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Abstract: This paper presents selected results from an experimental and computational evaluation on the behavior of slender concrete-filled
steel tubes (CFTs) under combined axial compression and biaxial flexure. A complex loading protocol was used in the experimental program,
including monotonic and cyclic loading that allowed detailed evaluation of the complete beam-column response. This paper principally
addresses the experimental determination of the maximum stable axial load–bending moment (P−M) interaction strength. The experimental
P−M interaction strengths extracted at incipient instability shows that for very slender specimens, the bilinear interaction diagram proposed
in the current design provisions of the AISC is somewhat unconservative. This experimental observation is also confirmed by detailed
computational results. However, the results also indicate that current AISC provisions provide an accurate and conservative approach
for evaluating axial load–flexural interaction for most practical CFT column sizes and lengths (i.e., composite beam columns with low
and intermediate slenderness). DOI: 10.1061/(ASCE)ST.1943-541X.0000949. © 2014 American Society of Civil Engineers.
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Introduction

Composite steel-concrete structural systems constitute a valuable
and growing sector of the construction market, often being adopted
for some of the more challenging structural configurations because
of the high strength and stiffness offered by these systems.
Composite columns in the form of either steel-reinforced concrete
(SRC) or concrete-filled steel tube (CFT) beam columns have been
adopted extensively for tall buildings in Asia in areas of large
seismic and wind exposures and are being used increasingly in
the United States and Europe for structures of all heights. Previous
experimental and analytical work has shown that well-designed
concrete-filled tubes have superior stiffness, strength, ductility,
and deformation characteristics as compared to structural steel
or reinforced concrete beam columns, particularly under cyclic
loads (Hajjar 2000; Tort and Hajjar 2003; Leon et al. 2007; Leon
and Hajjar 2008; Gourley et al. 2008). However, there are at least
three areas where information is needed for composite beam-
column elements: (1) the validity of current specifications to
estimate the strength of slender composite beam columns, as little
data are available for that type of system; (2) the establishment of
accurate member flexural stiffness values under cyclic loads for
systems incorporating composite beam-column elements; and

(3) the development of system behavior factors for composite
systems under seismic loads, as current specifications rely solely
on similarities to either structural steel or reinforced concrete
structural systems to establish these factors.

To address these issues, a multiinstitution-combined experimen-
tal and computational research program was undertaken, including:
(1) experiments on 18 slender, full-scale concrete-filled steel tube
beam columns with the highest hollow structural section (HSS)
width-thickness ratios commercially available (Perea et al. 2010;
Perea 2010); (2) development of new finite element formulations
that enable accurate representation of the seismic response of three-
dimensional composite frame structures (Denavit et al. 2010;
Denavit 2012); and (3) development of design recommendations
for composite structures within the context of specification for
structural steel buildings (AISC 2010b).

Perea et al. (2013a) described the axial load behavior in detail,
with particular emphasis on the buckling strength of slender mem-
bers and the determination of the effective stiffness of the members
to assess buckling strength. The rest of the research focuses on
axial–flexure interaction and has two broad objectives, one at the
member/design level and one at the analysis/system level. The first
objective at the member/design level is to compare the experimental
results to the existing AISC specification (AISC 2010b) cross-
section strength-based provisions for slender composite CFTs.
Although the tests are cyclic in nature, the relatively low rates of
degradation observed during the first two sets of loads applied [load
case 1 (LC1) and LC2, described in the preceding sections) mean
that the strength obtained from these tests can be taken as an
approximate lower bound to the strength that would have been ob-
tained from monotonic tests. The second objective at the analysis/
system level is to provide complex experimental data of CFT beam-
column behavior that can be used to calibrate and validate advanced
analytical models. These models, in turn, will be used to conduct
FEMA P695 (FEMA 2009) analyses to validate system factors
(ductility, overstrength, and deflection amplification) for structural
systems using composite columns (Denavit 2012).
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This paper addresses only the comparison to AISC beam-
column strength and is intended to complement the column (or ax-
ial) strength data described in a previous paper (Perea et al. 2013a).
The authors recognize the limits of using data derived from
specimens that have been subjected to severe displacement histor-
ies in this context but believe that the careful and redundant
measurements made has allowed them to properly process the data
and minimize errors (Perea et al. 2013b). In the end, both the
experimental and analytical results need to be recognized as only
approximations to the real values.

Background

Extensive literature exists on the behavior of composite CFT beam
columns, including their behavior under large cyclic deformations.
Most of the prior work on cyclic performance of composite beam
columns was carried out in Japan, Europe, Australia, and the
United States, and comprehensive summaries can be found in
Kawaguchi et al. (1998), Nishiyama et al. (2002), Roik and
Bergmann (1989), Sulyok and Galambos (1995), Lundberg and

Galambos (1996), and Gourley et al. (2008). Much of the available
experimental data indicate outstanding hysteretic behavior, thus
making CFTs suitable for design in high seismic zones. However,
many of the prior cyclic tests have been conducted either on
relatively stocky specimens, both in terms of flexural and local
buckling criteria or without the required test controls and
instrumentation to assess cyclic interaction of axial load and biaxial
bending moment (P−M) behavior in detail.

Determination of P−M Interaction Diagrams

Methods for determining the interaction strength at the cross-
section level are well established. Commonly, it can be determined
experimentally as the peak strength from tests on stocky members
where the geometric nonlinear effects are negligible. In design, a
common approach to assess cross-section strength is the strain
compatibility method (AISC 2010b; ACI 2011). In this approach,
a linear distribution of strain within the cross-section is assumed,
stresses are determined through appropriate constitutive relations,
and the axial load and bending moment are computed by integra-
tion over the cross-section. Concrete cracking and crushing and
steel yielding are typically included in the constitutive relations,
and additional effects such as concrete confinement, steel
local buckling, and strain hardening can be included as well
(Sakino et al. 2004; Varma 2000; Denavit and Hajjar 2010; Denavit
2012).

The interaction strength at the beam-column level is more
complex, depending on cross-section stiffness and strength as well
as member length, end restraint, and initial geometric imperfec-
tions. Additionally, different measures for bending moment that
are of interest for assessing different performance metrics (e.g., first
order versus second order) arise.

In the design of composite members, depending on the strategy
used by the provisions to account for beam-column stability, the
beam-column interaction strength is often taken as the cross-section
interaction strength (ACI 2011) or an interaction surface that
reduces the cross-section strength to account for member stability
(Leon et al. 2007; AISC 2010b). However, design interaction
curves only define the available strength and are intended to be
paired with specific analysis procedures. These procedures include
the effective length and direct analysis methods (Hajjar et al. 1997;
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Surovek-Maleck and White 2004; AISC 2010b), which prescribe
equivalent rigidities, initial imperfections, and other conditions to
be considered in assessing the required strength. For this reason,
under a given set of applied loads, the second-order internal forces
will differ between experimental values and those obtained from
the elastic analyses used in design. Because of this, experimental
strengths are not directly comparable because the interaction
diagram is meant to be compared against internal forces from
an elastic analysis; however, these two quantities are near enough
that their comparison is insightful.

The maximum interaction strength of a beam column may be
reached in an experiment or analysis by increasing both the axial
and flexural loads proportionally (as in Path A in Fig. 1), increasing
one component nonproportionally while holding the second one
constant (as in Path B), or a combination (as in Path C) until an
unstable condition arises (e.g., an abrupt displacement or failure
if the specimen is held in load control). These methods are common

in computational studies and are also possible in experimental
studies because of the unique control capabilities of the multi-axial
subassemblage testing (MAST) facility (Hajjar et al. 2002;
French et al. 2004) of the network for earthquake engineering sim-
ulation (NEES).

In this research, the method labeled Path B in Fig. 1 was utilized
to determine points on the beam-column interaction surface by
probes of increasing moment at a constant axial load. Path B is
a mixed load-displacement control sequence where an incremental
axial load is applied while holding the lateral top displacements to
zero, and then lateral displacements are imposed while holding the
axial load constant.

This method is schematically illustrated in Fig. 2(a) for the case
of a fixed-free (K ¼ 2.0) cantilever column with a given length, L
(a “Notation” section is included at the end of the paper defining all
symbols). First, with no axial load, the column was plumbed by
moving the crosshead connected to the column top and so reducing
the initial out-of-plumbness, Δo, to zero. Then, while holding the
column plumbed, a compressive axial load, P, was applied concen-
trically and held constant at the target value; at this point, the
plumbed column with only initial out-of-straightness imperfection,
δo, is at the origin of the graph in Fig. 2(a). By controlling the
lateral displacements at the top of the column, the specimen is then
subjected to a monotonically increasing lateral load, F, which is
initially resisted elastically (assuming the axial load has not already
initiated material inelasticity). Under this loading condition, the
maximum total bending moment developed occurs at the column
base and is equal to the sum of the overturning or first-order
moment, FL, and the second-order effects, PΔ. As the uniaxial
lateral top displacement increases beyond Δ1, the materials begin
to behave nonlinearly at the base as the concrete cracks and crushes
and the steel yields and strain hardens as a plastic hinge forms at
that location. At some displacement, Δ2, the beam column reaches
incipient instability as indicated by an inability to carry additional
lateral load. At this peak lateral load, Fmax, the cross-section may
not be fully plasticized, and there may be some remaining flexural
strength at the cross-section level. Loading can continue if the
column is held in its unstable configuration, as was done in the
experiments through displacement control of the actuators that
imposed the lateral load. As the lateral displacement is increased
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Table 1. Test Matrix with Measured Values

Specimen name L (m) HSS section Fy (MPa) Fu (MPa) Es (GPa) f 0
c (MPa) fc (MPa) ft (MPa) Ec (GPa) λ

1-C5-18-5 5.50 141.3 × 3.4 383 487 194.0 37.9 37.9 7.6 27.6 0.90
2-C12-18-5 5.50 323.9 × 6.4 337 446 199.2 37.9 38.6 7.6 27.6 1.55
3-C20-18-5 5.52 508.0 × 6.4 328 471 200.3 37.9 40.0 7.6 27.6 1.05
4-Rw-18-5 5.54 508 × 305 × 7.9 365 502 202.4 37.9 40.7 7.6 27.6 1.38
5-Rs-18-5 5.54 508 × 305 × 7.9 365 502 202.4 37.9 40.7 7.6 27.6 0.88
6-C12-18-12 5.50 323.9 × 6.4 337 446 199.2 87.6 91.0 11.4 41.9 1.90
7-C20-18-12 5.53 508.0 × 6.4 328 471 200.3 87.6 91.0 11.4 41.9 1.30
8-Rw-18-12 5.55 508 × 305 × 7.9 365 502 202.4 87.6 91.7 11.4 41.9 1.65
9-Rs-18-12 5.55 508 × 305 × 7.9 365 502 202.4 87.6 91.7 11.4 41.9 1.04
10-C12-26-5 7.95 323.9 × 6.4 335 470 200.2 50.3 54.5 4.1 34.5 2.38
11-C20-26-5 7.99 508.0 × 6.4 305 477 201.7 50.3 55.8 4.1 34.5 1.61
12-Rw-26-5 7.96 508 × 305 × 7.9 406 534 200.1 50.3 56.5 4.1 34.5 2.14
13-Rs-26-5 7.97 508 × 305 × 7.9 383 505 200.2 50.3 57.2 4.1 34.5 1.35
14-C12-26-12 7.96 323.9 × 6.4 383 461 198.3 79.3 80.0 5.2 40.0 2.72
15-C20-26-12 7.98 508.0 × 6.4 293 454 200.1 79.3 80.0 5.2 40.0 1.78
16-Rw-26-12 7.96 508 × 305 × 7.9 381 506 200.5 79.3 80.7 5.2 40.0 2.30
17-Rs-26-12 7.96 508 × 305 × 7.9 380 496 200.1 79.3 80.7 5.2 40.0 1.46
18-C5-26-12 7.94 141.3 × 3.4 383 487 194.0 79.3 80.7 5.2 40.0 1.51

Note: Fy, Fu, and Es = yielding stress, ultimate stress, and Young’s modulus of the HSS steel section, respectively; f 0
c and fc = compression concrete strength

at the 28th day and at the testing day, respectively; ft and Ec = tension strength and the Young’s modulus of the concrete, respectively; L = column length;
λ = slenderness parameter calculated as defined by AISC (2010b).
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and the second-order effects become more dominant, a reduction in
the lateral load and increase in the moment at the base are observed.
Eventually, at displacement Δ3, the cross-section strength will be
reached, and the moment at the base will cease to rise.

The peak second-order moment at incipient buckling is termed
the maximum safe second-order moment, Mtotal; the increase in
moment from the point of incipient buckling to the point
where the cross-section strength is reached is termed the unusable
flexural strength, Mufc. The sum of these two components equals
the cross-section strength moment for a given level of axial force.
The interaction diagram is then defined by repeating this process on
the same beam column, determining the Mtotal for different values
of sustained axial load, P, as shown in Fig. 2(b) (curve with the
label beam-column strength). The axial load levels used in the
loading protocol were often applied between the anchor points
Cλ and Dλ as defined by AISC (2010b), i.e., a zone in which
the flexural strength in composite sections is equal or larger than
the flexural strength in pure bending. The first sets of interaction
P−Mtotal values obtained with the mentioned approach are

assumed to be the full expected strength for the composite beam
column; however, as the damage accumulates during an experimen-
tal test, evidenced by steel local buckling and concrete crushing at
the column base, the available total flexural strength (Mtotal) of the
composite member is expected to decrease.

Also of interest on the total P−M diagram are the components
for the first-order moment and the additional PΔ moment, which
are indicative of the maximum external load that can be applied and
the effects of geometric nonlinearity, respectively. The first-order
moments are equal to the second-order moments in two cases:
the first is at the pure flexural strength, Mp, where the absence
of axial load precludes any second-order effects; the second is
at the pure compression strength, Pn, where the absence of lateral
deflection precludes any second-order effects.

The total P−M diagram of the beam column, obtained as de-
scribed previously and shown in Fig. 2(b), has no consideration of
the initial out-of-plumbness, Δo, because this was removed at the
beginning of the load case [as schematically illustrated at the origi-
nal point of Fig. 2(a)]. However, the initial imperfections must be

Table 2. Description of Loading Cases: Uniaxial Flexure (LC2) and Biaxial Flexure (LC3)

Specimen

LC2—unidirectional LC3—bidirectional

K P (kN) Direction Reversal K P (kN) Shape Reversal

1-C5-18-5 2 66.7 Principal x-axis Fmax — — — —
133.4 — — —

2-C12-18-5 2 1,334.5 Principal x-axis Fmax 2 1,112.1 Fig. 4(a) Fmax=probe
889.6 667.2 8 probes X or Y
444.8 — — —

3-C20-18-5 2 4,448.2 Imperfection Fmax 2 5,560.3 Fig. 4(a) Fmax=probe
2,224.1 3,336.2 16 probes X or Y

— 1,112.1 — —
4-Rw-18-5 2 2,668.9 Principal x-axis Fmax 2 3,336.2 Fig. 4(a) Fmax=probe

1,334.5 2,001.7 8 probes X or Y
— 667.2 — —

5-Rs-18-5 2 4,448.2 Principal x-axis Fmax 2 3,336.2 Fig. 4(a) Fmax=probe X or Y
2,224.1 1,112.1 8 probes —

6-C12-18-12 2 1,334.5 Imperfection Fmax 2 1,668.1 Fig. 4(a) Fmax=probe
667.2 1,000.8 8 probes X or Y
— 333.6 — —

7-C20-18-12 2 4,448.2 Imperfection Fmax 2 5,560.3 Fig. 4(a) Fmax=probe
2,224.1 8 probes X or Y

8-Rw-18-12 2 2,668.9 Principal x-axis Fmax 2 3,558.6 Fig. 4(a) Fmax=probe
1,334.5 — 8 probes X or Y

9-Rs-18-12 2 5,337.9 Principal x-axis Fmax 2 3,558.6 Fig. 4(b) Fmax=probe
1,779.3 — 6 main probes with

subprobes each
X or Y

10-C12-26-5 2 889.6 Imperfection Δ—targets 1% increments 2 667.2 Fig. 4(c) Δ—targets 1% increments
444.8 222.4 — —

11-C20-26-5 2 2,668.9 Imperfection Δ—targets 1% increments 2 2,001.7 Fig. 4(c) Δ—targets 1% increments
1,334.5 667.2 — —

12-Rw-26-5 2 1,779.3 Principal x-axis Δ—targets 1% increments 2 1,334.5 Fig. 4(c) Δ—targets 1% increments
889.6 2,224.1 — —

13-Rs-26-5 2 1,779.3 Principal x-axis Δ—targets 1% increments 2 1,334.5 Fig. 4(c) Δ—targets 1% increments
3,558.6 2,224.1 — —

14-C12-26-
12

2 444.8 Imperfection Δ—targets 1% increments 2 667.2 Fig. 4(c) Δ—targets 1% increments
889.6 — — —

1 1,334.5 Imperfection Δ—targets 1% increments 1 1,334.5 Fig. 4(c) Δ—targets 1% increments
2,001.7 — — —

15-C20-26-
12

2 1,779.3 Imperfection Δ—targets 1% increments 2 889.6 Fig. 4(c) Δ—targets 1% increments
3,558.6 2,668.9 — —

16-Rw-26-12 2 889.6 Principal x-axis Δ—targets 1% increments 2 1,334.5 Fig. 4(c) Δ—targets 1% increments
1,779.3 2,224.1 — —

17-Rs-26-12 2 1,779.3 Principal x-axis Δ—targets 1% increments 2 889.6 Fig. 4(c) Δ—targets 1% increments
3,558.6 2,668.9 — —

18-C5-26-12 1 66.7 Imperfection Δ—targets 1% increments 1 89.0 Fig. 4(c) Δ—targets 1% increments
111.2 — — —
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considered in design to account for the erection tolerances by the
standards [ASTM A6/A6M (ASTM 2013); AISC 2010a].

Two alternatives to account for the initial out-of-plumbness,Δo,
in strength design are:
• Accounting for the initial out-of-plumbness, Δo, in the required

strength by consideration of these imperfections in the second-
order analysis through either directly modeling the initial
out-of-plumbness or by adding appropriate notional loads. This
is consistent with the requirements of the direct analysis method
(DAM) and effective length method in the AISC specification
(AISC 2010b).

• Accounting for the initial out-of-plumbness,Δo, in the available
strength by utilizing a design interaction surface based on the
net moment, Mnet. The net moment is equal to the total sec-
ond-order moment, Mtotal, minus the second-order moment
caused by the initial out-of-plumbness (Region 3 in Fig. 3).
An attractive feature of interaction diagrams constructed with
Mnet is that the pure axial strength corresponds to that of a
geometrically imperfect column (affected both by δo and
Δo). This is useful when the moments caused by the initial
imperfections are not captured in the analysis to determine
required strength.
Fig. 3 shows the net P−M beam-column strength (Region 4)

as the cross-section P−M strength reduced by instability because
of axial compression (Region 1), the unusable flexural strength
(Region 2), and the strength consumed by the initial out-of-plumbness
imperfection (Region 3). In contrast, the total P−M diagram is the
cross-section P−M strength reduced only by instability because of
axial compression (Region 1) and the unusable flexural strength
(Region 2).

The net moment depends on the magnitude of the geometric
imperfections. Because the measured imperfections in many
specimens of the experimental program (Perea et al. 2013a)
were larger than those permitted by standards [ASTM A6/A6M
(ASTM 2013); AISC 2010a), the experimental net moment
strengths will be lower than those expected of columns within
the standard tolerances.

Experimental Tests

In this test series, 18 specimens with different steel-tube shapes,
high width-to-thickness ratios, large slenderness for flexural
buckling, and both normal- and high-strength concrete were tested
(Table 1). The tests were labeled by a test number–shape–length–
concrete strength convention (Perea 2010; Perea et al. 2013a); thus,
Specimen 8-Rw-18-12 corresponds to the eighth specimen in the
series, with a rectangular cross-section loaded along its weak axis
(C# was used for circular sections, where “#” indicates the tube
diameter), with a length of 5.5 m (18 ft), and a nominal concrete
strength of 83 MPa (12 ksi). The specimens were tested at the
NEES MAST facility, a large universal testing machine with
precise six degrees of freedom (DOF) control of both load (forces
and moments) and deformations (displacements and rotations) at
the top crosshead (Hajjar et al. 2002; French et al. 2004). The
18 specimens were initially subjected to a series of buckling tests
under a test protocol labeled LC1, whose results are described in
Perea et al. (2013a). Following application of LC1, the specimens
were tested as beam columns subjected to load cases LC2 and LC3.
The first cycles of both LC2 (uniaxial) and LC3 (biaxial) were

x x x

y y y

(a) (b) (c)

Fig. 4. Horizontal displacement path at the top during LC3: (a) biaxial 8 probes, Specimens 2 to 7; (b) biaxial probe with subprobes, Specimen 9;
(c) incremental biaxial (eight), Specimens 8 and 10 to 18

Fig. 5. Schematic illustration of the extraction of P−M interaction points: (a) incipient buckling definition; (b) P−M points from uniaxial loading
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aimed at probing the experimental P−M interaction surface;
results are presented in this paper and compared with the design
equations from AISC (2010b). Further cycles of LC2 and LC3 load
cases also enabled investigation of the cyclic response of CFT beam
columns so that comparisons could be made to predictions from
advanced computational models that follow strength and stiffness
degradation exhibited during the tests.

During LC1, the specimens exhibited primarily elastic buckling,
along with some inelastic buckling associated with minor material
inelasticity (Perea 2010; Perea et al. 2013a); whereas some damage
occurred during LC1, the instrumentation did not show any signifi-
cant yielding, and thus additional assessment of interaction strength
could be conducted in the specimens in the subsequent loading
sequences. However, during LC2 and LC3, damage developed
as steel local buckling and concrete crushing did accumulate at
the column base, particularly for the stockier and rectangular spec-
imens; such damage should be considered when utilizing these
results. In the analyses carried out as part of this paper, the full
loading history, including LC1, was simulated for the analyses that
are compared to these experiments.

In load cases LC2 and LC3, the beam columns were under ver-
tical force control with a constant compression load at varying levels
and with horizontal displacement control following a prescribed

displacement pattern. In most cases, the top rotations were under load
control to hold to zero moment, so as to mimic a rotationally free
boundary condition at the top in each coordinate direction. Twist
was displacement controlled to zero so as not to induce spurious
torsional displacements while investigating the axial and flexural
strength of the specimens. However, torsional displacements were
not expected to be high because all the specimens tested were doubly
symmetric closed cross-sections that thus have high torsional
stiffness. Because the base was fully fixed, the effective length factor
in these cases was nominally K ¼ 2. However, in a few cases that
will be identified in the following discussion, the top rotations were
under displacement control and held to zero rotation, thus having an
effective length factor that was nominally K ¼ 1.

For load case LC2, the specimens were subjected to uniaxial flex-
ure, moving the top of the specimen along one horizontal axis. The
loading for most specimens was along one of the main coordinate
axes of the MAST loading system, which also aligned with the pri-
mary axes of the cross-section for rectangular specimens; however,
for several of the circular specimens, the loading was along a diago-
nal coincident with the maximum initial imperfection in the beam
column, as noted under the column labeled Direction on Table 2.
For load case LC3, the specimens were subjected to biaxial bending,
moving the top of the column in patterns spanning both horizontal

Fig. 6. P−M interaction points extracted from tests in some CFT specimens under uniaxial loading LC2: (a) Specimen 6-C12-18-12; (b) Specimen
3-C20-18-5; (c) Specimen 8-Rw-18-12; (d) Specimen 9-Rs-18-12
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Table 3. Summary of Extracted P −M Interaction Points from Uniaxial Flexural Loading (LC2)

Specimen λ LC P (kN) P=Pn Mtotal (kN-m) Mnet (kN-m) MAISC (kN-m) Mtot=MAISC Mnet=MAISC

2C12-18-5 1.55 2a 1,334.5 0.76 174.0 141.1 142.5 1.22 0.99
2b 889.6 0.51 206.5 184.8 248.5 0.83 0.74

6C12-18-12 1.89 2a 1,334.5 0.63 246.5 227.8 268.2 0.92 0.85
2b 667.2 0.32 268.3 257.6 268.2 1.00 0.96

10C12-26-5 2.38 2a 889.6 0.97 59.5 30.4 60.3 0.99 0.50
2b 444.8 0.48 217.6 191.3 255.3 0.85 0.75

14C12-26-12 2.69 2a 444.8 0.45 214.9 209.1 298.1 0.72 0.70
2b 889.6 0.91 140.1 122.7 140.5 1.00 0.87

3C20-18-5 1.06 2a 4,448.2 0.68 789.0 614.7 635.5 1.24 0.97
2b 2,224.1 0.34 791.7 725.5 635.5 1.25 1.14

7C20-18-12 1.30 2a 4,448.2 0.46 1,027.6 860.8 676.4 1.52 1.27
2b 2,224.1 0.23 907.0 849.7 676.4 1.34 1.26

11C20-26-5 1.62 2a 2,668.9 0.61 687.7 453.8 611.5 1.12 0.74
2b 1,334.5 0.30 677.1 603.7 611.5 1.11 0.99

15C20-26-12 1.78 2a 3,558.6 0.74 614.2 420.7 603.3 1.02 0.70
2b 1,779.3 0.37 619.9 538.9 603.3 1.03 0.89

4Rw-18-5 1.38 2a 2,668.9 0.64 759.5 637.9 453.1 1.68 1.41
2b 1,334.5 0.32 795.5 745.7 591.1 1.35 1.26

8Rw-18-12 1.65 2a 2,668.9 0.54 700.1 536.8 610.4 1.15 0.88
2b 1,334.5 0.27 755.9 689.6 610.4 1.24 1.13

12Rw-26-5 2.14 2a 1,779.3 0.80 350.8 328.0 326.2 1.08 1.01
2b 889.6 0.40 594.5 575.8 663.5 0.90 0.87

16Rw-26-12 2.30 2a 889.6 0.38 644.1 630.5 632.1 1.02 1.00
2b 1,779.3 0.75 290.7 265.2 502.7 0.58 0.53

5Rs-18-5 0.89 2a 4,448.2 0.67 1,123.7 1,112.7 640.8 1.75 1.74
2b 2,224.1 0.33 1,108.9 1,105.9 898.8 1.23 1.23

9Rs-18-12 1.04 2a 5,337.9 0.54 1,342.7 1,156.6 962.9 1.39 1.20
2b 5,337.9 0.54 1,342.7 1,156.6 962.9 1.39 1.20

13Rs-26-5 1.35 2a 1,779.3 0.33 1,151.4 1,113.9 966.6 1.19 1.15
2b 3,558.6 0.67 691.3 610.0 816.2 0.85 0.75

17Rs-26-12 1.46 2a 1,779.3 0.30 1,133.2 1,041.8 988.3 1.15 1.05
2b 3,558.6 0.60 794.0 540.8 988.3 0.80 0.55

Average 1.12 0.98
Standard deviation 0.27 0.27

Fig. 7. Experimental total and net moments normalized to AISC (2010b) interaction strength: (a) total normalized interaction test points; (b) net
normalized interaction test points; (c) total normalized moments versus slenderness; (d) net normalized moments versus slenderness
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axes. Several different displacement patterns or probes were used
as illustrated in Fig. 4. Table 2, under the label Reversal, also sum-
marizes the criteria used to initiate displacement reversals at the peak
of a cycle: Fmax refers to cases where displacements were reversed
when the maximum lateral load was achieved; a percent value indi-
cates that the reversal occurred at a predetermined interstory drift.

The displacements in the loading patterns were limited to either
going just past the point of peak resistance to lateral loads or going
to a preset desired level of drift. For Specimens 1 through 9, the
target displacements in both LC2 and LC3 were defined by the
peak lateral strength to lateral loads. In these cases, the drift
was increased in displacement control until the peak strength to
lateral loads, Fmax, was obtained or when the tangent slope in
the force-displacement response approached zero (indicating that
the beam column was in an unstable configuration). For Specimens
10 through 18, predetermined loading patterns were used, typically
with target displacements starting at �1% drift and increasing by
1% drift in successive cycles up to the maximum stroke capacity of
the MAST system (between 4 and 6% drift).

Combined Compression and Uniaxial Bending

The loading histories of LC2 allow the determination of the
beam-column strength at each axial compression load level at
which transverse displacement probes were conducted. Following
the methodology described previously, incipient buckling is
defined by the peak first-order moment (i.e., the peak lateral load
times the member length). Typical moment-displacement results
are shown in Fig. 5(a), including the components’ first-order
moment (M1), PΔ moment, and the total second-order moment
(Mtotal ¼ M1 þ PΔ). The extracted results are presented for some
specimens in axial load–bending moment space in Fig. 6 as shown
schematically in Fig. 5(b), with two quadrants shown as the results
are sensitive to the initial direction of loading. The diagrams
include:
• The cross-section P–M strength calculated using the plastic

stress distribution method (thin dashed line passing through
points A − C −D − B);

• The simplified P−M interaction strength of the beam column
using the theoretical effective length factor, K, and with
reduction because of the stability effects as prescribed by the
AISC commentary (AISC 2010b) (thick dashed line passing
through points Aλ − Cλ − B); this simplified interaction curve
is one of several options outlined in the AISC commentary;

• The P−M path from the pure compression loading (LC1) up to
the target axial load applied in LC2 (curved line from origin),
and at the target axial loads, the moments generated by the
initial imperfection (Mimp);

• The horizontal P−M paths from the uniaxial flexural loading
cases (LC2);

• The total second-order moment at incipient buckling (Mtotal);
and

• The net second-order moment (Mnet ¼ Mtotal −Mimp).
The test data for some specimens are presented in Fig. 6 in a

format similar to Fig. 5(b) but showing both compression quadrants
of the P−M diagram. Because reversals of lateral loading take
place just after passing the peak first-order moment, the second-
order moment does not necessarily reach the cross-section strength.
In other words, the ends of the moment paths at a given axial
load (horizontal lines) do not necessarily achieve the cross-section
P−M (thin curve), and so they cannot be directly compared.

The extracted empirical interaction P−M points for all the
specimens are summarized in Table 3, and their normalized values
are shown in Fig. 7. Fig. 7 shows the results normalized against
design interaction diagrams proposed by AISC (2010b) for

Normalized Net Bending Moment, Mnet / Mp
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Fig. 8. Normalized P − λ −Mnet interaction diagram using a CCFT
cross-section (HSS20 × 0.25 filled with a 83 MPa (12-ksi) concrete)
obtained from nonlinear analyses (Denavit 2012)

contour of
Mtotal=M1+M2=FL+P
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2y

Mimp

Mtotal

3D P-M biaxial
interaction surface

Mnet= Mtotal - Mimp

contour of max.
lateral strength
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y

lateral displacement path
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maximum
displacement

contour of max.
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Fig. 9. Schematic illustration of the interaction surface from biaxial flexural and fixed axial loading (LC3): (a) bidirectional displacement path at the
column top; (b) interaction surfaces with total and net moments at the column base
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composite members. The target axial load is normalized by the
nominal axial strength (Pn), and both the total and net second-order
moments are normalized by the nominal flexural strength (MB).
Both Pn and MB are calculated with the AISC specification (AISC
2010b). Because the normalized interaction point CðPCλ=PnÞ de-
pends on the contribution of the concrete in the composite section,
which varies for each specimen, the upper and lower bounds for
this point are shown as discontinuous lines in Figs. 7(a and b);
as a reference, the normalized interaction diagram for steel mem-
bers as defined by AISC (2010b) is also included in these figures as
dotted lines. Figs. 7(c and d) show, respectively, how the normal-
ized total and net moments vary with the slenderness parameter (λ).
Based on these results, the following observations are highlighted:
• In general, the experimental net moments are close to the mo-

ment predicted by the AISC specification (AISC 2010b). Even
with a considerable dispersion as noted in Fig. 7 and Table 3, the
average ratio of the experimental moments over the AISC
strength with stability reduction is 1.12 with the total moment
(Mtotal=MAISC) and 0.98 with the net moment (Mnet=MAISC); in
both cases, the standard deviation is approximately 0.27.

• The differences between experimental results and design
strengths can be accounted for by a number of factors, includ-
ing: (1) the elastic analyses used in the design to obtain the re-
quired strengths are inherently different than the experimentally
observed behavior because of the material nonlinearity that

occurs in the experiments—the design interaction strength
has been calibrated to the strengths that the elastic analysis
would predict; (2) the simplicity of the design strength, in par-
ticular maintaining constant moment strength below the axial
load PC and ignoring the increased flexural strength near the
balance point; (3) the net moments being based on the actual
geometric imperfections of the specimen, not standardized
imperfection values; and (4) the sequencing of the load cases
and potential damage (i.e., steel local buckling and concrete
crushing) that may have occurred in the specimen because of
prior loading.

• A correlation is seen between the test-to-predicted ratios (either
Mtot=MAISC or Mnet=MAISC) and member slenderness (λ). As
shown in Figs. 7(c and d), most of the stockier specimens
(λ < 1.5) achieve ratios larger than 1.0, whereas most of the more
slender specimens (λ > 1.5) achieve ratios lower than 1.0. This
behavior suggests a change in the shape of the interaction diagram
with member slenderness that is not captured by the simplified
interaction diagram outlined in the AISC commentary (AISC
2010b) of the specification. Similar results have been obtained
from computational research (Denavit 2012). Fig. 8 shows
the net axial–flexural–slenderness (P−Mnet − λ) interaction ob-
tained from fully nonlinear analyses of composite beam columns
(Denavit 2012), from which constitutive materials and nonlinear
elements were originally calibrated with the test data presented in
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Fig. 10. Extraction of P −M interaction points for Specimen 6-C12-18-12 from biaxial flexural and fixed axial loading (LC3):
(a) P ¼ 1,668 kN ¼ 375 kip (left side in 3D, right side in 2D); (b) P ¼ 1,000 kN (225 kip); (c) P ¼ 334 kN (75 kip)
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this paper; the CCFT cross-section used in these analyses is an
HSS20 × 0.250 (Fy ¼ 290 MPa) filled with a 53-MPa concrete
(same than the cross-section of the Specimens 7-C20-18-12
and 15-C20-26-12). These analyses illustrate how the P−M
interaction surface transitions from a full convex shape for stocky
elements (λ < 0.5) to a more linear shape for slender ele-
ments (λ > 1.5).

Combined Compression and Biaxial Bending

The interaction strength limit points for the biaxial loading cases
were extracted using the same methodology as for the uniaxial
bending cases. The applied lateral displacement path of the column
tip for Specimens 2 through 7 is shown schematically in Figs. 4(a)
and 9(a). In these specimens, the displacement at the free end of the
beam column was driven through different probes until the
maximum flexural strength for each probe was reached. The con-
tour of limit points found in each probe defines an interaction
surface in displacement space [Fig. 9(a)]; the same limit points
in moment space define the Mx −My interaction surface at the
applied axial load [Fig. 9(b)].

The complexity of the data obtained is shown in Figs. 10 and 11,
in which a typical set of data for a constant axial load are shown in
moment space. In these figures, a solid square near the center of the
graph indicates the moment for LC1 at the axial force shown in

the figure because of imperfections, and the circular path near
the center of the graph shows the range of moments that may arise
from this imperfection. Immediately outside this circle is the irregu-
lar path of biaxial flexure followed by the beam column during the
displacement-controlled loading history; the hysteretic characteris-
tics in these load histories are due to geometric imperfections in
the direction of both the x- and y-coordinate axes. Inside this
irregular path, a set of black and white squares extracted from
the test data describes the envelope of net and total moments, re-
spectively. Superimposed on these figures are circles [for circular
concrete-filled steel tubes (CCFTs)] or ellipses [for rectangular
concrete-filled steel tubes (RCFTs)] representing the AISC Mx −
My interaction strength for the beam column (thick solid lines) and
the cross-section (thin solid lines). The shape of the interaction
implied by the AISC specification is a diamond; the circles and
ellipses were chosen to better represent the physical behavior.

Selected experimental results are shown in Figs. 10 and 11.
There is a strong correlation between the experimental net moments
and the AISC beam column nominal interaction surface for some
specimens (e.g., Specimen 6-C12-18-12 in Fig. 10). However, a
weaker correlation is seen for some specimens (e.g., Specimen
4-Rw-18-5 in Fig. 11). The worst correlation occurs in the weak
axis of RCFTs; this poor correlation results as a consequence of
the accumulation of damage because of local buckling and concrete
crushing developed from previous load cases. The fact that most of
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Fig. 11. Extraction of P−M interaction points for Specimen 4-Rw-18-5 from biaxial flexural and fixed axial loading (LC3):
(a) P ¼ 3,336 kN ¼ 750 kip (left side in 3D, right side in 2D); (b) P ¼ 2,002 kN (450 kip); (c) P ¼ 667 kN (150 kip)
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the specimens were close to the nominal strength envelope even
after many probes at two or three different axial load levels is a
testament to the robustness of these composite sections.

Conclusions

In this paper, the monotonic experimental response of slender cir-
cular and rectangular concrete-filled steel tubes was documented.
For these experimental tests, the loading protocols were selected to
obtain sets of axial–flexural strength (P−M) interaction points
for both uniaxial and biaxial bending. The axial load levels used
in the loading protocol were often applied between the anchor
points Cλ and Dλ as defined by the AISC commentary (AISC
2010b), i.e., a zone in which the flexural strength in stockier mem-
bers is typically larger than the flexural strength in pure bending.
This paper investigates both the total flexural strength and the net
moment that is achieved in CFTs for a given axial load level. The
total flexural strength of the specimens for a given axial load level
(P−Mtotal) extracted from the tests implicitly includes the reduction
from the cross-section strength of the unusable flexural strength
because of the instability effects from the axial compression. In
contrast, the net strength for a given axial load (P−Mnet) has an
additional reduction of the unusable flexural strength that is caused
by geometric imperfections in the member (e.g., out-of-straightness
and out-of-plumbness), which were extensive in some of the slen-
der members that were tested in this paper.

The net moments extracted from the test specimens of the stockier
specimens typically exceeded the bilinear nominal interaction
strength surface outlined in the AISC commentary (AISC 2010b),
thus showing that this design approach underestimates the interaction
strengths of the stockier specimens around the anchor point at Dλ by
assuming that the interaction diagram extends directly from point Cλ
to point B (i.e., the flexural strength in the presence of no axial force)
as seen in the interaction diagrams in this work. The purpose of
neglecting the additional flexural strength achieved in the presence
of moderate axial compression is to provide a conservative estimate
on the interaction strength, which was supported by the available ex-
perimental data at the time (Leon and Hajjar 2008; AISC 2010b).
Future work could investigate how to engage this additional flexural
strength for these stockier specimens.

The shape of the bilinear simplified diagram is less conservative
in beam columns with intermediate slenderness; however, for very
slender beam columns such as those tested in this paper, the AISC
commentary interaction diagram is not conservative, as it is seen to
overestimate the net flexural strengths for the test results in this
work. The low net moment values are a consequence of the sub-
stantial flexural strength that is lost because of the initial large im-
perfections [in these tests, the imperfections were often larger than
permissible tolerances allowed by ASTM A6/A6M (ASTM 2013)
or AISC 2010a] and the accumulation of damage within the loading
protocol. This unconservative behavior in slender beam columns
suggests the need for a reexamination of the design equations
for the calculation of interaction strength that serves both short
and slender composite beam columns. It should be noted that
the columns exhibiting unconservative predictions based on the
current AISC specification occur at slenderness values that are gen-
erally well above what is commonly used in practice (i.e., λ < 1.5).

Experimental values of both the total and net moments under
biaxial bending at constant levels of axial compression exhibit ap-
proximately circular interaction surfaces in CCFTs and elliptical
interaction surfaces in RCFTs, as may be expected. However, as
the loading protocol progressed in RCFTs, the interaction surfaces
exhibited a reduction in size and changes in shape. This reduction is

significant in RCFTs, particularly in the weak axis orientation, as a
consequence of the progression of damage because of local buck-
ling in the steel and loss of confinement in the concrete. Similar
observations have been obtained in the computational studies
(Denavit et al. 2010). These experimental results thus provide
important characteristics to be achieved by advanced simulation
models for CFT frame systems.

Notation

The following symbols are used in this paper:
Ec = concrete modulus of elasticity;
Es = steel modulus of elasticity;

EIeff = effective flexural stiffness of the composite section;
F = lateral force;

Fmax = maximum lateral force observed during loading in a
particular direction;

Fy = yield stress of the steel;
fc = compressive strength of a concrete cylinder on the day

of the test;
ft = tensile strength of concrete;
f 0
c = compressive strength of a 28-day concrete cylinder;
K = effective length factor;
L = member length;

MAISC = member flexural strength calculated with the AISC
specification;

MB = flexural strength at the point B on the P−M interaction
diagram (equal to Mp);

MC = flexural strength at the point C on the P−M interaction
diagram (equal to MB);

Mcs = flexural strength of the cross-section at a given axial
load;

MD = flexural strength at the point D on the P−M interaction
diagram;

ME = flexural strength at the point E on the P−M interaction
diagram;

Mimp = flexural strength consumed by imperfections when a
given axial load is applied;

Mnet = net flexural strength of the member
(Mnet ¼ Mtotal −Mimp);

Mo = pure bending strength of the composite cross-section
(equal to MB);

Mp = plastic flexural strength (equal to MB);
Mtotal = total flexural strength of the member at a given axial

load;
Mufc = unused flexural capacity (Mufc ¼ Mcs −Mtotal);
M1 = first-order moment;
M2 = second-order moment;
P = axial force;

PA = compressive strength at the point A of the P−M
interaction diagram (also labeled as Po);

PAλ = compressive strength at the point Aλ of the P−M
interaction diagram (equal to χPA);

PC = compressive strength at the point C of the P−M
interaction diagram (equal to 2PD);

PCλ = compressive strength at the point Cλ of the P−M
interaction diagram (equal to χPC);

PD = compressive strength at the point D of the P−M
interaction diagram (equal to PC=2);

PE = compressive strength at the point E of the P−M
interaction diagram;

Pe = Euler critical load;
Pn = member nominal compressive strength;

© ASCE 04014054-11 J. Struct. Eng.

J. Struct. Eng. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

V
IR

G
IN

IA
 T

E
C

H
 U

N
IV

E
R

ST
IY

 o
n 

04
/2

2/
14

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Po = cross-section nominal compressive strength;
Δ = large or global deflections;

ΔO = initial out of plumbness;
δ = small or local deflections;

δO = initial out of straightness;
λ = slenderness parameter; and
χ = slenderness reduction factor (χ ¼ Pn=Po).
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