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Abstract – In this paper we first formally define the
notions of data fusion and decision fusion. Then we
formulate a theorem that decision fusion is a special
case of data fusion. We show the meaning of this the-
orem on a simple example of edge detection. Edge de-
tection can be done in two ways: by first fusing the
original images and then detecting edges in the fused
image (data fusion) or by first detecting edges in each
image separately and then fusing the results (decision
fusion) of edge detection in the decision fusion block.
We show, first in general and then on the edge detec-
tion example, that decision fusion can be viewed as a
special case of data fusion. To the designer of an in-
formation fusion system this means that the choice of
the decision fusion approach over data fusion in any
specific case needs to be supported by some additional
consideration, for instance the computational complex-
ity of the fusion algorithm.

Keywords: Formal methods, category theory, data
fusion, decision fusion, classification.

1 Introduction
One of the goals of our research is to develop meth-

ods for reasoning about an information fusion system
in the design phase (cf. [4]). In other words, we want
to be able to formally compare various design solu-
tions before the system is implemented. For instance,
we would like to be able to reason about the uncer-
tainty of the system’s decision associated with various
design solutions. Having such a method would help
the designer to choose the solution that is best for a
given scenario. A typical example of such a decision

is whether to first fuse data and then detect/recognize
objects in the fused data or first detect/recognize ob-
jects in each signal/image separately and then fuse the
decisions. The former solution is usually termed as
data fusion, while the latter is called decision fusion
[2, 9].

In this paper we ask a more general question - is
it possible to compare the two solutions - data vs.
decision fusion in general? More specifically, we ask
whether decision fusion is a special case of data fusion.
The answer to this question is positive - any decision
fusion system can be viewed as a data fusion system.
The implication of this statement to the designer of an
information fusion system is that the choice of “data
fusion” as a design solution does not really limit the
designer since the designer is still able to achieve the
same functionality of the system (exactly the same be-
havior) as if the choice were “decision fusion”. Note
that the inverse is not true. Note however that such
a comparison can be done only from a given point of
view. In this paper we take the point of view of the
function and the behavior of the system. When we add
another criterion, for instance the computational com-
plexity of the fusion algorithm, the situation is quite
different, since decision fusion is usually less complex
than data fusion.

In this paper we use a running example of edge de-
tection to explain our approach; this example is pre-
sented in Section 2. Since our goal is to reason about
design choices in a formal way, we need to present our
formalization of the information fusion problem. This
formalization is briefly explained in Section 3. In Sec-
tion 5 we state the theorem that decision fusion is a



special case of data fusion. And finally in Section 6
we provide our conclusions and suggestions for future
work.

2 Example
In order to explain our ideas in this paper we use a

simple example of an information fusion scenario. We
consider two vision sensors Sens1 and Sens2 observing
an object in the world (Figure 1). The first sensor
(Sen1) returns the image denoted as I1(x1, y1) and the
second sensor (Sen2) returns the image I2(x2, y2). The
functions I1 and I2 consist of two subfunctions. For
Sens1, there is a function g1(x1, y1) which returns pixel
values, which are then filtered by h1(x1, y1) returning
the values of I1(x1, y1). Similarly, Sens2 consists of
two functions g2 and h2.

The goal of the fusion system is to utilize the infor-
mation from both sensors in order to detect edges of
the observed object. This goal can be achieved in two
ways:

1. Data Fusion: Two images I1(x1, y1) and I2(x2, y2)
are fused into one combined image I(x, y) and
then edge detection is performed on this im-
age. The resulting edges (or more precisely, edge
points) are denoted by E(x, y).

2. Decision Fusion: The two images I1(x1, y1) and
I2(x2, y2) are analyzed separately by edge detec-
tion algorithms. This results in edges E1(x1, y1)
and E2(x2, y2). Then the detection information
(edges) is fused into one E(x, y).

As we can see, in the end both systems derive the same
kind of global information about edges represented by
E(x, y).

For simplicity we assume that edge detection is
based on the magnitude of the gradient, for the im-
age of Sens1, for the image of Sens2 and for the fused
image.

3 Formal Definition of Fusion
We formalize the information fusion problem in the

formal specification language, Slang [8, 1]. The process
of developing Slang specifications is supported by the
Specware tool. Specware is based on category the-
ory [7]. A specification consists of specs. Each spec
can be viewed as a pair (Σ, T ), where Σ are signatures
(languages) and T - theories over the signatures. Sig-
natures have the following form: Σ = (σ, F ), where σ
are sorts and F are functions over the sorts. Theories
associated with the signatures are represented by col-
lections of axioms over the signatures. Specs are con-
sidered as objects in the category Spec related through
morphisms [7]. Specs and morphisms are represented

Figure 1: A Fusion Scenario

as diagrams. We always assume that our theories are
consistent, i.e., that they have models, formally de-
noted as M |= T .

3.1 Data Fusion

In this paper we focus on two kinds of information
fusion – data fusion and decision fusion. In general, the
goal of data fusion is to develop a spec Sf and a fused
class of models {Mf}, as described below. The inputs
to this fusion process are some or all of the following
specifications:

Sw = ((X, E, ∆ : X → E), Tw)
S1 = ((X1, V1, f1 : X1 → V1), T1) (1)
S2 = ((X2, V2, f2 : X2 → V2), T2)

Sc = (C = {C1, C2, ...})

Sf

↗ ↑ ↖
S1 Sw S2

↖ ↑ ↗
Sc

Figure 2: Data Fusion

The goal of data fusion is to find the diagram D -
a diagram of relations among the specs (see Figure 2),
where Sf is a specification:



Sf = ((X, E, ∆ : X → E,

X1, V1, X2, V2, f1 : X1 → V1, f2 : X2 → V2, (2)
Df : (X1 → V1)× (X2 → V2)→ (X → 2E)), Tf )

satisfying the conditions:

Mf |= Tf (3)

Tf 
 ∀x∈X ∆(x) ∈ Df (f1, f2)(x) (4)

In the above formulation Sw specifies the world that
both sensors observe; X represents the world coordi-
nates, E is the objects in the world. The function ∆
assigns these objects to particular locations. We as-
sume that we may have access to particular instances
of this function. We use this capability for testing the
resulting fusion system. Sw can contain theories Tw

that capture known dependencies and constraints that
the world is known to obey.

Referring to the example of Section 2, the coordi-
nates of the world are X, Y . The objects are E = [0, 1]
- a subset of real numbers representing the confidence
of an edge point being at a particular world location.
The function ∆ assigns to each location in the world a
value from the interval [0, 1].

∆ : X × Y → [0, 1] (5)

The specifications S1, S2 represent specifications of
the two sensors. X1 is the coordinate of the sensor
specified by S1 and X2 is the coordinate of the sensor
specified by S2. V1 and V2 are sorts that denote values
returned by the two sensors. The functions f1, f2 are
the measurement functions of the two sensors. T1 and
T2 specify theories of sensor operation.

In our example, both sensors have two coordinates
denoted as X1, Y1 and X2, Y2, respectively. Their mea-
surement functions are f1 = I1 for Sens1 and f2 = I2

for Sens2. The measurement functions return the val-
ues from V1 and V2, respectively. Since I1 and I2 are
compositions of two functions, the theories of S1 and
S2 must have appropriate axioms to this effect.

I1 = h1 ◦ g1 (6)

I2 = h2 ◦ g2 (7)

The specifications of the first sensor (Sens1) is
shown below. We do not show the specification for
the second sensor since it is similar to the specification
of the first sensor.

S1 = ((X1, Y1, V1, V11,

g1 : X1 × Y1 → V1,

h1 : V11 → V1, (8)
I1 : X1 × Y1 → V1),

I1 = h1 ◦ g1)

The sensor specification includes in its theory part
the axiom stating that the function I1 is computed as
a composition of the measurement function g1 and the
filtering function h1 (see Eq. 6).

Sc in Figure 2 is a collection of simple specs, specifi-
cations of coordinate sorts. The purpose of identifying
these specs is to show the relationships between the
world coordinates and the sensor coordinates. They
unify sorts that represent the same coordinates. Con-
sequently, we have Sc = {Xx, Xy}.

For our example we assumed that we want to as-
sociate X1 and X2 with Xx, Y1 and Y2 with Xy. The
unification of sorts is achieved by specifying morphisms
between particular specifications. In this example the
morphisms would be

morphism : Sc → S1 = {Xx → X1, Xy → Y1} (9)

morphism : Sc → S2 = {Xx → X2, Xy → Y2} (10)

morphism : Sc → Sw = {Xx → X, Xy → Y } (11)

The specification Sf is obtained in two steps. First,
a colimit of Sc, S1, S2 and Sw is taken. At this point
some of the sorts, as explained above, are identified
(or “glued” together). This means that some of the
sorts listed in the spec Sf would actually be glued and
thus that spec would not have as many sorts as shown.
For instance, the six sorts would form two equivalence
classes {X, X1, X2} and {Y, Y1, Y2}. Note that this
does not mean that in the final spec we would not dis-
tinguish between the variables of these two sorts. We
would still have the variables representing the values
coming from the two sensors separately. Only after
data association is done could we use the same vari-
ables for the two sensors. In this paper we assume, for
simplicity, that the coordinates of the two sensors are
perfectly associated and thus will use the symbols X
and Y to represent the coordinates of the two sensors
in the final specification of the system.

In the second step the resulting specification is ex-
tended by adding the function Df . Its signature is
constructed out of the signatures of the two sensors
and of the world. This function takes two measure-
ment functions f1,f2 as inputs and returns a decision
function that assigns subsets of objects to the world
coordinates.

For our example, the morphisms S1 → Sf , S2 → Sf

and Sw → Sf would be specified first (similarly as the
morphisms shown above) and then the colimit oper-
ation would be specified next. The resulting specifi-
cation would include the sorts X, Y, E, the operations



I1, I2, g1, g2, h1, h2 and all the axioms from Sw, S1, S2.
The colimit operation would guarantee that sorts are
unified appropriately, and the operations are applied
to the appropriate sorts. Additionally, it would in-
sure that the axioms from the source specifications are
preserved, i.e., they are theorems of the colimit specifi-
cation. This kind of mechanisms for formally checking
the colimit operation are part of the Specware tool [1].

The signature of the fusion function for our example
would take the form as shown in Eq. 12 below. Note
that the mapping is to the set E rather than to 2E .
This means that we expect a concrete value for each of
the objects (in this case, edges) rather than a distribu-
tion of confidence as a result of the fusion process. This
differs from our general specification where the map-
ping is to 2E . The rationale behind this kind of map-
ping is to show that the decision is not always unique,
in some cases it may return a number of possibilities
rather than just one specific object.

Df : (X1 × Y1 → V1)× (X2 × Y2 → V2) (12)
→ (X × Y → E)

We do not elaborate further on what the form of the
function Df should be. We do not need to go into this
level of detail to show the point that decision fusion is
a special case of data fusion. This claim will apply to
any function Df .

3.2 Decision Fusion

In our framework decision fusion is expressed by the
diagram of Figure 3.

Sd

↗ ↑ ↖
Sd1 Sd2

↑ ↖ ↗ ↑
S1 Sw S2

↖ ↑ ↗
Sc

Figure 3: Decision Fusion

Sd1 and Sd2 represent the following specs:

Sd1 = ((X1, V1, ∆ : X → E,

f1 : X1 → V1, (13)
D1 : (X1 → V1)→ (X → 2E)), Td1)

Sd2 = ((X2, V2, ∆ : X → E,

f2 : X2 → V2, (14)
D2 : (X2 → V2)→ (X → 2E)), Td2)

The functions D1, D2 are the decision functions for
the sensors Sens1 and Sens2 respectively. In the
process of decision fusion these two functions are used
instead of raw data. The spec Sd represents the deci-
sion fusion block.

Sd = ((X1, V1, X2, V2, ∆ : X → E,

f1 : X1 → V1,

D1 : (X1 → V1)→ (X → 2E), (15)
f2 : X2 → V2,

D2 : (X2 → V2)→ (X → 2E),
Dd : (X → 2E)× (X → 2E)→ (X → 2E)), Td)

Note that in this spec Dd takes the assignments that
are the results of application of functions D1 and D2

and combines these two assignments into one (fused)
assignment.

Returning back to our example, we take the decision
function D1 to have the signature

D1 : (X1 × Y1 → V1)→ (X × Y → E) (16)

In other words, the decision function D1 takes the
function I1 and returns another function (the deci-
sion function) which maps the world coordinates to
the values of edges. An edge in an image is manifested
through a discontinuity (for continuous images) or a
significant jump in the intensity value (in a digital im-
age). There are various edge detection techniques (cf.
[6, 3]). The simplest method is to take the gradient
magnitude. Denoting the (normalized) gradient mag-
nitude by M(I)(x, y) we would have

D1 ≡M(I1) (17)

This information would be incorporated into the the-
ory Td1 shown in the spec Sd1. Td1 would then incor-
porate the axioms about the gradient magnitude oper-
ator and the thresholds used for detection. Although
D2 could use a different edge detection algorithm, in
this paper we assume, for simplicity, that D2 also uses
the same kind of “edgeness” operator.

The Dd operator can be defined in many different
ways. In the following discussion we will use a very
simple form:

Dd(M1, M2)(x, y) ≡ M̄(x, y) = (18)
1
2
(M(I1)(x, y) + M(I2)(x, y))

4 The subclass Relation
In order to be able to compare various fusion systems

we introduce the relation of subclass, which is a relation
between fusion systems.



Definition 1 Let S1
f and S2

f be two data fusion sys-
tems like in Figure 2, where all nodes except S1

f and
S2

f are the same. We say that S1
f is a subclass of S2

f

if there is a morphism of specifications µ : S2
f → S̄1

f ,
where S̄1

f is a definitional extension of S1
f , such that

the diagrams shown in Figure 4 commute.

S̄1
f ← S2

f

↖ ↑
S1

S̄1
f ← S2

f

↖ ↑
S2

S̄1
f ← S2

f

↖ ↑
Sw

Figure 4: Commutativity Requirements for subclass
Relations

5 Decision Fusion as a Subclass

of Data Fusion
The idea that decision fusion is a special case of data

fusion is captured by the following theorem (see Figure
5).

Theorem 1 The class of decision function systems,
as defined in Figure 3, is a subclass of data fusion sys-
tems, as defined in Figure 2.

In this paper we provide only an outline of the proof
of this theorem. A full proof is presented elsewhere
[5]. In the proof we assume that we have a decision
fusion diagram as in Figure 3. We need to produce
a data fusion diagram as in Figure 2 such that there
is a morphism from the diagram of Figure 2 to the
diagram of Figure 3. As a first step we define Sf as
a definitional extension S̄d of Sd by defining a new
function D̄f : (X1 → V1, X2 → V2)→ 2E, where

Sd

↗ ↑ ↖
Sd1 Sf Sd2

↑ ↗ ↑ ↖ ↑
S1 Sw S2

↖ ↑ ↗
Sc

Figure 5: Decision Fusion is a Subclass of Data Fusion

D̄f ≡ Dd ◦ (D1 ×D2). (19)

This relation is expressed by the diagram as in Fig-
ure 6.

The definitional extension [8] Sd is equipped with an
embedding Sd → S̄d which is the identity on all sorts,

(X1 → V1),
(X2 → V2)

D1×D2→ (X → 2E)× (X → 2E)
↘ D̄ ↙ Dd

(X → 2E)

Figure 6: Derivation of Data Fusion Function from
Decision Fusion Function

operations and axioms from Sd. We define the arrows
from Si → Sf (i = 1, 2) as a composition

Si → Sf ≡ Si → Sdi → Sd → S̄d (20)

Then we define the arrow Sw → Sf as a composition

Sw → Sf ≡ Sw → Sdi → Sd → S̄d (21)

We can easily check that the new diagram we con-
structed is a data fusion diagram as in Figure 2. The
identity morphism Sf = S̄d → S̄d makes Sd a subclass
of Sf according to Definition 1. Therefore the class
of decision fusion systems is a subclass of data fusion
systems.

For our example, the diagram of Figure 6 takes the
form as in Figure 7. As we can see from this diagram,
the decision fusion system from our example is also a
data fusion system. The fusion function Df for this
system is

Df ≡ M̄ ◦ (M1 ×M2) (22)

(X1 × Y1 → V1), (X × Y → E)
(X2 × Y2 → V2)

M1×M2→ ×(X × Y → E)
↘ D̄f ↙ M̄

(X × Y → E)

Figure 7: Example: Derivation of Data Fusion Func-
tion from Decision Fusion Function

6 Conclusion
This paper has two goals. The first one is to show

a definition of “information fusion” in a formal frame-
work. To achieve this goal we put the problem of in-
formation fusion in the category theoretical framework.
More specifically, we used the category Spec in which
category objects (nodes) are specifications of software
systems (algorithms) and the category arrows are mor-
phisms between the specifications. An information fu-
sion system (or its specification) is then represented as
a diagram consisting of such nodes and arrows. First,



we showed a diagram for a data fusion system and then
a diagram for a decision fusion system. We used a sim-
ple example of edge detection to explain the main con-
cepts of this representation. More precisely, the goal
of the fusion system was to derive edge edges (more
precisely edge points).

The second goal was to show that within this for-
malization one can carry out formal reasoning about
information fusion systems. Towards this goal, we for-
mulated a theorem saying that decision fusion is a spe-
cial case of data fusion. We showed the meaning of
such a theorem, outlined a proof of the theorem and
finally showed an example of a construction that takes
a decision fusion system as input and produces a data
fusion system. This result does not seem either sur-
prising or difficult to show, for instance by example.
In this paper, however, we were able to show that the
subclass relation holds using rigorous formal approach.
After all, it is not so obvious that this fact is true; only
after you see such a proof does this become obvious.

Essentially, as one can see from the paper, the con-
structed data fusion system has exactly the same be-
havior as the decision fusion system used in the con-
struction. As such, this construction does not seem
to have a high practical value. Note, however, that we
compared the two design solutions from only one point
of view - the function of the system. There are many
other points of view and many other reasons for using
the decision fusion approach over data fusion. One of
such reasons might be the computational complexity
of the fusion system. If the response time of the fusion
system is critical, and the computational complexity of
the decision fusion solution is lower than that of data
fusion, the choice of decision fusion is fully justified.

It is worthwhile to note that not necessarily every-
body will agree with the definitions of and distinctions
among such concepts as data fusion and decision fu-
sion, as presented in this paper. However, since these
concepts were presented in a language with formal se-
mantics, we can truly understand the meaning of such
definitions. Consequently, if one uses different defini-
tions for these two concepts, at least one can clearly
understand what we meant. This is perhaps the most
important aspect of formal methods.
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