
An Example of Using Ontologies and
Symbolic Information in Automatic Target

Recognition

Mieczyslaw M. Kokar and Jiao Wang
Department of Electrical and Computer Engineering

Northeastern University
Boston, MA 02115

kokar@coe.neu.edu
jiao@ece.neu.edu

Abstract

The goal of this paper is to show an approach to target recognition (ATR) that
allows for efficient updating of the recognition algorithm of a fusion agent when
new symbolic information becomes available. This information may, for instance,
provide additional characterization of a known type of target, or supply a descrip-
tion of a new type of target. The new symbolic information can be either posted
on a web page or provided by another agent. The sensory information can be ob-
tained from two imaging sensors. In our scenario the fusion agent, after noticing
such an event, processes the new symbolic information and incorporates it into its
recognition rules. To achieve this goal the fusion agent needs to “understand” the
symbolic information. This capability is achieved through the use of an ontology.
Both the fusion agent and the knowledge provider (it may be another software
agent or a human annotator) know the ontology, and the web based information
is annotated using that ontology. In this paper we describe the approach, provide
examples of symbolic target descriptions, describe an ATR scenario, and show some
initial results of simulations for the selected scenario. The discussion in this paper
shows the advantages of the proposed approach over that in which the recognition
algorithm is fixed.

1 Introduction

The problem of automatic target recognition (ATR) has been the subject of research for
many years. For various types of scenario very efficient algorithms exist that guarantee
good accuracy of recognition. In most of those cases there is an assumption that the

1

types of target are known at the time of design of an ATR system. While this kind
of an assumption is sufficient for many practical situations, there are still situations in
which such an assumption is not valid. We call such situations dynamic environments.
In dynamic environments the types of target are known in advance and thus cannot be
hard coded into an ATR system. Instead, an ATR system for dynamic environments
should be able to incorporate knowledge of new targets during the run time, rather than
during the design time.

In this paper we investigate a scenario in which the knowledge of targets is stored in
an ontology [3, 4, 6]. We do not assume that the ontology is known in advance; it can be
updated at the run time of the ATR system. One of the questions in such a scenario would
be - what language to use to represent the target knowledge? The selection of a language
is not a trivial question at all. A language may be either too simple, and thus not have
enough expressive power, or too complex, and thus unmanageable. Another feature of a
language could be its compactness, i.e., the ability to express information in short and
concise fashion. But perhaps even more importantly, the language should be accepted by
the user community. Even the most perfect language would be useless if nobody wanted
to use it. Fortunately, recently a number of languages have become “de-facto” standards;
they have been accepted by wide communities of users. In software engineering, UML
(Unified Modeling Language) [1] has become a standard and is officially maintained by
the Object Management Group (OMG). The knowledge representation community seems
to be converging on a standardized language called DAML (which stands for DARPA
Agent Markup Language) [7, 5]. This standard is maintained by the World Wide Web
Consortium (W3C).

In this paper we present a case study of using DAML for representing ontologies for
target recognition. The idea is that either an interactive user, or another source of infor-
mation (e.g., intelligence) can provide information about new targets. The information
is communicated in DAML. A DAML-aware ATR system can read such information and
incorporate it into its processing algorithms.

In Section 2 we present a simple scenario which we use to explain the idea of ontology-
based target recognition. Then in Section 3.4 we describe all the details of our system.
Finally, in Section 4 we present conclusions.

2 Scenario

The main aspect of the scenario is that the types of target are not known in advance.
In our experiments we simulated a world of geometric objects. Examples of such two
targets are shown in Figure 1. It is clear that an ATR system can take advantage of
both sensors, since one of the sensors might not give enough confidence of a recognition
decision.

We simulated two kind of sensor, an intensity sensor and a range sensor. Images
from those sensors, as is easy to imagine, would appear as compositions of two kinds of

2

geometrical shapes - rectangles and triangles (possibly skewed).

Range Sensor
Intensity Sensor

Figure 1: Examples of Targets

In our scenario we do not need to assume that we know any of these targets; the
descriptions of the targets in the language defined by the ontology can be input at any
time, for instance, at the time of operation of the system that implements the OBTRA.

3 Ontology Based Target Recognition

The Ontology Based Target Recognition Approach (OBTRA) is shown in Figure 2. OB-
TRA takes sensory inputs from two different sensors. It then processes signals (images)
from the two sensors to extract features. In our example the features are corners. In

3

Section 3.2 we describe the types of corner we used in our experiments. Then in Sec-
tion 3.1 we describe the algorithms we used for corner detection and characterization.
The features extracted from two images are then passed to the target recognition algo-
rithm labeled Fusion and Recognition in Figure 2. The Fusion and Recognition algorithm
reads descriptions of targets from the Ontology. These descriptions are expressed in the
DAML language [7, 5]. A fragment of a DAML Ontology describing targets is presented
in Section 3.3. Note that the ontology is created by the user and that it can be changed
dynamically during the operation of the system. In Figure 2 we indicate it by showing
an icon representing the user. But this information can also we obtained through other
means, for instance from intelligence channels. The recognition algorithm is described in
Section 3.4.

Feature
Extraction

Feature
Extraction

Ontology

Fusion and
Recognition

Figure 2: Ontology Based Target Recognition

3.1 Corner Detection Algorithms

As we mentioned earlier in the paper, we used corners as features for target recognition.
We used wavelet transforms for corner detection. In this experiment, the following type
of basic wavelet was adopted [8]:

ϕ1(x, y) = −x · e(
−(x2+y2)

2
) (1)

and

ϕ2(x, y) = −x · e(
−(x2+y2)

2
) (2)

4

We also used the modulus of the wavelet transformation at a given scale s as :

MC(s, x, y) = (|W1C(s, x, y)|2 + |W2C(s, x, y)|2) 1
2 (3)

and the orientation function

OC(s, x, y) = tan−1(
W2C(s, x, y)

W1C(s, x, y)
) (4)

Here W1C(s, x, y) and W2C(s, x, y) are wavelet transforms of a function C(x, y) at scale
s.

There are three properties that we can use for corner detection:

1. The scale proportion property, expressed as:

MC(s1, x, y)

MC(s2, x, y)
=

s1

s2

that is satisfied by corner points and isolated edge points (edge points not very
close to corner points). The ratio s1

s2
is called the scale ratio.

2. The property of the orientation variance near the corner point. It is much larger
near the corner point than near the isolated edge points.

3. The property of scale invariance. This property is that the orientation at the corner
point and the isolated edge point are scale independent.

The feature extraction (corner extraction) algorithm [2] consists of the following steps:

1. Use the first property, i.e., MC(s1,x,y)
MC(s2,x,y)

− s1

s2
= 0, to find edge points of an image.

2. Eliminate edge points using the second property. After this step, only corner a
point and the edge points that are very close to the corner point are left.

3. Locate corners using the third property. In this step, the edge points are eliminated
and the corner point is located.

3.2 Corner Types

We defined two kinds of corner for each sensor type. For the range sensor we had
rangeCornerType1 and rangeCornerType2. Similarly, for the intensity sensor we had
intensityCornerType1 and intensityCornerType2.

RangeCornerType1 is a rectangular corner, with all the high-intensity points within
the corner having the same intensity. It is the corner found in the range image of a cube.
RangeCornerType2 is a rectangular corner in which the high-intensity points within the

5

corner have varying intensities. The edge points and the corner point have the same
intensity, but the intensity increases toward the center of the object. It is the corner found
in range images of a pyramid. IntensityCornerType1 is a rectangular corner or an obtuse
corner, with all the high-intensity points within the corner having the same intensity.
It is the corner found in intensity images of a cube. IntensityCornerType2 is an acute
corner, with all the high-intensity points within the corner having the same intensity.
There can be either three or two of this kind of corners and one IntensityCornerType1 in
an intensity triangular image.

The corner detection algorithm allows us to find the positions of corners. After finding
a corner’s position, we need to analyze a small rectangular area centered at the corner
point. In this area, we need to count how many points in it have high intensity to find
the ratio of high-intensity points to low-intensity points. The division between the high-
intensity and the low-intensity points represents the angle (in degrees) of of the corner.
This method can also be used to discriminate the two kinds of intensity corner. For range
corners, we need to do one more thing - check the area of the corner and see whether all
the high-intensity points have the same intensity or not. This allows us to discriminate
between the two kinds of range corner.

3.3 Target Ontology

An ontology captures the basic terminology (concepts) of the domain of interest and the
relationships among the concepts. In the following we show a small ontology for target
recognition. First, in Section 3.3.1 we present the ontology in the UML language [1].
UML is a graphical language and thus is easier to understand by both the developer of
an ontology and by the reader. However, we need a computer processable representation.
For this purpose we use DAML. A taste of the DAML representation of the ontology is
given in Section 3.3.2.

3.3.1 UML Representation

A small piece of an ontology for target recognition is shown in Figure 3. In this figure we
use UML (Unified Modeling Language) [1] as a representation language. The two main
constructs in UML are Class and Association. Classes are represented as rectangles, while
Associations as arrows. In the figure we show only names of the Classes and of some
Associations. Additionally, we show multiplicities of the Associations. We also show
one special kind of relationship between Classes, called generalization. Generalization is
represented by a hollow arrow. It means that one Class is a subclass of another.

As can be seen from the Figure, there are two main kinds of Class, called Target and
Corner. These two classes are further subclassified into TargetType1 and TargetType2.
TargetType2 is a generalization of two subclasses, TargetType2 1 and TargetType2 2.

There are two kinds of Corner, RangeCorner and IntensityCorner, each of which

6

TargetType2
RangeCorner

Intensity
Corner

IntensityCornerType2TargetType2_2 2

1

2

1

TargetType2_1

3

1

3

1
RangeCornerType2

4

1

4

1

41 41

IntensityCornerType1

1

1

1

1

TargetType1

4

1

4

1

RangeCornerType14

1

4

1

hasIntensityCorner1

hasIntensityCorner2

Target

hasRangeCorner

hasIntensityCorner

CornerhasCorner

Figure 3: UML Representation of an Ontology for Target Recognition

is further subclassified into two: RangeCornerType1, RangeCornerType2 and Intensity-
CornerType1 IntensityCornerType2, respectively.

The most important information in the ontology, from the point of view of target
recognition, is the information about the relationships between types of target and types
of corner. At the top level of the ontology we show the relationship hasCorner, which is
then specialized to hasRangeCorner and hasIntensityCorner. Strictly speaking, in UML,
the higher level and the lower level relations are different relations. But in DAML the
lower level relations can be treated as subProperties of the higher level relation. At the
bottom level we show the multiplicities of each of the relations. For instance, we can see
that a target of type TargetType1 must have four corners of type IntensityCornerType1
and four corners of type RangeCornerType1. A target of type TargetType2 2 must have
one corner of type IntensityCornerType1, two corners of type IntensityCornerType2 and
four corners of type RangeCornerType2.

7

3.3.2 DAML Representation

A fragment of the DAML representation of the ontology shown in Figure ?? is shown
below. This fragment shows the description of the corner type IntensityCornerType1 and
of the target type TargetType1.

<daml:Class rdf:ID="IntensityCornerType1">

<rdfs:label>IntensityCornerType1</rdfs:label>

<rdfs:comment>

Corners in the intensity image are either rectangular or obtuse.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#IntensityCorner"/>

</daml:Class>

<daml:Class rdf:ID="TargetType1">

<rdfs:label>TargetType1</rdfs:label>

<rdfs:comment>

TargetType1 is a cube.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Target"/>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="4">

<daml:onProperty rdf:resource="#hasRangeCorner"/>

<daml:toClass rdf:resource="#RangeCornerType1"/>

</daml:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="4">

<daml:onProperty rdf:resource="#hasIntensityCorner1"/>

<daml:toClass rdf:resource="#IntensityCornerType1"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

3.4 Target Recognition

The main idea behind the ontology-based recognition is that a particular object is clas-
sified as a target of a given type if that object satisfies all the constraints that this type
of object is shown to satisfy in the ontology. In other words, for an object to be of type
TargetType1 it must have the corners as specified in the ontology. This means that the
ontology should be used by some executable code. In our experiment we wrote a simple
program to translate such ontologies into Prolog rules.

Here are just a few examples of Prolog rules. The first two rules state capture the

8

fact that the ontology (see, for instance, Figure ??) stipulates that TargetType2 is either
a member of the class TargetType2 1 or of TargetType2 2.

targetType2(X) :- target(X), targetType2_1(X).

targetType2(X) :- target(X), targetType2_2(X).

As another example, the following rule states that a given object is of type Target-
Type2 1.

targetType2_1(X) :- target(X),intensityCornerType2(Y),

hasIntensityCorner2(X,Y),

multiplicity(hasIntensityCorner2,3),

rangeCorner(Z), hasRangeCorner2(X,Z),

multiplicity(hasRangeCorner,4).

This kind of rules are applied to a data base of facts generated by the Feature Ex-
traction blocks, as shown in Figure 2. These blocks detect corners and classify them into
the four classes, as described before. The data base facts are in the form:

target(t).

corner(c1).

corner(c2).

corner(c3).

...

corner(c7).

hasCorner(t, c1).

....

hasCorner(t,c7).

intensityCornerType1(c1).

.....

rangeCornerType1(c5).

4 Conclusions

The main goal of this work was to investigate a scenario of Automatic Target Recognition
in which the targets are not know at the time of the design of the system. Instead,
we presumed that the descriptions of targets are supplied through a communication
channel. The descriptions are either generated by a human operator or are supplied
by an intelligence source. The case of supplementing description of a known target by
some additional information about its features is a special case of this scenario. This
kind of scenario is not typical for ATR applications. In our approach to the solution of

9

such a problem we assumed that the descriptions of targets are expressed in the DAML
language - the language for specifying ontologies. The goal of this analysis was to assess
the feasibility of this kind of approach to ATR.

We were able to implement prototypes, mostly rather simple cases, of the elements of
a system that would solve such a problem. Consequently, we can claim that this approach
is feasible and promising. We must say that we are not making any claims about the
implementation of our algorithms in terms of the accuracy of recognition for any special
collection of objects (even the objects that were used in our simulations). This was not
our goal in this investigation. For instance, we did not try to prove that our rules would
correctly discriminate pyramids from cubes. But we do not see any reasons for not being
able to develop robust algorithms for any kinds of scenarios like the one used in this
research.

Various directions of future research need to be pursued to make the development
process of such systems easy and robust. For one, there is a need for good tools that
would help the ontologist to develop ontologies for various domains. The tools should be
able to tell the user that the terms that s/he is trying to add to the ontology are already
defined, that adding specific classes or properties would make the ontology inconsistent,
that some of the facts that the ontologies is trying to add to the ontology are redundant.
Independently of the tools, there is a need of developing an ontology for the domain
of target recognition that would be acceptable to many users. (We do not believe it
is possible to satisfy all the users with one ontology.) Such ontologies would capture
knowledge of many targets of interest. The descriptions of the targets would be expressed
in terms of different kinds of features. Once we admit the existence of multiple ontologies,
it would be important to have tools that can use multiple ontologies, in spite of the
inconsistencies that exist among them.

Acknowledgments

This research was partially supported by a grant from the Office of Scientific Research
under contract No: F49620-98-1-0043.

References

[1] G. Booch, I. Jacobsen, and J. Rumbaugh. OMG Unified Modeling Language Speci-
fication, March 2000. Available at www.omg.org/technology/documents/formal/-
unified modeling language.htm.

[2] C-H. Chen, J-S. Lee, and Y-N. Sun. Wavelet transformation for grey-level corner
detection. Pattern Recognition, 28, No. 6:853–861, 1995.

[3] J. Heflin, J. Hendler, and S. Luke. Coping with changing ontologies in a distributed
environment. In AAAI-99 Workshop on Ontology Management. MIT Press, 1999.

10

[4] J. Heflin, J. Hendler, and S. Luke. SHOE: A knowledge representation language
for Internet applications. Technical Report www.cs.umd.edu/projects/plus/SHOE,
Institute for Advanced Studies, University of Maryland, 2000.

[5] J. Hendler and D. McGuinness. The DARPA Agent Markup Language. IEEE Intel-
ligent Systems, 15, No. 6:67–73, 2000.

[6] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilde. An environment for merging and
testing large ontologies. In Proceedings of the Seventh International Conference on
Principles of Knowledge Representation and Reasoning (KR2000), 2000.

[7] DARPA Agent Markup Language Web Site. www.daml.org, 2001.

[8] Y. Y. Tang, L. H. Yang, J. Liu, and H. Ma. Wavelet Theory and Its Application to
Pattern Recognition. World Scientific Publishing Co. Pte. Ltd., 2000.

11

