current visual inspection methods with camera 

integrated laser-based damage detection. 
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7.1 Noise Removal 

7.1.1 Outlier Removal 

Similar to point cloud processing, the first step for both damage detection methods 

is noise removal, since the outlier points affect the obtained results. As was mentioned 

before, statistical outlier removal that is explained in Section 5.3.2 is used as the main 

method for noise removal from the investigated point cloud. Statistical outlier removal is 

dependent on two parameters. These parameters are the neighborhood size   and the 

standard deviation multiplier  . The parameters and the corresponding ranges for 

statistical outlier removal are given in Table 5.3. 

A portion of the top deck data of the DeKalb County collapsed bridge is used to 

show the sensitivity of the statistical outlier removal algorithm to both   and  .  

 
 

Figure 7.1: Processed portion of DeKalb County Bridge, where red rectangle shows the part of 
the deck used for sensitivity analysis. 

 

Figure 7.2 shows the sensitivity of statistical outlier removal to the neighborhood 

size  . Figure 7.2(a) represents the results of   versus the number of detected outliers, 

whereas Figure 7.2(b) shows the results of   versus the remaining number of points, once 

the outliers are removed from the point cloud. During this process the standard deviation 

multiplier   was kept constant,    . Several common neighborhood sizes are included 
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in the analysis. The results showed that at      and     removed the largest number 

of points from the point cloud. 

  
(a) (b) 

Figure 7.2: (a) Graph of   versus number of outliers; and (b) graph of   versus number of 
remaining points. 

 

Figure 7.3 shows the sensitivity of the statistical outlier to the standard deviation 

multiplier  . Figure 7.3(a) represents the results of   versus the number of detected 

outliers. On the other hand, Figure 7.3(b) shows the results of   versus the number of 

points left in the statistical outlier removal method applied point cloud. During this 

process a constant value of neighborhood size      is used. A range of   that varies 

between   and   are used for the analysis. The results for      and     are marked 

with black circles. It can be observed that in this case     does not result in the largest 

number of outliers. However, this does not indicate that    , which removed the most 

number of points from the dataset, gives better outlier removal results. However, since 

the criteria band is too short,     causes misdetection and removes some of the surface 

points along with noise. The opposite occurs when     is used; some of the outlier 

points are not detected since the criteria band is too wide.  
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(a) (b) 

Figure 7.3: (a) Graph of   versus number of outliers; and (b) graph of   versus number of 
remaining points. 

 

This analysis shows that the number of detected outlier points is dependent on the 

parameters   and  . It is important to determine the value used for these parameters 

carefully, since they affect the results of the damage detection algorithms.  

For this research, the neighborhood sizes, which is the first required parameter for 

statistical outlier method, are computed automatically based on the resolution of the 

investigated point clouds, whereas the standard deviation multiplier, the second 

parameter, is kept constant at     for the applications reported in Chapter 10. The 

neighborhood size selection is performed by following a similar methodology that has 

already been discussed in this section. For each investigated point cloud, the number of 

detected outliers for varying   values is computed. These   values start with 3, which is 

the minimum number of points required for plane fitting and then, they are followed by 

    . The number of outlier points for every   point increment is then recorded. The 

results are investigated to find the peak number of detected outlier points and its 

associated   value, similar to the application shown in Figure 7.2. It should be noted that 

the computed neighborhood sizes vary significantly from point cloud to point cloud; as 
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an example, for the concrete testing frame and DeKalb County Bridge, the neighborhood 

size is computed as   ; however, for the Bowker Overpass, which has a very dense 

surface point distribution, the neighborhood size is determined as    .  The details of the 

statistical outlier method are discussed in Section 5.3.2.  

 

7.1.2 Extraneous Point Removal 

The statistical outlier method removes noise from the surface data; however it is 

not very efficient for removing the points that belong to small extraneous objects that are 

not a part of the investigated surface.  

Figure 7.4 shows the image of the concrete testing frame. Since this setup was 

used to test both dynamic and static loading effects after the sudden base column 

removal, several loading pins are attached to beams and columns of the frame in order to 

hang some loads. These loading pins are not a part of the original structure, so they 

should be removed before any further investigation. The zoomed in image in Figure 7.4 

shows some of the loading pins attached to the middle column. The details of this test 

setup are discussed in Section 10.1.3. 
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Figure 7.4: Image of concrete testing frame; and zoomed-in image of the investigated point area 
that has bolts attached to the concrete surface. 

 

The raw point cloud of the portion shown in Figure 7.4, before the application of 

the noise removal methods, is given in Figure 7.5(a). Figure 7.5(b) represents the 

remaining point cloud after the statistical outlier removal method is applied. This method 

removes noise from the surface points and it also eliminates some of the points associated 

with the extraneous objects, which are loading pins in this case. However, some of the 

points belonging to the extraneous objects remain in the resulted point cloud. The next 

step is to apply the extraneous point removal in order to filter the remaining extraneous 

points. Figure 7.5(c) shows the result of the extraneous point removal. Since this method 

uses variations in the curvature of the points, it is more sensitive to local changes. The 

extraneous point detection method, described in Section 5.6, successfully eliminates the 

remaining outliers from the dataset. 
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(a) (b) (c) 

Figure 7.5: (a) Raw point cloud coming from area shown in Figure 7.4 that has 13,021 points; (b) 
resulting data set after statistical outlier removal with 12,630 points; and (c) resulting data set 

after extraneous point removal with 12,067 points.  
 

Similar to the statistical outlier method, extraneous point removal is dependent on 

two parameters that are the neighborhood size   and the standard deviation multiplier  . 

The neighborhood size is kept constant at   value computed for the statistical outlier 

method, for the concrete testing frame   is equal to   , in order to keep two methods 

consistent. However, when     is used, this method resulted in excessive surface point 

loss along with the loss of extraneous points. Thus, a sensitivity study is performed to see 

this method’s dependency on  . Figure 7.6 represents the results of the extraneous point 

removal with varying  ;   is ranging between   and   with     increments. The number 

of the outliers for     is equal to     , which is nearly the     of the processed 

dataset. Thus,      results in excessive surface data removal. In order to avoid this 

problem, a larger band for the removal criteria is used, where    . The results for 

    are highlighted in Figure 7.6.  

This analysis proved that the total number of the removed extraneous points is 

affected by the variations in the parameters   and  . It is important to carefully pick the 

value used for these parameters for further analysis. For this research, the neighborhood 

sizes are kept consistent with the values computed for the statistical outlier method; on 



111 
 

the other hand, the standard deviation multiplier is defined as a constant ,   , for the 

applications shown in Chapter 10. 

 

  
(a) (b) 

Figure 7.6: (a) Graph of   versus number of outliers and (b) graph of   versus number of 
remaining points. 

 

7.2 Graph-based Damage Detection 

Once the outliers and the extraneous points are removed from the system, and the 

point clusters are formed, the next step is to perform damage detection by using the 

developed damage detection algorithms. The first damage detection method developed 

for this research is called graph-based damage detection. This method is an extension of 

the graph-based object detection described in Section 6.4. The primary aim is to use the 

skeleton of a detected object for localizing and quantifying local defects. This is a new 

approach for detecting defects, due to local discrepancies through point cloud processing, 

by using object detection and model comparison.  

First, the voxel model of the unorganized point cloud cluster is extracted and this 

model is used to create a 3D binary image. Second, this 3D binary image is divided into 

2D binary images along the length of the cluster (cross-section cuts); subsequently, these 
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images are processed by thinning and/or distance transformation to produce skeleton-

graphs and also used to calculate both 2D and 3D shape descriptors. Steps listed above 

are explained in Section 6.4 in detail. 

Defects such as material loss, element discontinuity, or deformed locations are 

located and quantified by comparing as-is conditions of the structure with the detected 

object model. Cross-sectional cuts of sections are used to calculate the perimeter, and the 

area of the cross-section along the length of the member for each point cloud cluster. 

Then, the results are compared with the model properties at the same location. Figure 7.7 

represents the example skeletons for bent and discontinuous members, and the cross-

sectional cuts of modal and as-is condition of a damaged C-section. The general steps for 

the graph-based damage detection are shown as a flowchart in Figure 7.8. 

 

  
 

(a) Bent Members (b) Discontinuities (c) Rupture/Spalling 

Figure 7.7: (a) Skeleton of a bent member; (b) skeleton of a discontinuous member; and (c) modal 
and point cloud section cuts of a C-section.   
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Figure 7.8: Steps of graph-based damage detection. 
 . 

7.2.1 Surface Patch Investigation for Voxelization 

Surface patch investigation is an important pre-processing step for both graph-

based damage detection and surface normal-based damage detection methods, which are 

discussed in Sections 7.2 and 7.3 respectively. 

Voxel size is an important parameter for the voxelization method for surface patch 

investigation. As was mentioned in Section 6.4, the selected voxel size affects the results 

of object detection, since it alters the volumetric representation extracted from point 

clouds. Volumetric representations are used to get the skeleton and the cross-section 

information at varying lengths. Both the skeleton and the cross-sections are later used for 

damage detection as explained in the following sections.  
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Voxel size is determined based on the resolution of point clouds. Laser scanners 

capture point clouds around the structure to form a complete 3D representation. However, 

even if all the scans provide coverage for the entire test specimen, they are not adequate 

to obtain a uniform point density at the surface across the entire structure, due to the 

limited number of scans. For most of the laser scanning applications, the main objective 

is to cover all surfaces of an investigated structure. Thus, it is difficult to obtain a uniform 

point density on the surface of structures.  

In order to decide on the appropriate voxel size and to understand the smallest 

detectable damage size, it is necessary to get the point resolution at varying locations on 

the surface of structures. Surface patches, which are extracted from detected regions, of 

size        by        are used to compute the surface resolution in this research. Since the 

resolution study is performed on the concrete testing frame; the size of the patch is 

determined based upon the minimum dimension of the frame. The representative surface 

patch dimension is selected such that it would be larger than the half of the minimum 

dimension, which is     thus,       . is used as the patch dimension. The location of the 

patch is automatically selected by using the curvature information. The point with the 

least curvature is chosen to be middle point of the patch. The computation of curvature 

values is discussed in Section 5.5. If the point is close to one of the edges, and it is not 

possible to collect the patch data, then the next point with the lowest curvature value is 

checked.  

To demonstrate the variation of the point densities over the surface, a study is 

conducted, in which surface resolutions at varying locations on the concrete testing frame 

are computed. The image of the concrete testing frame is given in Figure 7.4, and beam 
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and column legends are shown in Figure 7.9. The details for the concrete testing frame 

are discussed in Section 10.1.3.  

 

 
(b) 

 
Figure 7.9: Beam and column legends of concrete testing frame. 

 

Several surface patches are checked from different portions of the structure and 

point densities are calculated accordingly. Results are given in Table 7.1. As an example, 

BC-3-1 represents the top beam located between columns B and C; the last number 

indicates where from is the patch taken. If it is from the front, then the value is 1, and if it 

is from the back, this value is 4. It can be seen from Table 7.1 that point density values 

for the lower part of the test setup, BC-1, are lower than the ones calculated for BC-2 and 

BC-3. These point densities are subsequently used to determine voxel dimensions for 

different patches. Voxel grid dimensions, which are obtained separately for varying point 

densities on the surface, are determined by using a targeted resolution value (      

and     ). Voxel grid dimensions for the investigated surface patches are given in 

Table 7.2. 
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Table 7.1: Point densities from varying surface patches. 
 

 

Side Length 
(  ) Area (   ) # of 

points 
Average Point Density 

(          ) 
BC-1-1 1.2 1.44 187 129.86 
BC-1-4 1.2 1.44 215 149.31 
BC-2-1 1.2 1.44 262 181.94 
BC-2-4 1.2 1.44 276 191.67 
BC-3-1 1.2 1.44 312 216.67 
BC-3-4 1.2 1.44 323 224.31 
CD-2-1 1.2 1.44 261 181.25 
CD-2-4 1.2 1.44 420 291.67 
CD-3-1 1.2 1.44 309 214.58 
CD-3-4 1.2 1.44 545 378.47 

 

Table 7.2: Voxel grid dimensions. 
 

 

Side Length (in) # of points # of voxels 
per side 

Voxel 
Dimensions (in) 

BC-1-1 1.2 187 14 0.09 
BC-1-4 1.2 215 15 0.08 
BC-2-1 1.2 262 17 0.07 
BC-2-4 1.2 276 17 0.07 
BC-3-1 1.2 312 18 0.07 
BC-3-4 1.2 323 18 0.07 
CD-2-1 1.2 261 17 0.07 
CD-2-4 1.2 420 21 0.06 
CD-3-1 1.2 309 18 0.07 
CD-3-4 1.2 545 24 0.05 

 

The results show that the upper beams, which were exposed to the scanner more 

than the lower beams, due to the location of the scanner during scanning, have higher 

point densities for the given unit area. The number of points per unit area, the point 

density, is affected from both the number of scans coinciding at certain location and the 

angle of the laser scanners with respect to the patch location. Examining the point cloud 

resolution at different locations is important to understand the limitations of the 

performed damage detection. Especially for cracks, the point cloud resolution plays an 

important role, if the point density is smaller than the crack width, then it is not possible 
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to locate this defect. Thus, an adaptive neighborhood size selection strategy is developed. 

The neighborhood parameter   is selected based on the point cloud resolution for the 

developed algorithms in order to effectively deal with this variation in the resolution.  

 

7.2.2 Alignment 

The next step, once the grid size is determined from resolution analysis, is to 

create a voxel grid of each investigated point cluster and then, use this voxel grid, which 

represents a 3D binary image, for graph-based damage detection.  

Graph-based damage detection is used to check two types of defects. First, the 

alignment problems of individual members are checked and second, the cross-sectional 

cuts are used to compute the local changes and to investigate them in 3D.  

In this section, alignment comparison is discussed. The skeleton of each object is 

created based on the steps described in Section 6.4. Skeletons provide the necessary 

topological information required for computing possible alignment problems related with 

individual objects. This application is especially beneficial for inspecting structures that 

have exposed members such as bridges and for monitoring construction process.  

This method requires knowledge on the objects and their relative orientations with 

each other. As mentioned in Chapter 6, in this research, a predefined object library is 

used for storing information on several object types. However, these stored object 

descriptions do not provide orientation information. The orientation of each object has to 

be extracted from the formed skeleton. Some of the basic conceptual relationships such as 

the orientations of beams and columns can be automatically deducted from point clouds. 

On the other hand, for the cases where the skeleton is not sufficiently representative of 
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the initial object orientation, some additional user input is required. Ideally, Building 

Information Models (BIMs) are used to import this required information on object 

orientation.  

In both cases, the as-is skeleton of each object is compared with either the 

extracted or the BIM defined object representation. The discrepancies are detected, and 

the necessary damage indices such as vertical sag and/or horizontal movement, are 

computed. The related indices are selected based on the available damage detection 

criteria provided by the Federal Highway Administration (AASHTO., 2011). From state 

to state, the indices and their limitations vary significantly. In this research, the Bridge 

Inspection Manual of Ohio State Department of Transportation (Ohio Department of 

Transportation., 2010) is primarily used, since it provides detailed defect descriptions and 

condition rating criteria for most of the individual components of bridges. The details of 

the implementation of current inspection methodologies into laser-based damage 

assessment are discussed in Chapter 9. 

Once the skeleton of the as-is condition of an object is obtained by using the 

methods described in Section 6.4.2, the individual points of the skeleton are compared 

with their counterparts in the skeleton of the undamaged representation of the same 

object. The same process is repeated for all the detected objects in a scene, and the results 

are recorded. Figure 7.10 represents the skeleton of the concrete testing frame, which is 

discussed in Section 10.1.3, including a zoomed-in view of one of the base columns.  
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Figure 7.10: Complete skeleton of concrete testing frame; and zoomed-in representation of one of 
the base columns.  

 

 

This test setup was restricted to deflect in the y-direction during loading. Thus, 

the base column was subjected to significant horizontal movement. The horizontal 

movement values are quantified along the length of the object by using the developed 

algorithms for alignment comparison. Each point that is defined at each height function 

increment location is used to compute the value of the horizontal movement at that 

specific location. Table 7.3 shows the results of the alignment comparison algorithm for 

the column highlighted in Figure 7.10. The parameters and the corresponding ranges for 

the described alignment comparison method are given in Table 7.4. 

 

 



120 
 

Table 7.3: Results of alignment algorithm for the investigated column.  
 

 

Height (in) Horizontal 
Deflection (in) 

22 3.52 
20 3.44 
18 3.13 
16 2.80 
14 2.47 
12 2.12 
10 1.77 
8 1.42 
6 1.06 
4 0.72 
2 0.37 
0 0.00 

 

 

Table 7.4: Parameters and corresponding ranges for alignment comparison. 
 

Method Parameters Range  
Alignment comparison Height function increment,    0.1 in. – 2 in. 

 

7.2.3 Rupture / Spalling 

Cross-section comparison is the second main component of graph-based damage 

detection. Once the voxel grid is formed and the skeletons of individual objects are 

extracted, the skeletal point locations are used to obtain the cross-section cuts, at each 

height function increment   , from the investigated object. If the voxel grid of an object 

is treated as a 3D binary image, then, for the investigated object, each cut made in z-

direction results in a 2D binary image of the cross-section,    , at the corresponding z-

elevation. The details of voxelization and skeletonization are given in Sections 6.4.1 and 

6.4.2, respectively. 
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Each active pixel of the 2D binary image is used to create a matrix of points that 

is used to compute both perimeter and area of each investigated cross-section,    . In 

order to calculate the area of each cross-section cut, a connectivity map of all the points 

that forms the point matrix of     is created. The main principle of this method is to use 

the surface points to create a connectivity map that will represent the perimeter of the 

cross-section, when the points are plotted with an order. For a given list of 2D points, a 

singly connected nearest-neighbor path in either clockwise or counter-clockwise 

directions is constructed. The described algorithm is a specialized version of the 

               algorithm developed by Ursell (2013) for MatLab.  

First, a random point    is selected from the point matrix, and it is set as the first 

point of the connectivity map. Second, the algorithm starts looking for the nearest-

neighbor in the specified direction, which is either clockwise or counter clockwise. Once 

the closest point is found, it is labeled as the second point of the connectivity map. The 

algorithms keeps iterating until all the points in the point matrix are processed. The 

outliers, which are detected based on radius-based outlier removal that is described in 

Section 5.3.1, are not included in the connectivity map. There is not a unique solution for 

mapping of points into a connected contour; especially, if there are more than two 

neighborhood points, or when the nearest neighbor matrix is not symmetric. In this case, 

selecting a different initial    might result in a different contour. However, it is observed 

that the mentioned alteration affects neither the perimeter nor the area computations 

significantly. The variations in the calculated perimeter values are within    range, 

whereas the variation in area computation is in    range. In Figure 7.11(a), a drawing of 

one of the C-sections that forms the steel testing frame and the height function direction 
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for cross-section extraction are shown. Figure 7.11(b) represents one of the C-section cuts 

taken from the investigated steel member, which is processed with the discussed 

rupture/spalling detection algorithms, and the two possible processing directions for the 

connectivity map construction are shown.  

Once the connectivity map is generated, several readily integrated MatLab 

functions are used to compute both perimeter and area of the cross-section,    . First, a 

water-tight polygon is created by using the connectivity map to get the perimeter and 

then, the          function is used to compute the area. The          function returns 

the area of any polygon that is specified by the vertices defined in the connectivity map. 

The obtained results are compared with the original state of the object to locate and 

quantify the discrepancies. The percentage change in cross-sectional area calculated at 

varying elevations for the C-section, which is shown in Figure 7.11, are given in Table 

7.5. 

 

 

 

(a) (b) 
 

Figure 7.11: (a) Drawing of one of the C-sections of steel testing frame; and (b) a representative 
cross-section with possible processing directions.  
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The voxel grid representation is also used to compute the volumetric change 

throughout the length the investigated object. Each    , which is represented by a 2D 

binary image, is taken as a single volumetric unit for which the height is taken as   . 

Later, the volume of the entire object at its as-is state is calculated by adding up the 

volume computations associated with each     along the height of the object. This 

computed volume is then compared with the original volume of the object, in order to 

obtain the volumetric change (Guldur and Hajjar, 2013). The parameters and the 

corresponding options for the described area computation method are given in Table 7.6. 

 
Table 7.5: Percentage change in cross-sectional area calculated at varying elevations. 

 

Elevation 
(  ) 

Area 
(   ) 

Change in 
Cross-Sectional 

Area ( ) 

Change in 
Volume 

(   ) 

Change in 
Volume 

( ) 
0 1.55 6.1 

0.55 1.7 

2 1.77 7.2 
4 1.57 5.2 
6 1.67 0.9 
8 1.70 2.7 
10 1.66 0.6 
12 1.66 0.2 
14 1.66 0.4 
16 1.65 0.1 
18 1.65 0.1 
20 1.57 4.7 

 

Table 7.6: Parameters and corresponding ranges for area computation. 
 

Method Parameters Options 

Area computation Direction for connectivity map Clockwise and 
counter clockwise 
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7.3 Surface Normal-based Damage Detection 

The second method for camera integrated laser-based damage detection relies on 

the modal properties of the detected surfaces and/or objects. The relative orientation of 

the estimated surface normal with respect to a reference normal is used to locate the 

defected areas on the surface of structures. The reference normal can be a surface normal 

computed via surface patches; the normal representing the skeleton of the detected object; 

or the normal vector between a reference point and the current query point. The listed 

reference normal vector representations are shown in Figure 7.12. In Figure 7.12, the 

dashed arrows represent the reference normal and the solid arrows show the computed 

surface normals at   . 

 

 

 

(a) (b) (c) 
 

 Figure 7.12: Reference normal representations: (a) from surface patches; (b) from object 
skeleton; and (c) from a reference point.  

 

The surface-normal based damage detection method described in this section 

expands the methodology discussed in Torok et al. (2013). Torok et al. (2013) introduced 

the idea that every structural component has a centroid and that the normal vector of any 

surface triangle, which was obtained by connecting adjacent pixels on the surface, would 
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be perpendicular to this centroid. Any triangle that has a normal vector, which falls out of 

a certain angle range, is marked as a crack. Torok et al. (2013) is using images instead of 

point clouds in order to create 3D representation of the investigated locations. 

For this research, instead of the one centroid assumption for individual objects (in 

this work, centroid is referred as skeleton), a larger domain of possible normal 

comparison schemes are introduced as shown in Figure 7.12. The reference normals are 

compared with the estimated surface normals, in order to detect locations where 

unexpected normal orientations are observed. The details of the method are given in 

Section 7.3.2. Both the method developed in this work and that presented in Torok et al. 

(2013) are more suitable for detecting defects that are large enough to cause significant 

variations on surface normals. Figure 7.13 represents examples of normal orientations for 

both undamaged and damaged columns.  

The method developed in this work uses varying numbers of   neighborhood 

points while determining the surface normal associated with an investigated   . When 

large   values are used, the fitted surface for the normal estimation eliminates some of 

the small local changes. Thus, smaller defects such as cracks, which have widths close to 

the resolution of the surface points, cannot be detected. It is required to use different 

values of   for different defect types. The effect of   in normal comparison is discussed 

in Section 7.3.4. 
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(a) (b) 

 

Figure 7.13: (a) Normal orientations of an undamaged surface; and (b) normal orientations of a 
damaged surface. 

 

As was mentioned above, using only the normal variations on the surface would 

be sufficient for detecting larger defects. However, another parameter should be 

introduced if certain defects with sizes close to the resolution of the scanner are to be 

detected. Thus, the pixel information (intensity) obtained from texture-mapped point 

clouds is used for enhancing the detection capabilities for smaller defects; the damage 

detection method developed for texture-mapped point clouds is discussed in Section 

7.3.3.  

 The general steps of the surface normal-based damage detection are listed in the 

flowchart given in Figure 7.14. 
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Figure 7.14: Steps of surface normal-based damage detection. 
 

7.3.1 Surface Patch Investigation for Computing Reference Normals 

Surface patch investigation is a crucial step in the pre-processing phase of the 

surface normal-based damage detection, if the object information that reserves properties 

such as the skeleton or the reference point is not available. In order to perform the surface 

normal-based damage detection on the surfaces shown in Figure 7.12(a), it is required to 

extract the normal orientation from the undamaged portion of the underlying surface. 

This normal will be compared to the surface normal associated with each point,    on a 

segmented surface,   . The methodology for segmentation via region growing is 

discussed in Section 5.8.  
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The normal comparison is trivial when the skeleton or the reference point 

information is already available. The normal of query point    is computed by using 

neighborhood points and then compared with either the normal representing the skeleton, 

or the normal between the reference point and the investigated   . However, in some 

cases only the surface data is available and it is not possible to use a skeleton or a 

reference point. In this case, a couple of patches extracted from undamaged portions of 

the surface are used to get an average value for the reference surface normal.  

The patches are selected from the undamaged locations automatically. This is 

ensured by using the curvature information. The point with the least curvature for a 

neighborhood size of          is selected as the seed point;   has already been 

computed for the statistical outlier removal, the details are discussed in Section 7.1.1. 

        instead of  is used in order to capture the local changes in a larger area. Once 

the first seed point is selected, the point and   are used to estimate the surface normal. 

The second point is selected from the remaining data set, once the point with the least 

curvature and its neighborhood points are removed from the dataset. The point with the 

least curvature after the point removal is selected as the second seed point and the normal 

is computed. The same steps are finally repeated for the third time and the average of the 

three normals is calculated. This average normal is used as the reference normal in 

further steps of surface-normal based damage detection. The following two sections 

describes how the relationship between the reference normal and computed surface 

normals are used for performing damage detection.  
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7.3.2 Normal Comparison for Plain Point Clouds 

The basic principles of surface normal-based damage detection are discussed at 

the beginning of Section 7.3. In this section, the parameters and the ranges for these 

parameters are discussed. This section focuses on point cloud data that lacks color 

information (intensity); the normal comparison methodology for the point clouds that 

include color information, which is an extension of the method described in this section, 

is later in this chapter, in Section 7.3.3.For plain point clouds, only the geographic 

locations of the surface points are available for point cloud processing. The unavailability 

of the color information prevents this type of dataset from being used for detecting 

defects such as cracks or corrosion. Cracks and corrosion result in slight local changes 

which in most cases are smoothed out during the surface normal estimation; thus, they 

are commonly not detectable without color information.  

Figure 7.15 represents the examples for surface damage and the normals on the 

damaged area for the three possible schemes shown in Figure 7.12; the reference normals 

are shown with dashed lines. In Figure 7.16(a), the reference normal    and one of the 

surface normals,     from the damaged area are shown in red and in Figure 7.16(b), the 

comparison angle between these two normals is given as    . 

   
(a) (b) (c) 

Figure 7.15: Representations of reference normals and normals from defect areas: (a) from 
surface data; (b) from object with a skeleton; and (c) from a surface with a reference point. 
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(a) (b) 
 

Figure 7.16: (a) Reference normal and one of the surface normals from a representative damaged 
area, shown in red; and (b) comparison angle between these two normals. 

 

Once     is computed for all the points in a dataset, the computed angle values are 

compared with a threshold value. This angle threshold    is used to differentiate 

undamaged locations on the surface from the damaged locations. For this work, varying 

   are used for extracting the defect locations depending on the quality of the point cloud. 

The range of    is between    to     or      to     . Since it is not possible to 

determine the direction of a normal unless the viewpoint of the sensor is known, the 

reciprocal angle threshold (     to     ) is always checked. For denser point clouds, 

generally        is used. However,       is used for a less crowded dataset. It is 

possible to detect local changes more effectively from denser datasets. The variation in 

computed     is significantly larger for smaller   values. The effect of   in     is 

discussed in Section 7.3.4. Since the variation is higher, a larger value for    must be 

used in dense point clouds.    and the corresponding range is given in Table 7.7. Table 

7.7 only includes the parameters introduced in this section; any prior dependencies are 

given in the related sections. For example, parameter   and its range are discussed in the 

surface normal estimation section, Section 5.4. 
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Table 7.7: Parameters and corresponding ranges for normal comparison for plain point clouds. 
 

Method Parameters Range  
Normal Comparison for Plain Point 

Clouds Angle threshold,      -    

 

Figure 7.17(a) is representing a portion of the point cloud extracted from the 

bottom of the deck of the DeKalb County Bridge. Figure 7.17(b) shows the defect 

detection results for      and       , the points from the defect locations are shown 

in blue. The principles of the automated clustering and the area and volume calculations 

for the detection results are discussed in Sections 7.3.5 and 7.3.6.  

 

  
(a) (b) 

 
Figure 7.17: (a) Original point cloud remaining after outlier removal for a portion of the bottom 
deck of DeKalb County Bridge; and (b) defect locations after the application of surface normal-

based damage detection. 
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7.3.3 Normal Comparison for Texture-mapped Point Clouds 

The normal comparison for texture-mapped point clouds uses the same principles 

described in Section 7.3.2. The only difference is that this method benefits from the color 

information associated with each point, in order to complete the defect detection.  

The adverse effect of the increase in neighborhood size   for surface normal 

estimation on detecting smaller defects such as cracks was mentioned before. In order to 

overcome this, another threshold is added to the developed algorithms. Whenever the 

color information is available and a small   value is used, a threshold value represented 

by      is used to reprocess the elected candidate defect points. The points that remained 

after this second thresholding, represent the defect locations on the surface. The threshold 

is defined for the intensity values instead of the RGB values since the color output of the 

used laser scanners are in grey-scale. The range for the      is given in Table 7.8. 

Table 7.8: Parameters and corresponding ranges for normal comparison for texture-mapped point 
clouds. 

 
Method Parameters Range  

Normal Comparison for Texture-
mapped Point Clouds Intensity threshold,       -  

 

The rest the section focuses on the results of the proposed method obtained by 

using two   values and two      values. In order to achieve this purpose, two locations on 

the concrete testing frame are investigated; images related to each location are shown in 

Figure 7.18. The beam and column legends for the concrete testing frame shown in 

Figure 7.4 are given in Figure 7.9. 
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(a) 

 

(b) 

Figure 7.18: Images of (a) BC-1-1 and (b) CD-3-1.  
 

As in the previous section, normals are calculated on surface of the investigated 

point cluster, in order to extract local properties. The angle     between each normal 

vector   , which is determined for individual points, and the reference surface normal   , 

which is calculated by using patches from undamaged portions of the structure, are then 

calculated. If the deviation from the    is between    and     degrees,          

    , then the point is labeled with a red dot and listed as a possible defect location. 

Figure 7.19 represents the deviated normals from the surfaces BC-1-1 and CD-3-1 for a 

neighborhood size of 6; red dots represent the surface normals that satisfy the condition: 

          . 

 

(a) 

 

(b) 

Figure 7.19: Normal deviations for (a) BC-1-1 and (b) CD-3-1 for    . 
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The results are dependent on the intensity threshold     , which is automatically 

calculated based on the intensity distribution among the investigated surface patches and 

the neighborhood size  , that is defined by the user for the displayed application. Figure 

7.20 represents the labels given for the investigated defect locations for both BC-1-1 and 

CD-3-1. Figure 7.21 represents the results for    . The intensity threshold calculated 

for BC-1-1 is 0.63, shown in Figure 7.21(a), and it is equal to 0.78 for CD-3-1, shown in 

Figure 7.21(b).      is adjusted so that no more than 20% of the intensity values are lower 

than the threshold. 

 

(a) 

 

(b) 

Figure 7.20: Labeled cracks for (a) BC-1-1 and (b) CD-3-1.  
 

In order to investigate the effect of neighborhood size on the results, the detection 

process was repeated for     and the results are shown in Figure 7.22. Intensity 

thresholds are kept constant for both BC-1-1 and CD-3-1. 

It can be observed from Figure 7.21(a) that a smaller neighborhood size,    , 

yields better results for BC-1-1 compared to     for which the algorithm failed to 

detect one of the cracks, BC1. However, for CD-3-1 even if decreasing the neighborhood 

size slightly improved the results at CD1 and CD2, it also resulted in false positives at the 

bottom, left bottom of Figure 7.21(b).  

BC1 

BC2 

BC3 

 
 

 

CD1 
CD2 
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(a) 

 

(b) 

Figure 7.21: Damage detection results for    , where (a) BC-1-1( Tint      ) and (b) CD-3-1 
(Tint      ). 

 

 

(a) 

 

(b) 

Figure 7.22: Damage detection results for    , where (a) BC-1-1(Tint       ) and (b) CD-3-1 
(Tint      ). 

 

Table 7.9 and Table 7.10 represent the thicknesses (largest crack width) and the 

lengths for the damaged locations labeled in Figure 7.20. Both measurements taken with 

a micrometer and the values calculated from damage detection results are given in Table 

7.9 and in Table 7.10. Table 7.11 represents the percentage error values calculated based 

on the comparison between calculated and measured damage thickness and length values.  
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Table 7.9: Hand measured and calculated thickness (largest crack width) and the length values for 
the damage locations labeled in Figure 5 for    . 

 

  Micrometer Measurement Texture-mapped Point Cloud 
Processing 

  Thickness (  )  Length (  ) Thickness (  ) Length (  ) 

BC-1-1 
BC1 0.06 1.02 0.08 0.94 
BC2 0.12 1.40 0.15 1.41 
BC3 0.28 1.91 0.31 1.92 

CD-3-1 
CD1 0.68 1.21 0.56 1.33 
CD2 0.31 1.50 0.37 1.56 

 

Table 7.10: Hand measured and calculated thickness (largest crack width) and the length values 
for the damage locations labeled in Figure 5 for    . 

 

  Micrometer Measurement Texture-mapped Point Cloud 
Processing 

  Thickness (  ) Length (  ) Thickness (  ) Length (  ) 

BC-1-1 
BC1 0.06 1.02 N/A N/A 
BC2 0.12 1.40 0.19 1.06 
BC3 0.28 1.91 0.45 1.82 

CD-3-1 
CD1 0.68 1.21 0.55 1.15 
CD2 0.31 1.50 0.40 1.56 

 

Table 7.11: Percentage error values for both     and    . 
 

  Error (%) for k=3 Error (%) for k=6 

  Thickness Length Thickness Length 

BC-1-1 
BC1 33.3 -7.8 N/A N/A 
BC2 25.0 0.7 58.3 -24.3 
BC3 10.7 0.5 60.7 -4.7 

CD-3-1 
CD1 -17.6 9.9 -19.1 -5.0 
CD2 19.4 4.0 29.0 4.0 
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It can be observed from Table 7.11 that the error values associated with the 

detected thicknesses are high compared to the error values associated with the length 

measurements. This shows that even if the location and the length of the crack could be 

effectively detected with the proposed method, it is less efficient in detecting the crack 

thicknesses. Automated length and thickness measuring strategies are developed and 

discussed in Section 8.2. For the application presented in this section, the parameters are 

determined by the user (Guldur and Hajjar, 2014).  

 

7.3.4 Effect of the Neighborhood Size on Normal Comparison  

The comparison angle    , which is individually computed for every point on a 

surface patch, is heavily affected by the selected neighborhood size  . As it is mentioned 

at the beginning of Section 7.3, the candidate points for damaged areas are extracted 

based on the angle between the computed reference surface normal and the normal of the 

query point   . The latter is computed by using the points within the   ’s neighborhood 

point set that are extracted based on the selected   value determined by    , which is 

described in Section 5.2.  

The value of   that is used for surface normal estimation explained in Section 5.4 

affects the results of the     computation. Figure 7.23 shows the results obtained from a 

dataset of 33 points for varying   values; the investigated dataset is extracted from the 

point cloud shown in Figure 7.5(c). The investigated   values are 3, 6, 8, 16, 24 and 32. 

Figure 7.23 shows the complete range of computed     values of each point in the 33 

point dataset for the listed   values (details are in Appendix A).  
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It is important to determine the suitable   for varying defect types as well as 

varying point resolutions on the investigated surface. The larger   values use a larger set 

of points so the plane fitting smooths the local variations. In this case, it is not possible to 

capture defects that create only small local changes like cracks. The range of the angles 

for      is less than   . However, if a small value of   such as three is used, the 

variation in the computed     values range from    to    . It is observed that as the   

value decreases, the sensitivity to local changes increases.  

 

Figure 7.23: Surface normal variations for several nearest neighborhood sizes.  
 

On the other hand, it should be noted that using small   values to capture small 

local variations is not always beneficial, especially when the color information is 

unavailable. When most of the     values are higher than the assigned threshold   , it is 

not possible to extract defect locations since most of the points are labeled as candidate 

points for defect locations. This makes it difficult to detect the damaged location only by 

using the surface normal. An example is shown in Figure 7.19.  
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In this research, for large defects, an adaptive and automated   computation 

method is followed. In order to compute  , the patches that were extracted for 

determining the reference normals in the previous section, Section 7.3.3, are used. To 

these patches, the same sensitivity analysis that was performed in the beginning of this 

section is applied. For each investigated patch, starting with a small   value (    ,     

values are computed for varying   values. The processed   value is constantly increased 

at each run until all the computed     values within a neighborhood are less than    

    ensuring that the selected neighborhood size is large enough for avoiding excessive 

local sensitivity. It should be noted that, as discussed earlier, the computed neighborhood 

sizes vary significantly from point cloud to point cloud. For example, for the concrete 

testing frame and DeKalb County Bridge, the neighborhood sizes that are used for 

surface normal-based damage detection are computed as    (similar to the statistical 

outlier method); however, for the Bowker Overpass, which has a very dense surface point 

distribution, the neighborhood size is determined as     (a little less than the   computed 

for the statistical outlier removal). For small cracks and for corrosion,   ⁄  is used 

assuming color information is available; the main aim of this reduction in the   value 

used is to capture the comparatively small local changes and then use the additional color 

information to extract defect locations..  

 

7.3.5 Clustering and Evaluation 

The next step after the extraction of candidate defect points    is to divide these 

points into clusters   . Each cluster consists of a certain number of defective points,    . 

Since the main goal is to localize and quantify the damage, clustering is an important step 
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for grouping the data into smaller datasets. Once the clustering is completed, it is possible 

to individually compute the properties of the detected defects such as length, width, area 

and volume.  

 For this research, hierarchical clustering that portions data over a variety of scales 

by creating a cluster tree is used. A cluster thresholding method is then developed in 

order to exclude the clusters     consists of     with number of points smaller than a 

certain threshold. The details of both hierarchical clustering and cluster thresholding are 

explained in the following sections. Cluster thresholding has to be completed before 

hierarchical clustering is performed. A cluster evaluation method, which is a silhouette-

based method, is also developed in order to optimize the number of clusters    for a 

given dataset.  

 

7.3.5.1 Cluster Thresholding 

The candidate defect points    that are computed by performing normal 

comparison include some false positives,    , which result from either remaining noise or 

remaining extraneous points on the surface. These points have to be removed prior to 

clustering in order to avoid possible clustering issues such as having an excessive number 

of clusters with a small number of points or incorrect clustering.  

To address this issue, a cluster thresholding method is developed. This method 

removes the     from the    by using a distance measure. First, the minimum number of 

points       that could form a cluster is defined. This value is defined by the user 

depending on the scope of defect types. The distances between each point pair are then 

calculated by using the     method described in Section 5.2. The distances between 
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each point of    and its neighborhood set defined by the       are compared with a 

threshold,      . This threshold needs to be larger than the resolution, and it needs to be 

small enough to avoid under clustering. Under clustering means combining two close 

clusters, which are not parts of a single defect, into one large defect cluster. A       value 

that is    times larger than the computed resolution is used in this research. Figure 7.24 

shows the distribution of the located damaged regions, before and after cluster 

thresholding. It can be seen from Figure 7.24(b) that the small clusters, which do not 

represent defects, are effectively removed from the defect list.  

  
(a) (b) 

 
Figure 7.24: (a) Defect locations for the investigated portion of the bottom deck of DeKalb 

County Bridge before cluster thresholding and (b) after cluster thresholding. 
 

7.3.5.2 Hierarchical Clustering 

Hierarchical clustering is a method that creates a multilevel hierarchy, where 

clusters at one level are joined as clusters at the next level. For this research, even though 

only a single level of clusters are required for large amounts of data, hierarchical 
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clustering is preferred since it operates on dissimilarity measures instead of actual 

observations.  

The first step of the hierarchical clustering is to find the similarity or dissimilarity 

between every pair of objects in the dataset. In this step, the distance between objects is 

calculated. The result of this computation is a distance or dissimilarity matrix. There are 

several available distance measures. In this research the squared Euclidian distance, 

which is described in Section 5.2 in detail, is used as the distance measure. It is selected 

in order to be consistent with the implemented methods given in Chapter 5. 

The second step is to group the objects into a binary hierarchical cluster tree. The 

distance information generated in the first step is used to link pairs of objects that are in 

close proximity. The clusters formed in the first run are linked to each other or other 

objects to form bigger clusters. This process is carried out until all the objects in the 

dataset are linked to each other in the form of a hierarchical tree. 

The final step is to cut the hierarchical tree into clusters based on a certain 

criterion. This criterion is generally the number of clusters   , and usually, it is defined 

by the user prior to the clustering process. The developed cluster evaluation method 

eliminates the necessity of defining the    in advance.  

The             function implemented in MatLab (2013) performs all the listed 

steps automatically. The parameters and corresponding values for hierarchical clustering 

are given in Table 7.12 

As mentioned before, the primary constraint of the hierarchical clustering 

function is that it divides the data into a specific and user defined number of clusters. 
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This limitation is eliminated by introducing a new cluster evaluation method described in 

Section 7.3.5.3.  

Table 7.12: Parameters and corresponding values for hierarchical clustering. 
 

Method Parameters Value  
Hierarchical Clustering Distance measure Euclidian distance 
 

7.3.5.3 Cluster Evaluation 

It is not possible to know the number of defects on a surface prior to point cloud 

processing. Thus, it is essential to adjust the selected clustering method such that the 

number of clusters    is not a used defined parameter. In order to achieve this, a MatLab 

(2013) function, which uses the silhouette criterion values to evaluate the optimal number 

of clusters, is developed. This criterion is chosen since it is suited well for hierarchical 

clustering solutions with squared Euclidian distances. 

The details of the silhouette criterion are discussed in Kaufman and Rousseeuw 

(2009). The similarity of a point to points in its own cluster, when compared to points in 

other clusters, is measured by the silhouette value. The silhouette value of    is defined as 

   and it is computed by using Equation 7.1.  

  
    

       

          
 

7.1 

where    is average distance from  th point to other points in the same cluster, and    is 

minimum average distance from  th point to points in a different cluster.  

The range of the silhouette value is from    to  . If the computed silhouette 

value for     is high, then    is well-matched to its own cluster, and it is poorly-matched 

to neighboring clusters. The clustering assumed to be efficient if most of the points in 

each cluster have high silhouette values. Any distance metric can be used in order to 
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compute the silhouette clustering evaluation criterion; however, for this research, the 

Euclidian distance is used in order to be consistent with the preceding sections.  

First, a cluster list is provided. This list consists of the possible number of clusters 

that are assumed to range from 1 to 100; the minimum number of clusters to be evaluated 

is   and the maximum number is    . The largest    value is set to     since the point 

cloud processing is performed in an incremental manner, where small portions of the data 

are processed first and then, the results are combined. Thus, for a small patch the 

maximum number of expected clusters is chosen to be    . The evaluation algorithm 

starts with calculation of the silhouette values for each point. If the mean    of the 

computed silhouette values within a cluster is smaller than    , that cluster is marked. 

The total number of marked clusters is subtracted from the total number of clusters used 

for that run, and the algorithm iterates one more time. The iteration stops when there 

aren’t any marked clusters after the last run. Figure 7.25 represents the optimized 

clustering results for the defects shown in Figure 7.24, for the bottom deck of the DeKalb 

County Bridge. The parameters and the corresponding values (or ranges) for cluster 

evaluation are given in Table 7.13. This study showed that silhouette values can be 

effectively used for clustering evaluation to ensure that the obtained clusters represent the 

actual defects.   

Table 7.13: Parameters and corresponding values (or ranges) for cluster evaluation. 
 

Method Parameters Value (or Range)  

Cluster Evaluation 
Criterion Silhouette 

Cluster list 1 to 100 
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Figure 7.25: Cluster evaluation results for the dataset from the bottom deck of Dekalb County 
Bridge given in Figure 7.24. 

 

7.3.6 Damaged Area and Volume 

The next step after clustering is to compute the area and the volume of each 

cluster, which represents a defect, in order to obtain quantitative information on the 

detected defects. In this research, three methods are used to calculate the area and volume 

associated with each surface defect. The first method, which is the using voxel grid 

representations for volume estimation, was already described in Section 7.2. For this 

method, each damage cluster is treated as an object, and the volume calculations are 

completed as mentioned. This volume computation method, which is based on 

voxelixelization, is suitable for large defects such as large spalled concrete regions, where 

there are significant number of points on the surface that represent each defect. However, 

voxelization method is not suitable for small defects and/or locations with non-

homogeneous point distribution, since the defect cannot be represented as a closed 

volume.  
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The last two methods, which are based on convex hull and mesh grid respectively, 

are especially important for the locations with non-homogeneous point distribution, since 

voxelization cannot be efficiently performed at these locations. The details of both 

methods are discussed in Sections 7.3.6.1 and 7.3.6.2 respectively.  

 

7.3.6.1 Convex Hull for Damage Quantification 

Convex hull wraps all the given points in a dataset to create a surface around 

them. The smallest convex set that contains a set of points is defined as the convex hull in 

the Euclidian plane or Euclidian space (De Berg et al., 2000). The convex hull can be 

imagined as a rubber band stretching around a set of given points as shown in Figure 

7.26. 

 

Figure 7.26: Rubber band analogy for convex hull. 
 

The convex combinations of a finite point set   are defined as the convex hull of 

these points. Each point    in   is assigned a weight   , and a weighted average is 

computed by using these weights.    values are non-negative, and the summation of all 

weights is equal to  . The resulting convex combination, for each choice of weights, is a 

point in the convex hull. The convex hull is given by Equation 7.2. 
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Generally, the defects, which are in the scope of the surface normal-based damage 

detection method, are associated with significant changes in local properties occur at the 

defect locations on the surface of structures. Thus, the extracted damage points,    , for 

each defect represent an open 3D shape, which can be directly used neither for area nor 

for volume calculations.  

For area calculations, it is required to project the     to the reference plane 

represented by one of the surface points and the computed reference normal   ⃗⃗⃗⃗ . The point 

projection is done by using Equation 7.3:  

 
             (              ⃗⃗⃗⃗  ⃗)      ⃗⃗⃗⃗   7.3 

 
where     is an individual point in    , and      is an individual point in the projected 

point set     . 

The area     of the projected points      is calculated by using the          

function given in MatLab. It should be noted that the          function is only suitable 

for 2D datasets. For volume calculations, another approach is followed. Moreover, the 

convex hull representation of a given set of points does not represent the exact geometry 

of the defect. Figure 7.27 represents the differences between the constructed convex hull 

and the actual shape of a sample of defect points. As can be observed from Figure 7.27, 

convex hull method is not suitable for defect types that consist of concave regions.  
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(a) (b) 

 
Figure 7.27: (a) Convex hull representation of a sample defect dataset and (b) actual geometric 

representation of the defect. 
 

The set of points      that represents the volume of a defect is defined by the sum 

of the defect points     and the projected points     . This summation provides the set of 

the points that represents the complete volume of each defect. Figure 7.28(a) shows the 

defect detection results for a portion of the bottom deck of DeKalb County Bridge and 

Figure 7.28(b) shows the      for D1. The volume     of the 3D space surrounded by 

each      is computed by using the           function implemented in MatLab.  

  
(a) (b) 

 

Figure 7.28: (a) Defect detection results for the investigated portion of the bottom deck of DeKalb 
County Bridge; and (b) 3D representation of the points of defect D1. 

 

D1 
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The           function is a quick hull-based convex hull function. The details of 

the algorithm within this function are discussed in Barber et al. (1996). This algorithm 

expands the 2D quick hull algorithms for n-D applications. The quick hull algorithm 

creates a convex hull around a given set of points by recursively selecting furthest points 

from a reference location and adding them to the convex hull set one by one. The points 

that fall into the convex hull are removed from the candidate list of expansion points for 

the next run. The volume is computed automatically from the tetrahedrons that compose 

the convex hull. The volume calculation is a part of the implemented algorithm. 

Figure 7.29 gives the labels of the detected defects. The 3D representation of the 

defect points for D1 are shown in Figure 7.30(a), and the           result of the same 

points is given in Figure 7.30(b). The area and volume values computed for each defect is 

listed in Figure 7.12.  

 

  

Figure 7.29: Labels of detected damaged locations for investigated portion of the bottom deck of 
DeKalb County Bridge. 

 

D1 

D2 
D3 

D4 

D5 

D6 

D7 
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It should be noted that since the volume is calculated by using the convex hull 

approach, the results might be larger than the exact volume values, depending on the 

shape of the defect. For example, a portion of D1 consists of points that create a concave 

surface; this part is marked with a red ellipse in Figure 7.30. Thus, the volume computed 

via           is larger than the exact volume of the defect. In order to address this 

volume computation problem, another method, which uses a mesh grid approach, is 

implemented. The details of mesh grid method are described in Section 7.3.6.2. 

  
(a) (b) 

Figure 7.30: (a) 3D representation of the points of defect D1; and (b)           result for the 
points of D1. 

 
Table 7.14: The area and volume results for the convex hull application for the defects shown in 

Figure 7.29. 
 

Defect Label Number of points Area (   ) Volume (   ) 

D1 312 1.03 8.5E-02 

D2 14 0.01 5.8E-04 

D3 6 0.01 1.2E-04 

D4 13 0.02 1.9E-03 

D5 210 0.66 5.5E-02 

D6 233 0.64 5.4E-02 

D7 78 0.42 2.8E-02 
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7.3.6.2 Mesh Grid for Damage Quantification 

The third method used for damage quantification, following graph-based damage 

quantification method described in Section 7.2.3 and the convex hull method described in 

the previous section, is developed in order to address the shortcomings of the first two 

damage quantification methods discussed in previous sections. The main issue with the 

first two methods is that they are not effective in handling detects that consist of defect 

points with varying point densities. 

First, the projected points,     , of the defect  , which are located on the surface 

represented by one of the surface points and the computed reference normal   ⃗⃗⃗⃗ , are used 

to create a 2D mesh grid. Later, the reference surface is matched with the x-y plane. 

Then, a mesh grid is formed over the defect points, by using the          function 

given in MatLab. The mesh size is defined by the resolution of the investigated point 

cluster. The method, which is used to determine the appropriate voxel sizes from point 

cloud resolutions, is discussed in Section 7.2.1. The input matrix for the          

function is in the form of two vectors that have   and   coordinate information of the 

investigated point cluster, and the output is    and    vectors, where each coordinate 

couple represents a point on the mesh. 

For further processing, z values of the defect points     are stored. A surface is 

created over the generated mesh grid by using the stored z values as elevations. A 

MatLab function, which is called         , is used to interpolate the scatter defect 

points. This function fits a surface of the form          to the scattered data in the 

vectors  ,   and  . At each query point specified by        , the          function 

interpolates the surface, and returns the interpolated values,   . Even though the fitted 
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surface is generated based on the mesh grid coordinates represented by    and   , the 

surface always passes through the data points defined by   and  . 

To calculate the volume of each defect, four points that represents the corners of 

each square located on the generated mesh grid and the corresponding four points on the 

fitted surface are used. Each eight-point set represents one of the bars that form a defect, 

and the volume of the whole defect is computed by summing up the volume of all 

individual bars. The bars with less than         height are excluded from the 

computation, since they represent the locations on the mesh grid where a concave feature 

is formed. Figure 7.31(a) represents the defect points that belong to D1, and Figure 

7.31(b) shows the          result for D1. It can be observed from Figure 7.31 that the 

mesh grid approach allows capturing the distribution of the points on a fitted surface 

effectively (the          results for the rest of the listed defects can be found in 

Appendix B). This approach prevents miscalculations that are resulted from concave 

regions on the surface of defects, as it happened with the convex hull approach.   

 

 
 

(a) (b) 
Figure 7.31: (a) 3D representation of the points of defect D1; and (b)          result for the 

points of D1. 
 



153 
 

For the area calculations, only four points that represent the corners of each 

square of the mesh grid are used. The locations of the excluded bars, which are found 

during volume computations, are used to eliminate the false positives from the area 

calculations. Figure 7.32 represents the defect points, which was projected on the 

reference plane, are shown on the fitted mesh grid. The regions shown with the black 

circles in Figure 7.32 represents the regions that are excluded from both area and volume 

calculations.  

 

Figure 7.32: Representation of the points of D1 projected on the reference surface for area 
computation, by using the mesh grid approach. 

 

The results of the area and volume computations for the mesh grid application, for 

the defects shown in Figure 7.27, are given in Table 7.15. The volume results obtained 

with mesh grid approach are significantly less than the volume results obtained with 

convex hull approach. It should be noted that the convex hull approach is only suitable 

for the defects that form a convex surface; however, for all other damaged area 

representations, the mesh grid approach is more effective for both area and volume 

computations. 
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Table 7.15: Area and volume results for mesh grid application for defects shown in Figure 7.29. 
 

Defect Label Number of points Area (   ) Volume (   ) 

D1 312 0.74 3.44E-02 

D2 14 0.01 2.26E-04 

D3 6 0.00 1.09E-04 

D4 13 0.02 1.43E-03 

D5 210 0.48 2.90E-02 

D6 233 0.56 1.56E-02 

D7 78 0.31 5.89E-03 
  
 

Table 7.16: Parameters and corresponding ranges for alignment check. 
 

Method Parameters Range  
Mesh grid Voxel grid dimension,   -   0.03 in. – 0.5 in. 

 

7.4 Parameters and corresponding ranges for investigated damage types 

It is required to have a combination of methods in order to detect a specific 

damage type. Each method is sensitive to certain parameters and therefore, it is necessary 

to investigate a range of values for each parameter to determine its effect on the overall 

damage detection accuracy. Table 7.17 lists the methods, associated parameters and 

ranges for damage types that were given in Table 3.1; the detailed information on each 

method and its associated parameters could be found in related sections of this chapter, 

Chapter 7. 

In this research, in order to perform damage detection, some of the listed input 

parameters are directly computed from the investigated point cloud by using the local 

properties, whereas the others are defined by the user.  
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Since the main objective is to develop generalized damage detection strategies, 

the developed algorithms are mostly dependent on parameters computed directly from the 

point clouds. However, there are still some input parameters that are taken as constant 

values or defined by the user. It is important to understand the dependency of the 

obtained damage localization and quantification results on these listed parameters. For 

this research, a set of detailed validation applications, which are laid out in Chapter 8 and 

10, were performed in order to show that the computed and user-defined parameters can 

be effectively used for locating and quantifying the investigated surface damage types for 

a variety of point cloud datasets. The results showed that the developed algorithms are 

efficient in detecting the listed damage types from datasets with varying properties.  

Even though the ranges for the input parameters are listed in Table 7.17, for each 

point cloud dataset, the minimum detectable damage size (and accuracy) for each damage 

type is dependent on the properties of the investigated point cloud dataset. Thus, the 

limitations for the developed damage detection strategies can be estimated by using these 

surface properties. The calculated detectable damage dimensions and expected accuracy 

are listed in Figure 10.44 and Figure 10.45, after the detailed information on all available 

point clouds is presented in Section 10.1. 
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Table 7.17: Parameters and corresponding ranges for investigated damage types. 
 

Damage Type Method Parameters Range (or 
default value) 

Bent members / 
Points of 

Discontinuity 

Voxelization 
Height function increment 0.1 in. – 2 in. 

Voxel grid dimensions 0.03 in. – 0.5 in. 
Alignment check Height function increment 0.1 in. – 2 in. 

Rupture / 
Spallling 

Normal Comparison for 
Plain Point Clouds Angle threshold,      -    

Area computation Direction for connectivity 
map 

Clockwise and 
counter 

clockwise 
Volume Integration Distance increment 0.1 in. – 2 in. 

Cracks, Tears, 
Corrosion 

Normal Comparison for 
Plain Point Clouds Angle threshold,      -    

Normal Comparison for 
Texture-mapped Point 

Clouds 
Intensity threshold,       -  

Hierarchical Clustering Distance measure Euclidian 
distance 

Cluster Evaluation 
Criterion Silhouette 

Cluster list 1 to 100 
Convex hull Quick hull options - 
Mesh grid Voxel grid dimension 0.03 in. – 0.5 in. 
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8. Implementation of Neural Network Classifier for Crack Detection  

In the previous chapter, the details of the developed surface-based damage detection 

algorithm were discussed. Detection examples for both plain and texture-mapped point 

clouds were then provided within the same chapter. This discussion was continued by 

laying out the strategies developed specifically for quantifying the detected surface 

damage. The damage quantification methods were used to compute the area and volume 

associated with each detected defect. However, these quantification methods were not 

suitable for recording required crack dimensions, which can be listed as length and 

thickness. Thus, this current chapter starts with discussing a methodology developed for 

computing these necessary crack dimensions automatically.  

The first step towards automated crack dimension extraction is to adjust the existing 

clustering algorithm given in Section 7.3.5 for cracks, and then quantify the dimensions 

of each separated point cluster with the proposed crack dimension extraction method, 

which is discussed in Section 8.2. The details of the cluster tuning for crack detection and 

crack dimension extraction are discussed in Sections 8.1 and 8.2 respectively. The 

effectiveness of the developed method is then tested on several patches extracted from 

the surface of the concrete testing frame, and the results are displayed in Section 8.3. The 

introductory information on this dataset is given in Section 4.1, and the detailed 

information on the same frame is presented in Section 10.1.3.  

In Section 8.4, this time, the developed damage detection methods are used for 

locating and quantifying concrete spalling. Several patches, which are extracted from the 

surface of the concrete testing frame, are processed. A set of representative dimensions 

are extracted from the detected damage areas, and these dimensions are compared with 
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the corresponding hand-measurements, in order to validate the efficiency of the detection 

algorithms.  

The results obtained through defect detection and dimension extraction algorithms 

prove that these developed methods provide an opportunity to use laser scanning 

technology for detecting small defects, such as cracks and spalling regions, effectively. 

However, it should be noted that since the defect detection is achieved through 

investigating the local variations at a point of interest    on the surface, the developed 

detection algorithms are sensitive to surface impurities, which cause the normal 

computed for the investigated     to deviate from the computed reference normal. The 

details of the surface patch investigation for computing reference normals are discussed 

in Section 7.3.1. In Chapter 7, the reference normal computation step is followed by a 

discussion on the normal comparison strategies used for selecting candidate damage 

locations in; these comparison strategies are discussed in Sections 7.3.2 and 7.3.3 in 

detail. The impurities mentioned above, and/or any reoccurring patterns, result in false 

positives. Thus, the results obtained using the developed defect detection algorithms 

include several falsely detected clusters, which do not represent an actual defect. In order 

to avoid detecting these false positives and to improve the accuracy of the developed 

algorithms, a neural network classifier is introduced. The details of this classification 

strategy and the classifier’s overall performance on a real dataset, the concrete testing 

frame, are discussed in Section 8.5. 
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8.1 Clustering Tuning for Small Defects 

As mentioned in Section 7.3.5, the step that follows the extraction of candidate 

defect points   , which are detected by using the surface-based damage detection 

method described in Section 7.3, is to divide these points into clusters   .  

For clustering small defects, the same methodology described in Section 7.3.5 is 

followed. First, the clustering thresholding is applied, and then the hierarchical 

clustering is performed. However, it was observed from the initial results that the 

proposed clustering algorithm combines closely located defect clusters into a single, 

large cluster. Thus, a new step that prevents under-clustering is added to the overall 

clustering process, since the obtained defect detection results are significantly affected 

by the clustering accuracy. 

This additional step follows the same logic behind the radius-based outlier 

removal that is described in Section 5.3.1. First, a distance map for each point in a 

cluster    , which consists of     points, is extracted. This results in a     by     matrix; 

each row of this matrix includes the distances     of each point          to every other 

point in the cluster. Then, a search radius   is defined by the user. This   is used to 

create a virtual sphere around the point of interest.     values for each point, an entire 

row, is checked to ensure that there is at least one point that falls into the sphere defined 

by search radius  . If so, the point is kept in the cluster; otherwise, it is removed. The 

removed point then becomes a free agent for the succeeding clustering iteration. This 

iteration process is continued until the radius criterion is satisfied by all the points in the 

resulting clusters. In this research,   value is set to the crack thickness limitation given 

for medium-severe case,         , for reinforced concrete decks or slabs in the National 
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Bridge Inventory (FHWA, July 2014). The assumption is that any point, belonging to a 

small defect, will have at least one neighbor point within the radius defined by this 

length.  

Figure 8.1 represents the clustering results obtained for BC-1-1, a patch taken 

from concrete testing frame, by using both of the discussed clustering methods: the 

initial (Section 7.3.5) and the updated clustering (the current section) methods. Figure 

8.1(a) shows the result of the clustering method given in Section 7.3.5; one of the 

detected defects, marked with a black rectangle, is not clustered properly. Subsequently, 

the improved clustering algorithm, discussed in this section, is applied to the same 

defect dataset; Figure 8.1(b) displays the results. The image of the patch used for this 

example, BC-1-1, is given in Figure 7.18. The beam and column legends for the 

concrete testing frame, which is shown in Figure 7.4, are given in Figure 7.9. For the 

concrete testing frame, further information on the defect locations and sizes are included 

in Appendix C. 

  
(a) (b) 

 
Figure 8.1: Results for both (a) initial and (b) improved clustering methods for BC-1-1.  
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8.2 Crack Dimension Extraction 

The step that follows the updated damage clustering method is to extract the 

dimensions of each detected defect; for concrete, these defects can be listed as small 

spalled regions, cracks, and etc. In this section, a simple bounding box approach, which is 

used for computing the required dimensions of each defect, is discussed. Points of each 

defect cluster     are first projected to the computed reference plane. The reference plane 

computation for surface-based damage detection is already discussed in Section 7.3.1, 

and the process of projecting     to this reference plane for defect quantifications is 

discussed in Section 7.3.6.1.  

The general aim of the bounding box approach is to surround all the projected points, 

    , with a rectangle. This process starts with fitting a rectangle to      by using the 

difference between the minimum and maximum values of   and y axes. Later, this fitted 

rectangle is rotated until an optimum orientation, which minimizes the area value 

bounded within the resulting rectangle    , is obtained. Figure 8.2 shows a representation 

of bounding box approach on the same patch, BC-1-1, used for Figure 8.1. 

 

Figure 8.2: Bounding box representation for BC-1-1. 
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The dimensions of     are then used for both understanding the characteristics of 

the defects and for extracting the required dimensions of each investigated defect. As 

mentioned at the beginning of this section, the results obtained using the developed 

surface damage detection method may include several defect types, such as small spalled 

regions and cracks. Once     is fitted around     , the ratio of length    to width    is 

checked. For this research, the limiting ratio     ⁄      is taken as  , and the limiting 

maximum crack thickness      is taken as twice the crack thickness limitation value 

given for the medium-severe case,         , for reinforced concrete decks or slabs in the 

National Bridge Inventory (FHWA, July 2014), which is         . Thus, any defect that 

has a     ⁄  less than 2 and/or an average computed thickness    larger than         is 

labelled as a spalling region. The defect area and volume are computed for these labelled 

defects instead of the length and thickness values. The defect area and volume are 

computed using the quantification methods described in Section 7.3.6. 

The length of the fitted bounding box is directly recorded as the crack length, 

since the original measurements taken from the concrete testing frame were recorded by 

using a similar approach. For example, for a curved crack, only the distance between the 

start and end points of the investigated crack was measured. However, for the crack 

thickness computation, a different approach is followed.      is used as a height 

increment along the length of the bounding box, meaning that each     is divided into 

several smaller rectangles     . Linear regression is performed to the points that fall into 

each     . In order to perform this linear fitting, the        , which is a function 

implemented in MatLab (2013), is used. The residual values are then computed as a 

vector signed numbers. The residual pairs, one from each side of the fitted first degree 
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polynomial, are used to compute an average crack thickness     for each     . The largest 

    is then recorded as the computed crack thickness. The general process of crack 

thickness computation is shown in Figure 8.3. In Figure 8.3, the black box represents    , 

and each green box corresponds to a single     . The points within each green box are 

used for a first-order polynomial fit; the fitting results are shown with blue lines. The 

residuals pairs within each      are then used to compute the average thickness    . 

 

 

Figure 8.3: Presentation of a sample bounding box, and the approach for crack thickness 
computation. 
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8.3 Crack Dimension Validation 

The developed crack dimension extraction method is validated against 21 cracks, 

which are extracted from the concrete testing frame. The results of the validation study 

are displayed in Table 8.1. The developed defect detection algorithms determined the 

crack locations for all selected 21 cases accurately.  

Furthermore, these obtained results showed that the percentage error for the 

computed length values change between   to   %, whereas the error values associated 

with thickness measurements vary between   and   %. It is observed that as the crack 

thickness reduces, especially for cases where the crack thickness is less than     inches, 

the computation error increases significantly. However, it should be noted that these error 

values are mostly related to the quality of the collected scan data rather than the defect 

detection method. It is already mentioned in previous chapters that the detection 

parameters are automatically selected by using the local properties of the investigated 

surfaces; thus, the effectiveness of the detection algorithms is directly proportional to the 

quality of the laser scan data itself. For this particular dataset, the collected point cloud 

was not homogeneous over the entire surface of the testing frame, and there were minor 

registration issues. 
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Table 8.1: Results of crack validation study.  
 

Crack 
Numbe

r 
Label Crack 

Label 

Measured 
Dimensions Computed Dimensions Error (%) 

Thickness 
(in) 

Length 
(in) 

Thickness 
(in) 

Length 
(in) Thickness  Length  

1 A1-1 A1-1-C1 0.10 1.78 0.10 1.87 6.5 5.1 

2 A1-4 A1-4-C4 0.12 1.05 0.13 1.13 6.1 6.9 

3 B1-1 B1-1-C4 0.14 1.56 0.16 1.59 15.8 2.5 

4 B1-4 
B1-4-C3 0.25 1.39 0.26 1.31 5.1 -5.6 

5 B1-4-C4 0.07 1.64 0.09 1.75 24.8 6.5 

6 B2-1 B2-1-C3 0.12 1.79 0.15 1.94 19.8 8.4 

7 B2-4 
B2-4-C1 0.05 2.03 0.07 1.98 32.8 -2.5 

8 B2-4-C2 0.13 1.87 0.16 1.99 19.5 6.2 

9 B2-5R 
B2-5R-C2 0.14 2.24 0.14 2.34 6.5 4.3 

10 B2-5R-C4 0.04 2.17 0.05 2.38 22.6 9.8 

11 C1-1 
C1-1-C3 0.19 1.94 0.21 1.85 11.4 -4.7 

12 C1-1-C4 0.12 1.90 0.17 1.96 34.7 2.9 

13 

C1-4 

C1-4-C1 0.11 1.36 0.12 1.43 14.9 5.3 

14 C1-4-C2 0.23 1.58 0.24 1.64 4.1 3.4 

15 C1-4-C3 0.22 1.78 0.23 1.87 6.6 4.7 

16 C1-4-C4 0.10 1.69 0.12 1.80 26.1 6.3 

17 
C2-1 

C2-1-C1 0.14 1.77 0.17 1.87 16.3 5.7 

18 C2-1-C2 0.09 1.65 0.11 1.60 24.7 -3.2 

19 C2-1-C3 0.12 1.54 0.13 1.64 14.9 6.2 

20 C2-4 
C2-4-C2 0.09 1.87 0.12 1.98 28.7 5.6 

21 C2-4-C3 0.11 2.26 0.13 2.17 18.9 -3.7 

      
Mean 16.3 5.1 

      

Standard 
Deviation  9.1 4.4 
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8.4 Spalling Dimension Validation 

In this section, similar to the crack dimension validation, the dimensions of the 20 

detected spalled concrete regions are validated against the measurements collected from 

the investigated locations of the concrete testing frame. First, the recorded measurements 

are displayed in Table 8.2. The spalled region dimensions are measured by using the 

following reference measurement drawings for two types of spalling: triangular and 

rectangular spalling, which are shown in Figure 8.4. For spallings, the measurements for 

each number pair, where each number indicates a corner, are recorded. The images of the 

spalled concrete regions for the concrete testing frame are shown in Appendix C. Then, 

the computed defect dimensions are given in Table 8.3 and finally, in Table 8.4, the 

comparison between the measured and computed dimensions is given in terms of 

percentage error. The developed defect detection algorithms determined the spalling 

locations for all selected 20 cases accurately.  

  
(a) (b) 

Figure 8.4: Reference measurement drawings for spalled concrete regions. 
 

Moreover, these obtained results showed that the mean error for the validation set 

is     . Even though this mean error value is small, Table 8.4 shows that there are 

significant variations in individual error values; these values vary between     and   %. 

However, when the results are investigated in depth, it is found that the location for 

which the large error values are obtained coincide with the incomplete regions of the 
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point cloud. Due to the laser scanner’s height, the bottom planes of several beams were 

not captured. As a result, the computed damage dimensions, obtained from these 

locations, differ from the recorded measurements significantly. These findings support 

the conclusion made in the previous section, which states that the error values are mostly 

related to the quality of the collected scan data rather than the defect detection method.  

  



168 
 

 

Table 8.2: Measured dimensions for concrete spalling validation. 
 

Spalling 
Number Label Spalling Label 

Measured Dimensions 
Spalling 

1-2 (in) 2-3 (in) 3-1(in)   
1-2 (in) 2-3 (in) 3-4 (in) 4-1 (in) 

1 BC1-1 BC1-1-S1 2.65 1.65 2.26 2.63 

2 BC1-4 BC1-4-S1 2.23 2.35 2.73 1.85 

3 BC1-5 BC1-5-S1 2.64 2.18 1.80 2.08 

4 BC2-1 BC2-1-S1 2.54 0.95 2.33 1.83 

5 BC2-4 BC2-4-S1 2.15 2.44 1.37   

6 BC2-5 BC2-5-S1 1.83 2.17 1.36 2.10 

7 C1-1 
C1-1-S1 1.05 1.98 2.09   

8 C1-1-S2 1.81 1.11 1.90   

9 C1-4 
C1-4-S1 1.79 1.27 1.68   

10 C1-4-S2 1.84 0.98 1.94   

11 C2-1 
C2-1-S1 2.29 1.23 1.80   

12 C2-1-S2 2.08 1.43 1.89   

13 C2-4 
C2-4-S1 1.35 1.94 2.03   

14 C2-4-S2 1.23 2.03 1.96   

15 CD1-1 CD1-1-S1 2.19 3.17 3.45 2.45 

16 CD1-4 CD1-4-S1 3.13 2.43 2.14 2.06 

17 CD1-5 CD1-5-S1 2.05 2.13 2.45 2.19 

18 CD2-1 CD2-1-S1 2.16 1.69 2.75 1.68 

19 CD2-4 CD2-4-S1 2.39 2.01 2.24   

20 CD2-5 CD2-5-S1 2.24 2.09 1.68 2.10 
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Table 8.3: Computed dimensions for concrete spalling validation. 
 

Spalling 
Number Label Spalling Label 

Computed Dimensions 
Spalling 

1-2 (in) 2-3 (in) 3-1(in)   
1-2 (in) 2-3 (in) 3-4 (in) 4-1 (in) 

1 BC1-1 BC1-1-S1 2.64 1.60 2.21 2.11 

2 BC1-4 BC1-4-S1 2.21 2.11 2.76 1.84 

3 BC1-5 BC1-5-S1 2.52 1.98 1.81 2.12 

4 BC2-1 BC2-1-S1 1.78 0.65 1.96 1.84 

5 BC2-4 BC2-4-S1 2.18 2.35 1.36   

6 BC2-5 BC2-5-S1 1.96 2.02 1.45 2.11 

7 C1-1 
C1-1-S1 1.12 1.88 2.11   

8 C1-1-S2 1.84 1.24 1.94   

9 C1-4 
C1-4-S1 1.81 1.22 1.69   

10 C1-4-S2 1.81 0.94 1.98   

11 C2-1 
C2-1-S1 2.32 1.12 1.91   

12 C2-1-S2 1.89 1.42 1.88   

13 C2-4 
C2-4-S1 1.32 1.98 2.03   

14 C2-4-S2 1.26 2.21 1.92   

15 CD1-1 CD1-1-S1 2.12 2.95 3.85 2.42 

16 CD1-4 CD1-4-S1 3.26 2.46 2.29 2.12 

17 CD1-5 CD1-5-S1 2.10 2.19 2.32 2.18 

18 CD2-1 CD2-1-S1 2.15 1.76 2.78 1.69 

19 CD2-4 CD2-4-S1 2.39 2.24 2.28   

20 CD2-5 CD2-5-S1 2.23 1.95 1.58 2.20 
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Table 8.4: Results of concrete spalling validation. 
 

Spalling 
Number Label Spalling 

Label 

Error (%) 
1-2 (in) 2-3 (in) 3-1(in)   
1-2 (in) 2-3 (in) 3-4 (in) 4-1 (in) 

1 BC1-1 BC1-1-S1 0.2 2.9 2.3 19.8 
2 BC1-4 BC1-4-S1 0.9 10.3 1.2 0.6 
3 BC1-5 BC1-5-S1 4.4 9.3 0.6 1.9 
4 BC2-1 BC2-1-S1 30.0 31.6 15.8 0.5 
5 BC2-4 BC2-4-S1 1.5 3.6 0.5   
6 BC2-5 BC2-5-S1 7.3 6.7 6.8 0.5 
7 

C1-1 
C1-1-S1 6.2 5.1 0.8   

8 C1-1-S2 1.8 12.1 2.1   
9 

C1-4 
C1-4-S1 1.0 3.8 0.9   

10 C1-4-S2 1.8 3.8 2.0   
11 

C2-1 
C2-1-S1 1.5 8.6 5.8   

12 C2-1-S2 9.2 0.7 0.7   
13 

C2-4 
C2-4-S1 1.9 2.2 0.0   

14 C2-4-S2 2.6 8.8 1.8   
15 CD1-1 CD1-1-S1 3.3 6.9 11.5 1.3 
16 CD1-4 CD1-4-S1 4.3 1.4 7.0 3.1 
17 CD1-5 CD1-5-S1 2.2 2.9 5.4 0.5 
18 CD2-1 CD2-1-S1 0.6 4.2 1.2 0.9 
19 CD2-4 CD2-4-S1 0.2 11.3 1.6   
20 CD2-5 CD2-5-S1 0.6 6.5 5.7 4.8 

     Mean Standard 
Deviation 

     2.5 5.9 
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8.5 Classification through Artificial Neural Networks 

The developed damage detection algorithms provide an adaptive system for damage 

detection, since the parameters used for the detection algorithms are computed 

automatically using the associated surface properties. In most of the previous crack 

detection studies, which are predominantly image-based, some of the important 

parameters, such as camera-object distance, are not considered or are assumed to be 

constant. This prevents most of the current approaches from being used for crack 

quantification, since these methods are specifically developed for crack detection rather 

than quantification. For current approaches, it is required to maintain a constant focal 

length, resolution, or distance to the object in order to be able to extract crack dimensions 

(Kaseko and Ritchie, 1993; Cheng et al., 1999; Abdel-Qader et al., 2003; Abdel-Qader et 

al., 2006; Choudhary and Dey, 2012; Rabah et al., 2013; Adhikari et al., 2014; Laefer et 

al., 2014).  

Laser scanning technology provides a 3D representation of the entire structure under 

investigation. As has been discussed, with the current developments in this technology, it 

is possible to collect high-density point clouds that capture the surface properties 

accurately for structures. The damage detection method proposed for this research, which 

is presented in the previous sections, eliminates the requirement for prior knowledge on 

focal length, resolution, or distance to the investigated object, since all the required 

parameters for the defect detection are extracted from the point cloud automatically. 

However, it should be noted that the proposed method, similar to many other crack 

detection methods, results in false positives along with actual defects. These false 

positives could be a result of a repeated pattern, any surface impurity, and etc.; basically, 
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any surface variation that causes the normal computed for the investigated     to deviate 

from the computed reference normal and/or results in significant variations in local 

intensity values. Two example cases that are commonly encountered for this dataset are 

shown in Figure 8.5. In Figure 8.5(a), the locations of small surface holes are shown with 

black circles, and a repetitive pattern for intensity variation, resulted from inefficient 

texture-mapping, is represented in Figure 8.5(b). It is required to eliminate the false 

positives from the detected damage clusters in order to improve the overall efficiency of 

the proposed defect detection algorithm. To perform this, a trained artificial neural 

network classifier is used to differentiate the real defects (cracks and/or small spalling 

regions) from false positives.  

 

  
(a) (b) 

Figure 8.5: Sample false positive patterns: (a) small holes existing on the surface and (b) lines 
with significant intensity variation.  

 

Jahanshahi and Masri (2012) performed an image-based study, which uses 2D 

images to create 3D surface representations, in order to eliminate the dependency on the 

previously listed parameters: constant focal length, resolution, or distance to the object. 
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The first step of this study is segmentation, which is used for isolating the patterns that 

can be potentially classified as defects. The useful information about the scene objects is 

extracted by using morphological image processing and then, structuring elements are 

used to complete the segmentation. Segmentation is followed by feature extraction and 

finally, the study is completed by classification.  

In our research, a similar methodology for classification is followed. First, the 

defects are segmented as objects by using the developed clustering methods; the details 

of the developed clustering algorithms are described in the previous sections. Second, a 

feature set that stores quantitative information on each defect cluster is formed. Finally, 

this feature set is used to train, validate and test the neural network classifier.  

 

8.5.1 Feature Extraction 

A feature is defined as a set of finite values that represents the quantitative 

attributes or properties of any segmented object; in our case, clusters. It is crucial to 

generate an appropriate feature set that includes all the important characteristics that 

helps identifying similar patterns. In this research, a feature set , which is similar to the 

one proposed in Jahanshahi and Masri (2012), is used, with two additions representing 

the properties of intensity distribution, since both application have a similar nature. The 

feature set defined in Jahanshahi and Masri (2012) is extracted by using only the 2D 

properties of the segmented objects; however, since the detected defect clusters represent 

a 3D dataset, for this research, some the described features are extracted by using 3D 

information.  
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The features that are included in the feature set can be listed as eccentricity, area 

of the projected cluster divided by the area of the bounding ellipse, solidity, absolute 

value of the correlation coefficient, compactness, and mean and standard deviation of 

intensity values.  

The first feature, eccentricity, is defined as the eccentricity of the ellipse that has 

the same second-moments as the projected cluster points. For clusters, first, the defect 

points are projected on the reference plane and then, the eccentricity is computed. The 

process of projecting cluster points to a selected reference plane for defect quantifications 

is discussed in Section 7.3.6.1. The second feature is the area of the projected cluster 

divided by the area of the bounding ellipse. The third feature is called solidity; this 

feature represents the proportion of the points in a 3D convex hull that also belong to the 

defect cluster. The details for the convex hulls are described in Section 7.3.6.1. The forth 

feature is the absolute value of the correlation coefficient associated with the projected 

defect points. The fifth feature is the compactness; this feature is defined as the ratio 

between the square root of the computed area and its perimeter. Finally, the sixth and 

seventh features are the mean and standard deviation of the intensity distribution over the 

investigated patch.  

The features listed above are computed for each defect cluster, and the values are 

stored in a feature matrix. This feature matrix is then used for training, validating and 

testing the neural network classifier.  
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8.5.2 Classification 

There are several classifier options that can be used for this application. Some of 

the possible classifiers can be listed as Bayes classifier (Rish, 2001), k-nearest 

neighborhood classifier (Keller et al., 1985), multilayer feed-forward artificial neural 

networks (Hornik et al., 1989), support vector machines (Hearst et al., 1998), and etc. 

However, in most of the recent studies performed for crack detection, where several 

classifiers are compared, the accuracy of the results obtained by using neural network 

classifiers is shown to be higher than the other listed methods (Kaseko and Ritchie, 1993; 

Cheng et al., 1999; Abdel-Qader et al., 2006; Choudhary and Dey, 2012; Jahanshahi and 

Masri, 2012; Adhikari et al., 2014). Thus, for this research, the neural network classifier 

is selected to be used for classification.  

An artificial neural network, which is composed of processing elements that are 

interconnected via synaptic or weighted connections, is a parallel processing optimization 

system. In a neural network, weighted interconnections are used to process inputs 

received at a processing element in a layer, and then the resulting outputs are transmitted 

to the following set of processing elements. For nonparametric pattern classification, 

feed-forward neural networks, which are trained by using a back-propagation algorithm, 

are the most commonly used neural approaches (Rumelhart et al., 1995). This type of 

neural network can be composed of three or more layers of processing elements: the input 

layer, hidden layer/layers, and output layer. Through weighted interconnections, each 

processing element in a layer is connected with all processing elements in the preceding 

and following layers. For pattern classification applications, the input layer consists of a 

set of feature vectors; thus, the size of the input layer is always equal to the number of 
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features. However, it should be noted that the number of processing units in hidden layers 

is completely dependent on the complexity of the pattern recognition problem. The 

number of neurons in the hidden layer is generally empirically determined by trial and 

error (Kaseko et al., 1994). The number of layers and the number of neurons in the 

hidden layers of neural networks have to be chosen carefully in order to obtain good 

classification results. Since the computed feature matrix is composed of similar entities, 

in this research, the neural network configuration given in Jahanshahi and Masri (2012) is 

used. The classifier used for this application is a three-layer feed forward neural network, 

which has 2 output neurons and 10 neurons in the hidden layer.  

The developed damage detection algorithms are used to process 106 randomly 

selected surface patches from the concrete testing frame; these processed patches are 

extracted from the concrete testing frame shown in Figure 7.4. As a result, 201 candidate 

defect clusters are detected and separated for further analysis. These defect clusters are 

plotted, and the actual defects and the false positives are manually separated for every 

patch.  

The generated feature set is composed of 201 damage and non-damage feature 

vectors. Out of 201 feature vectors, 74 vectors represent the properties of actual defects, 

whereas 127 vectors are composed of features extracted from false positives. Appendix D 

includes additional information on the patches used for this application. For training, % 

70 of the complete feature set is used; 15% is used for validation and finally, 15% is used 

for testing.  

The performance of the selected classifier is shown by using four items: accuracy, 

precision, sensitivity, and specificity. Accuracy shows the proportion of true 
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classifications in the test set (15% of the entire feature set). Precision is defined as the 

proportion of the true positive classifications against all positive classifications. 

Sensitivity is the proportion of actual positives that were correctly classified, and 

specificity is the proportion of negatives that were correctly classified. The results are 

shown in Table 8.5. Figure 8.6(a) shows a portion of the concrete testing frame, and 

Figure 8.6(b) presents the post-classification damage detection results on the 

corresponding region of the point cloud.  

 
Table 8.5: Performance results for the neural network classifier. 

 

 
Percentage (%) 

Accuracy 93.51 
Precision 94.45 
Sensitivity 95.89 
Specificity 90.38 

 

The results show that the accuracy of the neural network classification is 

significantly high for this specific application. However, it should be noted that the 

detected defect clusters sometimes fail to represent all the surface damage that is present 

on an investigated patch. Some of the defects may not be detected depending on the 

properties of the point cloud. For these cases, even though the accuracy of the classifier is 

high for the generated feature set, the obtained results may not represent the overall 

efficiency of the developed damage detection algorithm. At the same time, it should be 

mentioned that the performance of the trained neural network on another structure cannot 

be estimated from the obtained results; however, in literature, there are several examples 

that show the accuracy of a trained neural network reduces when the classifier is tested 

on different structures.  
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(a) (b) 
Figure 8.6: (a) Image of a portion of the concrete testing frame, and (b) defect detection results 

shown on corresponding portion of the point cloud. 
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9. Combining Current Visual Bridge Inspection Strategies with Camera 

Integrated Laser-based Surface Damage Detection 

Most of the bridge surface defects, such as cracks, rupture, spalling, etc. that can be 

detected by laser scanners are visible. The common practice is to document these 

damaged locations by images. However, as mentioned in Chapter 1, it is not very 

efficient to use digital images for routine inspection even though this technology is well-

integrated in the current visual inspection strategies. Digital images, most of the time, do 

not provide quantitative information, and it is hard to retake images from the same 

location with the same camera orientation unless the cameras are attached to a certain 

location on the bridges to work as leave in sensors. The use of imaging is also very 

subjective; the image locations solely decided on by the inspector in charge. Thus, for the 

same location, the documentation varies significantly depending on the inspector. This 

causes reporting issues, and most of the time, the recorded condition rating for a certain 

location varies.  

Enhancing routine inspection strategies is especially important nowadays, since the 

total number of structurally deficient or functionally obsolete bridges is more than 20% 

of all existing bridges. These structures have to be monitored carefully and the necessary 

precautions have to be taken. Routine inspection is a major part of the general inspection 

process; thus, improving the current visual inspection strategies would help reduce the 

money spent. The current condition of State bridges is discussed in Section 9.1. 

The main problem with the routine inspections is that it is very hard to record 

quantitative information from visually observed damaged locations. This is even harder 

when the bridge components are inaccessible. Traffic is interrupted, and special 
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equipment is used to perform the routine inspection in these cases. This process is 

dangerous for the inspector, and it is also subjective and very expensive. Laser scanners 

can capture all the surface information, in high resolution, from all laser scanner 

accessible locations. Since the visual information is organized in a scan, it is possible to 

document relative positions of defect areas. However, this is hard to achieve when only 

the local information obtained through digital imaging is used.  

The issue with the laser scanning technology, on the other hand, is that there is not 

an easy way to process the captured datasets. Depending on the resolution and the 

number of scans included in one dataset, the size of the finalized dataset is too large for 

regular systems to process. Besides, the dataset represents the whole structure, not the 

individual elements. Thus, it is especially important to understand how to reduce the 

collected dataset into smaller units that are easy to process. The steps for data processing 

are discussed in previous chapters in detail.  

Once the point cloud is divided into point clusters, which are processed individually 

for damage detection, it is important to tie the results to commonly accepted condition 

rating criteria. This provides an opportunity to document quantitative information on 

damaged areas in a widely-accepted format. Thus, laser scanners can be used for aiding 

the visual inspections, and they will enhance the quality of the collected information. 

Section 9.2 displays the condition rating criteria used in this research.  

Finally, even though it is not the focus of this research, it is important to understand 

how enhancing current inspection strategies would improve load rating computations for 

individual bridge elements, since the condition rating is a part of the general load rating 

equation. Load ratings are used to ensure bridge safety, check if the investigated bridges 
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comply with Federal regulations, determine rehabilitation or replacement needs, and 

decide on posting needs. Section 9.2 explains how the condition ratings affect the load 

rating computations, and how laser scans can be used for retrieving required geometric 

information. 

 

9.1 Current Condition of State Bridges 

A significant percentage of the nation’s bridges are either functionally obsolete, 

meaning those bridges were built using outdated standards, or structurally deficient, 

where one or more of their major components have deteriorated, and they are not safe. 

Even though this percentage has decreased over the last decade due to the increasing 

efforts of States, still 24.9% of the nation’s bridges are in either deficiency category. 

Figure 9.1 represents the state bridge condition ratings from 2013; the color of each is 

adjusted based on the percentage of structurally deficient bridges. The changes in the 

states’ structurally deficient bridge inspection ratings between 2007 and 2013 are given 

in Table 9.1 and continued in Table 9.2. 

 
Figure 9.1: 2013 State bridge condition ratings (Governing., June 2013).   
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Table 9.1: Changes in states’ structurally deficient bridge inspection ratings between 2007 and 
2013 (FHWA, July 2014). 

 

 

  

State Change in 
S.D. Bridges

Percentage 
Change

2013 S.D. 
Bridges

2013 
Bridges

2007 S.D. 
Bridges

2007 
Bridges

Alabama -536 -27.6 1,405 16,078 1,941 15,881
Alaska -32 -19.4 133 1,196 165 1,229
Arizona 51 27.3 238 7,862 187 7,387

Arkansas -151 -14.6 880 12,748 1,031 12,534
California -480 -14.8 2,769 24,955 3,249 24,189
Colorado -49 -8.4 536 8,612 585 8,374

Connecticut 52 14.4 413 4,218 361 4,175
Delaware 35 166.7 56 864 21 856
District of 
Columbia

-4 -16 21 252 25 245

Florida -48 -15.6 259 12,070 307 11,664
Georgia -213 -20.3 835 14,769 1,048 14,563
Hawaii -4 -2.7 144 1,125 148 1,117
Idaho 47 13.1 406 4,232 359 4,104
Illinois -257 -10.2 2,275 26,621 2,532 25,998
Indiana -125 -6 1,944 18,953 2,069 18,494
Iowa -187 -3.6 5,043 24,398 5,230 24,776

Kansas -453 -15.1 2,554 25,171 3,007 25,464
Kentucky -136 -9.9 1,234 14,116 1,370 13,639
Louisiana 39 2.2 1,827 13,050 1,788 13,342

Maine 10 2.8 366 2,402 356 2,387
Maryland -63 -15.9 333 5,291 396 5,128

Massachusetts -103 -17.5 487 5,136 590 5,019
Michigan -459 -26.1 1,298 11,022 1,757 10,923

Minnesota -72 -6.2 1,086 13,137 1,158 13,067
Mississippi -834 -26.8 2,274 17,044 3,108 17,007
Missouri -1119 -25 3,357 24,350 4,476 24,071
Montana -113 -23.1 376 5,126 489 4,982
Nebraska 343 14.3 2,739 15,370 2,396 15,475
Nevada -16 -30.8 36 1,853 52 1,705

New 
Hampshire

-45 -11.3 355 2,438 400 2,364

New Jersey -133 -17.6 624 6,566 757 6,448
New Mexico -109 -26.8 298 3,935 407 3,850
New York -83 -3.8 2,078 17,442 2,161 17,361

North Carolina 27 1.2 2,308 18,168 2,281 17,783
North Dakota -39 -5.1 726 4,439 765 4,458

Ohio -708 -24 2,242 27,015 2,950 27,999
Oklahoma -1701 -28.7 4,227 22,912 5,928 23,528

Oregon -100 -18.8 431 7,656 531 7,318
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Table 9.2: Changes in states’ structurally deficient bridge inspection ratings between 2007 and 
2013, cont’d (FHWA, July 2014). 

 

 

 
More specifically, the bridge statics for Massachusetts are given in Table 9.3, and 

the comparison between Massachusetts bridges and U.S. bridges is displayed in Table 

9.4.  

Table 9.3: Massachusetts bridge statistics (FHWA, July 2014).  
 

Total Bridges 5136 
Total Deficient Bridges 2694 
Structurally Deficient Bridges 487 
Functionally Obsolete Bridges 2207 

 

Table 9.4: Massachusetts bridges compared to U.S (FHWA, July 2014). 
 

Percent Structurally Deficient 9.5% 
U.S. Structurally Deficient 10.5% 
Percent Functionally Obsolete  43.0% 
U.S. Functionally Obsolete 13.9% 

 

At this point, the main goals of FHWA are to make the repair of structurally 

deficient urban bridges, increase the annual investment levels for bridge repair, 

State Change in 
S.D. Bridges

Percentage 
Change

2013 S.D. 
Bridges

2013 
Bridges

2007 S.D. 
Bridges

2007 
Bridges

Pennsylvania -754 -12.6 5,218 22,660 5,972 22,325
Rhode Island -4 -2.3 167 766 171 748

South Carolina -249 -19.2 1,048 9,275 1,297 9,221
South Dakota -14 -1.1 1,210 5,875 1,224 5,924

Tennessee -178 -13.3 1,157 20,058 1,335 19,838
Texas -967 -43 1,283 52,561 2,250 50,272
Utah -127 -52 117 2,974 244 2,851

Vermont -284 -53.1 251 2,731 535 2,712
Virginia -28 -2.3 1,186 13,765 1,214 13,418

Washington -38 -9.3 372 7,902 410 7,686
West Virginia -129 -12 944 7,125 1,073 7,007

Wisconsin -110 -8.4 1,198 14,088 1,308 13,798
Wyoming 40 9.9 443 3,099 403 3,030
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reconstruction, and renovation, develop a national strategic plan for addressing the 

nation’s structurally deficient and functionally obsolete bridges, set a national goal to 

decrease the number of structurally deficient bridges to 8% by 2020 (ASCE., July 2014).  

FHWA reported that the estimated total cost for repairing or replacing only the 

deficient bridges is around $76 billion. However, the total investment backlog for 

nation’s bridges, which covers all cost-beneficial bridge needs along with the 

rehabilitation or replacement costs, is estimated to be $121 billion. This means an 

investment amount of $20.5 billion must be made annually in order to eliminate the 

bridge backlog by 2028. However, currently the amount of money annually spent on the 

nation’s bridges is only $12.8 billion.  

The mentioned cost-beneficial bridge needs include routine inspection of bridges. 

Laser scanner technology provides an opportunity to enhance the current routine 

inspection methods, and hopefully reduce the cost associated with these strategies.  

 

9.2 Bridge Condition Ratings 

As described in the background chapter, this research focuses on condition rating, 

which compares the current physical state of the structure to what it was the day it was 

built, and structural evaluation, which gives the overall condition of the structure based 

on all major deficiencies, and its ability to carry loads. The aim is to classify the damage 

severity and to assign labels to the detected damage in a standardized format based on 

sample condition rating guidelines from different States.  

The summary of condition rating guidelines for the deck, superstructure and 

substructure, which is taken from Manual Bridge Inspection Manual of Ohio, is already 
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given in Table 2.1. In this section, another sample condition rating and deficiency 

reporting guides for deck (Item 58), superstructure (Item 59), substructure (Item 60), and 

channels (Item 61), taken from the Casey Overpass inspection report (O'Artista and 

Beintum, 2010), are shown as Table 9.5. Even though the condition rating guidelines 

given in Table 9.5 are less detailed than the guidelines in Table 2.1, they contain 

information on deficiency reporting as well as condition rating.  

 
Table 9.5: Condition rating and deficiency reporting guides for Massachusetts Department of 

Transportation (O'Artista and Beintum, 2010). 
 

 

 
In order to determine the condition rating of individual members, several state 

condition rating guidelines are investigated. Although all the developed condition rating 

guidelines are based on the National Bridge Inventory (NBI), which is prepared by 

FHWA, they are significantly different from each other in terms of the descriptions given 

in the condition rating tables. Even though the general outline for the condition rating is 
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always the same, ranging from 0 to 10 (where 0 represents the imminent failure, and 10 is 

the excellent condition), the descriptions for each damage level varies from state to state. 

Ohio Department of Transportation’s Manual of Bridge Inspection provides very detailed 

descriptions for individual bridge items; thus, in this research this manual is used as the 

reference point for condition rating determination.  

Following tables represent the separate guidelines followed to determine the 

condition rating of each individual member for different damage types. Table 9.6 

describes the condition rating criteria for alignment of the structural members, which is 

used to investigate bent members. Table 9.7 and Table 9.8 give detailed descriptions on 

condition rating criteria for steel beams/girders/slabs used for rupture and point of 

discontinuity; and, finally, Table 9.9 gives condition rating criteria for concrete 

beams/girders/slabs used for cracks and spalling. All listed tables are taken from 

Massachusetts Department of Transportation’s sample bridge inspection report and Ohio 

Department of Transportation’s Manual of Bridge Inspection (O'Artista and Beintum, 

2010; Ohio Department of Transportation., 2010). Table 9.10 and Table 9.11, which are 

taken from AASHTO Bridge Element Inspection Guide Manual, are also included since 

they provide more detailed condition state descriptions for reinforced concrete items 

compared to Table 9.9. Finally, in order to rate the timber piers, the National Bridge 

Inventory Condition Ratings listed by the Federal Highway Administration is used 

(FHWA., July 2014). Table 9.12 lists the condition rating criteria used for timber piers. 

The damage detection results obtained from several datasets and their associated 

condition ratings are given in the following chapter, Chapter 10. 
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Table 9.6: Criteria for alignment check (Ohio Department of Transportation., 2010). 
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Table 9.7 : Condition rating criteria for steel beams/girders/slab (Ohio Department of 
Transportation., 2010). 
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Table 9.8: Percantage steel section loss values with respect to depth of section loss (Ohio 
Department of Transportation., 2010). 
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Table 9.9: Condition rating criteria for concrete beams/girders/slab (Ohio Department of 

Transportation., 2010). 
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Table 9.10: Condition state definitions for reinforced concrete  items (AASHTO., 2010). 
 

 

 
 

 
Table 9.11: Element definitions for condition states given in Table 9.10 (AASHTO., 2010). 
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Table 9.12: Condition rating criteria for substructure that contains timber piers.  
 

  

Substructure

9 Excellent No noticable or noteworthy deficiencies which 
affect the condition of the substructure item. 

8 Very Good 
Insignificant damage caused by drift or collision 
with no misalignment and no corrective action 
required. 

7 Good Insignificant decay, cracking or splitting of timber 
substructure unit. 

6 Satisfactory

Some initial decay, cracking or splitting of timber 
in a timber substructure unit. Fire damage limited 
to surface scorching of timber with no measurable 
section loss. 

5 Fair

Moderate decay, cracking or splitting of timber 
with minor, measurable section loss. Some 
exposure of timber piles as a result of erosion, 
reducing the embedment. 

4 Poor

Substantial decay, cracking, splitting or crushing 
of primary timber members, requiring some 
replacement. Fire damage with significant section 
loss of timber which may reduce the load carrying 
capacity of the member. Extensive exposure of 
timber piles as a result of erosion, reducing the 
penetration and affecting the stability of the unit.

3 Serious

Severe section loss in critical areas. Major fire 
damage to timber which will substantially reduce 
the load carrying capacity of the member. Bearing 
areas seriously deteriorated with considerable 
loss of bearing. 

2 Critical Primary timber members crushed or split and 
ineffective. Pier has settled. 

1
Imminent 
Failure

Bridge closed. Corrective action may be put back 
in light service.

0 Failed Bridge closed. Replacement necessary.

2

3

4

Rating

1

Timber
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9.3 Bridge Load Ratings 

As mentioned before, the main objective of routine bridge inspections is to assess 

the current condition of an investigated structure. The recorded condition ratings and as-

is component states are later used for computing bridge load ratings. The safe load 

capacity of the investigated bridge is then determined by using the calculated bridge load 

ratings. It should be noted that this section is aimed to provide a brief introduction on 

bridge load ratings, so mainly the effect of recorded condition ratings on the load rating 

computations is discussed. Therefore, detailed information on individual components of 

the load rating equation is not displayed. 

The load rating capacity of a bridge is computed generally by using as-built bridge 

plans including all the modifications and the rehabilitation plans. The input from the 

latest inspection report, which is in accordance with the National Bridge Inventory 

(FHWA, July 2014), is included to introduce the effect of deterioration on load ratings. 

This input is composed of the latest recorded condition ratings and as-is member 

geometry (member shape descriptions). 

There are two load rating levels: inventory rating and operating rating. Inventory 

rating checks whether a bridge is safe for the State legal loads within the federal weight 

laws and LRFD exclusion limits. Operation rating, on the other hand, represents the 

absolute maximum permissible load level to which the structure may be subjected for the 

vehicle type used in the rating. 

For both load rating levels described in the previous paragraph, load ratings are 

calculated using one of three available load rating methods. These methods can be listed 

as: load and resistance factor rating (LRFR), load factor rating (LFR), and allowable 
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stress rating (ASR). Special trucks are used for each load rating method, and the load 

ratings are calculated by applying the associated truck load on the system. 

Load rating is expressed as a rating factor,   , in LRFD, and it is expressed in a 

tonnage for a particular vehicle in LFR and ASR. In this section, only the equations given 

in LRFD are displayed;    is calculated using Equations 9.1-9.3 (AASHTO., 2011; 

FHWA., 2012; ADOT., July 2014).  

 
 

    
                              

            
 

9.1 

 
            9.2 

 
           

 

9.3 

where 

   = Rating Factor,  

  = Capacity,       for the service limit state, 

    = Specified compressive strength of concrete (ksi),  

     = Specified compressive strength of concrete at time of initial loading or prestressing 

(ksi),  

   = Allowable stress specified in the LRFD code or as stated, 

   = Nominal member resistance (as calculated),  

   = Dead load effect due to structural components and attachments,  

   = Dead load effect due to wearing surface and utilities,  

  = Permanent loads other than dead loads,  

   = Live load effect,  
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   = Dynamic load allowance,  

    = LRFD load factor for structural components and attachments,  

    = LRFD load factor for wearing surfaces and utilities,  

   = LRFD load factor for permanent loads other than dead loads = 1.0,  

    = Evaluation live load factor, 

   = Condition factor,  

   = System factor and,  

  = LRFD resistance factor.  

The condition factors,   , corresponding to certain condition descriptions, which 

are in accordance with NBI, are displayed in Table 9.13. As it can be observed from 

Equations 9.1 and 9.2, the changes in    directly affect the calculated load ratings. Thus, 

it is important to determine condition ratings effectively. As mentioned in previous 

sections, laser scanners provide an opportunity to improve the current visual inspection 

methods through automated defect localization and quantification. Thus, it can be 

concluded that the mentioned improvements in routine inspection strategies would also 

affect load ratings calculations. 

Table 9.13: Condition factors (FHWA., 2012). 
 

 

Another important load rating input that can be extracted using laser scanners is the 

as-is geometric properties of bridge members. This process can be automated, and 

changes that occur between consecutive inspections can be recorded easily. The extracted 
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geometric information, which generally contains cross-section information, is used to 

calculate the remaining capacity of a member. A representative example is given in 

Figure 9.2, where Figure 9.2(a) displays the model drawing of a C-section from the steel 

lab frame, and Figure 9.2(b) shows the corresponding damaged cross-section extracted 

from the captured point cloud. Since the geometric information is an important part of 

load rating calculations, the use of laser scanning technology for member dimension 

extraction can significantly improve the current load rating calculation strategies.  

 
 

(a) (b) 
 

Figure 9.2: (a) Model drawing of a C-section and (b) damaged cross-section representation 
extracted from laser scan. 
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10. Damage Detection Applications and Results 

In Chapters 5 through 8, several methods for both structural sensing and surface 

damage assessment are introduced. Representative examples are given, required 

parameters for each are listed, and the effects of these listed parameters on the obtained 

results are discussed. In Chapter 9, the current status of visual inspection strategies are 

presented, and the selected condition assessment criteria for several items of bridges, 

which are used to convert detected damage information into common reporting outputs, 

are outlined.  

In this chapter, in order to validate the accuracy of the algorithms developed in 

previous chapters and to test their efficiency, several synthetic, experimental, and field 

datasets have been processed. The introductory information on the available datasets is 

given in Section 4.1.  

This chapter begins with Section 10.1, which gives detailed information on the 

datasets that are used both for structural sensing and damage assessment; this section 

extends the introductory information given in Section 4.1. Section 10.1 is composed of 

individual sections that focus on each utilized dataset separately. Section 10.2 first lists 

the validation datasets used for showing the results for the object detection methods 

described in Chapter 6 and then continues with laying out the validation and testing 

datasets used for presenting the results for each damage type that is in the scope of this 

research. The damage types, for which the same damage detection algorithms are used, 

are grouped together. Finally, Section 10.3 presents the object detection results for the 

datasets listed in Section 10.2 and similarly, Section 10.4 presents the surface damage 

detections results for the datasets given in Section 10.2. In general, validation refers to 
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the cases when the detection results, either for object detection or damage detection, are 

compared with the actual values recorded for the specific application. For object 

detection, the actual values represent the member type and/or member dimensions, 

whereas for damage detection, they are hand-measured dimensions. Testing, on the other 

hand, represent culminating examples for this research and refers to the cases for which 

both object and damage detection is completed; however, the obtained results are not 

compared with actual values since there is not any available recorded validation sets for 

these cases.  

This chapter ends with Section 10.5, which presents the condition ratings computed 

for individual elements of the processed datasets described in Section 10.1. These 

condition ratings are obtained by using the condition rating criteria given in Section 9.2.  

 

10.1 Available Datasets 

In this research, several datasets are used for both structural sensing and damage 

assessment. This section consists of detailed information on the processed datasets and 

generated model libraries, which can be listed as synthetic point clouds and model 

libraries, a steel testing frame, a concrete testing frame, a DeKalb County Bridge in 

Dekalb County, Illinois, and the Bowker Overpass in Boston, Massachusetts. Each 

section, from Section 10.1.1 to Section 10.1.5, is dedicated to an individual dataset from 

the list given above. The introductory information on each dataset is given in Section 4.1. 
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10.1.1 Synthetic Point Clouds and Model Libraries 

Synthetic point clouds and their associated model libraries are generated to provide 

a comprehensive database that includes descriptive properties of individual objects. This 

database is then used to interpret the results obtained through both the global feature-

based and graph-based object detection algorithms. As mentioned in Chapter 5, an 

essential part of object recognition process is creating an extensive model library. In this 

research, a model library that is composed of a variety of object descriptions including 

simple prismatic shapes, such as rectangular prisms, cylinders, etc., and also more 

sophisticated objects is created.  

Representative examples for both synthetic point clouds and model library 

representations are given in previous chapters. First, a sample synthetic dataset is shown 

in Chapter 8, Figure 5.13 and Figure 5.14. This sample dataset is used to validate the 

efficiency of the point cloud processing algorithms described in Chapter 5 and also the 

global feature-based object detection method given in Section 6.3. The results are 

included in the related sections. Second, an example model library representation of a C-

section is given in Section 6.4.3, and the result of the object detection is shown in Section 

6.4.4. 

In this research, synthetic datasets are only used for extracting and storing the 

descriptive properties of some common objects; validation is later carried on with 

recorded laser scanner data. The validation results for the datasets discussed in Section 

10.1 are then shown in Section 10.3. 
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10.1.2 Steel Testing Frame 

The first point cloud dataset, for which the processing results are discussed, is the 

steel testing frame. It is a 2D frame that consists of three     long identical              

C-sections. Figure 10.1(a) and Figure 10.1(b) represent the surface model and point cloud 

of this frame respectively.  

This dataset was collected with the Microsoft Kinect, and the surface model is 

obtained by using the ReconstructMe software. The information on the utilized 

equipment and software are discussed in Chapter 4 and Section 5.1 respectively. 

Even though this frame represents a simple geometry, it was very useful in terms of 

testing the efficiency of the developed algorithms prior to performing large scale 

applications. The steel testing frame is used for validating graph-based object detection 

method and for performing alignment checks. The results are given in Sections 10.3 and 

10.4.  

 

  

(a) (b) 

Figure 10.1: (a) Surface model and (b) point cloud representations of lab frame. 
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10.1.3 Concrete Testing Frame 

The concrete testing frame dataset was collected from a collapsed experimental test 

specimen that was used to predict progressive collapse resistance of a small-scale 2D 

physical model of a reinforced concrete structure in 2007 (Sasani et al., 2007; Sagiroglu, 

2012). The test setup is a      by     frame that consists of 3 stories with 4 equal length 

spans. Dimensions of the test setup are given in Figure 10.2, and the beam and column 

legends for the testing frame are shown in Figure 10.3. 

This test setup was subjected to both dynamic and static loading. Figure 10.4(a) 

shows the testing frame with dynamic loading and Figure 10.4(b) shows the testing frame 

under pull down loading. 

 

 

Figure 10.2: Dimensions of the test setup (Sagiroglu, 2012). 
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Figure 10.3: Beam and column legends of the testing frame. 
 

The concrete testing frame was first subjected to dynamic loading by placing loads 

on beams at specific locations, and then breaking the glass column that was located in the 

middle of the bottom story, which is marked with red in Figure 10.4(a). Later, the test 

was continued with static loading since the frame resisted dynamic loading in the first 

phase of the test. Static loading representing gravity loading (pulling downwards in the 

figure) was applied under the middle column of the second story where the glass column 

had been located before dynamic loading. 

 

  

(a) (b) 

Figure 10.4: (a) Testing frame with dynamic loading and (b) under pull down loading. 
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In order to capture the point cloud of this frame, a FARO Focus3D scanner was 

used. In total, 10 scans are collected around the test setup at varying elevations. These 

separate scans were later registered by the Faro Scene software in order to get the 

complete point cloud dataset for the concrete testing frame. The point cloud of the 

concrete testing frame is shown in Figure 10.5. The information on the used equipment 

and software are discussed in Chapter 4 and Section 5.1 respectively. 

 

 

Figure 10.5: Point cloud representation of the concrete testing frame. 
 

It should be noted that even though the combination of the captured scans provide 

coverage for the entire frame, the resultant point cloud is not adequate to obtain a uniform 

point density on the surface across the entire structure. Thus, the upper beams, which 

were exposed to the scanner more than the lower beams due to the location of the scanner 

during scanning, have higher point densities. The variation of the point densities on the 

surface of the concrete testing frame is discussed in Section 7.2.1.  
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The concrete testing frame is first used for validating graph-based object detection 

method; the results are given in Sections 10.3. Later, it is used for both validating and 

testing the developed damage detection algorithms. This frame is used for detecting the 

following damage types: cracks, concrete spalling, bent members, and points of 

discontinuity. Most of the damage detection results for the concrete testing frame are 

given in Chapter 8; in which the obtained crack and concrete spalling results are 

improved by using a neural network classifier. The rest of the damage detection results 

obtained both for validation and testing are included in Section 10.4. Finally, the 

condition ratings computed for individual components of the concrete testing frame, 

beams and columns are given in Section 10.5. 

 

10.1.4 DeKalb County Bridge 

In order to test the viability of the developed algorithms on a full-scale structure in 

the field, laser scanning was performed to collect the point cloud dataset of a collapsed 

bridge, DeKalb County Bridge in Illinois. The bridge was located in a rural area in 

Illinois and consisted of a precast concrete deck, reinforced concrete pier caps, and 

timber piers. One set of timber piers failed, causing the bridge deck to collapse at that 

location.  A forensic investigation of the collapse is available in Borello et al. (2010). 

Figure 10.6(a) shows the picture of the bridge and Figure 10.6(b) shows the registered 

point cloud data.  
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(a) 

 

(b) 

 
Figure 10.6: (a) Picture and (b) point cloud of DeKalb County Bridge. 

 

This captured point cloud, similar to the previously described datasets, is a 

combination of multiple scans registered together. A FARO Photon 80 scanner is used to 

capture 14 scans of the scene. A variety of perspectives was used in order to capture as 

much of the 3D geometry of the structure as possible; each viewpoint exposed a unique 

set of surfaces of the bridge. Each captured scan consists of approximately 41 million 

points, which resulted in a total of more than 500 million points for the registered point 

cloud. The captured scans were registered using the FARO Scene software, with the 

assistance of spherical reflectors placed on the structure. The information on the utilized 

equipment and software are discussed in Chapter 4 and Section 5.1 respectively. 

Point cloud data captured in the field consists of noisy data containing irregular 

and unusual surfaces and objects, as well as sparse and missing points in occluded 
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sections of the scene. The purpose of analyzing the point cloud of this test-bed bridge is 

to test the robustness of the algorithms under such conditions. 

For this research, only a portion of the DeKalb County Bridge was used; the 

processed portion of the bridge is shown in Figure 10.7. This dataset is first used for 

validating the global-feature based object detection method. It is then used for testing the 

developed damage detection algorithms; the volumetric changes in the timber piles due to 

damage, alignment of these timber piles after collapse, and the cumulative damage on the 

deck are investigated. The results are discussed in Sections 10.3 and 10.4. The condition 

ratings computed for individual components of the processed portion of the DeKalb 

County Bridge are given in Section 10.5. 

 

 

 

 

Figure 10.7: Point cloud of a portion of DeKalb County Bridge. 
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10.1.5 Bowker Overpass 

The second full-scale point cloud dataset that was collected is from the Bowker 

Overpass, which is located in Boston, Massachusetts. This bridge is a steel girder bridge 

with a composite deck carrying Charlesgate Street over Commonwealth Avenue, Beacon 

Street, and Interstate 90 (Wikipedia., July 2014). Figure 10.8 shows the location of the 

Bowker Overpass on the map, and Figure 10.9 provides an aerial view of the structure 

with location plan.  

 

 

 
Figure 10.8: Location and aerial view of Bowker Overpass (Google Maps., July 2014; 

Aaccessmaps., May 2014). 
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Figure 10.9: Location plan on the aerial view of Bowker Overpass (Mercuri and Mirliss, 2013). 
 

The Bowker Overpass suffers from a significant amount of deterioration that 

includes concrete spalling, cracking, steel corrosion, section losses, and etc. The 

Massachusetts Department of Transportation (MassDOT) Highway Division has already 

announced on their website that public safety requires immediate repairs of the Bowker 

Overpass. At present, MassDOT is in the process of developing a project to repair the 
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bridge by replacing the deck and retrofitting the pin and hanger assemblies. These repairs 

aim to address the near term safety issues on the Bowker Overpass. 

For this research, two parts of the overpass that had heavily damaged regions were 

scanned. The first location is Span 7, which is a part of Bridge 4FH as shown in Figure 

10.9. The east fascia girder of Span 7 and the underside of the bridge, as well as the top 

of the bridge deck on the portions of the bridge adjacent to the east fascia, which are 

shown in Figure 10.10, were scanned. The second location is the joint that connects on 

Span 23 and Span 24 on the east side, which is part of the Bridge 4FJ as shown in Figure 

10.9. These specific locations suffer from severe deterioration and contain examples for 

multiple defect types such as section loss, concrete spalling, exposed reinforcement, etc. 

Figure 10.10 shows the portion of the plan of the Bowker Overpass that highlights the 

scanning locations.  

 

Figure 10.10: Plan of the Bowker Overpass with the focus on Bridge 4FH and Bridge 4FJ 
(MassDOT., 1963). 

Location 1 

Location 2 
N 
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In order to provide complete coverage on both locations shown in Figure 10.10, 

18 high-resolution laser scans are captured by using a FARO Focus 3D scanner. 3D data 

is captured along with the images. The scan registration and texture-mapping are 

completed using Faro Scene software, with the assistance of spherical reflectors placed 

on the structure. In a total, there are more than 40 billion points in the registered point 

cloud dataset. Figure 10.11 shows the entire point cloud, which is the combination of 18 

scans. Figure 10.12 and Figure 10.13 represent the isolated point clouds for the Bridge 

4FH, Span 7 and Bridge 4FJ, corner respectively. The information on the used equipment 

and software are discussed in Chapter 4 and Section 5.1 respectively. The report on the 

initial site investigation and laser scanning of the Bowker Overpass are given in 

Appendix E.  

 

 

Figure 10.11: Entire point cloud. 
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Figure 10.12: Point cloud of 4FH, Span 7. 
 

 

Figure 10.13: Point cloud of 4FJ, corner. 
 

In this research, only several small portions of the Bowker Overpass are used for 

processing; the processed portions of the overpass are shown in the related parts of 

Sections 10.3 and 10.4. A portion of the overpass point cloud data is used for validating 

the graph-based object detection method. Several other regions of the point cloud are then 

used for both validating and testing the developed damage detection algorithms; detected 

damage types include cracks, spalled concrete regions, section losses, and etc. The results 
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are discussed in Sections 10.3 and 10.4. The condition ratings computed for individual 

components of the processed portions of the Bowker Overpass are given in Section 10.5. 

 

10.2 Validation and Testing 

This section presents the lists of the generated libraries, validation and testing 

datasets used for both structural sensing and surface damage assessment. Table 10.1 lists 

the datasets used for validating the results obtained by using the object detection methods 

discussed in Chapter 6, including both global-feature based object detection and graph-

based object detection. Table 10.2 presents the datasets used for validating and testing the 

developed damage detection algorithms for the damage categories given in Chapter 3. 

Each damage category is composed of several damage types; these damage types are also 

listed in Table 10.2. The results of the crack detection for the concrete testing frame are 

presented in Chapter 8; thus, no further discussions are included in the current chapter 

related to this dataset. It should also be noted that the corrosion detection and validation 

are performed on Bowker Overpass dataset; however, the results for the corrosion 

detection are included in Section 10.4.3, where damage types associated with large 

deformations with localized change in topology is discussed, since the corrosion locations 

on the investigated patches were either detected along with spalled concrete regions, or 

they were detected in the form of delamination.  
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Table 10.1: Libraries and validation datasets for object detection methods. 
 

 Libraries  Validation 
Global Feature-based 

Object Detection 3-D object library DeKalb County Bridge 

Graph-based Object 
Detection 

2-D and 3-D object 
library 

Steel Testing Frame 
Concrete Testing Frame 
Bowker Overpass 

 

Table 10.2: Validation and testing datasets associated with different damage types. 
 

Damage 
Category Damage Types Validation Testing 

Small 
deformations Cracks 

Concrete 
Testing Frame Concrete Testing Frame Bowker 

Overpass 
Large 

deformations 
with no change 

in topology 

Bent members / 
Alignment issues / 

Points of 
Discontinuity 

Concrete 
Testing Frame 

Steel Testing Frame 
Concrete Testing Frame 
DeKalb County Bridge 

Bowker Overpass 
Large 

deformations 
with localized 

change in 
topology 

Cross-section 
change/ Rupture / 

Spalling / Steel 
Delamination 

Concrete 
Testing Frame Concrete Testing Frame 

Bowker 
Overpass 

DeKalb County Bridge 

Bowker Overpass 

 

10.3 Object Detection 

This section consists of the results obtained by using the object detection methods 

described in Chapter 6, global-feature based object detection and graph-based object 

detection. The list of the datasets and the associated object detection method is already 

listed in Table 10.1. The following sections present the results for each dataset. First, the 

global feature-based object detection results are given in Section 10.3.1; it is then 

followed by Section 10.3.2, where the graph-based object detection results are discussed. 
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The listed datasets are only used for validation purposes; thus, there is not a testing 

section under Sections 10.3.1and 10.3.2, only validation. 

 

10.3.1 Global-feature based Object Detection 

In order to perform global feature-based object detection, first the processing 

steps described in Chapter 5 had to be performed. Once the mentioned steps were 

completed, the global feature-based object detection, which is described in Section 6.3 in 

detail, was applied. The following section, Section 10.3.1.1.1, presents the results of the 

global-feature based object detection applied on a portion of the DeKalb County Bridge. 

Table 10.3 shows the parameters and corresponding values used for global 

feature-based object detection. For this application, in order to match any detected object 

with a library object, a similarity of at least 90% was required (i.e., the dissimilarity 

limits were set at 10% as shown in the table). 

 
Table 10.3: Parameters and corresponding values for global feature-based object detection. 

Method Parameters Range 

Global Feature-based Object 
Matching 

Local dissimilarity measure 10 % 
Global dissimilarity measure 10 % 

 

10.3.1.1 Validation 

10.3.1.1.1 DeKalb County Bridge 

The global feature-based object detection was executed on a portion of the point 

cloud, which is shown in Figure 10.14(a). Both the pier cap and piles were detected as 

separate objects. Pier cap is detected as an object by using the connectivity information of 

nine separate planes; the detected planes were matched with the corresponding object 
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from the library. Timber piles, on the other hand, were detected as cylinders by using the 

properties of the extracted clusters. Figure 10.14(b) shows the detected pier cap and eight 

piles superimposed with the processed portion of the point cloud. The agreement between 

the point cloud, design documents, and the detected pile cap and timber piles were within 

tolerances. The detected object properties, dimensions, location, and etc., are also 

exported to a computer-aided design program, AutoCAD (Autodesk Inc., July 2014); the 

results are presented in Figure 10.15. 

. 

  
(a) (b) 

 
Figure 10.14: (a) Scan data of DeKalb County Bridge with section utilized for data processing, 

and (b) point cloud of the same section with four piers detected as cylinders and pier cap surface 
detected as planes. 

 
 

 

  
(a) (b) 

 
Figure 10.15: Detected objects’ properties exported to a computer aided design software (CAD): 

(a) object representations and (b) solid surfaces.  
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10.3.2 Graph-based Object Detection 

To perform graph-based object detection, first the processing steps described in 

Chapter 5 were performed. Once the mentioned steps were completed, the graph-based 

object detection, which is described in Section 6.4 in detail, was applied. The following 

sections, Sections 10.3.2.1.1-10.3.2.1.3, present the results of the graph-based object 

detection performed on the steel testing frame, concrete testing frame and a girder of 

Bowker Overpass, respectively. 

Table 10.4 shows the parameters and corresponding values used for each step 

towards graph-based object detection. For skeletonization, a constant height function 

increment,   , of    is used, and the rest of the voxel dimensions are determined 

automatically based on the local point densities extracted from the point cloud. However, 

limiting values are defined for the minimum and maximum values for the utilized voxel 

size. The parameters for the iterative closest point algorithm are kept constant for all the 

datasets; these values are given in Table 10.4. Finally, the graph-based object detection 

algorithm is looking for an overall similarity of minimum 90% for both global and local 

features in order to match the detected object with the corresponding model 

representation.  
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Table 10.4: Parameters and corresponding ranges for the voxelization, model fitting and. graph-
based object detection  

 

Method Parameters Range (or default 
value) 

Voxelization / Skeletonization 
Voxel grid dimension,    0.03 in. – 0.5 in. 

Height function increment,    2 in 

Iterative Closest Point 

Maximum correspondence 
distance 2 in 

Number of iterations 100 
Transformation Epsilon 1.00E-08 

Euclidian Fitness Epsilon 1.0 

Graph-based Object Matching 
Local dissimilarity measure 10% 
Global dissimilarity measure 10% 

 

10.3.2.1 Validation 

10.3.2.1.1 Steel Testing Frame 

The skeleton of the entire steel testing frame was extracted both locally and 

globally. The local skeleton information, which represents the cross-section properties, is 

used for graph-based object detection. All three members are detected effectively; the 

detection results are given in Table 10.5. Once the object detection is completed, the 

geometric information of the detected objects is then exported to Revit (Autodesk Inc., 

July 2014) to create the information model of the investigated frame automatically. 

Figure 10.16 shows the generated building information model. The gusset plates were 

added after the model was generated. 

The global skeleton information, on the other hand, is later used to check the 

alignment of each member. The results of the alignment check are given in Section 

10.4.2.2.1.  
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Table 10.5: Results of graph-based object detection for steel testing frame. 
 

  Detected Objects Dimensions (in) 
Member 1 C-section  

 ⁄          ⁄  
Member 2 C-section  

 ⁄          ⁄  
Member 3 C-section  

 ⁄          ⁄  
 

 
 

Figure 10.16: Revit model of the steel testing frame. 
 

10.3.2.1.2 Concrete Testing Frame 

The same methodology from the previous section is applied to the concrete testing 

frame. First, the skeleton is extracted and then, the graph-based object detection is 

performed.  

An example that represents the voxelization/skeletonization procedure is shown in 

Figure 10.17 and Figure 10.18. Figure 10.17(a) shows the gray-scale color mapped point 

cloud representation of the experimental setup and Figure 10.17(b) represents the 3D 

point cloud data of a section cut with a certain width, which is perpendicular to the 

centroid of the column. Figure 10.18(a) represents the skeleton of the system that is 

created by connecting the center points of the each section cut along z-axis for columns 
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and along x-axis for beams. Finally, Figure 10.18(b) shows the voxel representation of 

the section cut shown in Figure 10.17(b).  

The cross-section information obtained through voxelization is then used for object 

detection. The results of the graph-based object detection for the columns and beams are 

given in Table 10.6 and Table 10.7 respectively. Beam and column legends of the 

concrete testing frame are shown in Figure 10.3. 

 
 

 
 

(a) (b) 
 

Figure 10.17: (a) The complete scan of the collapsed test setup and (b) Example section cut a-a at 
the specified location.  

 
 

 

 

(a) (b) 
 

Figure 10.18: (a) Skeleton of the test setup and (b) Resulting voxel representation of the section 
cut a-a at the specified location associated with a certain node of the skeleton graph.  

 

a-a 

a-a 
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Table 10.6: Column detection results of graph-based object detection for concrete testing frame. 
 

  Detected Objects Dimensions (in) 
A1 Rectangular prism        
A2 Rectangular prism        
A3 Rectangular prism        
B1 Rectangular prism        
B2 Rectangular prism        
B3 Rectangular prism        
C1 - - 
C2 Rectangular prism        
C3 Rectangular prism        
D1 Rectangular prism        
D2 Rectangular prism        
D3 Rectangular prism        
E1 Rectangular prism        
E2 Rectangular prism        
E3 Rectangular prism        

 

Table 10.7: Beam detection results of graph-based object detection for concrete testing frame. 
 

  Detected Objects Dimensions (in) 
AB1 Rectangular prism        

 ⁄  
AB2 Rectangular prism        

 ⁄  
AB3 Rectangular prism        

 ⁄  
BC1 Rectangular prism        

 ⁄  

BC2 Rectangular prism        
 ⁄  

BC3 Rectangular prism        
 ⁄  

CD4 Rectangular prism        
 ⁄  

CD5 Rectangular prism        
 ⁄  

CD6 Rectangular prism        
 ⁄  

DE1 Rectangular prism        
 ⁄  

DE2 Rectangular prism        
 ⁄  

DE3 Rectangular prism        
 ⁄  

 

The detected object properties are not used to generate an information model since 

the frame is severely damaged. Thus, the model would not represent the actual condition 

of the concrete frame.  
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10.3.2.1.3 Bowker Overpass 

The previous sections presented two applications for the graph-based object 

detection method, which were performed on laboratory testing specimens. However, this 

section provides an example for graph-based object detection performed on a field 

dataset, one of girders of the Bowker Overpass. Figure 10.19(a) represents the portion of 

the Bowker Overpass data that is used for object detection, and Figure 10.19(a) shows the 

plot of the extracted cross-section.  

 
 

(a) (b) 
 

Figure 10.19: (a) Portion of Bowker Overpass used for graph-based object detection, and (b) 
extracted cross-section. 

 

The object detection is specifically performed to detect the primary steel girder 

section of the east fascia girder; the results of the object detection are given in Table 10.8. 

Figure 10.20 shows the dimensions that are provided in the steel manual; the locations of 

the recorded dimensions can be seen in this figure. Table 10.9 shows the nominal girder 

dimensions for W36 sections (AISC., 2011). The only available section that has the 

closest dimensions to the detection results is correctly found to be a W36x135. This was 

cross-checked with bridge drawings. The differences between the extracted section 
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dimensions and the dimensions given in the manual are listed in Table 10.8, in terms of 

percentage error. It should be noted that, the reduction in the web thickness is due to 

section loss, and the increase in flange width and   dimension are due to heavy corrosion. 

At the same time, the laser scanner failed to capture a portion of the cross-section, the 

part shown with the blue rectangle in Figure 10.19, because it did not have access to the 

height that would allow complete coverage. However, since the cross-section was 

assumed to be symmetric, the object detection results were not affected from the 

incomplete portion of the data. This obtained result showed that even though the member 

was deteriorated, the detection algorithm was successful in finding the object type. 

 

Figure 10.20: Typical W-section dimensions.  
 
 

Table 10.8: Detection results and actual girder dimensions. 
 

 Detected Section 
Dimensions 

Dimensions of 
W36x135 Error(%) 

   (in)                  

   (in)                 

  (in)                   

  (in)                  
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Table 10.9: Nominal girder dimensions for W36 sections. 
 

Shape 

Area Depth Web Flange Distance 

A d 
Thickness Width  Thickness 

T  k  
tw bf tf 

(in2) (in) (in) (in) (in) (in) (in) 
W36x256 75.4 37.43 0.96 12.215 1.73 32.125 2.625 
W36x232 68.1 37.12 0.87 12.12 1.57 32.125 2.500 
W36x210 61.8 36.69 0.83 12.18 1.36 32.125 2.313 
W36x194 57 36.49 0.765 12.115 1.26 32.125 2.188 
W36x182 53.6 36.33 0.725 12.075 1.18 32.125 2.125 
W36x170 50 36.17 0.68 12.03 1.1 32.125 2.000 
W36x160 47 36.01 0.65 12 1.02 32.125 1.938 
W36x150 44.2 35.85 0.625 11.975 0.94 32.125 1.875 
W36x135 39.7 35.55 0.6 11.95 0.79 32.125 1.688 

 

10.4 Surface Damage Detection 

This section consists of the results obtained by using the developed surface 

damage detection methods described in Chapter 7, including graph-based and surface 

normal-based damage detection. This section is divided into subsections based on the 

damage categories that cover all the damage types that are in the scope of the developed 

damage detection algorithms. The investigated damage categories are described in 

Section 3.1 in detail; these damage categories and the associated damage types are listed 

in Table 10.2.  

The aim of dividing this section into damage category-based subsections, rather 

than damage detection strategy-based sub-sections, is to facilitate the condition rating 

process, since the condition rating of each individual item, for each specific damage type, 

is determined based on the total amount of damage computed for the damage of interest. 

The list of the damage types and the associated validation and testing datasets are 

presented in Table 10.2. 
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In this chapter, first, the damage detection results for small deformations that 

include cracks and corrosion are given in Section 10.4.1; this is followed by Section 

10.4.2, where the detection results for large deformations with no change in topology, 

which includes bent members, alignment issues, and points of discontinuity, are 

presented. Finally, the damage detection results for large deformations with localized 

change in topology: ruptures, cross-section changes, cross-section loses, and concrete 

spalling, are included in Section 10.4.3. The investigated datasets are used for both 

validation and testing purposes; thus, there are two subsections, validation and testing, 

under Sections 10.4.1-10.4.3. 

After laying out the processing results obtained by using datasets listed in Table 

10.2, the minimum detectable damage sizes for each damage type is first computed based 

on the point cloud properties associated with each investigated dataset. Since only three 

datasets are used for damage detection, for both validation and testing, only the 

detectable damage sizes associated with these datasets are listed. The details are 

discussed in Section 10.4.4, and the results are given in Figure 10.44 and Figure 10.45. 

 

10.4.1 Cracks 

To perform crack detection, the steps of surface normal-based damage detection, 

which is explained in Section 7.3, was followed. Further investigation on crack detection, 

which includes a comprehensive validation application, was carried out, and the results 

are presented in Chapter 8. The following section, Sections 10.4.1.1.1, discusses the 

results of the crack detection performed on a portion of Bowker Overpass. 
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Table 10.10 shows the parameters and corresponding values used for each step in 

crack detection. The neighborhood size and the intensity threshold are automatically 

computed based on the local properties of the point cloud. However, a range is defined 

for neighborhood size to ensure that the developed algorithms detect all the local 

variations. For patch investigation, first the investigated crack area was divided into 

              blocks. Each block was investigated separately to capture the local changes 

effectively. From each single block, three patches, with a constant patch size of     

points, were extracted. The patch extraction process is explained in 7.3.1 in detail. In this 

research, for all surface normal-based damage detection applications, a constant angle 

threshold of 10 degrees is used.   

 
Table 10.10: Parameters and corresponding ranges for crack detection. 

 
Methods Parameters Value 

Surface Normal Estimation Neighborhood size,      
Surface Patch Investigation Neighborhood size,       

Normal Comparison  
Angle threshold,        

Intensity threshold,                      
 

10.4.1.1 Validation 

10.4.1.1.1 Bowker Overpass 

In order to validate the effectiveness of the developed crack detection algorithms, 

two sample regions are selected and field measurements are recorded. Figure 10.21 and 

Figure 10.22 show the images of the investigated regions and the associated field 

measurements. Figure 10.23 and Figure 10.24 represent the result of the crack detection 

algorithm. This investigated region is extracted from the bottom deck and it is suffering 



226 
 

from heavy efflorescence. The results show that the developed crack detection algorithms 

are effective in detecting the cracking location, with or without efflorescence.  

Table 10.11 and Table 10.12 give the comparison between the field measurements 

and computed dimensions. The field measurements were performed by using 

micrometers. The field measurement were taken from two successive points, at which the 

slope of the crack changes; these points are labelled with numbers in Figure 10.21 and 

Figure 10.22. The computed dimensions are extracted by using the same philosophy.  For 

crack length computations, the methodology discussed in Chapter 8 was used; however, 

in order to get comparable results to the validation set for the longer and more varied 

cracks seen in the Bowker Overpass, instead of the full length of the crack, the distances 

between two successive points at the locations of slope changes were recorded. 

For the first example, the overall average thickness of the crack is measured as 1 

in.. The computations showed that for the detected region the average crack thickness is 

0.91 in. and the maximum crack thickness is computed as 1.23 in. The thickness value 

was not recorded for the second sample patch.  

It can be observed from the results given in Table 10.11 and Table 10.12 that the 

detection results obtained for the first investigated patch are more accurate compared to 

the second patch. This observed variation in the results is because of the distribution of 

the intensity values on the surface. For the second patch, most of the undamaged concrete 

and the crack locations had similar intensity values, which provided an extra challenge 

for crack detection. Since the intensity values were similar throughout this region, the 

results of crack detection algorithm primarily depended on the recorded deviations of the 
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computed surface normals from the reference normal, which was computed by using the 

undamaged regions of the investigated patch.   

 

 

Figure 10.21: Image of the processed portion of the Bowker Overpass for crack detection.  
 

 

Figure 10.22: Image of the processed portion of the Bowker Overpass for crack detection.  
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Figure 10.23: Result of the crack detection algorithms for the region shown in Figure 10.21. 
 

 

Figure 10.24: Result of the crack detection algorithms for the region shown in Figure 10.22. 
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Table 10.11: Comparison between the field measurements and computed crack dimensions for 
patch one. 

 

Defect ID Measurement 
Points 

Field 
Measurement (in) 

Computed 
Dimension (in) Error (%) 

Crack 1 

1-2 6.75 6.74 0.15 
2-3 8.25 8.28 -0.36 
3-4 5.5 5.52 -0.36 
4-5 12 11.95 0.42 
5-6 11.5 11.47 0.26 

 

Table 10.12: Comparison between the field measurements and computed crack dimensions for 
patch two. 

 

Defect ID Measurement 
Points 

Field Measurement 
(in) 

Computed 
Dimension (in) Error (%) 

Crack 2 
1-2 5.00 5.41 -8.20 
2-3 3.75 3.84 -2.40 
3-4 3.25 3.24 0.31 

Crack 3 
1-2 1.88 2.02 -7.45 
2-3 ( 1.63 + 1.88 ) 3.51 3.47 1.14 
3-4 6.13 5.89 3.92 

 

In the latest inspection report (Mercuri and Mirliss, 2013), the areas from which 

the investigated patches are extracted were reported as “hollow sounding with map cracks 

with efflorescence”. However, there are not any quantitative crack measurements 

available for these locations. Laser scanning technology provides the opportunity to 

record quantitative information on the current condition of structures. 

 

10.4.2 Bent Members/ Alignment Issues / Points of Discontinuity  

In order to detect bent members, points of discontinuity, and alignment problems, 

the first step is to generate the global skeleton of the processed dataset. The steps for 

obtaining the global skeleton for the processed datasets are the same with as steps 

described in Section 10.3.2 for performing graph-based object detection. Thus, it will not 

be repeated in this section. Once the global skeleton was extracted by using the method 
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described in Section 7.2.2 in detail, the graph-based damage detection was performed to 

detect bent members, points of discontinuity, and alignment issues. The following 

sections, Sections 10.4.2.1 and 10.4.2.2, present the results of the graph-based damage 

detection for bent members, points of discontinuity, and alignment problems, which is 

performed on the steel testing frame, concrete testing frame and a portion of the DeKalb 

County Bridge, respectively.  

Table 10.13 shows the parameters and corresponding values used for each step 

towards graph-based damage detection. For skeletonization, a constant height function 

increment (as discussed in Section 6.3.2),   , of       is used, and the rest of the voxel 

dimensions are determined automatically based on the local point densities extracted 

from the point cloud. Limiting values are defined for the minimum and maximum values 

of voxel sizes.  

 

Table 10.13: Parameters and corresponding ranges for voxelization/skeletonization performed for 
graph-based damage detection. 

 

Method Parameters Range (or default 
value) 

Voxelization / Skeletonization 
Voxel grid dimension,    0.03 in. – 0.5 in. 

Height function increment,    2 in. 
 

10.4.2.1 Validation 

10.4.2.1.1 Concrete Testing Frame 

The skeleton of the concrete testing frame was already extracted for object 

detection. The extracted skeleton is shown in both Figure 10.18(a) and Figure 10.25. In 

this section, this skeleton is used to compute the alignment of each column of the frame. 

The alignment results for the columns are given in Table 10.14; however, the alignment 
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results for beams are presented in 10.4.2.2.2 since there isn’t any validation 

measurements recorded for beams. The results are also shown in Figure 10.25; this figure 

shows the skeleton of the concrete testing frame on which the computed alignment values 

are placed on the right-hand side of each column. The obtained results for columns 

represent the horizontal displacement, maximum horizontal drift for each column, for the 

columns in terms of in/1ft in order to match the results later with condition rating criteria 

for alignment, which is shown in Table 9.6.  

The validation set is composed of horizontal drift measurements taken from 

exterior columns only, A1-3 and E1-3. The error values are shown in Table 10.14. The 

largest error in this set is 22.22%; however, it should be noted that even though the 

percentage error is high, the measured and computed results differ only 0.03 in. These 

results show that laser scanning technology can be effectively used to compute the 

reporting values, which required in inspection reports.  

Table 10.14: Alignment results for columns of the concrete testing frame. 
 

Member ID 
Lab 

Measurement 
(in) 

Computed 
Alignment (in/1 ft) Error (%) 

A1                
A2                
A3                 
B1          
B2          
B3          
C1       
C2          
C3          
D1          
D2          
D3          
E1                
E2                 
E3                
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Figure 10.25: Skeleton of the concrete testing frame with computed column alignment values.  
 

10.4.2.2 Testing 

10.4.2.2.1 Steel Testing Frame 

The skeleton of the steel testing frame was already extracted for object detection; 

this skeleton is used for computing the alignment of each member. Table 10.15 presents 

computed alignment values. The computed alignment values are local, meaning only the 

changes that occur within the investigated member were recorded. However, translations 

of the entire system and/or combination of several members together were not 

investigated. These results show that the steel testing frame is in an excellent condition in 

terms of alignment.  
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Table 10.15: Alignment values computed for the steel testing frame. 
 

Member ID Computed 
Alignment (in/1 ft) 

Member 1 0.09 
Member 2 0.11 
Member 3 0.09 

 

10.4.2.2.2 Concrete Testing Frame 

As mentioned before, the skeleton of the concrete testing frame was extracted for 

object detection. The extracted skeleton is shown in Figure 10.18(a) and Figure 10.26. In 

this section, this skeleton is used to compute the alignment of each beam of the frame. 

The alignment results for the beams are given in Table 10.16; the results for the columns 

are already discussed in Section 10.4.2.1.1. The obtained results represent the vertical 

sag, the largest vertical displacement on each beams, for beams in terms of in/1ft in order 

to match the results later with condition rating criteria for alignment, which is shown in 

Table 9.6. 

Table 10.16: Alignment results for beams of the concrete testing frame.  
 

 Member 
ID 

Computed Alignment 
(in/1 ft) 

AB1      
AB2      
AB3      
BC1      
BC2      
BC3      
CD1      
CD2      
CD3      
DE1      
DE2      
DE3      
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Table 10.17 shows the result of the detected points of discontinuity locations, 

where significant defects are followed by abrupt change in the overall alignment of the 

object. The skeleton points are used to record the locations of the points of discontinuity; 

the closest skeleton point to the discontinuity location is recorded for each detection 

location.  The results indicate that several members of the concrete testing frame have 

significant points of discontinuity. The discontinuity locations were defined at points 

where there was either an abrupt change in the slope of a member along with detected 

damage or complete separation. This application requires prior knowledge on the 

orientations of the objects; for this case, the expected initial orientation of the columns 

was taken as vertical, and for the beams it was taken as horizontal.  

The computed alignment results are also shown in Figure 10.26; this figure shows 

the skeleton of the concrete testing frame on which the computed alignment values are 

placed at the bottom of each column, and the points of discontinuity are marked with 

black circles. The obtained results are then used for computing alignment-based condition 

rating for each member of the concrete testing frame. These condition ratings are 

determined based on the condition rating criteria given in Table 9.6. 

  



235 
 

 

Table 10.17: Points of discontinuity locations for the concrete testing frame.  
 

Member 
ID Points of Discontinuity x(in) z(in) 

1 BC3             
2 BC3             
3 BC2             
4 BC2             
5 BC1             
6 BC1             
7 CD3             
8 CD3             
9 CD2             
10 CD2             
11 CD1             
12 CD1             

 

 

 

Figure 10.26: Skeleton of the concrete testing frame with computed column alignment values and 
points of discontinuity. 
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10.4.2.2.3 DeKalb County Bridge 

The alignment values for the timber piles detected from the processed portion of 

the DeKalb County Bridge, which are shown in Figure 10.14, are also computed by using 

their individual skeletons. The results of the alignment computation are given in Table 

10.18. The obtained results represent the horizontal displacement, maximum horizontal 

drift for each pile, for the piles in terms of in/1ft in order to match the results later with 

condition rating criteria for alignment, which is shown in Table 9.6. Since the timber 

piles were attached to the pier cap, they were each misaligned by approximately the same 

amount. Thus, the alignment values computed for these piles are very close to each other. 

The alignment-based condition rating criteria for each pile is then determined by using 

the Table 9.6. 

 
Table 10.18: Alignment results for detected timber piles of the DeKalb County Bridge. 

 

 Member 
ID 

Alignment 
(in/1 ft) 

Pier 1      
Pier 2      
Pier 3      
Pier 4      
Pier 5      
Pier 6      
Pier 7      
Pier 8      

 

10.4.3 Rupture / Cross-section Change / Spalling / Steel Delamination 

In order to detect the major changes in the local geometry, including rupture, 

cross-section change, concrete spalling, and steel delamination, two methods are used: 

graph-based damage detection, Section 7.2, and surface-based damage detection, Section 

7.3. For the cases, when the object information is already known, the graph-based 
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damage detection method is a good option for finding the damage locations, and it is also 

used for quantifying the detected damage. On the other hand, surface-normal based 

damage detection methodology does not require a pre-knowledge on the object type. If 

available, object properties could be used to compute the reference normals as described 

in Section 7.3. These two damage detection methodologies are especially important since 

the current practice lacks an efficient system, which can record the area and/or volume of 

the major changes in the local geometry. Thus, quantifying the damage in an effective 

way, which was not possible before, plays a key role in future strategies that will 

integrate the laser scanning technology with visual inspections. 

The following sections, Sections 10.4.3.1 and 10.4.3.2, lay out the damage 

detection results, obtained by using the methods listed in the previous paragraph, for first 

the validation sets and then the testing sets. Some portions of the Bowker Overpass data 

are used for validating the following damage types: cross-section loss, concrete spalling, 

and steel delamination. The rest of the datasets, including theconcrete frame (concrete 

spalling) and DeKalb County Bridge (concrete spalling, cross-section change), are used 

for testing. A portion of the concrete testing frame was already used for validation in 

Chapter 8; in this Chapter it will only be used for testing. The damage types that are 

included in this section can be listed as section losses, concrete spalling, delamination, 

and cross-section changes.  

Table 10.13 shows the parameters and corresponding values used for graph-based 

damage detection. For skeletonization, a constant height function increment (as discussed 

in Section 6.3.2),   , of      is used, and the rest of the voxel dimensions are determined 

automatically based on the local point densities extracted from the point cloud. Limiting 
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values, which are defined for the minimum and maximum values of voxel sizes, are kept 

the same, Table 10.13.  

Table 10.10 shows the parameters and corresponding values used for each step 

towards surface-based damage detection. The neighborhood size, Section 7.3.4, and the 

intensity threshold are automatically computed based on the local properties of the point 

cloud. For patch investigation, again the investigated crack area was divided into 

              blocks. Each block was investigated separately to capture the local changes 

effectively. From each single block, three patches, with a constant patch size of     

points, were extracted. The patch extraction process is explained in detail in Section 

7.3.1. In this research, for all surface normal-based damage detection applications a 

constant angle threshold, which is 10 degrees, is used.   

 
Table 10.19: Parameters and corresponding ranges for surface-based damage detection. 

 
Methods Parameters Value 

Surface Normal Estimation Neighborhood size,   >3 
Surface Patch Investigation Neighborhood size,   8∙k 

Normal Comparison  
Angle threshold,     10° 

Intensity threshold,                      
 

10.4.3.1 Validation 

10.4.3.1.1 Bowker Overpass 

The validation set used in this section was extracted from the Bowker Overpass. 

Since this dataset presented field conditions, it was important to process the Bowker 

Overpass data for validation. The obtained results have showed that the developed 

damage detection algorithms are effective in detecting several damage types on field 
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datasets. The previous validation application performed on the concrete testing frame is 

described in Chapter 8. 

Several examples for the following damage types are investigated in this section: 

section losses, concrete spalling (with and without corrosion), and steel delamination. 

This discussion will continue with the results obtained for two sample regions, for which 

the cross-section loss is detected, and associated dimensions are computed.   

Both of the section loss regions, which include defects designated below as S1 

and S2, are extracted from Span 8, on the east face of the beam at Pier J shown in Figure 

10.12. The image of the first region is shown in Figure 10.27, and the associated damage 

detection results for S1 are given in Figure 10.28. Figure 10.28(a) shows the overall 

results, the red color indicates the defect locations. Since this investigated portion of the 

beam is completely damaged, due to section loss and corrosion, the entire patch was 

detected as damaged, and it was labeled with red points. 

The results of the validation study are included in Table 10.20. The measured 

dimensions were compared with the computed values from the scan. The results show 

that the laser scanners can be used effectively for dimension extraction for section losses.  
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Figure 10.27: Image of first section loss region, S1. 
 

 
 

(a) (b) 
 

Figure 10.28:Results for (a) overall damage detection results and (b) section loss. 
 

Table 10.20: Comparison between the field measurements and computed section loss dimensions 
for S1. 

 

Defect 
ID 

Measurement 
Number 

Field 
Measurement 

(in) 

Computed 
Dimension (in) Error (%) 

S1 
1                
2                
3                   
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Damage region S2, which is located on the second section loss region, is shown in 

Figure 10.29. The damage detection results for S2 are shown in Figure 10.30. Figure 

10.30(a) presents the overall results, and again the red color indicates the defect locations. 

The beam from which this region was taken from is entirely damaged; thus the complete 

patch was detected as damaged. 

The validation results are listed in Table 10.21. The measured dimensions were 

again compared with the computed values. This time the percentage errors of the 

measurements were found to be relatively higher than the previous case. However, this 

does not necessarily indicate that the damage detection was not effective for this 

example. This difference might also be result of a hand-measurement error, i.e., the 

precise location of the hand measurement may be different than the maximum distance 

location computed by the damage detection algorithm. In order to check this, the 

inspection report for the processed portion of the Bowker Overpass was used. The 

dimensions given in in the inspection report are shown in Figure 10.31. It can be seen 

from the results given in Table 10.22 that the dimensions listed in the inspection report 

are closer to the computation results. In general, the computed dimensions are either 

smaller than the ones recorded in the inspection report, or they are nearly the same. The 

dimensions recorded in the inspection report are found to be conservative.  



242 
 

 

Figure 10.29: Image of second section loss region, S2. 
 

 

  
(a) (b) 

 
Figure 10.30: Results for (a) overall damage detection and (b) section loss for S2. 

 
 

Table 10.21: Comparison between the field measurements and computed section loss dimensions 
for S2. 

 

Defect 
ID 

Measurement 
Number 

Field 
Measurement 

(in) 

Computed 
Dimension (in) Error (%) 

S2 1                 
2                  
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Figure 10.31: Locations for the extracted section loss patches (Mercuri and Mirliss, 2013). 
 

Table 10.22: Comparison between the inspection report values and computed section loss 
dimensions. 

 

Defect 
ID 

Measurement 
Description 

Inspection 
Report (in) 

Computed 
Dimension (in) Error (%) 

S1 Width                 
Length                   

S2 Length                
Height                

 

With respect to concrete spalling, the damage detections results for three regions 

will be described in this section. For these cases, damage detection was carried out by 

using the surface normal-based damage detection strategies given in 7.3. The parameters 

required for this damage detection strategy, which are listed in Table 10.19, were selected 

automatically by using the local point cloud properties. The images of the concrete 

spalling regions, which include the defects CS1, CS2, and CS3 respectively, are given 

below in Figure 10.32, Figure 10.34, and Figure 10.36. The results obtained through 
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surface-based damage detection are shown in Figure 10.33, Figure 10.35, and Figure 

10.37. 

The comparison results for the validation set are given in Table 10.23. The 

obtained results showed that the errors associated with the described comparisons are 

varying between 0% and 13%. It can be observed that as the validation dimension 

decreases the accuracy of the computed distance reduces. For the small dimensions, even 

the smallest deviation had a significant effect on the percentage error computations. 

For CS3, along with the concrete spalling, the corroded area was also 

differentiated; this region is showed in blue in Figure 10.37. This was obtained by using 

the intensity thresholding, which is explained in Section 7.3.3. The changes in the normal 

orientations combined with the surface intensity values were used to detect the defected 

areas.  

 

 

Figure 10.32: Image of CS1. 
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(a) (b) 
 

Figure 10.33: Damage Detection results for CS1: (a) surface representation and (b) 3D 
representation.  

 

 

 

Figure 10.34: Image of CS2. 
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(a) (b) 
 

Figure 10.35: Damage Detection results for CS2: (a) surface representation and (b) 3D 
representation. 

 

 

 

Figure 10.36: Image of CS3. 
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Figure 10.37: Damage Detection results for CS3. 
 

Table 10.23: Comparison between the field measurements and computed concrete spalling for 
investigated patches. 

 

Defect 
ID 

Measurement 
Number 

Field 
Measurement (in) 

Computed 
Dimension (in) Error (%) 

CS1 
1                
2                   
3                 

CS2 

1                  
2                 
3                  
4                

CS3 

1                 
2                
3                 
4                
5                  

 

Finally, the last damage type included in the validation section is delamination 

due to heavy corrosion. The Bowker Overpass is suffering from heavily corroded steel 

members. Corrosion has mild effects on some regions; however, for other locations, such 

as the regions chosen for this study, the results are significant. In this section, two 
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delamination locations are processed. The aim was to locate the delamination 

automatically and to extract the dimensions automatically. The images given in Figure 

10.38 and Figure 10.39 show the regions used for processing, which includes the 

delamination locations DL1 and DL2.  

In order to perform this detection, first the object is determined, which was done 

in Section 10.1.5, and then the surface orientation information was used to perform 

surface normal-based damage detection. Two cases were investigated, DL1 and DL2, in 

order to extract useful defect information. The results are shown in Figure 10.39 and 

Figure 10.40. The validation results are presented in Table 10.24. 

It was possible to extract validation measurements; however, due to the location 

of the laser scanner, which was beneath the delamination, the full scope of the detected 

region obtained through the performed defect detection did not completely represent the 

actual results. This is due to the fact that the scanner was not able to see the top side of 

the bottom flange of the girder.  Thus, it is evident that in order to obtain complete 

damage detection results, it is required to cover all the surfaces without any registration 

problems.  
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Figure 10.38: Image of DL1 
 

 

 

 

(a) (b) 
 

Figure 10.39: Damage Detection results for DL1: (b) 3D representation and (b) close-up view 
with marked interest locations.  
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Figure 10.40: Image of DL2. 
 

 

Figure 10.41: Damage Detection results for DL2: (b) 3D representation and (b) close-up view 
with marked interest locations.  

 
 



251 
 

Table 10.24: Comparison between the field measurements and computed delamination heights for 
investigated patches. 

 
Defect 

ID 
Measurement 

Number 
Field 

Measurement (in) 
Computed 

Dimension (in) Error (%) 

DL1 1                
DL2 1                 

 
 

Even though, linear dimensions were extracted in order to compare the detection 

results with the validation sets. The developed damage detection algorithms are capable 

of computing the area and volume values associated with the detected damages. The 

details of the damage quantification methodologies are discussed in Chapters 7 and 8. For 

the presented defects, if applicable, the area and volume value of the detected damage is 

computed. The results are given in Table 10.25. 

 
Table 10.25: Computed area and volume results for the detected damage regions.  

 
 Defect ID Damage Area (in2) Damage Volume (in3) 

SL1         
SL2        
CS1       22.81 
CS2       13.75 
CS3       15.21 
DL1     
DL2     

 
 

Finally, Figure 10.42 is used to illustrate the current practice of visual inspections, 

which consists sketching the recorded damage locations on the plan of the investigated 

structure. This sketch is from a sample inspection report on Bowker Overpass(Mercuri 

and Mirliss, 2013). As mentioned, the current practice involves presenting the inspection 

recordings in sketches; however these sketches do not include quantitative information on 

most of the entities shown, such as the cracks, spalled concrete regions, and etc. Laser 

scanning technology can significantly improve the current techniques used for recording 
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the visual inspections since this technology provides an opportunity to record and present 

the exact defect locations and quantitative information associated with them in a 3D 

environment. By using this technology, a semi-automated system can be developed in 

order to assist the inspectors to facilitate this data documentation process. 
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Figure 10.42: Span 7, underside of deck condition plan (Mercuri and Mirliss, 2013) 
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10.4.3.2 Testing 

In the previous section, the validation process for the developed damage detection 

algorithms is described. Several portions of the Bowker Overpass along with the 

measured dimensions are used in order to verify the accuracy of the developed damage 

detection algorithms. In this section, the rest of the datasets, which were listed in Table 

10.2, are used to test the algorithms to show that these methods are applicable to a variety 

of structures that consists different structural components.  

10.4.3.2.1 Concrete Testing Frame 

The concrete testing frame was used for both crack and spalling dimension 

validation in Chapter 8. A total of 21 cracks and 20 spalled concrete regions were used 

for validation. The results showed that the proposed methods are effective in both 

detecting and quantifying the existing damage on structures.  

Chapter 8 was focusing on locating and quantifying individual damaged regions; 

however, it is required to compute the total damage on a structural item in order to assign 

a condition rating based on the criteria tables listed in Chapter 9. Thus, this section is 

dedicated to computing the overall damage on the individual components of the concrete 

testing frame; the results are shown in Figure 10.28 and Table 10.27, for columns and 

beams separately. Column and beam locations can be found in Figure 10.3.  

Both graph-based damage detection and surface based damaged detection 

methods were used to compute the total damage on individual members. For this frame, 

the priority was given to the graph-based damage detection; the surface normal-based 

damage detection was only used at the points of discontinuity, where the graph-based 

damage detection method sometimes fails to compute the volumetric changes accurately. 
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Since exactly the same parameters and their associated values/ranges from the previous 

sections, for both graph-based and surface-based damage detection, are used for this 

application, no further discussion is included. The spalled concrete regions and the 

cracking locations for the concrete testing frame are shown in Appendix C.  

The obtained results are later used for determining the condition rating for each 

individual member of the concrete testing frame. These condition ratings, which are 

associated with concrete spalling and cracking, are assigned based on the criteria given in 

Table 9.9.  

 

 
Table 10.26: Computed area and volume results for the detected damage regions on the columns 

of the concrete testing frame. 
 

  Damage Area (in2) Damage Volume (in3) 
A1           
A2                         
A3                         
B1           
B2                         
B3                         
C1                     
C2           
C3           
D1           
D2                         
D3                         
E1           
E2           
E3                         

 

  



256 
 

 

Table 10.27: Computed area and volume results for the detected damage regions on the beams of 
the concrete testing frame. 

 
  Damage Area (in2) Damage Volume (in3) 

AB1                         
AB2                         
AB3                         
BC1            
BC2            
BC3           
CD1            
CD2           
CD3           
DE1                         
DE2                         
DE3                         

 

10.4.3.2.2 DeKalb County Bridge 

Finally, the last dataset on which the developed damage detection strategies were 

performed is the DeKalb County Bridge. The region, which is used for damage detection, 

is shown in Figure 10.43 with a red rectangle. The aim was again to compute the overall 

damage on individual members. Similar to the previous section, both graph-based 

damage detection and surface based damaged detection methods were used to compute 

the total damage on individual members. For this application, the graph-based damage 

detection was used for timber piles and the pier cap, whereas the surface normal-based 

damage detection was used for the concrete deck. The results of the performed damage 

detection are shown in Table 10.28. The parameters (and their corresponding values) 

used for both graph-based and surface-based damage detection are the same with the 

previous sections. Thus, an explanation for these parameters is not included in this 

section.  
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The obtained results are later used for determining the condition rating for each 

investigate member of the DeKalb County Bridge. The condition ratings, which are 

associated with concrete spalling and cracking, are assigned based on the criteria given in 

Table 9.9; and the condition ratings associated with timber piers are determined based on 

the condition rating criteria given in Table 9.12. 

 

 
 

Figure 10.43: Point cloud of DeKalb County Bridge. 
 

 

Table 10.28: The results of the surface damage detection algorithms for individual items. 
 

  Damage 
Area (in2) 

Damage 
Volume (in3) 

Deck                
Pier cap           

Pier 1           
Pier 2           
Pier 3           
Pier 4             
Pier 5           
Pier 6           
Pier 7           
Pier 8           
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10.4.4 Limitations for Surface Damage Detection  

Point clouds provide complete surface coverage for an investigated structure; 

however, due to noise (and several other external and internal error sources) individual 

points do not carry all the underlying surface properties. Thus, a set of neighborhood 

points   are selected, for most of the developed detection algorithms, such that this small 

set of points would be representative enough to capture these underlying surface 

properties.  

The process of determination of   for different point clouds, for surface-normal 

based damage detection, is already discussed in Section 7.3.4. Once the neighborhood 

size is computed, the area of the patch represented with these neighborhood points is used 

for extracting the dimensions of the minimum detectable damage size.  

Since the voxel models of point clouds are aimed to cover the entire surface of an 

investigated structure, the utilized voxel sizes are selected based on the surface point 

density. Unlike the neighborhood size approach explained above, the main goal of the 

voxel models is to generate a solid surface representation. Thus, the surface patch 

investigation methodology described in Section 7.2.1 is applied to compute the voxel 

dimension. This generated voxel model is later used to extract the skeleton of the 

investigated point cluster; thus, the voxel size poses a limiting value for the defects that 

are located by using skeletons.  

Finally, for cracks, the goal is to capture small local variations rather than 

capturing the local properties of the investigated patch. Thus, the limitations, which are 

determined for the surface-normal based damage detection that do not use color 

information, are not valid for this case. Instead, the same methodology used for 
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computing the limiting voxel dimensions is used to compute the limiting crack 

dimensions since the computed voxel sizes also represents the maximum distance 

between two surface points. This maximum distance poses the limiting criterion for the 

minimum detectable crack size. 

The limiting values computed for each dataset, for ten representative patches 

selected from each dataset, are shown in the following figures, Figure 10.44 and Figure 

10.45. These patches were selected to represent a range of parameters within the point 

clouds.  Figure 10.44 presents the limiting values for the first two damage categories, 

which was described in Chapter 1: small deformations and large deformations with no 

change in topology. Figure 10.45 shows the limiting values computed for large 

deformations with localized change in topology for the investigated datasets. From Figure 

10.44, it can be observed that the detectable damage dimensions for the first two damage 

categories are heavily dependent on the point density. For the third damage category, for 

which the damage locations are detected by using the variations in the surface normals, a 

general correlation may be observed with the effect of the changes in point density values 

on the computed detectable damage dimensions. These results emphasize the dependency 

of the obtained defect detection results on the varying point densities observed on the 

surface of the investigated structures.  
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Figure 10.44: Minimum detectable damage dimensions versus point density for small 
deformations and large deformations with no change in topology. 

 

 

 

Figure 10.45: Minimum detectable damage dimensions versus point density for large 
deformations with localized change in topology. 
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10.5 Condition Rating 

The final step of the damage detection is to determine the condition rating of the 

structural items. This is obtained by comparing the current physical state of the structure 

to what it was the day it was built. This process is important since the visual inspection 

based condition rating is the first part of the structural evaluation, which gives the overall 

condition of the structure based on all major deficiencies and its ability to carry loads. 

The aim is to classify the damage severity and to assign labels to the detected damage in 

a well-known format based on sample condition rating guidelines. 

In this section, condition ratings of for the individual member of each dataset, for 

which the damage detection results are shown in Chapter 10, are given. The condition 

rating is automatically assigned for the member of interest based on the worst condition 

rating obtained through the condition criteria tables given in Chapter 9. 

It should be noted that both local (changes in cross-sectional areas) and global 

changes (volumetric change and alignment information) are used to determine the 

representative condition rating of individual elements. All the applicable condition rating 

criteria tables are checked, and the governing condition rating is recorded for each 

element. 

The automated condition rating assignment is designed for bridge members; thus, 

the condition rating criteria discussed in Chapter 9 covers only bridges. However, in this 

chapter, condition ratings for the steel member frame and concrete testing frame are also 

computed. This provided an initial validation on the accuracy of the condition rating 

assignment methodology. Finally, the condition rating computed for the processed 

portions of the DeKalb County Bridge and Bowker Overpass are listed. 
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10.5.1 Concrete Testing Frame 

In order to test the accuracy of the condition rating assignment, the condition 

rating for the member of the steel testing frame was computed as if they were primary 

members of bridge superstructure. The ratings were given based on the amount of 

cracking, spalling, and alignment issues. In the worst case of cracking and spalling, the 

unsound areas on the members was up to 10% with the presence of structural cracking, 

and for the worst case alignment check, the horizontal movement was           for one of 

the columns and the vertical sag was           for one of the failed beams. The lists of the 

computed condition ratings both for columns and beams are given in Table 10.29 and 

Table 10.30.  
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Table 10.29: Condition rating results for columns of the concrete testing frame. 
 

 
Condition 

Rating 
Condition 

Description 
Governing 

Damage Type Criteria 

A1 1 Imminent 
failure Alignment 

Extremely more than 
0.25”/ft horizontal 

movement  

A2 2 Critical Alignment Slightly more than 0.25”/ft 
horizontal movement 

A3 4 Poor Alignment Up to 0.125”/ft horizontal 
movement 

B1 1 Imminent 
failure 

Alignment 
Extremely more than 

0.25”/ft horizontal 
movement 

B2 2 Critical Alignment Slightly more than 0.25”/ft 
horizontal movement 

B3 3 Serious Alignment More than 0.125”/ft 
horizontal movement 

C1 - - - - 

C2 3 Serious Alignment More than 0.125”/ft 
horizontal movement 

C3 2 Critical Alignment Slightly more than 0.25”/ft 
horizontal movement 

D1 1 Imminent 
failure 

Alignment 
Extremely more than 

0.25”/ft horizontal 
movement 

D2 2 Critical Alignment Slightly more than 0.25”/ft 
horizontal movement 

D3 2 Critical Alignment Slightly more than 0.25”/ft 
horizontal movement 

E1 1 Imminent 
failure 

Alignment 
Extremely more than 

0.25”/ft horizontal 
movement 

E2 2 Critical Alignment Slightly more than 0.25”/ft 
horizontal movement 

E3 2 Critical Alignment Slightly more than 0.25”/ft 
horizontal movement 
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Table 10.30: Condition rating results for beams of the concrete testing frame. 
 

  Conditio
n Rating 

Condition 
Description 

Governing 
Damage Type Criteria 

AB1 6 Satisfactory Alignment Moderate misalignment 
(<0.1”) 

AB2 6 Satisfactory Alignment Moderate misalignment 
(<0.1”) 

AB3 6 Satisfactory Alignment Moderate misalignment 
(<0.1”) 

BC1 0 Failure Alignment Discontinuity 
BC2 0 Failure Alignment Discontinuity 
BC3 0 Failure Alignment Discontinuity 
CD1 0 Failure Alignment Discontinuity 
CD1 0 Failure Alignment Discontinuity 
CD1 0 Failure Alignment Discontinuity 

DE1 6 Satisfactory Alignment Moderate misalignment 
(<0.1”) 

DE2 6 Satisfactory Alignment Moderate misalignment 
(<0.1”) 

DE3 5 Fair Alignment Moderate misalignment 
(>0.1”) 

 

 

10.5.2 DeKalb County Bridge 

The items of the portion of the Dekalb County Bridge that were used for both 

structural sensing and damage assessment are included in this section (Guldur and Hajjar, 

2014).  

The deck was already collapsed, thus the assigned condition rating for this item is 

0-failure. The pier cap, on the other hand, was in a better shape with only minor concrete 

spalling detected on the surface. The conditions of the timber piles were varying; it 

ranged from minor cracking, splitting and measurable section loss to completely crushing 

and splitting. The condition rating results are given in Table 10.31. 
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Table 10.31: Condition rating results for a portion of the DeKalb County Bridge. 
 

 
Condition 

Rating 
Condition 

Description 
Governing 

Damage Type Criteria 

Deck 0 Failure Concrete Spalling 
More than 30% 

spalling and 
discontinuity 

Pier cap 6 Satisfactory Concrete Spalling Up to 5% spalling 

Pier 1 3 Serious Timber pier damage Severe section 
loss>30% 

Pier 2 3 Serious Timber pier damage Severe section 
loss>30% 

Pier 3 1 Imminent Failure Timber pier damage Discontinuity, 
complete splitting 

Pier 4 1 Imminent Failure Timber pier damage Discontinuity, 
complete splitting 

Pier 5 4 Poor Timber pier damage Cracking and 
splitting <30% 

Pier 6 4 Poor Timber pier damage Cracking and 
splitting <30% 

Pier 7 3 Serious Timber pier damage Severe section 
loss>30% 

Pier 8 5 Fair Timber pier damage Cracking and 
splitting <10% 

 

10.5.3 Bowker Overpass 

For the Bowker Overpass, the condition ratings for only the regions, on which the 

validation was performed, are included.   

The condition rating for the underside of the deck, for the investigated span, was 

found to be 5-fair since structural cracking with leaking, efflorescence was observed 

along with combined areas of spalling with exposed reinforcement less than 10%. For the 

steel girder, the condition rating was assigned as 4-poor since advanced section loss was 

observed. The list of the computed condition ratings is given in Table 10.32. These 

results are in accordance with the latest inspection report of the investigated regions, 

which was prepared by MassDOT (Mercuri and Mirliss, 2013). 
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Table 10.32: Condition rating results for two locations on the Bowker Overpass. 

 

 
Condition 

Rating 
Condition 

Description 

Governing 
Damage 

Type 
Criteria 

Concrete 
Deck 5 Fair Concrete 

Spalling Up to 10% spalling 

Steel 
Girder 4 Poor Section loss More than 50% 
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11. Summary and Conclusion 

Not only are the bridges of the United States in a state of serious deterioration, but 

the methods used to perform inspections are slow and sometimes unreliable. Visual 

inspections may be dangerous and are not repeatable because they are subjective. This 

research has investigated the use of high-accuracy, camera-integrated laser scanners as 

sensors for capturing continuous, dense, texture-mapped surface data to advance the 

current practice by partially or fully automating inspections for damage localization, 

quantification, and documentation, thus augmenting and assisting current sensor-based 

and visual inspection strategies. This chapter first provides a summary of this research 

and its major contributions. The conclusions are laid out in Section 11.1 and future work 

is proposed in Section 11.2  

At the beginning of this dissertation, an extensive literature review was presented to 

lay out relevant work that was previously completed and that is in progress. This 

literature review demonstrated that using laser scanning technology for structural sensing 

and damage detection is a trending research area; however, the number of studies 

performed on this topic is limited. With recent improvements in both laser scanner 

technology and computer processing power, it is now possible to better investigate the 

full potential of laser scanning technology for many engineering applications. 

Our research has focused on the use of laser scanning technology for structural 

assessment and surface damage detection. The use of this technology required developing 

new methodologies that use computer vision for interpreting 3D data and extracting 

useful information in a format that could be interpreted by practitioners. We extended and 

used existing laser point cloud processing algorithms for processing range data in order to 
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identify objects, their location, orientation, and size, in a scene by using a pre-defined 

model library, which stores both 2D and 3D shape descriptors of the objects.  

The implemented algorithms for point cloud processing were mostly taken from 

previously completed work; however, they were altered to be used in our applications. 

Since one objective of this research was to locate and quantify surface damage, object 

detection was used to extract surface patches with similar properties to separate the point 

cloud into meaningful clusters for comparative analysis. To perform object detection, two 

major methods were implemented: global feature-based object detection and graph-based 

object detection.  

Once the objects were detected, these object representations were utilized for 

obtaining the geometric model of the structure. Defect localization was achieved by 

developing new strategies for comparing the captured data, which represent the as-is 

condition of the structure, with the correctly detected and fitted objects from the model 

library in order to locate and quantify discrepancies. Since the comparison strategies 

described above differ significantly depending on the defect type, the first step of this 

research was to determine the possible defect types that can be detected using laser point 

clouds. Generalized comparison strategies, associated with each damage type, were 

created by using both the surface information and volume information obtained through 

laser point cloud processing. This methodology allowed us to categorize and develop 

damage detection strategies for a wide range of damage types including cracks, corrosion, 

ruptures, bent members, points of discontinuity, and concrete spalling.  

Two sets of damage detection strategies were developed for this research: graph-

based damage detection and surface-based damage detection. The first developed damage 
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detection method, graph-based damage detection, uses the skeleton information of an 

object in order to locate and quantify surface damage such as ruptures, bent members, 

points of discontinuity, and concrete spalling. Either model induced or predicted as-

design properties were compared with the information obtained from the skeleton that 

represents the as-is condition of an investigated object. The discrepancies were located, 

and the surface damage was quantified. 

The second method developed for damage detection is the surface normal-based 

damage detection. This method was developed to expand the variety of the detected 

damage types to include cracks and corrosion along with ruptures and spalling. The 

modal properties of the detected surfaces and/or objects were used to locate the defective 

areas on the structural surfaces. Detecting only the locations of the defects was not 

sufficient to automatically quantify the damage. Thus, a clustering methodology was 

developed to group the detected defect point into individual damage clusters. To improve 

the clustering process, a silhouette-based cluster evaluation method was used to optimize 

the final number of defect clusters. The developed damage area and volume computation 

strategies were then used to record quantitative information on the detected damage 

clusters. First, a convex hull based damage quantification method was implemented; 

however, it was observed that this method is only applicable to a certain set of damage 

configurations. Hence, a new mesh-grid based damage quantification system was 

developed to quantify both area and volume of the detected damage.  

For cracks, a clustering step, which is a tuned version of the previous clustering 

method, was introduced to separate the cracks detected on a single patch into individual 

clusters. The previous clustering process was enhanced by introducing a strategy that 
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merges closely located clusters to avoid over clustering. Finally, for calculating the length 

and thickness information from cracks, a method that performs regression analysis was 

developed. The thicknesses of the cracks were determined through residual analysis, and 

the average crack thickness was recorded.  

Once the detected small defects were segmented into individual clusters, a set of 

finite values representing quantitative attributes and/or properties are assigned to each 

defect cluster. In total, seven features were used: eccentricity, area divided by eccentricity 

ellipse, solidity, absolute value of correlation coefficient, compactness, and mean and 

standard deviation of the intensity distribution. A three layered feed forward neural 

network was used for classification, and the accuracy, precision, sensitivity and 

specificity were recorded to analyze the performance of the used classifier.  

Condition assessment criteria were also integrated into the damage detection 

algorithms to determine the condition rating automatically from the texture mapped point 

clouds. The condition assessment criteria requirements from a representative state 

department of transportation were observed, and the most comprehensive defect criteria 

for each investigated damage types were used in the algorithm development. Finally, all 

the listed developed methodologies for structural sensing and damage assessment were 

applied to several datasets, starting with synthetic point clouds, continuing with several 

lab datasets and finally ending with two bridge datasets. The following sections, Sections 

11.1 and 11.2, present the conclusions of this study and suggestion for future work, 

respectively.  
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11.1 Conclusions 

The primary conclusions of this research are described as follows: 

 Both global feature-based and graph-based object detection methods can effectively 

detect predefined objects from point clouds by using a dissimilarity measure. 

 A novel graph-based object detection method was shown to successfully detect local 

changes in the geometry of an investigated member to locate and quantify the 

following damage types: ruptures, bent members, alignment issues, points of 

discontinuity, and spalled concrete regions. 

 A novel surface-based damage detection strategy was shown to efficiently locate and 

quantify the targeted defect types, which are cracks, corrosion, ruptures, and 

spallings.  

 A unique neural network classifier implementation, which was performed on a 

specific point cloud dataset, showed that this classifier could be effectively used for 

crack detection on point clouds with an accuracy of 93%. 

 The condition assessment strategy provided the opportunity to document quantitative 

information on damaged areas in a widely-accepted format.  

 Thus, it was shown that laser scanners can be used for aiding visual inspection and 

enhancing the quality of the collected information.  

Overall, this research showed that the strategies developed for texture-mapped 

laser-scans with varying quality can be used to generate automated damage detection, 

quantification, documentation methods and to create a self-acting condition assessment 

system.  
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11.2 Future Work 

This research lays the groundwork for several possible future research projects, 

the details of which are discussed below. 

Even though the developed algorithms are capable of detecting surface damage 

locations efficiently, there remains many possibilities for improvement. First, most of the 

utilized input parameters for the developed algorithms are automatically extracted using 

local surface properties. This is an effective method for computing the necessary inputs; 

however, parameter selection can be specifically optimized for each structure type. 

Future research could focus on selecting the best optimization strategy for the discussed 

applications and testing the optimization strategy’s capabilities on an extensive 

calibration and validation set. Second, the method used for crack clustering could be 

improved. The feature set extracted from the investigated patches could be altered to 

contain descriptive object information, which includes individual defect information 

rather than just having a generalized defect indicator. Third, in this research, the 

performance of only one classifier, the neural network classifier, is observed. Different 

classifiers could be used to perform a comparative study.  

A second area for future work is the automation of the documentation process for 

visual inspections. For surface defects, the current reporting methods involve data 

collection on site and then, sketching the recorded damage data on a plan off site. This 

can be enhanced by developing appropriate software that will use initial plan drawings 

and/or bridge information models to sketch the recorded defect information. It is also 

possible to improve these strategies further by adding the condition assessment 
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information extracted from the laser scanners, in order to improve current load rating 

calculation strategies.  

In this research, as well as in many other studies, the information model generation 

from point clouds is investigated. However, the conversion from information models to 

finite element models is a new research area. Laser scanning technology can be used to 

identify and evaluate damage, both with and without the use of structural analysis 

models, formed either from raw point clouds or semantic models. Further investigation 

could be conducted to evaluate the performance of the augmented analysis procedures in 

performing accurate behavior predictions and providing inspection feedback.  

It is difficult to predict the loading pattern that causes a change in the topology of 

a fractured or collapsed member, or structure, with available methods. Laser scanners can 

be used as a validation tool after investigating structures under expected loading 

scenarios, which can later be used for predicting what may have caused the observed 

changes in topology (e.g., which loading scenario), identifying damaged structural 

elements, identifying new topology for comparative analysis, and validating some 

collapse/fracture models and post-event evaluation. 

Camera-integrated laser scanners are the only sensor type that is used in this 

research. Combining information collected via laser scanners with other available sensor 

technologies outputs would enable developing a more complete inspection, monitoring 

and documentation strategy, where different types of sensors complement each other.  

Finally, another application that could benefit from using the developed model 

and damage detection algorithms is surveying of large-scale area surveying using LiDAR 

systems. Geographic information systems along with LiDARs can be used to develop 
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robust, automated post-hazard damage assessment strategies, while the collected 

information could be used to enhance coordinating post-hazard response teams 

effectively. 
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A. Appendix A - Results of Surface Normal Variation Study 

This appendix shows the detailed results of the surface normal variation study used for 

creating the Figure 7.21.The results are given in Table A.1. 

Table A.1: Surface normal variation results for a selected neighborhood. 
 

 
Neighborhood Size (k) 

Point # k = 3 k = 6 k = 8 k = 16 k = 24 k = 32 
1 27.0 3.7 5.0 2.9 1.0 0.2 
2 25.8 8.2 5.6 2.1 2.0 0.2 
3 29.8 9.8 4.6 2.0 1.5 0.2 
4 18.2 10.5 3.5 1.3 1.0 0.2 
5 72.9 3.0 0.9 0.9 1.0 0.2 
6 9.6 1.1 6.6 3.5 1.8 0.2 
7 46.7 4.2 1.9 2.7 1.8 0.2 
8 7.9 4.4 7.2 1.5 1.7 0.2 
9 33.1 7.0 8.1 1.3 0.9 0.2 

10 14.2 7.5 4.8 2.1 1.0 0.2 
11 33.1 1.1 1.9 2.7 2.5 0.2 
12 6.0 1.5 5.4 4.2 1.5 0.2 
13 33.0 3.2 3.9 1.8 0.4 0.2 
14 12.2 5.3 5.4 2.0 1.8 0.2 
15 17.2 11.4 8.1 4.2 1.0 0.2 
16 9.3 10.2 6.0 3.8 0.3 0.2 
17 61.9 9.7 4.6 3.2 1.0 0.2 
18 12.6 8.7 5.5 1.2 0.4 0.2 
19 9.8 4.5 1.6 1.4 2.3 0.2 
20 10.4 7.0 5.4 1.2 1.6 0.2 
21 33.0 10.5 2.9 2.1 1.6 0.2 
22 27.4 7.1 4.6 2.5 1.5 0.2 
23 26.8 7.2 5.4 3.7 1.5 0.2 
24 14.2 4.2 2.7 2.8 0.7 0.2 
25 3.7 7.1 5.1 3.3 1.8 0.2 
26 34.2 0.3 2.7 3.3 1.8 0.2 
27 61.9 11.2 8.5 2.2 1.0 0.2 
28 36.3 4.5 1.1 2.7 1.2 0.2 
29 36.3 4.5 1.1 2.7 1.2 0.2 
30 61.9 9.7 8.5 3.2 1.0 0.2 
31 37.7 7.4 4.4 1.3 1.6 0.2 
32 3.7 10.2 5.1 3.3 1.8 0.2 
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B. Appendix B - Representation of Mesh Grid Results 

The Table B.1 presents the result of the application of mesh grid for damage quantification 

performed on a portion of the DeKalb County Bridge. The individual defect locations, for which 

the results are given in Table B.1, are shown in Figure 7.27.  

 
Table B.1: Mesh grid results for defects D2-D7. 
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C. Appendix C - Concrete Testing Frame Damage Measurements 

In this appendix, the measurements of the labelled surface cracks and spalled concrete 

regions for the concrete testing frame are given in Table C.1. The description of the concrete 

testing frame is provided in Section 10.5 in detail. The first column of the table represents the 

location of each defect. The necessary explanations for the labels are given in Section 10.5. The 

labelled images that show each defect represented in Table C.1 are later displayed in Table C.2.  

For cracks, the length measurement is a straight line from the start to the end of each crack. 

Thus, the measured length values might be smaller than the actual length of the crack, where the 

crack has a curved shape. The recorded crack thickness values always represent the widest 

opening along a crack. The measurements for the labelled cracks are given in Table C.1. 

Figure C.1 represents the reference measurement drawings for two types of spalling: 

triangular and rectangular spalling. For spallings, the measurements for each number pair, where 

each number indicates a corner, are recorded. The measurements for the spalled concrete regions 

are given in Table C.1. 

 

  
(a) (b) 

Figure C.1: Reference measurement drawings for spalled concrete regions. 
 

The measurements for hairline cracks (and two exceptions for spalling: E0-1-S1 and E0-

2-S1) are not recorded.   
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Table C.1: Measurements for labelled crack spalling locations for concrete testing frame. 
 

Label Crack 
Label 

Spalling 
Label 

Crack Spalling 
Thickness 

(in) 
Length 

(in) 
1-2(in) 2-3 (in) 3-1 (in)   
1-2(in) 2-3 (in) 3-4(in) 4-1(in) 

A0-1 

A0-1-C1   0.08 1.16         
A0-1-C2   0.12 1.14         
A0-1-C3   0.07 0.36         

  A0-1-S1     0.54 0.72 0.87   

A0-2 

A0-2-C1   0.04 0.70         
A0-2-C2   0.03 0.54         
A0-2-C3   0.06 0.47         
A0-2-C4   0.06 0.88         
A0-2-C5   0.05 0.04         

  A0-2-S1     0.56 0.68 0.21   
  A0-2-S2     0.27 2.07 0.58 2.14 

A0-3   A0-3-S1     0.64 2.16 0.83 2.05 

A0-4 
A0-4-C1   0.03 1.51         

  A0-4-S1     0.22 1.78 0.21 1.82 

A1-1 

A1-1-C1   0.10 1.78         
A1-1-C2   0.03 0.92         
A1-1-C3   0.02 1.31         

  A1-1-S1     1.06 0.76 0.71   
  A1-1-S2     1.24 0.49 0.69 0.90 

A1-4 

A1-4-C1   0.04 1.02         
A1-4-C2   0.02 1.00         
A1-4-C3   0.03 1.25         
A1-4-C4   0.12 1.05         
A1-4-C5   0.06 1.02         

  A1-4-S1     0.55 0.78 0.51   

A1-6R 
A1-6R-C1   0.02 1.89         

  A1-6R-S1     0.49 2.13 0.22 2.09 

A2-1 
A2-1-C1   0.03 1.48         
A2-1-C2   0.02 1.08         

A2-4 
A2-4-C1   0.03 1.49         
A2-4-C2   0.02 1.05         

A2-5R A2-5R-C1   0.03 2.05         
AB1-1   AB1-1-S1     1.11 1.15 0.49   
AB1-4 AB1-4-C1   0.94 1.86         
AB1-5 AB1-5-C1   0.43 2.17         

B1-1 
B1-1-C1   0.02 1.28         
B1-1-C2   0.03 1.53         
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B1-1-C3   0.07 1.79         
B1-1-C4   0.14 1.56         
B1-1-C5   0.06 1.34         
B1-1-C6   0.04 0.73         

  B1-1-S1     1.39 1.13 0.54   

B1-4 

B1-4-C1   0.05 1.47         
B1-4-C2   Hairline         
B1-4-C3   0.27 1.39         
B1-4-C4   0.07 1.64         

  B1-4-S1     0.82 1.09 0.60   

B1-5R 
B1-5R-C1   0.03 2.07         
B1-5R-C2   0.07 2.04         

B1-6R 
B1-6R-C1   0.29 2.07         
B1-6R-C2   0.07 2.07         
B1-6R-C3   0.03 1.75         

B1-6L   B1-6L-S1     1.11 2.04 1.38 2.05 

B2-1 

B2-1-C1   0.05 1.64         
B2-1-C2   0.09 1.89         
B2-1-C3   0.12 1.79         
B2-1-C4   0.03 1.52         
B2-1-C5   0.04 1.58         

  B2-1-S1     1.95 1.62 0.52   

B2-4 

B2-4-C1   0.05 2.03         
B2-4-C2   0.13 1.87         
B2-4-C3   0.09 1.77         

  B2-4-S1     0.84 0.52 0.74   

B2-5R 

B2-5R-C1   0.09 2.15         
B2-5R-C2   0.14 2.24         
B2-5R-C3   0.09 1.73         
B2-5R-C4   0.04 2.17         

B3-1 
B3-1-C1   0.03 1.34         
B3-1-C2   0.03 1.76         

  B3-1-S1     1.89 1.81 1.11   

B3-4 
B3-4-C1   0.05 1.51         
B3-4-C2   Hairline         

  B3-4-S1     1.88 1.77 1.47   

B3-5 
B3-5-C1   0.05 2.07         

  B3-5-S1     1.18 2.08 1.50 2.09 
B3-6R   B3-6R-S1     1.06 2.08 1.19 2.04 
BC1-1   BC1-1-S1     2.65 1.65 2.26 2.63 
BC1-4   BC1-4-S1     2.23 2.35 2.73 1.85 
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BC1-5   BC1-5-S1     2.64 2.18 1.80 2.08 
BC1-6   BC1-6-S1     2.55 2.13 1.69 2.19 
BC2-1   BC2-1-S1     2.54 0.95 2.33 1.83 
BC2-4   BC2-4-S1     2.15 2.44 1.37   

BC2-5 
BC2-5-C1   0.02 1.01         
BC2-5-C2   0.23 1.27         

  BC2-5-S1     1.83 2.17 1.36 2.10 
BC2-6   BC2-6-S1     1.64 2.08 1.45 2.13 

C1-1 

C1-1-C1   0.03 1.75         
C1-1-C2   0.09 1.96         
C1-1-C3   0.19 1.94         
C1-1-C4   0.12 1.90         
C1-1-C5   0.04 1.65         
C1-1-C6   0.02 1.75         

  C1-1-S1     1.05 1.98 2.09   
  C1-1-S2     1.81 1.11 1.90   

C1-4 

C1-4-C1   0.11 1.36         
C1-4-C2   0.41 1.58         
C1-4-C3   0.22 1.78         
C1-4-C4   0.10 1.69         

  C1-4-S1     1.79 1.27 1.68   
  C1-4-S2     1.84 0.98 1.94   

C1-6R 
C1-6R-C1   0.16 2.10         

  C1-6R-S1     1.08 2.03 1.19 2.03 

C1-6L 
C1-6L-C1   0.07 2.06         
C1-6L-C2   0.22 2.10         

  C1-6L-S1     1.05 2.02 1.09 2.09 

C2-1 

C2-1-C1   0.14 1.77         
C2-1-C2   0.09 1.65         
C2-1-C3   0.12 1.54         
C2-1-C4   0.10 1.90         
C2-1-C5   0.09 1.46         

  C2-1-S1     2.29 1.23 1.80   
  C2-1-S2     2.08 1.43 1.89   

C2-4 

C2-4-C1   0.17 1.81         
C2-4-C2   0.09 1.87         
C2-4-C3   0.11 2.26         

  C2-4-S1     1.35 1.94 2.03   
  C2-4-S2     1.23 2.03 1.96   

C2-6R   C2-6R-S1     1.45 2.11 1.29 2.13 
C2-6L C2-6L-C1   0.08 2.10         
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C2-6L-C2   0.10 2.04         
  C2-6L-S1     1.243 2.160 1.248 2.134 

C3-1 

C3-1-C1   0.06 1.66         
C3-1-C2   0.11 1.99         

  C3-1-S1     2.19 0.92 1.82 1.25 
  C3-1-S2     1.86 0.99 1.79   

C3-4 

C3-4-C1   0.04 1.88         
C3-4-C2   0.06 1.90         

  C3-4-S1     2.02 1.00 1.91   
  C3-4-S2     1.83 0.96 1.82   

C3-5   C3-5-S1     2.79 2.08 2.83 2.08 
C3-6R   C3-6R-S1     1.00 2.07 1.01 2.04 

C3-6L 
C3-6L-C1   0.08 2.08         

  C3-6L-S1     1.01 2.10 0.90 2.12 
CD1-1   CD1-1-S1     2.19 3.17 3.45 2.45 
CD1-4   CD1-4-S1     3.13 2.43 2.14 2.06 
CD1-5   CD1-5-S1     2.05 2.13 2.45 2.19 
CD1-6   CD1-6-S1     3.17 2.10 2.47 2.23 
CD2-1   CD2-1-S1     2.16 1.69 2.75 1.68 
CD2-4   CD2-4-S1     2.39 2.01 2.24   
CD2-5   CD2-5-S1     2.24 2.09 1.68 2.10 
CD2-6   CD2-6-S1     1.17 2.05 1.46 2.02 

D0-1 

D0-1-C1   0.10 1.45         
D0-1-C2   0.07 1.24         
D0-1-C3   0.04 1.12         
D0-1-C4   0.04 1.52         

D0-2 
D0-2-C1   0.05 0.97         

  D0-2-S1     1.29       

D0-3 

D0-3-C1   0.05 2.11         
D0-3-C2   0.08 1.68         
D0-3-C3   0.09 1.09         
D0-3-C4   0.07 1.96         

D0-4 
D0-4-C1   0.10 1.04         

  D0-4-S1     0.79 1.87   1.93 

D1-1 

D1-1-C1   0.04 1.56         
D1-1-C2   0.02 1.78         
D1-1-C3   Hairline         
D1-1-C4   0.05 1.57         
D1-1-C5   0.05 1.18         
D1-1-C6   0.06 1.71         

D1-4 D1-4-C1   0.09 0.44         
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D1-4-C2   0.03 1.64         
D1-4-C3   0.02 1.30         
D1-4-C4   0.04 1.51         
D1-4-C5   0.16 1.50         

D1-5L 
D1-5L-C1   0.05 2.09         
D1-5L-C2   0.03 2.09         

D1-6R   D1-6R-S1     0.10 1.94 0.90 2.04 

D1-6L 
D1-6L-C1   0.03 2.06         
D1-6L-C2   0.06 2.09         
D1-6L-C3   0.04 2.03         

D2-1 

D2-1-C1   Hairline         
D2-1-C2   0.09 1.47         
D2-1-C3   0.02 1.00         
D2-1-C4   0.06 1.39         
D2-1-C5   0.04 1.54         
D2-1-C6   0.18 1.59         

  D2-1-C7   0.06 1.33         

D2-4 

D2-4-C1   0.07 1.81         
D2-4-C2   0.02 1.57         
D2-4-C3   0.06 0.89         
D2-4-C4   0.03 1.44         
D2-4-C5   0.03 1.46         

D2-5L 

D2-5L-C1   0.07 2.18         
D2-5L-C2   0.20 2.25         
D2-5L-C3   0.25 2.07         
D2-5L-C4   0.03 2.02         

  D2-5L-C5   0.04 0.83         

D3-1 

D3-1-C1   0.27 1.61         
D3-1-C2   0.03 1.33         
D3-1-C3   0.05 1.27         
D3-1-C4   0.08 1.45         
D3-1-C5   0.02 1.47         

  D3-1-S1     1.22 1.36 0.67   
  D3-1-S2     1.20 1.58 1.67   

D3-4 

D3-4-C1   0.04 0.68         
D3-4-C2   0.07 1.37         
D3-4-C3   0.02 1.33         
D3-4-C4   0.05 1.33         
D3-4-C5   0.06 0.62         
D3-4-C6   0.25 1.92         

  D3-4-S1     1.53 1.38 1.32   
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  D3-4-S2     1.68 1.05 1.62   

D3-5 

D3-5-C1   0.05 0.83         
D3-5-C2   0.23 0.89         
D3-5-C3   0.33 2.16         

  D3-5-S1     1.32 2.14 0.67 2.05 

D3-6R 
D3-6R-C1   0.09 2.06         
D3-6R-C2   0.11 2.08         

D3-6L   D3-6L-S1     1.56 2.08 1.58 2.08 
DE1-1 DE1-1-C1   0.28 1.21         

DE1-4 
DE1-4-C1   0.25 1.71         
DE1-4-C2   0.16 1.13         

DE1-5 
DE1-5-C1   0.09 2.16         
DE1-5-C2   0.03 1.84         

E0-1 

E0-1-C1   Hairline         
E0-1-C2   Hairline         
E0-1-C3   0.12 1.43         
E0-1-C4   0.34 1.28         

  E0-1-S1       0.54     
E0-2   E0-2-S1           2.04 

E0-3 

E0-3-C1   Hairline         
E0-3-C2   0.04 1.73         
E0-3-C3   0.33 2.05         
E0-3-C4   0.17 1.92         

E0-4 
E0-4-C1   Hairline         
E0-4-C2   0.18 1.06         
E0-4-C3   0.13 1.53         

E1-1 

E1-1-C1   0.04 0.98         
E1-1-C2   0.08 0.95         
E1-1-C3   0.06 1.28         
E1-1-C4   Hairline         

  E1-1-S1     0.80 1.47 0.84   
  E1-1-S2     0.50 0.85 0.79   

E1-3 

E1-3-C1   0.03 0.92         
E1-3-C2   0.05 0.48         
E1-3-C3   0.39 1.49         
E1-3-C4   0.07 0.65         

E1-4   E1-4-S1     1.48 2.14 0.72 2.13 

E2-1 

E2-1-C1   Hairline         
E2-1-C2   0.10 1.63         
E2-1-C3   0.19 1.28         
E2-1-C4   0.03 0.70         
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E2-1-C5   Hairline         
  E2-1-S1     0.66 1.15 0.57   

E2-3   E2-3-S1     1.19 2.17 0.89 2.13 
E2-4 E2-4-C1   0.11 1.59         

E2-5L 
E2-5L-C1   Hairline         
E2-5L-C2   0.11 2.14         

E3-1 
E3-1-C1   0.06 1.57         
E3-1-C2   0.06 1.61         

E3-3 
E3-3-C1   Blocked         
E3-3-C2   0.05 2.11         

E3-4 
E3-4-C1   0.07 1.62         
E3-4-C2   0.09 1.56         

 

  



304 
 

Table C.2: Images of labelled crack and spalling locations for concrete testing frame.  
 

A0-1 

 
  

A0-2 

 

A0-1-C1 

A0-1-C2 

A0-2-C1 

A0-2-C2 
A0-2-C3 

A0-1-C3 

A0-1-S1 

A0-2-C4 

A0-2-C5 
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A0-3 

 
  

A0-4 

 

A0-3-S1 

A0-4-C1 
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A0-4 

 
  

A0-2 

 

A0-2-S1 

A0-2-S2 

A0-4-S1 
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A1-1 

 
  

A1-4 

 

A1-1-C1 

A1-1-S1 

A1-1-C2 

A1-1-S2 

A1-1-C3 

A1-4-C1 A1-4-C2 

A1-4-C3 

A1-4-C4 

A1-4-C5 
A1-4-S1 
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A1-6R 

 
  

A2-1 

 

A1-6R-S1 

A1-6R-C1 

A2-1-C1 

A2-1-C2 
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A2-4 

 
  

A2-5R 

 

A2-4-C1 

A2-4-C2 

A2-5R-C1 
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AB1-1 

 
  

AB1-4 

 

AB1-1-S1 

AB1-4-C1 
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AB1-5 

 
  

B1-1 

 

AB1-5-C1 

B1-1-C1 

B1-1-C2 

B1-1-C3 

B1-1-S1 
B1-1-C4 

B1-1-C5 

B1-1-C6 
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B1-4 

 
  

B1-5R 

 

B1-4-C1 
B1-4-C2 

B1-4-C3 B1-4-S1 

B1-4-C4 

B1-5R-C1 

B1-5R-C2 
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B1-6R 

 
  

B1-6L 

 

B1-6R-C1 

B1-6R-C2 

B1-6R-C3 

B1-6L-S1 
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B2-1 

 
  

B2-4 

 

B2-1-C1 

B2-1-C2 

B2-1-C3 B2-1-C4 

B2-1-C5 

B2-1-S1 

B2-4-C1 

B2-4-C2 
B2-4-C3 

B2-4-S1 



315 
 

B2-5R 

 
  

B3-1 

 

B2-5R-C1 

B2-5R-C2 

B2-5R-C3 

B2-5R-C4 

B3-1-C1 

B3-1-S1 

B3-1-C2 
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B3-4 

 
  

B3-5 

 

B3-4-C1 
B3-4-C2 

B3-4-S1 

B3-5-S1 B3-5-C1 
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B3-6R 

 
  

BC1-1 

 

B3-6R-S1 

BC1-1-S1 



318 
 

BC1-4 

 
  

BC1-5 

 

BC1-4-S1 

BC1-5-S1 
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BC1-6 

 
  

BC2-1 

 

BC1-6-S1 

BC2-1-S1 
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BC2-4 

 
  

BC2-5 

 

BC2-4-S1 

BC2-5-S1 

BC2-5-C1 

BC2-5-C2 
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BC2-6 

 
  

C1-1 

 

BC2-6-S1 

C1-1-C1 

C1-1-C2 

C1-1-C3 

C1-1-S1 C1-1-S2 

C1-1-C4 
C1-1-C5 

C1-1-C6 
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C1-4 

 
  

C1-6R 

 

C1-4-C1 

C1-4-C2 

C1-4-S1 C1-4-S2 

C1-4-C3 
C1-4-C4 

C1-6R-C1 

C1-6R-S1 
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C1-6L 

 
  

C2-1 

 

C1-6L-C1 

C1-6L-C2 

C1-6L-S1 

C2-1-C1 

C2-1-C2 

C2-1-C3 

C2-1-S1 C2-1-S2 

C2-1-C4 
C2-1-C5 
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C2-4 

 
  

C2-6R 

 

C2-4-C1 

C2-4-S1 

C2-4-S2 

C2-4-C2 

C2-4-C3 

C2-6R-S1 



325 
 

C2-6L 

 
  

C3-1 

 

C2-6L-C1 

C2-6L-C2 

C2-6L-S1 

C3-1-C1 

C3-1-S1 C3-1-S2 

C3-1-C2 
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C3-4 

 
  

C3-5 

 

C3-4-C1 

C3-4-S1 C3-4-S2 

C3-4-C2 

C3-5-S1 
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C3-6R 

 
  

C3-6L 

 

C3-6R-S1 

C3-6L-C1 

C3-6L-S1 
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CD1-1 

 
  

CD1-4 

 

CD1-1-S1 

CD1-4-S1 
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CD1-5 

 
  

CD1-6 

 

CD1-5-S1 

CD1-6-S1 



330 
 

CD2-1 

 
  

CD2-4 

 

CD2-1-S1 

CD2-4-S1 
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CD2-5 

 
  

CD2-6 

 
 

CD2-5-S1 

CD2-6-S1 
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D0-1 

 
  

D0-2 

 

D0-1-C1 

D0-1-C2 

D0-1-C3 

D0-1-C4 

D0-2-C1 

D0-2-S1 
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D0-3 

 
  

D0-4 

 

D0-3-C1 

D0-3-C2 

D0-3-C3 

D0-3-C4 

D0-4-S1 

D0-4-C1 
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D1-1 

 
  

D1-4 

 

D1-1-C1 

D1-1-C2 
D1-1-C3 

D1-1-C4 

D1-1-C5 

D1-1-C6 

D1-4-C1 

D1-4-C2 

D1-4-C3 

D1-4-C4 

D1-4-C5 



335 
 

D1-5L 

 
  

D1-6R 

 

D1-5L-C1 

D1-5L-C2 

D1-6R-S1 
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D1-6L 

 
  

D2-1 

 

D1-6L-C1 

D1-6L-C2 

D1-6L-C3 

D2-1-C1 

D2-1-C2 

D2-1-C3 

D2-1-S6 

D2-1-C4 

D2-1-C5 

D2-1-C7 
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D2-4 

 
  

D2-5L 

 

D2-4-C1 
D2-4-C2 

D2-4-C3 

D2-4-C4 

D2-4-C5 

D2-5L-

C1 

D2-5L-

C2 

D2-5L-

C3 

D2-5L-

C4 

D2-5L-

C5 
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D3-1 

 
  

D3-4 

 

D3-1-C1 D3-1-C2 

D3-1-C3 

D3-1-C4 

D3-1-C5 

D3-1-S2 

D3-1-S1 

D3-4-C1 

D3-4-C2 

D3-4-C3 

D3-4-C4 
D3-4-C5 

D3-4-C6 

D3-4-S1 

D3-4-S2 
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D3-5 

 
  

D3-6R 

 

D3-5-S1 
D3-5-C2 

D3-5-C3 

D3-5-C1 

D3-6R-C2 

D3-6R-C1 
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D3-6L 

 
  

DE1-1 

 

D3-6L-S1 

DE1-1-C1 
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DE1-4 

 
  

DE1-5 

 

DE1-4-C1 

DE1-4-C2 

DE1-5-C1 
DE1-5-C2 
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E0-1 

 
  

E0-2 

 

E0-1-C1 

E0-1-C4 

E0-1-C2 

E0-1-C3 

E0-2-S1 

E0-1-S1 
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E0-3 

 
  

E0-4 

 

E0-3-C1 

E0-1-C2 

E0-1-C3 
E0-1-C4 

E0-4-C1 

E0-4-C2 

E0-4-C3 
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E1-1 

 
  

E1-3 

 

E1-1-C1 

E1-1-C2 

E1-1-S1 

E1-1-S2 E1-1-C3 

E1-1-C4 

E1-3-C1 

E1-3-C2 E1-3-C3 

E1-3-C4 
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E1-4 

 
  

E2-1 

 

E1-4-S1 

E2-1-C1 

E2-1-C2 

E2-1-C3 

E2-1-S1 

E2-1-C4 

E2-1-C5 
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E2-3 

 
  

E2-4 

 

E2-3-S1 

E2-4-C1 
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E2-5L 

 
  

E3-1 

 

E2-5L-C1 

E2-5-C2 

E3-1-C1 

E3-1-C2 
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E3-3 

 
  

E3-4 

 
 

E3-3-C1 

E3-3-C2 

E3-4-C1 

E3-4-C2 
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D. Appendix D – Neural Network Training Set Information 

This appendix provides additional information on the patches used for training the 

artificial neural network described in Chapter 8. In Table D.1, for each processed surface patch, 

the patch number, total number of points on the patch, computed intensity threshold, total 

number of detected defects, total number of actual defects, and total number of false positives are 

listed. The total number of all detected defect clusters is computed as 201. Out of these 201 

feature vectors, 74 of the feature vectors represent actual defects, and the rest, 127 clusters, are 

composed of false positives.  

 

Table D.1: Information on neural network training patches.  
 

Patch 
Number # points Threshold # Defects TRUE FALSE 

1 1239 0.63 5 3 2 

2 1153 0.58 4 2 2 

3 1147 0.58 2 1 1 

4 1182 0.58 4 2 2 

5 1209 0.54 2 1 1 

6 1200 0.57 1 0 1 

7 1243 0.57 3 1 2 

8 1287 0.6 1 0 1 

9 1199 0.58 1 1 0 

10 1349 0.57 2 0 2 

11 1339 0.61 4 1 3 

12 1367 0.62 0 0 0 

13 1500 0.59 3 2 1 

14 1466 0.56 1 1 0 

15 789 0.62 1 0 1 

16 1561 0.64 1 0 1 
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17 1602 0.62 3 0 3 

18 1266 0.59 2 1 1 

19 1588 0.65 0 0 0 

20 1700 0.69 1 0 1 

21 1777 0.64 3 0 3 

22 1546 0.64 1 0 1 

23 1847 0.66 1 0 1 

24 1833 0.67 2 0 2 

25 1863 0.67 3 0 3 

26 1608 0.67 2 0 2 

27 1665 0.69 0 0 0 

28 2043 0.68 1 0 1 

29 2161 0.67 3 0 3 

30 1673 0.61 0 0 0 

31 1345 0.66 1 0 1 

32 2464 0.71 2 1 1 

33 1993 0.71 3 0 3 

34 1754 0.69 0 0 0 

35 2105 0.71 2 0 2 

36 2225 0.58 4 0 4 

37 1648 0.61 2 2 0 

38 820 0.53 1 0 1 

39 769 0.52 0 0 0 

40 1489 0.63 4 3 1 

41 1430 0.57 5 0 5 

42 1380 0.61 0 0 0 

43 1312 0.53 1 0 1 

44 1359 0.57 1 1 0 

45 1774 0.64 4 0 4 

46 1404 0.64 0 0 0 

47 1943 0.63 1 0 1 

48 1802 0.67 0 0 0 

49 2010 0.71 4 0 4 
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50 1679 0.73 0 0 0 

51 2365 0.67 2 0 2 

52 1989 0.72 1 0 1 

53 2113 0.74 5 0 5 

54 1799 0.73 0 0 0 

55 2587 0.69 2 0 2 

56 2097 0.75 5 0 5 

57 2104 0.67 1 1 0 

58 2055 0.69 0 0 0 

59 2588 0.57 0 0 0 

60 2670 0.67 4 3 1 

61 2772 0.61 3 2 1 

62 2124 0.62 1 1 0 

63 1369 0.64 3 3 0 

64 1713 0.63 3 2 1 

65 2055 0.69 3 2 1 

66 2641 0.66 2 2 0 

67 2399 0.73 1 1 0 

68 2757 0.74 5 4 1 

69 2861 0.62 1 1 0 

70 2732 0.72 5 4 1 

71 3477 0.74 2 1 1 

72 2305 0.62 2 1 1 

73 1180 0.61 2 0 2 

74 819 0.52 2 0 2 

75 1293 0.62 2 1 1 

76 1555 0.59 3 1 2 

77 1396 0.61 0 0 0 

78 901 0.53 2 1 1 

79 1450 0.62 0 0 0 

80 2058 0.64 2 0 2 

81 1458 0.65 3 0 3 

82 1306 0.59 1 1 0 
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83 1267 0.63 0 0 0 

84 2230 0.69 3 0 3 

85 1782 0.65 1 0 1 

86 1528 0.61 2 0 2 

87 1497 0.64 0 0 0 

88 2712 0.69 2 0 2 

89 2119 0.72 3 0 3 

90 2040 0.67 0 0 0 

91 1768 0.69 0 0 0 

92 3466 0.74 3 0 3 

93 2234 0.75 3 0 3 

94 2069 0.68 0 0 0 

95 1889 0.72 0 0 0 

96 3838 0.78 3 0 3 

97 1482 0.64 1 1 0 

98 805 0.62 0 0 0 

99 1467 0.56 3 3 0 

100 2244 0.69 1 1 0 

101 2399 0.58 3 3 0 

102 2757 0.64 3 2 1 

103 2861 0.58 2 2 0 

104 2732 0.59 4 3 1 

105 3477 0.61 2 2 0 

106 2305 0.69 2 2 0 

  Sum 201 74 127 
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E. Appendix E - Initial Site Investigation and Laser Scanning of Bowker 

Overpass 

This appendix provides detailed information on the current condition of the Bowker 

Overpass, Section E.1, and the followed scanning strategy Section E.2. This section finishes by 

presenting the captured point clouds in Section E.3. 

 

E.1 Inspection and Field Report 

The two locations that are selected for scanning are already given in Section 10.1.5. 

Figure 10.10 shows the portion of the plan of the Bowker Overpass that highlights the scanning 

locations. This section provides information on the current condition of the selected scan 

locations.  

 

E.1.1 4FH  

  Mercuri and Mirliss (2013) state that “Bridge B-16-365 (4FH) is a three span structure 

which is part of the Bowker Interchange. This structure carries the northbound traffic from the 

Bowker Interchange mainline structure (B-16-365 (4EL)) onto the Storrow Drive Westbound on-

ramp. This bridge is oriented from north to south.” For the general orientation of the bridge, refer 

to Figure 10.9. Figures from Figure E.2 through Figure E.8 are composed of images that show 

several defects observed on the Bridge 4FH, Span 7; the image of this span is given in Figure 

E.1. 
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Figure E.1: Side view of Bridge 4FH, Span 7 from east. 
 

 

Figure E.2: Underside of Bridge 4FH, Span 7 and delamination on the south end.  
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Figure E.3: Section loss on east-side exterior fascia girder on Bridge 4FH, Span 7. 
 

 

Figure E.4: Corrosion on the south side of the joint of Bridge 4FH, Span 7. 
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Figure E.5: Corrosion and delamination on the north side of the joint of Bridge 4FH, Span 7. 
 

 

Figure E.6: Concrete spalling and cracking on the underside of Bridge 4FH, Span 7 deck. 
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Figure E.7: Cracks and corrosion on the underside of Bridge 4FH, Span 7 deck. 
 

 

Figure E.8: Concrete spalling and exposed reinforcement on the underside of Bridge 4FH, Span 7 deck. 
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E.1.2 4FJ  

   Mirliss et al. (2013) state that “Bridge B-16-365 (4FJ) is a three span structure which is 

part of the Charlesgate Bowker Interchange. This structure carries the northbound off-ramp 

traffic from the Bowker Interchange mainline structure (B-16-365(4EL)) onto Storrow Drive 

eastbound.” For the general orientation of the bridge, refer to Figure 10.9. Figures from Figure 

E.10 through Figure E.13 provide images that show several defects observed on the investigated 

corner of the Bridge 4FJ; the image of this corner is given in Figure E.9. 

 

 

Figure E.9: Side view of the joint from the east on Bridge 4FJ with concrete spalling, delamination, etc.  
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Figure E.10: Section loss, concrete spalling and exposed reinforcement from the exterior view of the joint 
of Bridge 4FJ.  

 

 

Figure E.11: Concrete spalling under the expansion joint of Bridge 4FJ. 
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Figure E.12: Corrosion on the north side of the joint of Bridge 4FJ. 
 

 

Figure E.13: Corrosion on the south side of the joint of Bridge 4FJ. 
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E.2 Laser Scan Locations for Field Scanning 

E.2.1 4FH – Span 7 – Top and Bottom Deck 

In order to provide complete coverage on the underside and east elevation of Span 7, the 

following plan for laser scanner locations is executed. Green rectangles represent the locations 

for the laser scanner. Additionally, four scans were captured from top of the deck; these four 

scans were equally spaced along the entire length of Span 7. In total, nine scans were captured. 

Figure E.14 and Figure E.15 show the locations for the laser scanner on the plan of Span 7. Table 

E.1 and Table E.2 consist of the images taken during the field scanning of the Bridge 4FH, Span 

7; each image is followed by the location information.  

 

 

Figure E.14: Laser scanner locations for bottom deck of Bridge 4FH, Span 7. 
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Table E.1: Images of the scanner locations captured during field scanning of Bridge 4FH, Span 7, bottom 
deck.  

 

 
4FH, Span 7, bottom deck scan location 1. 

 

 
4FH, Span 7, bottom deck scan location 2. 
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4FH, Span 7, bottom deck scan location 3. 

 

 
4FH, Span 7, bottom deck scan location 4. 

 



364 
 

 
4FH, Span 7, bottom deck scan location 5. 

 

 
4FH, Span 7, bottom deck scan location 6. 
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4FH, Span 7, bottom deck scan location 7. 

 

 
4FH, Span 7, bottom deck scan location 8. 
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4FH, Span 7, bottom deck scan location 9. 
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Figure E.15: Laser scanner locations for top deck of Bridge 4FH, Span 7. 
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Table E.2: Images of the scanner locations captured during field scanning of Bridge 4FH, Span 7, top 
deck.  

 

 
4FH, Span 7, top deck scan location 1. 

 

 
4FH, Span 7, top deck scan location 2. 
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4FH, Span 7, top deck scan location 3. 

 

 
4FH, Span 7, top deck scan location 4. 
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E.2.2 4FJ - Joint 

In order to provide complete coverage at the joint that connects Span 23 and Span 24 on 

Bridge 4FJ, the following plan for laser scan locations is executed. Green rectangles represent 

the locations for the laser scanner. Figure E.16 shows the five locations for the laser scans for the 

joint. Table E.3 is composed of the images taken during the field scanning of the selected joint of 

the Bridge 4FJ; each image is followed by the location information.  

 

 

 
Figure E.16: Laser scan locations for joint between Span 23 and Span 24. 
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Table E.3: Images of the scanner locations captured during field scanning of Bridge 4FJ, corner.  

 

 
4FJ, corner, scan location 1. 

 

 
4FJ, corner, scan location 2. 
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4FJ, corner, scan location 3. 

 

 
4FJ, corner, scan location 4. 
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4FJ, corner, scan location 5. 
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E.3 Captured Point Clouds 

Laser scanning is performed using Faro Focus 3D – 120 in high-resolution mode. 3D data 

is captured along with the images. The scan registration and texture-mapping are completed 

using Faro Scene software. Figure E.17 shows the entire point cloud, which is the combination of 

18 scans. Figure 10.12 and Figure 10.13 represent the isolated point clouds for the Bridge 4FH, 

Span 7 and Bridge 4FJ, corner respectively. 

 

 

Figure E.17: Entire point cloud. 
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Figure E.18: Point cloud of 4FH, Span 7. 
 

 

Figure E.19: Point cloud of 4FJ, corner. 
 

 

 

 

 

 



 

Department of Civil and Environmental Engineering Reports 

Northeastern University 

 

REPORT NO. AUTHORS TITLE DATE 
    
NEU-CEE-2014-03 Guldur, B.; Hajjar, J F. Laser-Based Structural 

Sensing and Surface 
Damage Detection 

September 2014 

NEU-CEE-2014-02 Saykin, V. V.; Song, J.; 
Hajjar, J. F. 

A Validated Approach 
to Modeling Collapse of 
Steel Structures 

September 2014 

    
NEU-CEE-2013-02 Denavit, M. D.; Hajjar, 

J. F. 
Description of 
Geometric Nonlinearity 
for Beam-Column 
Analysis in OpenSees 

September 2013 

    
NEU-CEE-2013-01 Hajjar, J. F.; Sesen, A. 

H.; Jampole, E.; 
Wetherbee, A. 

A Synopsis of 
Sustainable Structural 
Systems with Rocking, 
Self-Centering, and 
Articulated Energy-
Dissipating Fuses 

June 2013 

    
NEU-CEE-2011-01 Hajjar, J. F.; Guldur, B.; 

and Sesen, A. H. 
Laboratory for 
Structural Testing of 
Resilient and 
Sustainable Systems 
(STReSS Laboratory) 

September 2011 

 


	Northeastern University
	September 26, 2014
	Laser-based structural sensing and surface damage detection
	Burcu Guldur
	Jerome F. Hajjar
	Recommended Citation


	Burcu Gulder Acknowledgements Page
	Burcu Guldur Report
	Burcu Guldur Back Page

