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Abstract

This paper shows an example of developing a fusion system in a formal framework,
i.e., through the use of formal operators in the development process. Two main con-
cepts of formal methods are theories and models. In our approach, the development
of a fusion system consists of operations on theories and models. We show, on a
simple example, how theories and models are combined in the process of designing
a fusion system. We also compare the performance of a system developed according
to our approach with a more traditional system.

Key words: information fusion, recognition, formal methods, wavelets, features

1 Introduction

The term formal method is used in the literature to refer to the use of for-
mal logic in the process of speci�cation, design and construction of computer
systems (cf. [24,19,1]). In this approach, all facts used in the process of de-
veloping a computer system, including all assumptions and requirements, are
expressed in a formal language with well-de�ned semantics. The development
process is constrained to use a set of inferencing rules that are part of the
formal system associated with the given formal language. As a consequence,
all the properties of the developed system can be mathematically proven.

Formal methods for developing software systems are becoming more popular
not only among researchers but also among application developers. Although
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many people still believe that formal methods are expensive and thus should
be used only in critical systems, some others (cf. [19,1]) claim that, considering
the overall system development cycle, especially the cost of testing systems,
formal methods actually can reduce the overall cost of system development
and also improve the quality of software (reliability and robustness). It is also
expected that due to the great progress in the research on formal methods,
they will become more cost e�cient and consequently will become common
practice for all kind of applications.

In spite of great progress in the area of formal methods, they still draw criti-
cism from various angles. For one, the applications of formal methods are still
limited, while the research literature presents mainly rather simple examples
of applications. This paper is no exception. Another criticism is that they are
not \user-friendly", i.e., they require that the user and the developer possess
highly sophisticated mathematical knowledge. The application example pre-
sented in this paper is also a simple one. However, since the concept it is used
to explain is rather complex, we felt that it was necessary to use an exam-
ple that can explain just the concept without adding the complexity of the
application itself.

The goal of this paper is to show an example of the development of a fusion
system in a formal framework, i.e., through the use of formal operators in the
development process. Two basic concepts of formal methods are theories and
models. These concepts are brie
y discussed in Section 2. A theory is a collec-
tion of sentences in a formally de�ned language. A model is an interpretation
of a theory in a mathematical structure. To use formal methods we need to
deal with these two concepts. The main idea of this paper is that of fusion as
an operation that is performed on both theories and classes of their models,
and not just on one of these two components of a formal system. In other
words, we view fusion as an operation that takes as its inputs theories and
their models and produces a fused theory and a class of models of the fused
theory. This approach di�ers from the approaches presented in the fusion lit-
erature where fusion is treated as an operation on either data (data fusion) or
decisions (decision fusion). To shed more light on this subtle distinction, we
stress that we do not introduce here a di�erent classi�cation; we still accept
two kinds of fusion - data fusion and decision fusion. However, the point we
are trying to make is that the most interesting issues of fusion are resolved
at the design time, not at the run time of a fusion system. At the design
time, the designer needs to make decisions on how to derive a fusion function
that eventually will take sensor data and produce decisions. This is when the
designer needs to consider theories and models and perform operations on
these structures in order to derive a fusion function. We believe that fusion
system designers perform this kind of operations anyway, but this is not said
explicitly. In our approach, on the other hand, these structures (theories and
models) are used and manipulated in an explicit manner.
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Formal methods can be used in the development of any type of fusion system.
In further discussion we assume that we know theories of targets (formal sym-
bolic descriptions of targets). The following example explains the importance
of considering both theories and models in the process of fusion.

Example 1 Consider 2D sensors (e.g., vision sensors) operating in a 3D
world whose goal is to recognize whether an object they observe is an ellipse or a
circle. The sensors extract a set of edge points (x; y), in their own coordinates,
and check whether all edge points satisfy either the theory of ellipse or circle:

circle(x; y)() x2=r2 + y2=r2 = 1

ellipse(x; y)() x2=a2 + y2=b2 = 1; a 6= b

Assume the sensors' locations and orientations with respect to the object are
such that their recognition decisions are always correct (no error due to skew-
ing). For instance, the sensors S1 and S2 in Figure 1 satisfy such a condition.
In such a case the fusion operation should be the union of these two theories,
i.e., both sensors should conclude circle whenever the world contains a circle,
and ellipse, whenever the world contains an ellipse. However, if the two sen-
sors are placed di�erently, like sensors S2 and S3 in Figure 1, we cannot use
such a simple operation. It's easy to see that the fusion operation must take
into consideration the orientations and locations of the two sensors. In other
words, we need to model the world in order to derive a theory that should be
checked in the recognition process; the theories themselves are not su�cient
for such a design decision.

The central contribution of this paper is an example of a formal method based
design of a fusion system. The design is composed of a sequence of formal
operators. We present a step-by-step analysis of the formal aspects, especially
of the issue of consistency, involved in the design of a fusion algorithm using
formal methods. Although it is not the focus of this paper, we also compare
the performance of a system implemented using the approach described in
this paper, with a system developed by a more traditional approach. Towards
this aim, we compare the quality of recognition of our system with a system
that uses an entropy-based feature selection [20] and a neural network for
recognition. The results of the comparison for the scenario described in this
paper are shown in Section 8. In [17], we used this approach to the domain of
lung sound recognition.

In the next section we brie
y review the essence of the formal method approach
and then, in Section 3, we describe the formulation of the design problem
of automatic target recognition and fusion using formal methods. Section 4
shows the complexity of the feature selection problem and the need for fusion.
In Section 5 we describe the structure of a target recognition system based
on this approach. This is followed by the discussion of the issue of consistent
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Fig. 1. Example: Circle or Ellipse?

fusion of theories and their models (Section 6). In Section 8 we describe the
results of experimental evaluation of the resulting system. In Section 9 we
present our conclusions.

2 Formal Methods

Model theory is a branch of mathematical logic which deals with the relation
between a language and its interpretations, or models [5]. A �rst-order lan-
guage L is a collection of symbols consisting of relation symbols (P1; : : : ; PR),
function symbols (f1; : : : ; fF ) , and constant symbols (C1; : : : ; CC)

L = fP0; : : : ; PR; f0; : : : ; fF ; C0; : : : ; CCg: (1)

Each relation symbol Pi represents an ni-placed relation, where ni � 1. Simi-
larly, each function symbol fj represents an mj-placed function, wheremj � 1.
To formalize the meaning of the symbols in the language L, we use other sym-
bols, like parentheses (\)",\("), variables (y0; : : : ; yi; : : :), logical connectives
(^ (and),() (equivalence), = (identity), : (negation), quanti�er (8)) [5]. In
our application, we also use some special symbols, like the linear order relation
(�) and addition operation (+). Similarly as in [14], we treat these symbols
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as logical symbols, having always the usual intuitive meaning. A grammar
for L de�nes how these symbols can be combined to form well formed for-
mulas (w�s), or simply formulas, of L. W�s with no free variables are called
sentences.

A language can be made into a formal system by adding logical axioms and
rules of inference (cf. [5]). This allows us to de�ne proofs, i.e., �nite sequences
of w�s of L in which each w� is either an axiom or a result of the application
of the inference rules to preceding w�s. All w�s in such a proof are called
theorems. The fact that a w� Q is a theorem, i.e., that it can be proved from
the axioms of the formal system, is written as ` Q. If a set of w�s Q0 is
required to prove Q, then we write Q0 ` Q. A set of sentences T of L is called
a theory if it is closed under `. Typically, theories are presented by axioms,
i.e., sentences of T such that the consequences of ` for these sentences are the
same as for T .

Sentences of theories are intended to state facts about a domain (a world). In
order to establish the relationship between theories (languages) and domains
the satisfaction relation is de�ned (cf. [5]). This relation is de�ned inductively
by establishing an interpretation of all relational symbols as elementary rela-
tions among the elements of the domain, functional symbols as functions on
the elements of the domain and constant symbols as elements of the domain.
More speci�cally, a model M for the language L is a pair < A; I >, where A
is the universe (domain) of the model and I is the interpretation function, or
simply an interpretation. Therefore, each ni-placed symbol Pi from the lan-
guage L corresponds to an ni-placed relation Ri � Ani on A, each mj-placed
fj (symbol) corresponds to an mj-placed function fj : Amj ! A and each con-
stant symbol Ck corresponds to a constant xk 2 A. Whenever all the relations
represented by a sentence Q hold in M , we say that Q is satis�ed in M and
write it as M j= Q. Whenever all sentences of a theory T are satis�ed in M ,
we write M j= T and say that M is a model for T .

For a simple example, consider a domain (see Figure 2) consisting of objects
of four types: circle a, square b, triangle c, and rectangle d. Consider also a
language consisting of one binary relation symbol left(x; y) and four constants
A; B; C; D

L = fleft;A;B;C;Dg

The symbols A;B;C;D don't have any particular meaning until we assign
them to particular objects in the domain through an interpretation function
I. First, assume that the predicate left(x; y) has the usual interpretation: \the
object denoted by x is located to the left (not necessarily immediately) of the
object denoted by y". The symbols a; b; c; d, on the other hand, are not part
of the language L. They are meta-symbols that we use to de�ne the meaning.
The symbols of the language can be assigned in many di�erent ways to the
objects in the domain, but we need to have unique identi�ers of the objects
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Fig. 2. Example: Models vs. Theories.

in the domain (in this case these are a; b; c; d) in order to de�ne the meaning
uniquely.

In this example we consider two interpretation functions, I1 and I2. We assume
that both of them assign the same meaning to the relation symbol left, as
speci�ed above. However, they di�er in the assignment of objects to constants.
I1 assigns circle to A, square to B, triangle to C, and rectangle to D. I2
assigns circle to D, square to B, triangle to C, and rectangle to A. Consider
the sentence (theory)

left(A;B)

and two possible worlds as in Figure 2. We can see that this theory is satis-
�ed in both W1 and W2 under the interpretation I1. However, under I2 it is
satis�ed only in W1. Consequently, W1 would satisfy that theory under both
interpretations (and thus would be a model of that theory), while W2 would
satisfy the theory only under the �rst interpretation.
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3 The Recognition Problem

To formally specify the object recognition problem we need the following com-
ponents:

� A language to express the recognition goal, the features used for recognition
and the theories describing targets in terms of the features.

� Target theories to be used for recognition
� The classes of models for the target theories

Additionally, to give the context of the recognition problem, we need to specify
the signals used for feature extraction and the features. We provide all of this
information in the following sections.

3.1 Example Scenario

To introduce formal notation we use the following example scenario. Consider
a 2D world consisting of objects, sensors and a light source (see Figures 3
and 4). There are two 1D sensors: a vision sensor and a range sensor. The
vision sensor measures intensity of the light re
ected by the object and the
range sensor measures the distance to the object. Both sensors scan the world
by sliding along the line parallel to and at distance h from the ground and
provide a 1D array of data points (one frame at a time. The goal in this recog-
nition problem is to distinguish triangles from rectangles using complementary
information provided by the two sensors.

For this scenario, we made several simplifying assumptions: there are only two
types of objects in this world { isosceles triangles and rectangles; the objects
are illuminated by a parallel light source; at any time only one object exists in
the world; objects are stationary; there is no scattering; triangles are always
positioned with their base on the ground; the length of the bases of triangles
and rectangles are equal; there are no shadows on the ground.

The two sensors provide complementary information about this simple world.
This complementary information is useful because, under some conditions, it
is di�cult or even impossible to distinguish a rectangle from a triangle using
either a range sensor or a vision sensor alone. Figures 3 and 4 show two ex-
treme cases when it is almost impossible to make a recognition decision based
only on range data or based only on intensity data. In Figure 3, an isosceles
triangle and a rectangle illuminated with vertical light produce identical inten-
sity signals. But the range sensor gives two distinct signals. Figure 4 shows a
scenario in which it is much easier to make a correct recognition decision based
on the intensity data than based on range data, especially when measurement
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noise is present. In the following, we describe how our design methodology is
used for this scenario.

h

Range Data

Intensity Data

Vision and Range Sensors
Light Light

Fig. 3. Examples of Targets and Signals

h

Range Data

Intensity Data

Vision and Range Sensors

Light

Fig. 4. Examples of Targets and Signals
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3.2 Features

Examples of features are edges and corners of objects or the shape of main
transients in signals. A variety of approaches to feature extraction from mea-
surement data are known. Commonly used techniques include the Fourier
transform, moment feature space, the Hough transform, Wigner distribution
feature space, orthogonal polynomials, and Gabor functions [8]. In this study
we used the wavelet transform for feature selection. The advantage of wavelets
is that often the important target features are expressed by combination of
edges, spikes and transients in an input signal. Therefore, these features are
characterized by local information in both the time and frequency domains.
The wavelet processing approach allows extraction of features in both these
domains simultaneously [20].

A signal s(n) 2 RN , n 2 Z, where N = 2J , can be recursively decomposed
into lower-resolution signals at the decomposition levels j = 0; 1; : : : ; J . We
used the decomposition scheme called discrete wavelet packet decomposition
(DWPD) [7]. According to this scheme, at the decomposition level j, there
are 2j frequency bands. At the level 0 there are 2J wavelet coe�cients. At the
level 1, the signal is decomposed into two frequency bands with 2J

2
= 2J�1

wavelet coe�cients in each band. The total number of coe�cients at level 1
is 2J , i.e., the same as in the original signal. Similarly, at any level j + 1,
the number of bands is twice as in level j, each containing twice less wavelet
coe�cients, resulting in the same total number of coe�cients at every level.
Consequently, the DWPD coe�cients can be represented as a two-dimensional
matrix, where the �rst row contains the original signal, the second row contains
the coe�cients of the two bands of the decomposition level 1, and so on. For
a signal s from the sensor r, we denote such a matrix of wavelet coe�cients
as Wsr(j; b; n), where j represents the decomposition level, b - the frequency
band, and n is the coe�cient index (in the case of time signals it corresponds
to time). Therefore, the DWPD transforms a sensor signal in the time domain
into the time-frequency (wavelet) domain.

DWPD can be considered as a recursive decomposition of a vector space into
two mutually orthogonal subspaces, with two subbases for the frequency bands
2b and 2b+1 at level j+1 representing the same vector subspace as one base
in the frequency band b at level j. Since the related bases at consecutive levels
are not independent, the DWPD scheme generates a number of dependent
subbases out of which a base for the whole space can be chosen in many dif-
ferent ways. In our approach we used the Best Discriminant Basis Algorithm
(BDBA) [7,20], which selects a complete orthonormal basis that is best for
representing a signal, i.e., such that minimizes some \information cost" mea-
sure. For classi�cation problems, where the goal is to �nd a basis in which a
class of signatures is best discriminated from all other classes of signatures,
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this measure must capture a \statistical distance" among classes. Saito [20]
built such a measure using the notion of relative entropy.

The BDBA algorithm [20,7] starting with the highest level of decomposition,
i.e., with the leaves of the tree, prunes the tree by replacing two frequency
bands 2b and 2b + 1 at the level j + 1 with one frequency band b at level
j, whenever this substitution gives more discriminant power to the represen-
tation as measured by the chosen discriminant measure. The application of
this algorithm results in a best (with respect to a given signature database)
orthonormal basis consisting of selected subbases (frequency bands) for each
decomposition level j. This basis is called Most Discriminant Basis (MDB).
It is used for feature extraction, i.e., for a given signal s from sensor r, the
pairs ((j; b; n);Wsr(j; b; n)) are used as features (where the second elements
are coe�cients of the signal in the best basis and the �rst elements are their
location in the DWPD). The total number of signal features is equal to the
number N of samples of the measurement signal. In our case, the total num-
ber of components (wavelet coe�cients) in this basis is equal to 128, i.e., it is
equal to the number of samples in the object signature.

3.3 Languages

In our example we assume that we have two languages, Lr and Li, for a range
sensor and an intensity sensor, respectively.

The language Lr for the range sensor is:

Lr = frectr; trianr; fr; Cr0; Cr1; : : : ; Cr7; Cr8g; (2)

with the intended interpretation:

� rectr, trianr are 9-placed relation symbols (rectangle and triangle objects to
be recognized using the range data). These two relations are used to express
the goal of target recognition.

� fr is an 1-placed function symbol { a function that maps range feature
indices into feature values,

� Cr0; : : : ; Cr8 are constant symbols (range feature indices).
� Pairs of constants and functions (Cri; fr(Cri)) are called symbolic features,
or simply features.

The language Li for the intensity sensor is:

Li = frecti; triani; fi; 0; 1; Ci0 ; Ci1; : : : ; Ci7; Ci8g; (3)
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The intended interpretation of the elements of this language is similar to that
of Lr.

3.4 Target theories

For a given target, we have one target theory for each sensor. Each theory
is a collection of sentences expressed in terms of relation symbols, constant
symbols and function symbols. In this paper, for simplicity, we describe two
target theories as versions of a sensor theory. The feature-level theory Tr for
the range sensor consists of the following sentences that state the fact that
the constants are linearly ordered.

Cr0 � Cr1 � Cr2 � Cr3 � Cr4 � Cr5 � Cr6 � Cr7 � Cr8: (4)

The following two formulas represent the two versions of Tr. If the formulas
de�ned by Equation 5 are included this becomes the theory for rectangles,
while if the formulas de�ned by Equation 6 are included this becomes the
theory for triangles. Note that the symbols rectr and trianr are not necessary,
from the logical point of view. They are introduced into the theory by de�ni-
tion in order to enhance the readability of the theories. They are a shorthand
notation for the formulas de�ned by Equations 5 and 6.

rectr(Cr0; : : : ; Cr8)� fr(Cr0) = : : : = fr(Cr8) (5)

trianr(Cr0; : : : ; Cr8)� fr(Cr0) � fr(Cr1) � fr(Cr2) � fr(Cr3) � fr(Cr4) ^

fr(Cr0) = fr(Cr8) ^ fr(Cr1) = fr(Cr7) ^

fr(Cr2) = fr(Cr6) ^ fr(Cr3) = fr(Cr5); (6)

The recognition problem is to decide whether one of these sets of relations
(Eq. 5 or 6) is ful�lled in the world.

The feature-level theory Ti for the intensity sensor consists of the following
sentences of which Equation 8 describes the sentences that represent the rect-
angle version and Equation 9 represents the sentences that represent the tri-
angle version.

Ci0 � Ci1 � Ci2 � Ci3 � Ci4 � Ci5 � Ci6 � Ci7 � Ci8 : (7)

recti(Ci0; : : : ; Ci8)� 1 � fi(Ci0) = : : : = fi(Ci8); (8)

triani(Ci0; : : : ; Ci8)� fi(Ci0) = : : : = fi(Ci8) = 0; (9)
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3.5 Models

To connect the theories to the world, we need to construct models for the
languages. For each model we need a domain that represents the constants of
the theory, and an interpretation function that maps particular constants into
elements of the domain.

The model Mr of the language Lr is:

Mr =< A; rectr; trianr;Wsr; 0; 1; : : : ; 8; Ir >; (10)

where A = f0; : : : ; 8g is a universe of the modelMr. In our case, these numbers
are indices of the nine wavelet coe�cients selected out of the complete Discrete
Wavelet Packet Decomposition (DWPD) of a given signal [7] using the BDBA
algorithm outlined in Section 3.2. The function

Ir : fCr0; : : : ; Cr8g ! f(j; b; n)g (11)

is an interpretation function that maps symbols of the language Lr to appropri-
ate relations, functions, and constants in the universe A. Ir assigns constants
0; : : : ; 8 in the model Mr to the constant symbols Cr0; : : : ; Cr8 in the language
Lr respectively. Moreover, Ir assigns the function Wsr : A! A in the model
Mr to the symbol fr in the language Lr. Wsr is the wavelet decomposition



the meaning of this inequality is not obvious. In our case, this symbol was
interpreted as if j were the most signi�cant digit in a three-digit number and
n were the least signi�cant digit. The interpretation function for constants was
constructed by �rst ordering the selected wavelet coe�cients according to the
inequality relation and then assigning the number 0 to the �rst coe�cients, 1
to the second, and so on.

The model Mi of the language Li is:

Mi =< A; recti; triani;Wsi; 0; 1; : : : ; 8; Ii > : (12)

Again, nine features were selected. The �rst four features corresponded to the
rising edge of a rectangle and the last �ve features corresponded to the vertex
of a triangle.

3.6 Formal Method Based Target Recognition

The goal of an automatic target recognition system is to derive a classi�ca-
tion decision t (in our example t 2 frectangle; triangleg), based upon the
information as described above. For this, there must be a decision procedure
that incorporates all of the above information, i.e., information about signals,
features, targets (target theories) and their models. There are two major ap-
proaches to the development of systems using formal methods (cf. [24]):model-
based and algebraic. In the model-based approach, observations can be treated
as elements of a structure A that is a candidate for a model Mt of a given
theory Tt. A model checker is then invoked to check whether the observations
ful�ll the relations Pt of the theory. In the algebraic approach, observations
can be treated as axioms of a theory and a theorem prover is invoked to check
whether the axioms imply that the observations come from a given target.

In our approach, we �rst build structures A for models of given target theories
and interpretations I, and then perform model checking in order to determine
the classi�cation of a target. More speci�cally, we check which of the theories
(or versions of a theory) is satis�ed by features extracted from signals sr; si
coming from two sensors. To achieve this goal, we simply check whether the
relation de�ned by some formula, e.g, Equation 5 of the theory Tr, holds in the
structure A, or more speci�cally, among those elements of A that are assigned
to constants of the theory through the interpretation function Ir.

We assume that we know target theories for two sensors. In order to be able
to derive target recognition decisions based upon two sensors we need to have
a fused theory that combines features and theories of both sensors.
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4 The Need for Feature Fusion

While the wavelet transform provides features that have high expressive power,
it also leaves us with the problem of choice { which of the features to choose
for a speci�c application. Features extracted from measurement data are often
redundant or have very limited discriminant power. We can signi�cantly re-
duce the computational complexity by eliminating these features from active
participation in the recognition process. For instance, if the wavelet transform
generates n = 128 features, there are

C(n; k) =

0
B@
n

k

1
CA =

n!

(n � k)!k!
= 226; 846; 154; 180; 800 (13)

possible combinations of selecting a subset of k = 10 features out of the larger
set of 128 features. These are more than 2 � 1014 possible choices!

When dealing with multi-sensor systems, we have to address one more choice:
which features to choose from a particular sensor's features. For instance, if
n1 = n2 = 10 features are selected from two sensors and if we want to select
n = 10 features out of these n1 + n2 features, we have

C(n1 + n2; n) =

0
B@
n1 + n2

n

1
CA =

(n1 + n2)!

(n1 + n2 � n)!n!
= 184; 756 (14)

possible choices.

The criterion used for selecting features needs to be based on the discriminant
power of the set of features. The entropy is often used as a measure of expected
discriminant power of particular features. In our work we used an entropy-
based measure [20] for the process of pre-selection of a set of features. The
�nal selection of features is based upon symbolic knowledge (target theories
and their models).

5 AutomaticMulti-Sensor Feature-based Recognition System (AM-
FRS)

In this section we describe the structure of our AutomaticMulti-Sensor Feature-
based Recognition System (AMFRS) (cf. [17]). In the next section we describe
the formal aspects involved in the design of this kind of systems.
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The AMFRS consists of four kinds of processing blocks: DWPD, Feature Se-
lection, Feature Fusion and Backpropagation Neural Network. The input to
the AMFRS is from two target detection systems (not covered in this paper),
one for the range sensor and one for the intensity sensor. The DWPD (de-
scribed in Section 3.2), transforms two signals sr; si into the wavelet domain
according to the algorithm described in [13]. The outputs of this algorithm
are two matrices Wsr(j; b; n), Wsi(j; b; n) of wavelet coe�cients. Then Feature
Selection selects some of the wavelet coe�cients at certain locations, i.e., some
pairs ((j; b; n);Wsr(j; b; n)) for the range sensor, and similarly for the intensity
sensor. These pairs are then used as interpretations of symbolic features. In
this process, the interpretation functions Ir and Ii (see Eq. 11), are used to
associate particular constants in target theories Tr and Ti, respectively, with
elements of the domains of models Mr and Mi. The interpretation functions
are constructed during the design phase using the signature databases and the
target theories.

Feature Fusion combines features from both sensors into one set of fused fea-
tures so that they become elements of a fused model Mf . Here again, the
interpretation function If is used to associate constants of the fused theory Tf
with the elements of the domain of the fused model Mf . Here the selection is
from the set of features identi�ed by both sensors. These features are passed
to the neural-network based model checker for a recognition decision. The in-
terpretation function If , the fused theory Tf and model Mf are constructed
during the design phase as described in Section 6.

In the next phase, the AMFRS implements soft model checking using a back-
propagation neural network. The network checks which of the (versions of)
target theories is satis�ed by the fused set of features. In other words, it checks
whether the domain provided by the two signals satis�es the relations of the
fused target theory associated with rectangles or with triangles. The neural
network is trained using the known target theories under various noise condi-
tions. The issue of noise can be addressed in many di�erent ways. The main
reason for selecting the neural netwok approach was to be compatible with
the target recognition approach used in [20], which we used as a benchmark
for our system.

6 Model-Theory Based Fusion

In this section we describe the issue of consistency involved in the design
process of the Feature Fusion block. One way to implement this block is to fuse
the decisions according to some fusion rule (decision fusion). Another approach
is to fuse data (in our case features) and then classify targets based upon the
fused data (data fusion). The question is, though, what is the theoretical basis
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for such fusion rules? Both data and decision fusion have been extensively
studied and described in the fusion literature (cf. [2{4,6,9{12,15,18,21{23]). In
our approach (cf. [16]), in order to derive a fusion rule we explicitly combine
(fuse) theories and then let the system perform recognition based on model
checking. Two theories T1; T2 and their classes of models M1; M2 are fused
consistently so that the result is a fused theory Tf and its class of models Mf

associated through an interpretation function If . A conceptual view of this
framework for two sensors is shown in Figure 5.

Conceptually, fusion consists of two operations: Theory Fusion and Model Fu-
sion. Theory fusion includes language fusion, the operation that combines lan-
guages (constants, functions and relational symbols) of the two theories Tr; Ti
into one language (set of constant, function and relational symbols) of the
fused theory Tf . It also includes theorem fusion, an operation that combines
theorems of the two theories into one set of theorems. Model Fusion produces
a fused model Mf (actually, this is a class of models), using Mr and Mi de-
scribed in Section 3.5. The whole process must be consistent, i.e.,Mf must be
a class of models for the fused theory Tf . Therefore, fusion is a formal system
operator that has multiple models and theories as inputs and a single theory
and its model as output [16]. This interpretation of fusion di�ers from more
traditional approaches. One of the distinguishing features of our approach [16]
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is that in our framework the most important issues of fusion are resolved at
the design stage of system development. Additionally, since we deal with the-
ories and models, the requirement of consistency of representations can be
formally and explicitly speci�ed. Such a formal representation is amenable to
automated computer reasoning. Towards this aim, we investigated a number
of operators of model theory [5], like reduction, expansion and union. These
operators were used to derive fused languages, theories and models in the
AMFRS design. Ideally, only consistent operators are used ensuring that the
result of the application of an operator to two languages, theories and models
constitutes a consistent formal system, i.e., the resulting structure is a model
of the resulting theory. Although some of the operators known in model theory
have this property, in order to ful�ll the requirements of our speci�c applica-
tions, we had to use some other operators whose result of application needs to
be checked for consistency for each case, i.e., the property of consistency is a
proof obligation. The operators used in our experiments are described below.
In Section 7 we show how these operators were applied in one of our scenarios.

Reduction Operator: A language Lr is a reduction of the language L if the
language L can be written as

L = Lr [X; (15)

where X is the set of symbols not included in Lr. A theory (sub-theory) T r

for the language Lr is formed as a reduction of the theory T for the language
L by removing sentences from the theory T which are not legal sentences of
the language Lr (i.e., those sentences that contain symbols of X). A model
M r for the language Lr is formed as a reduction of the model M =< A; I >
for the language L by restricting the interpretation function I = Ir [ Ix on
L = Lr [X to Ir

M r =< A; Ir > (16)

The important feature of the reduction operator is that it preserves the theo-
rems of the original formal system, provided that they are not reduced by the
operator. Given a language Lr, there is only one reduction of Mr.

Expansion Operator: A language Le is an expansion of the language L if
the language L can be written as

Le = L [X; (17)

where X is the set of symbols not included in L. A theory T e for the language
Le is formed as an expansion of the theory T for the language L by adding
a set of new axioms of the language Le to the theory T . A model M e for the
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language Le = L [X is formed as an expansion of the model M =< A; I >
for the language L by giving appropriate interpretation Ix to symbols in X

M e =< A; I [ Ix > : (18)

The expansion operator preserves all the theorems of the original theory in
the expanded formal system. The expansion operator is not unique.

In our example (see Section 7), a special form of this operator was used to
take advantage of some special properties of the recognition problem. Since
the goal was to replace some of the constants, functions and relations with
new ones, the expansion operator was used to introduce new symbols into the
original language. These new symbols were interpreted using the interpretation
of the original symbols, and then the original symbols were removed by the
(following this step) reduction operator. Two operations were used to derive
interpretations for new symbols.

(1) (Relation restriction) Given an n-placed relation R � An in the model
M , this model can be expanded with a ne-placed (ne < n) relation
Re � (A0)n

e

, where A0 � A. The ne-placed relation Re is then called
a restriction of the relation R and is denoted as Re = R j(A0)ne . This op-
eration is a combination of projecting the relation R onto selected axes
Ane and, at the same time, restricting its domain to the subset A0 � A.

(2) (Product of relations) Given a n1-placed relation R1(x1; � � � ; xn1) and
a n2-placed relation R2(y1; � � � ; yn2) in the model M , this model can
be expanded with a new n-placed relation Re(z1; � � � ; zn); where n =
n1 + n2, derived as a Cartesian product of the relations R1(x1; � � � ; xn1)
and R2(y1; � � � ; yn2). Hence, R

e(z1; � � � ; zn) = Re(x1; � � � ; xn1; y1; � � � ; yn2)
= R1(x1; � � � ; xn1)�R2(y1; � � � ; yn2).

In the same manner, a new function is constructed in the expanded modelM e

using one of the following two procedures:

(1) (Function domain restriction) Given a function f : A! A in the model
M , this model can be expanded with a function f e : A0 ! A, (A0 � A),
where f e = f jA0 is a function whose domain has been restricted from A
to A0 � A. The function f e : A0 ! A is then called a restriction of the
function f .

(2) (Union of functions) Given a function f1 : A0 ! A, (A0 � A), and a
(complementary) function f2 : (A\A0)! A in the model M , this model
can be expanded with a new function f e : A ! A derived as the union
of the functions f1 and f2. Therefore, f e = f1 [ f2.

Union Operator: This operator generates a language L as a union of the
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languages L1 and L2

L = L1 [ L2 (19)

and a theory T for the language L, as the union of the theory T1 for the
language L1 and the theory T2 for the language L2

T = T1 [ T2: (20)

To de�ne a union of two models, the notation is expanded by including ex-
plicitly constants, relations and functions. The union M =< A;R; f;X; I >
of two models M1 =< A1;R1; f1;X1; I1 > and M2 =< A2;R2; f2; x2; I2 > is
de�ned as

M = M1 [M2 =< A1 [A2;R1 [ R2; f1 [ f2;X1 [X2; I1 [ I2 >; (21)

where R, R1, R2 are relations; f , f1, f2 are functions;X, X1, X2 are constants;
and I, I1, I2 are interpretation functions. This operator does not guarantee
that the resulting structure is a model of the union of two theories; this prop-
erty is a proof obligation and needs to be checked with each speci�c case of
the application of this operator.

In summary, we selected a number of features from each of the sets of features
associated with the two sensors. This resulted in the removal of some of the
features from further consideration. The consequence of this is that we had
to also remove the occurrences of the symbols associated with these features
from the theories. And moreover, we had to adjust the interpretation function.

The selection of the number of features (nine) was somewhat arbitrary. How-
ever, since we wanted to compare the quality of recognition using the features
selected using only the Most DiscriminantWavelet Coe�cients (MDWCs) and
the wavelet coe�cients selected by the model-theory based AMFRS, we had
to select the same number of features for both cases. Since we developed target
theories that contained nine constants' symbols, we selected kf = 9 MDWCs.

7 Fusion of Range and Intensity Features

To derive the fusion operators we used the model/theory combination op-
erators of reduction, expansion and union described in Section 6. Below we
describe how these operators are used by the designer of the system to fuse
two theories Tr, Ti and two modelsMr, Mi into a fused theory Tf and a fused
modelMf , and then how the resulting modelMf is used in the AMFRS. More
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speci�cally, these operators are used to build the fused modelMf that includes
kf = 9 features, some of them selected from the kr = 9 range features and
some from the ki = 9 intensity features. As we explain below, the �rst three
features of this fused feature vector are the same as the �rst three intensity
features corresponding to the rising edge of the rectangle. The next three fused
features are the same as the last three intensity features corresponding to the
vertex of the triangle. And the last three fused features are the same as the
last three range features corresponding to the falling edge of a rectangle.

Our goal was to compare the quality of recognition of the AMFRS versus the
quality of recognition using the MDWCs [20] as features. In this example, the
features selected as the MDWCs happened to be only the intensity features.
This was because all nine intensity features have more discriminant power (as
measured by the relative entropy measure) than any of the range features.

7.1 Language Fusion

First, we de�ne the language Le
r to be an expansion of the language Lr

Le
r = Lr [Xr; (22)

where Xr is the set of symbols added to Lr. As we described in Section 6,
we expand a language so that the new symbols are interpreted as relation
restrictions, products of relations, function restrictions, or unions of functions.
In our fusion example, we chose Xr = frect0r; trian

0
r; f

0
rg and therefore

Le
r = frectr; rect

0
r; trianr; trian

0
r; fr; f

0
r; Cr0; Cr1; : : : ; Cr8g; (23)

where rect0r and trian
0
r are 3-placed relation symbols (restrictions of rectr and

trianr), f 0r is an 1-placed function symbol (restriction of fr).

Next, we de�ne the language Ler
r to be a reduction of the language Le

r:

Ler
r = frect0r; trian

0
r; f

0
r; Cr6; Cr7; Cr8g; (24)

which was obtained by removing the symbolsXer
r = frectr; trianr; fr; Cr0; : : : ; Cr5g

from Le
r.

In a similar manner, we de�ne the language Le
i to be an expansion of the

language Li:

Le
i = Li [Xi; (25)
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where Xi = frect0i; trian
0
i; f

0
ig is the set of symbols added to Li. As a result

we have

Le
i = frecti; rect

0
i; triani; trian

0
i; fi; f

0
i; Ci0 ; Ci1; : : : ; Ci7; Ci8g; (26)

where rect0i, trian
0
i are 6-placed relation symbols (restrictions of recti), f 0i is

an 1-placed function symbol (restriction of fi).

Next, we de�ne the language Ler
i to be a reduction of the language Le

i :

Ler
i = frect0i; trian

0
i; f

0
i; 0; 1; Ci0 ; : : : ; Ci5g: (27)

by removing the set of symbols Xer
i = frecti; triani; fi; Ci6; Ci7; Ci8g from Le

i .

In the following step, we create the language Lri, by applying the union oper-
ator to the languages Ler

r and Ler
i ,

Lri = Ler
r [ Ler

i = frect0r; rect
0
i; trian

0
r; trian

0
i; f

0
r; f

0
i; 0; 1; Cr6 ; Cr7; Cr8; Ci0; : : : ; Ci5g:(28)

Next, we create the language Le
ri, as an expansion of Lri by

Xri = frectangle; triangle; f;C0; C1; : : : ; C8g.

Le
ri = Lri [ frectangle; triangle; f;C0; : : : ; C8g

= frectangle; rect0r; rect
0
i; triangle; trian

0
r; trian

0
i; f; f

0
r; f

0
i ;

0; 1; C0; : : : ; C8; Cr6 ; Cr7; Cr8; Ci0; : : : ; Ci5g; (29)

where rectangle, triangle are 9-placed relational symbols (products of rectr
with recti, and trianr with triani, respectively), f is an 1-placed function sym-
bol (union of f 0r, f

0
i), and C0; : : : ; C8 are constant symbols (renamed constants

Cij ; Crj).

And �nally, we create the fused language L as a reduction of the language Le
ri:

L = frectangle; triangle; f;0; 1; C0; : : : ; C8g: (30)

7.2 Theory Fusion

Theory fusion parallels language fusion. We denote T e
r to be a theory of the

language Le
r. T

e
r is an expansion of Tr. In addition to the axioms of Tr, it

contains the following two axioms:
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rect0r(Cr6; Cr7; Cr8)� fr(Cr6) = fr(Cr7) = fr(Cr8) (31)

trian0r(Cr6; Cr7; Cr8)� fr(Cr8) � fr(Cr7) � fr(Cr6) (32)

Axioms 31 and 32 are derived from the axioms 5 and 6 respectively by con-
sidering only last three features (Cr6, Cr7, and Cr8).

Next, we create the theory T er
r as a sub-theory of T e

r . This theory contains the
above two axioms and, additionally, the following axiom that was obtained
from the axiom 4 by removing from it constants that are not part of the
language anymore:

Cr6 � Cr7 � Cr8: (33)

Similarly, by applying the expansion and the reduction operators to the axioms
8, 9, 7, we derive the theory T er

i for the language Ler
i :

rect0i(Ci0; : : : ; Ci5)� 1 � fi(Ci0) = : : : = fi(Ci5); (34)

trian0i(Ci0; : : : ; Ci5)� fi(Ci0) = : : : = fi(Ci5) = 0; (35)

Ci0 � Ci1 � Ci2 � Ci3 � Ci4 � Ci5: (36)

Then, we create the theory Tri by applying the union operator to the theories
T er
r and T er

i . This theory includes the axioms 31, 32, 33, 34, 35, and 36.

In the next step, we create the theory T e
ri as an expansion of the theory Tri for

the language Lri. For this, we create axioms for the additional new constants
of Lri. Since the intended interpretation of these new constants is as products
of relations, we conjoin pairs of axioms with renamed constants: 31 with 34,
32 with 35, and 33 with 36.

rectangle(C0; : : : ; C8)� 1 � f(C0) = : : : = f(C5) ^ f(C6) = f(C7) = f(C8);(37)

triangle(C0; : : : ; C8)� f(C0) = : : : = f(C5) = 0 ^ f(C8) � f(C7) � f(C6);(38)

C0 � C1 � C2 � C3 � C4 � C5; (39)

C6 � C7 � C8: (40)

The above four axioms constitute the axioms of the theory Tf , which is a sub-
theory of T e

ri obtained by removing from it the axioms which use the symbols
that are not in Lf .
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7.3 Model Fusion

In this process, models for the fused theories are created out of the models of
the theories that have been fused. In the �rst step, we create the model M e

r

for the language Le
r (L

e
r is an expansion of Lr)

M e
r =< A; rectr; rect

0
r; trianr; trian

0
r;Wsr;Wsr0; 0; : : : ; 8; Ier > (41)

by expanding the interpretation function Ir on Lr to the interpretation func-
tion Ier on Lr [Xr. Let Ixr be an interpretation function on Xr. Since the lan-
guage Xr is disjoint from the language Lr, we can write Mr =< A; Ir [ Ixr >.
The interpretation of the new symbols, i.e., rect0r; trian

0
r and f 0r, is:

rect0r = rectr j(A\f6;7;8g)3; (42)

trian0r = trianr j(A\f6;7;8g)3; (43)

Wsr0 =Wsr jA\f6;7;8g : (44)

Next, we create M er
r , a model for the language Ler

r , by restricting the inter-
pretation function Ier , so that the symbols rectr; trianr; fr are removed from
the interpretation.

In a similar manner, we create M e
i for the language Le

i by expanding the
interpretation Ii:

rect0i = recti j(A\f0;1;2;3;4;5g)6; (45)

trian0i = triani j(A\f0;1;2;3;4;5g)6; (46)

Wsi0 = Wsi jA\f0;1;2;3;4;5g : (47)

Next, we create M er
i , a model for the language Ler

i , by removing the symbols
recti; triani; fi from the interpretation Iei .

Then, we create a model Mri for the language Lri by applying the union
operator to the modelM er

r for the language Ler
r and to the modelM er

i for the
language Ler

i

Mri =< A; Iri >= M er
r [M er

i (48)

Next, we create the model M e
ri for the language L

e
ri by expanding the model

Mri (adding interpretation to frectangle; triangle; f;C0; C1; : : : ; C8g):

rectangle = rect0r � rect0i; (49)
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triangle = trian0r � trian0i; (50)

Wsf = Wsr0 [Wsi0 ; (51)

C0 = Cr6; C1 = Cr7 ; C2 = Cr8; C3 = Ci0; : : : ; C8 = Ci5 (52)

Note that it is possible to apply the union operator to functions Wsr0 and Wsi0

because their domains are disjoint (Wsr0 is restricted to f6; 7; 8g and Wsi0 is
restricted to f0; 1; 2; 3; 4; 5g.

And �nally, we create the fused model Mf for the language Lf by removing
from the interpretation the symbols that are not needed:

Mf =< A; rectangle; triangle;Wf; 0; : : : ; 8; If > : (53)

8 Simulation Results

As we mentioned earlier, the main advantages of the proposed methodology
are all the same as of any formal method. Additionally, in this section we
present results of experiments using simulated range and intensity signals for
the rectangle/triangle world described in Section 3.1. The goal was to compare
the AMFRS versus both a single sensor system (using our methodology of
system design) and versus an MDWC-based system. The quality of recognition
was measured in terms of misclassi�cation rate. In order to assess the impact
of noise, noisy signals were simulated with the additive Gaussian noise varied
at 11 levels (with step 2.5) within the deviation range of 0 through 25. For
each level of noise, 100 di�erent runs were generated.

The resulting misclassi�cation rates for the single sensor case are shown in
Figure 6. From this �gure it can be seen that for one (range) sensor the
performance of the AMFRS is consistently better than the misclassi�cation
rate of the recognition system that selects features using the MDWC approach.

These experiments showed that although the MDWC-based recognition sys-
tem adapts well to the training set of triangle/rectangle range signatures, it
does not have enough generalization power to perform equally well on the
whole range of the test data. The reason for this is that the MDWC features
used to train the classi�er are concentrated in two time/frequency areas. The
AMFRS, on the other hand, has a better generalization power due to select-
ing interpretable features which are more spread across the time/frequency
domain.

Figure 7 shows the resulting AMFRS (continuous line) and MDWC (dashed
line) misclassi�cation rates for di�erent levels of noise when signals from both
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Fig. 6. Misclassi�cation Rates for Single-Sensor (Range) Triangle/Rectangle Recog-
nition Using Model Theory (AFBRS) and MDWCs for Feature Selection

sensors (range and intensity) are used. Additionally, this �gure shows the
misclassi�cation rate of the AMFRS when only range data are used. As can
be seen from this �gure, both AMFRS and MDWC perform better than a
single sensor system, but the AMFRS performs better than the MDWC-based
system, when both sensors are used.

Again, our experiments showed that the MDWC-based recognition system
adapts well to the training set of triangle/rectangle signatures, but it does not
perform equally well with the whole test data set. Similarly as for the single
sensor system, the MDWC features (only the intensity features happened to
be selected by the MDWC entropy-based algorithm) that were selected and
used to train the classi�er are concentrated in one time/frequency area. The
AMFRS was able to achieve a higher generalization power of the recognition
by selecting interpretable features (both range and intensity) which are more
spread across the time/frequency domain.

9 Conclusions

In this paper, we showed an example of an approach to designing fusion sys-
tems using formal methods. This approach allows the designer of the system
to incorporate symbolic knowledge about the targets into the system design,
provided that such knowledge (target theories and their interpretations) is
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available. The design steps were explained on a simple automatic target recog-
nition example. The generalization of the example to more complex systems
is straight forward.

In many practical cases, there exists some symbolic knowledge about targets.
This knowledge is often (implicitly) incorporated into ATR systems by the
designers. Such an implicit representation of symbolic knowledge makes it very
di�cult to maintain the ATR system. Since in our approach, the knowledge
is explicitly represented and kept as one module of the system, it is easier to
maintain and extend. Also, since a formal representation of knowledge is used,
this knowledge can be easily analyzed using generic formal methods tools. We
showed how to use such symbolic knowledge in the process of designing a
fusion system. In particular, a number of operators were introduced for the
derivation of a fusion system. Some of these operators guarantee that the
result of their application is a consistent system while for some others, the
consistency property needs to be proved using formal method tools (theorem
provers).

Another problem with incorporating symbolic knowledge into ATR systems
is the lack of methods for interpreting symbolic features in sensory signals.
In this paper we presented an approach to interpreting symbolic features as
wavelet coe�cients. Wavelets are a powerful tool for representing signals. The
connection of this tool, through formal methods, to symbolic knowledge is
a very important step towards bridging the gap between the powerful signal
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processing algorithms and e�cient classi�ers.

In this paper we applied our approach to design a system (AMFRS) for the
triangle/rectangle recognition problem. We also showed through a series of ex-
periments that the AMFRS has better recognition accuracy than the MDWC-
based multi-sensor recognition system, that the single-sensor system based on
our methodology of feature selection has better recognition accuracy than the
MDWC-based single-sensor recognition system, and that the multi-sensor AM-
FRS has better recognition accuracy than our single sensor system. Although
the MDWC-based system was able to adapt well locally to subsets of gener-
ated target signals, it did not perform as well on a larger variety of input data.
The MDWC system selects features based only on data and thus may select
wrong features when the data are concentrated within some speci�c range.
The AMFRS, on the other hand, bases its feature selection on the universal
knowledge that is given by the target theories. Note that this knowledge was
input into the system by the system designer. The comparison is then between
a data driven design and a knowledge driven design. We showed that a knowl-
edge driven approach can lead to better results than a data driven approach.
However, this can happen only if the knowledge (in our case target theories)
is available during the design process.

We believe that in many practical situations the knowledge exists, although it
is not explicit and is not represented as formal target theories. In order to make
the formal approach easier to apply, the designers should be supported with
appropriate tools that can extract the symbolic knowledge, represent it as for-
mal theories, and check its consistency. Therefore, future research should ad-
dress such issues as the use of machine learning techniques to extract symbolic
knowledge from signature databases, the use of formal software engineering
tools, like theorem provers, to check consistency of symbolic knowledge, the
use of formal tools to support the construction of fused theories and models
according to the procedure described in this paper.
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