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Abstract—Aggregation services play an important role in the
domain of Wireless Sensor Networks (WSNs) because they
significantly reduce the number of required data transmissions,
and improve energy efficiency on those networks. In most of the
existing aggregation methods that have been developed based on
the mathematical models or functions, the user of the WSN has
not access to the original observations. In this paper, we propose
an algorithm which let the base station access the observations
by introducing a distributed method for computing the Principal
Component Analysis (PCA). The proposed algorithm is based on
transmission workload of the intermediate nodes. By using PCA,
we aggregate the incoming packets of an intermediate node into
one packet and as a result, an intermediate node merely sends a
packet instead of relaying all the incoming packets. Consequently,
we can achieve considerable reduction in data transmission.
We have analyzed the performance of the proposed algorithm
through numerical simulations. The experimental results show
that our algorithm performs better than the existing state of the
art PCA-based aggregation algorithms such as PCAg in terms
of accuracy and efficiency.

I. INTRODUCTION

In the recent years, there have been a considerable amount
of research on the area of data reduction in wireless sensor
networks. As the radio board of a sensor node consumes most
of the available power, data reduction techniques could be used
to prolong the lifetime of wireless sensor networks. Among
these techniques, which are classified in [1], data prediction
and data aggregation are the most relevant categories to our
work. In data prediction, sensor nodes do not continuously
send their measured values to the base station and let the
base station predict the required values. Thus, the base station
often maintains the estimation of an observation instead of its
actual value. In data aggregation, each sensor node sends the
same number of packets in different periods, and the size of
these packets are the same. Indeed, each packet carries the
result of the in-network computation called partial value for
the next intermediate node in the aggregation tree. In fact, data
aggregation techniques are used for reducing the number of
data transmissions by distributing the function which needs
all sensors’ observations throughout the network, so each
node shall apply the function to its received values. Recent
works [2], [3], [4] have focused on reducing the number of

transmitted bytes by performing in-network data aggregation.
In this paper, we use a combination of data predication and

data aggregation techniques. Since we separate observations
into a base and some projected values, and use one base for
more than one observation, such that the reconstructed signals
at sink bear approximation errors, we classify our method in
the data predication category. On the other hand, each node
sends the Principal Components(PCs) of its received values to
the next node, and the PCs have the same size. In addition, the
duty of the base station is to compute the PCs of all sensors,
and hence we have a in-network aggregation service for the
PC computation.

Although most of the applications of principal component
analysis (PCA) are not in the field of sensor networks, some
recent work have used PCA to extract features out of wireless
sensor data. In [5], a data aggregation method using PCA com-
pression techniques is proposed to fuse the information from
multiple sensors. Borgne et al. [6] propose a decentralized
distributed PCA in wireless sensor networks to aggregate the
transmitted data called PCAg. The main problem of PCAg [6]
is the frequent sending of updated eigenvectors from a base
station to its sensor nodes. In [7] a method called DPCA is
proposed to solve this problem. By using DPCA, each sensor
can calculate the needed elements of the eigenvector without
any communications to the base station. The DPCA uses the
broadcast nature of wireless communications and assumes that
sensor nodes which are not in the radio range of each other
have not any data correlation.

In this paper, we propose a new data aggregation algorithm
in which intermediate nodes aggregate the incoming packets
by means of PCA into a single packet and transmit the
aggregated results to their parents. This approach extends the
important previous works on PCA-based data aggregation. Be-
sides the main algorithm, we propose an aggregation service to
compute the reconstruction error at the base station. By using
this aggregation service, we enhance the PCAg algorithm,
and we compare the enhanced method with our proposed
method. Our numerical results which are based on a real-world
temperature measurement illustrate that the proposed method
has better performance in terms of accuracy and efficiency.
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The rest of the paper is organized as follows. A brief
description of the PCA algorithm is provided in Section 2.
We introduce the proposed method in Section 3. Section 4
provides the simulation results. Finally, we conclude the paper
in Section 5.

II. BACKGROUND

A. Principal Component Analysis

Let x[t] = [x1[t], · · · , xn[t]]
T represent the observations of

n sensor nodes and t = {1, 2, 3, · · · } the sampling period
(epoch) at which the sensor measurements are collected.
Therefore, xi[t] shows the sensed observation of sensor i at
time t.

The vector x can be transformed into a new space by

y[t] = PTx[t] (1)

Where P is an orthonormal transformation matrix. If we
Assume this matrix is available, the value of x[t] can be
reconstructed using y and the following equation:

x̂[t] = Py[t] (2)

Therefore, instead of sending x[t], a source node may only
send y[t]. hence, if the dimensions of y is less than the
dimensions of x, the amount of the transmitted bytes will
be reduced and more energy will be saved. This dimension
reduction is lossy, therefore, x̂[t] is an approximation of x[t].
To measure the accuracy of x̂[t], the reconstruction error is
defined as:

e =
∥∥x̂[t]− x[t]

∥∥ (3)

Let q be the number of the dimensions of y[t], then the kth
dominant eigenvector of the covariance matrix of x is defined
as the eigenvector corresponding to its kth largest eigenvalues.
If the first q dominant eigenvectors are used as the columns
of P, the reconstruction error will be minimized and y[t] will
represent the principal components(PCs) of x[t]. Dominant
eigenvectors show the direction in which data has maximum
variance, therefore if all the eigenvectors are selected, total
variance of data in all directions will be saved. Otherwise, the
variance are removed in the directions corresponding to the
discarded eigenvectors. As eigenvalues show the amount of
variance conserved by eigenvectors, their sum is equal to total
variance of the original data:

n∑
i=1

λi = E[(x− E[x])T (x− E[x])] (4)

where λi is the eigenvalue corresponding to the ith dominant
eigenvector. Therefore, to measure the accuracy of a dimension
reduction method, the retained variance metric is used as:

H(q) =

∑q
k=1 λk∑n
k=1 λk

(5)

where q and n are the sizes of the new and original dimension,
respectively.

For computation of the dominant eigenvector, we use the
Power Iteration Method (PIM), which has been introduced in
[8]. In PIM, the following iteration converges to the dominant
eigenvector.

vk+1 = Cvk (6)

where C is the covariance matrix of the observations. If the
eigenvalue corresponding to the dominant eigenvector is larger
compare to the other eigenvalues, iteration (6) converges to the
dominant eigenvector. The larger this eigenvalue is, the faster
the PIM method converges. The PIM method is suitable only
for the dominant eigenvectors, therefore FastPCA[9], as an
extension of PIM, can be used to find the other eigenvectors.

B. Collective Principal Component Analysis

Suppose sensors 1 to n gather data x1[t] to xn[t], and
we want to calculate the principal components (PCs) of
x[t] = [xT

1 [t], · · · ,xT
n [t]]

T . Generally, to calculate the prin-
cipal components, each sensor i sends its vector xi[t] to the
base station. Then x[t] will be constructed in the base station
and its PCs will be computed by means of the eigenvectors of
x[t].

In [10], the Collective PCA (CPCA) has been proposed in
which sensors send PCs (yi[t]) instead of vector xi[t] to the
base station. Since principal components have less dimensions
in comparison to xi[t], the number of transmitted bytes are
reduced. The CPCA method is derived based on a property
which states that principal components are invariant under
orthogonal transformations[11].

By using CPCA, we can calculate the principal components
of x[t] as the following. First, the z[t] is created as

z[t] = [yT
1 [t];y

T
2 [t], · · · ]T (7)

Then, the principal components of x[t] is computed from the
following equation if vi for 1 < i < n represent eigenvectors
of z[t].

y[t] =
n∑

i=1

vT
i z[t] (8)

To reconstruct data in the base station, the eigenvectors are
needed. Let P1 to Pn be the eigenvectors of x1[t] to xn[t].
Therefore, the eigenvectors of x[t] are obtained according to
the following equation:

wi = Avi where A =


P1 0 . . . 0
0 P2 . . . 0
...

...
. . .

...
0 0 · · · Pn

 (9)

and vi is the ith dominant eigenvector of the covariance matrix
of z[t]. Because all the eigenvectors of xi[t] do not contribute
to the computation of yi[t], the CPCA may have errors as
described in [12].
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III. THE PROPOSED METHOD

A. Problem Definition

We assume a general multi-hop network which consists of
n sensor nodes and one base station called sink. A node can
either send or receive observations or principal components.
Given the limited communication range of sensor nodes,
sending a data from a node to the sink typically results in a
series of hops through the network. Therefore, the intermediate
nodes consume more energy for relaying packets, and the
nodes located in the vicinity of the base station significantly
have a shorter lifetime. In order to extend their lifetime, the
intermediate nodes can aggregate all the receiving packets
and forward only aggregate values toward the base station.
We assume the aggregation is performed over an aggregation
tree which is a directed tree formed by the union of all the
paths from the sensor nodes to the base station. These paths
may be arbitrarily chosen and necessarily are not the shortest
paths. We consider a simple type of an aggregation tree which
have a two-level structure. In this structure, the base station
is root of the tree and the sensor nodes have the maximum
of two hops to reach the base station. The aggregation tree
is synchronized and our algorithm takes the structure of the
aggregation tree. In addition, the intermediate nodes send the
first principal component of the incoming data which includes
observations as well as the received principal components from
the preceding intermediate nodes.

B. LocalPCA

The goal of LocalPCA algorithm is to prolong the lifetime
of sensor network by reducing the number of transmitted
bytes in the intermediate nodes. In this algorithm, both simple
and complex aggregations are used. The simple aggregation
process is done on data which is coming from the leaf nodes
to their parents. But in complex aggregation, instead of the
observation data, the intermediate nodes process on aggregate
vectors which are coming from other intermediate nodes. In
the proposed algorithm, each intermediate node at the first
level of routing tree receives observations from leaf nodes
and constructs vector x[t] as described in SectionII-A. Then
it reduces the dimensions of x[t] by means of PCA. The
number of the new dimensions (q) can be determined by using
the retained variance formula (5). To calculate the PCA, an
intermediate node(in each epoch), computes the PCs y[t], of
the vector x[t] by using equation (1). At the commencement of
the computation, the eigenvectors, P, are selected randomly.

In the next step, the reconstruction error is derived based on
(3). This error can be obtained by using x̂[t] or directly from
(12) that will be described in Section III-C. If reconstruction
error exceeds a predefined threshold, eigenvectors become
invalid and must be updated. The updated version of P shall
be sent to the base station and y[t] must be recalculated with
the new P. Finally, each intermediate node sends the new y[t]
to its parent node. Actually, the PIM method for q = 1 and
FastPCA method for q > 1 are used to update the eigenvectors.
It is worth to mention that threshold of the tolerable error must

be set according to the the application of sensor networks.
Generally, iteration (6) starts with a random vector but if the
previous invalidated eigenvectors are used, the iteration will
converge faster.

When aggregation tree is multi-level, there are some inter-
mediate nodes which receives data not only from leaf nodes
but also from one or more of the other intermediate nodes.
Therefore, the aggregation process becomes more complex.
For this case, we use CPCA method as described in Section
II-B. Actually, each vector z[t] of the intermediate node i,
includes observations from itself and its leaf nodes as well
as the PCs of the other intermediate nodes. The z[t] can be
defined as

z[t] = [yT
1 [t], · · · ,yT

n [t], x1[t], · · · , xm[t], s[t]]T (10)

Where y1[t] to yn[t] are PCs of other intermediate nodes, x1[t]
to xm[t] are leaf observations, and s[t] is the sensed value of
current intermediate node on epoch t. In complex aggregation,
the process of calculating PCs and updating eigenvectors are
the same as simple aggregation except that z[t] shall be used
instead of x[t]. Therefore, each intermediate node i sends yi[t]
which has the same size among all the intermediate nodes.

The computation of PCs can be carried out in the form of
an aggregation service. In this way, after each node receives
the observations and PCs from its children, it computes and
send PCs of the received values to the next node by using the
aggregation service. The computed PCs represent all principal
components of all observations of the downstream sensors in
the routing tree. In the base station, the final eigenvectors are
computed by using of the equation (9), and then all sensed
observations can be reconstructed by using the received PCs
and the measured final eigenvectors.

To clarify the computation process of the final eigenvectors
in the base station, let i represent an intermediate node with
two children, k and j, and let the base station be its parent,
and let j and k have n−1 and m−1 child nodes, respectively.
When the base station receives pi , pk and pj dominant
eigenvectors from nodes i, j, and k, it can measure the final
dominant eigenvector by

p =

pi1 ∗ pj

pi2 ∗ pk

pi3

 (11)

Where pil shows the lth element of vector pi. If pj and pk

have n and m elements respectively, the final reconstructed
vector x̂[t] would have n + m + 1 elements whose first n
elements belong to the node j and its children, and the next m
elements pertain to node k and its children. The last element of
x̂[t] is the sensed value of node i. The location of each sensor
at x̂[t] can be determined when routing tree is constructed or
eigenvectors are updated.
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Algorithm 1: LocalPCA method
Input: data packets from the precedent nodes : D
Input: principal packets from the precedent nodes : Y
Input: dominant eigenvector from previous execution : p
Output: aggregated data for the following node : yaggr

create vector x
for y in Y

i = corresponding index to the child node
xi = y

for d in D
i = corresponding index to the child node
xi = d

yaggr = pT ∗ x
x̂ = p ∗ yaggr

e =
∥∥x̂ − x

∥∥
If e > threshold

while p coverges
A = x ∗ xT

p = A ∗ p

yaggr = pT ∗ x
new p should be sent for the following node

yaggr should be sent for the following node

C. An Aggregation Service for Reconstruction Error

In both LocalPCA and PCAg[13] methods, all eigenvectors
and principal components are available at the base station, and
x̂[t] can be computed by using the equation (2). However, the
base station cannot calculate the reconstruction error because it
doe snot have access to the original value of x[t] in the sensor
nodes. Thus the base station cannot measure the accuracy of
the algorithms. Moreover, the accuracy parameter can be used
to determine the error threshold of LocalPCA or updating rate
of PCAg. To solve this problem, we propose an aggregation
service in which the base station will be able to compute the
reconstruction error. For this purpose, we expand the square
of the reconstruction error:∥∥x̂− x

∥∥2 = xTAATA︸ ︷︷ ︸
I

ATx− 2xTAATx+ xTx

= xTx− xTAATx

= xTx− yTy

=
n∑

i=1

x2
i −

q∑
i=1

y2i q ≪ n (12)

Where n is the number of the sensor nodes and q is the
number of the principal components. Therefore, each sensor
shall send the square of its observation to the next intermediate
node. Then the next intermediate node should square its own
observation and sum it with the received values and send
the result to the next node. Therefore, the base station can
calculate the reconstruction error by using PCs and sum of
all squared observations. If we send the squared observation
value along with partial value of the aggregation services used
in either PCAg or LocalPCA, the number of the transmitted
packets will not be increased. As a result, the base station
can improve the performance of those methods by using the
reconstruction error.

IV. EXPERIMENTS

In this section, we investigate the performance of the pro-
posed LocalPCA algorithm in terms of efficiency and accuracy
in a multi-hop network via simulation and numerical analysis.

Fig. 1. Temperature Readings

Fig. 2. Temperature Readings

The efficiency of the algorithm is evaluated by the number
of transmitted bytes at the intermediate nodes. we assess the
accuracy by means of the reconstruction error as defined
in (3), because the base station uses an approximation of
observations.

A. Simulation Settings

In our experiments, a trace of sensor data from Intel Berke-
ley Research lab is used. This data set contains observations
of temperature, light, humidity and voltage collected every
31 seconds from 54 sensors. Among these observations, we
selected the temperature data for our simulations.

Due to missing observation of the sensors, instead of
interpolating the missing data, the order of recorded observa-
tions was considered. Actually, the consecutive observations
were mapped to successive epochs and this approach is used
throughout the experiments. An example of resulting tempera-
ture readings obtained from 10 Mica2Dot sensor sets is given
in Figure 1.

For this data set, we analysed the accuracy of reducing data
dimensions to one dimension using the equation (5). For this
analysis, the data of 50 sensor nodes in 7500 epochs were used.
The results show 100% accuracy for all temperature, humidity,
voltage and light cases. Based on this analysis, we used the
dominant eigenvector and the first principal component for the
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TABLE I
RESULTS FOR 7500 EPOCH

Method Transmitted Error Error Error Parameters
Name Bytes Mean Variance Max
PCAg 200340 0.82 0.96 8.34 update:11 epoch

LocalPCA 168114 0.82 0.07 1.42 threshold at 23: 1.0
threshold at 22,21: 0.35

EAPCAg 215216 0.82 0.23 6.16 threshold: 1.42

proposed LocalPCA algorithm.
We use a hierarchical scenario as a sample of the real world

WSNs. Figure 2 shows our hierarchical scenario. In this case,
we used a tree topology in which 23 nodes were connected
to one base station. The location of sensor nodes in Figure
2 only indicates the structure and relation between them and
does not show the exact positions of the sensor nodes.

B. Comparison with Alternative Methods

1) PCAg: Let vi be the ith element of eigenvector v corre-
sponding to the sensor i, and let xi[t] represent observations of
sensor i at time t. First, in PCAg [13], the base station gathers
all xi[t] of sensors in predefined periods. Then it computes v
and sends vi to the corresponding sensor i. Consequently, each
leaf sensor sends its partial value xi[t] ∗ vi to an intermediate
sensor node. The intermediate node sums all the received
partial values with its partial value and sends the result to the
next node. Therefore, the base station receives

∑n
i=1 xi ∗ vi

which is equal to the principal component for all of n sensors’
observations. The base station, by using principal component
and eigenvectors, can reconstruct all the observations. Due to
unavailability of original observations in the base station, this
method can not measure the reconstruction error.

2) Error Aware PCAg(EAPCAg): We enhance the PCAg
algorithm by applying the proposed aggregation service of the
reconstruction error that was described in Section III-C to the
PCAg. In this way, the base station is able to update eigen-
vectors based on the measured reconstruction error. Actually,
when the reconstruction error exceeds a predefined threshold,
the base station asks all sensors to send their observations.
Then the base station updates the eigenvectors and sends them
back to the corresponding nodes in the network.

3) Distributed PCA(DPCA): Although DPCA[7] is also
trying to distribute the computation of PCA, we did not choose
this method in our comparison studies, because it assumes
that only the observations of sensors which are in the radio
range of each other are correlated. Therefore, DPCA divides
the correlation matrix into sub-matrices and computes the
eigenvectors and PCs of each sub-matrix independently. Since
this correlation assumption is not sensible for temperature data,
the error of this method is significant. This error is more
considerable when only one PC is used [7].

C. Simulation Results

Table I summarizes our simulation results. Based on the
results, LocalPCA is more efficient than the competing al-
gorithms. For example, for node 23, the nearest intermediate
node to the base station, the LocalPCA algorithm has the least

Fig. 3. Reconstruction Error in LocalPCA

number of the transmitted bytes followed by the PCAg and
EAPCAg. At sensor node 23, EAPCAg method has sent about
15K bytes more than PCAg algorithm and PCAg method has
sent about 32K bytes more than the LocalPCA. The average
updating interval in EAPCAg is about 13.84 epochs which
is around 3 epochs more than PCAg. Therefore, for updating
eigenvectors, the EAPCAg has sent about 21K bytes less than
PCAg. The main reason which causes EAPCAg to be less
efficient than the PCAg is the fact that 4 bytes are added
to the each PC packet of EAPCAg, for the computation of
reconstruction error. Therefore, the size of each PC packet is
increased from 14 bytes to 18 bytes. These packets is sent
in each epoch, therefore EAPCAg sends about 15K bytes
more than PCAg. In LocalPCA, the sensor node 23 has sent
about 32K less than PCAg, because it uses reconstruction
error, and the observations are not sent to the base station.
Moreover, the length of eigenvector packets, in LocalPCA
algorithm, only depends on the degree of each node, but for
PCAg and EAPCAg, the length depends on the total number of
sensor nodes in the network. Therefore, in PCAg and EAPCAg
methods, when the number of sensor nodes are increased, the
eigenvector packets should be divided into smaller packets.
This adds some overhead to each packet, and increases the
total number of transmitted bytes. But in LocalPCA, by
increasing the number of sensor nodes usually the depth of
routing tree and the average degree of tree will be increased,
thus the total number of transmitted bytes will not change.
The error of LocalPCA is bounded because when it exceeds
a predefined threshold, the eigenvectors will be updated and
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Fig. 4. Reconstruction Error in PCAg

Fig. 5. Reconstruction Error in EAPCAg

the PCs will be recalculated with the new eigenvectors. It
can be easily shown that the maximum reconstruction error
for LocalPCA is always less than the sum of all thresholds.
Actually this bound is very pessimistic because in LocalPCA
each intermediate node updates its eigenvectors independently,
and these updates may not occur at the same time.

According to Figure 3, we usually have errors in LocalPCA,
but most of the errors are distributed near the average value.
In PCAg, the error becomes zero after each updating process,
but again it starts to increase until the next update. Because,
the base station cannot measure the reconstruction error, and
updating is done independent of the error. Therefore, changes
in the environment cause PCAg to encounter unbounded
errors. Figure 3 shows the variation of the reconstruction error
for PCAg.

In EAPCAg, although the base station can measure the error,
the eigenvectors are updated at the base station and will not
be available to nodes until the next epoch. Therefore, the error
can exceed the threshold, but after updating the eigenvectors,
the error will be corrected. The error of this algorithm is
shown in figure 5 In PCAg, in order to achieve the low

average error, the updating intervals shall be reduced, and
as a result, the frequency of updating will be increased. The
smaller the updating interval, the more reduction of efficiency
the algorithm have.

V. CONCLUSIONS

In this paper, we introduce a distributed method for com-
puting the PCA through a new data aggregation algorithm
which let the base station access the observations. The pro-
posed algorithm is based on the transmission workload of
the intermediate nodes. Using PCA, the incoming packets of
an intermediate node are aggregated into one packet, so the
intermediate node is able to just send one packet instead of
relaying all the incoming packets. In this way, the number of
transmitted bytes is reduced, and this reduction is considerable
for the nodes located in the vicinity of the base station. In
addition, we provided the PCAg method with an aggregation
service to compute reconstruction error at the base station.
This aggregation service helps PCAg to monitor the accuracy
of the algorithm and, in turn, it can tune its update rate
dynamically. Our extensive simulation results based on the
accuracy and efficiency performance metrics illustrate the
superior performance of the proposed algorithm comparing to
other similar approaches.
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