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Abstract

We introduce a novel multi-resource allocator to dynam-
ically allocate resources for database servers running on
virtual storage. Multi-resource allocation involves pro-
portioning the database and storage server caches, and
the storage bandwidth between applications according to
overall performance goals. The problem is challenging
due to the interplay between different resources, e.g.,
changing any cache quota affects the access pattern at
the cache/disk levels below it in the storage hierarchy.
We use a combination of on-line modeling and sampling
to arrive at near-optimal configurations within minutes.
The key idea is to incorporate access tracking and known
resource dependencies e.g., due to cache replacement
policies, into our performance model.

In our experimental evaluation, we use both micro-
benchmarks and the industry standard benchmarks TPC-
W and TPC-C. We show that our multi-resource allocation
approach improves application performance by up to fac-
tors of 2.9 and 2.4 compared to state-of-the-art single-
resource controllers, and their ad-hoc combination, re-
spectively.

1 Introduction

With the emerging trend towards server consolidation in
large data centers, techniques for dynamic resource al-
location for performance isolation between applications
become increasingly important. With server consolida-
tion, operators multiplex several concurrent applications
on each physical server of a server farm, connected to
a shared network attached storage (as in Figure 1). As
compared to traditional environments, where applica-
tions run in isolation on over-provisioned resources, the
benefits of server consolidation are reduced costs of man-
agement, power and cooling. However, multiplexed ap-
plications are in competition for system resources, such
as, CPU, memory and disk, especially during load bursts.

Moreover, in this shared environment, the system is still
required to meet per-application performance goals. This
gives rise to a complex resource allocation and control
problem.

Currently, resource allocation to applications in state-
of-the-art platforms occurs through different perfor-
mance optimization loops, run independently at dif-
ferent levels of the software stack, such as, at the
database server, operating system and storage server, in
the consolidated storage environment shown in Figure 1.
Each local controller typically optimizes its own local
goals, e.g., hit-ratio, disk throughput, etc., oblivious to
application-level goals. This might lead to situations
where local, per-controller, resource allocation optima
do not lead to the global optimum; indeed local goals
may conflict with each other, or with the per-application
goals [14]. Therefore, the main challenge in these mod-
ern enterprise environments is designing a strategy which
adopts a holistic view of system resources; this strat-
egy should efficiently allocate all resources to applica-
tions, and enforce per-application quotas in order to meet
overall optimization goals e.g., overall application per-
formance or service provider revenue.

Unfortunately, the general problem of finding the
globally optimum partitioning of all system resources,
at all levels to a given set of applications is an NP-
hard problem. Complicating the problem are inter-
dependencies between the various resources. For ex-
ample, let’s assume the two tier system composed of
database servers and consolidated storage server as in
Figure 1, and several applications running on each
database server instance. For any given application, a
particular cache quota setting in the buffer pool of the
database system influences the number and type of ac-
cesses seen at the storage cache for that application. Par-
titioning the storage cache, in its turn, influences the ac-
cess pattern seen at the disk. Hence, even deriving an
off-line solution, assuming a stable set of applications,
and available hardware e.g., through profiling, trial and
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Figure 1: Data Center Infrastructure: We show a typical
data-center architecture using consolidated storage

error, etc., by the system administrator, is likely to be
highly inaccurate, time consuming, or both.

Due to these problems, with a few exceptions [17, 32],
previous work has eschewed dynamic resource partition-
ing policies, in favor of investigating mechanisms for
enforcing performance isolation, under the assumption
that per-application quotas, deadlines or priorities are
predefined e.g., manually, for each given resource type.
Examples of such mechanisms include CPU quota en-
forcement [2, 16], memory quota allocation based on
priorities [3], or I/O quota enforcement between work-
loads [9, 11, 12].

Moreover, typically, previous work investigated en-
forcing a given resource partitioning of a single re-
source, within a single software tier at a time. In
our own previous work in the area of dynamic parti-
tioning, we have investigated either partitioning mem-
ory, through a simulation-based exhaustive search ap-
proach [24], or partitioning storage bandwidth, through
an adaptive feedback-loop approach [23], but not both.

In this paper, we consider the problem of global
resource allocation, which involves proportioning the
database and storage server caches, and the storage band-
width among applications, according to overall perfor-
mance goals. To achieve this, we focus on building a
simple performance model in order to guide the search,
by providing a good approximation of the overall so-
lution. The performance model provides a resource-to-
performance mapping for each application, in all possi-
ble resource quota configurations. Our key ideas are to
incorporate readily available information about the appli-
cation and system into the performance model, and then
refine the model through limited experimental sampling
of actual behavior. Specifically, we reuse and extend on-
line models for workload characterization, i.e., the miss
ratio curve (MRC) [32], as well as simplifications based
on common assumptions about cache replacement poli-
cies. We further derive a disk latency model for a quanta-
based disk scheduler [27] and we parametrize the model
with metrics collected from the on-line system, instead

of using theoretical value distributions, thus avoiding the
fundamental source of inaccuracy in classic analytical
models [10].

Finally, we refine the accuracy of the computed per-
formance model through experimental sampling. We
use statistical interpolation between computed and ex-
perimental sample points in order to re-approximate the
per-application performance models, thus dynamically
refining the model. We experimentally show that, by us-
ing this method, convergence towards near-optimal con-
figurations can be achieved in mere minutes, while an
exhaustive exploration of the multi-dimensional search
space, representing all possible partitioning configura-
tions, would take weeks, or even months.

We implement our technique using commodity soft-
ware and hardware components without any modifica-
tions to interfaces between components, and with mini-
mal instrumentation. We use the MySQL database en-
gine running a set of standard benchmarks, i.e., the TPC-
W e-commerce benchmark, and the TPC-C transaction
processing benchmark. Our experimental testbed is a
cluster of dual processor servers connected to a commod-
ity storage hardware.

We show experiments for on-line convergence to a
global partitioning solution for sharing the database
buffer pool, storage cache, and disk bandwidth in dif-
ferent application configurations. We compare our ap-
proach to two baseline approaches, which optimize ei-
ther the memory partitioning, or the disk partitioning, as
well as combinations of these approaches without global
coordination. We show that for most application con-
figurations, our computed model effectively prunes most
of the search space, even without any additional tuning
through experimental sampling. Our dynamic resource
algorithm performs similar to an experimental exhaustive
search algorithm, but provides a solution within minutes,
versus days of running time. At the same time, our global
resource partitioning solution improves application per-
formance by up to factors of 2.9 and 2.4 compared to
state-of-the-art single-resource controllers and their ad-
hoc combination, respectively.

The remainder of this paper is structured as follows.
Section 2 provides a background on existing techniques
for server consolidation in modern data centers, high-
lighting the need for a global resource allocation solu-
tion. We describe our multi-resource partitioning algo-
rithm in Section 3. Section 4 describes our virtual stor-
age prototype and sampling methodology in detail. Sec-
tion 5 presents the algorithms we use for comparison, our
benchmarks, and our experimental methodology, while
Section 6 presents the results of our experiments on this
platform. Section 7 discusses related work and Section 8
concludes the paper.
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2 Background and Motivation

In this section, we present and evaluate the state-of-the-
art in single resource partitioning and we show why these
techniques are insufficient in themselves.

2.1 Single Resource Partitioning

We describe previous work that either allocate the stor-
age bandwidth, or cache/memory to several applications.

Storage Bandwidth Partitioning: Several disk
scheduling policies [11, 12, 27, 29] for enforcing disk
bandwidth isolation between co-scheduled applications
have been proposed. We have implemented and com-
pared the performance isolation guarantees provided by
the following disk schedulers: (1) Quanta-based schedul-
ing [27], (2) Start-time Fair Queuing (SFQ) [11], (3) Ear-
liest Deadline First (EDF), (4) Lottery-based [29] and
(5) Facade [12]. Our study [18] shows that the Quanta-
based scheduler, where each workload is given a quan-
tum of time for using the disk in exclusive mode, offers
the best performance isolation level. This is because it
allows the storage server to exploit the locality in I/O re-
quests issued by an application during its assigned quan-
tum, which in turn results in minimizing the effects of
additional disk seeks due to inter-application interfer-
ence. However, the existing algorithms discussed above
assume that the I/O deadlines, or disk bandwidth propor-
tions are given a priori. In this paper, we study how to
dynamically determine the bandwidth proportions at run-
time. Once the bandwidth proportions are determined,
we use Quanta-based scheduling to enforce the alloca-
tions, since it provides the strongest isolation guarantees.

Memory/Cache Partitioning: Dynamic memory par-
titioning between applications is typically performed us-
ing the miss ratio curve (MRC) [32]. The MRC repre-
sents the page miss ratio versus the memory size, and
can be computed dynamically through Mattson’s Stack
Algorithm [13]. The algorithm assigns memory incre-
ments iteratively to the application with the highest pre-
dicted miss ratio benefit. MRC-based cache partitioning
thus dynamically partitions the cache/memory to multi-
ple applications, in such a way to optimize the aggregate
miss ratio.

2.2 Motivating Experiment

We present a simple motivating experiment that shows
the need for multi-resource allocation. To simplify the
presentation, we consider only accesses to the storage
server, hence only the storage cache and the storage
bandwidth resources. We run two synthetic workloads
concurrently on the storage server: a small workload
(Workload-A) with 1 outstanding request, and a large

T
B Workload-A

Normalized Latency

Shared Cache Disk Cache+Disk
Figure 2: Motivating Results: Comparison of aggregate la-
tency motivates multi-resource controllers.

workload (Workload-B) with 10 outstanding requests, at
any given time. Workload-A is cache friendly and achieves
a cache hit ratio of 50% with a 1GB storage cache. In
contrast, Workload-B is mostly un-cacheable; it obtains
only a 5% hit ratio with a 1GB storage cache.

We run the workloads using several different configu-
rations, i.e., uncontrolled sharing, partitioning the cache,
disk or both between workloads. We normalize the la-
tency of each workload relative to its latency running in
isolation. Figure 2 presents our results. In all schemes,
we use the combined application latencies (by simple
summation) as the global optimization goal. We choose
this simple metric for fairness of comparison with the
miss ratio curve algorithm [32], which optimizes the ag-
gregate miss ratio, hence the aggregate latency, while be-
ing agnostic to Service Level Objectives (SLOs) in gen-
eral.

When running in isolation, Workload-A is able to uti-
lize the 1 GB cache effectively and this results in an
average storage access latency of 4.4ms. On the other
hand, Workload-B does not benefit from the cache, re-
sulting in an average storage access latency of 85.1ms.
When the two workloads are run concurrently with un-
controlled resource sharing, the larger Workload-B domi-
nates the smaller Workload-A at both cache and disk levels.
This results in a factor of 6 slowdown for Workload-A and
a factor of 4 slowdown for Workload-B. This result shows
that workloads can suffer significant performance degra-
dation when resource sharing is not controlled.

Next, we run the workloads using different resource
partitioning algorithms. First, we partition the storage
cache using the miss ratio curves of the workloads [32],
while disk bandwidth sharing is uncontrolled. The MRC
algorithm determines that the best cache setting is to allo-
cate the bulk of the storage cache (992 MB) to Workload-
A and provide a minimum to Workload-B. Cache par-
titioning thus improves the performance of Workload-A
significantly from 26.6ms to 19.9ms. Next, we iterate
through all possible disk partitioning settings to find the
best disk bandwidth partitioning between the workloads,
and enforce it using quanta-based scheduling [27], while
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cache sharing is uncontrolled. By partitioning the disk
bandwidth, the performance of Workload-A improves to
13.2ms. In addition, Workload-B improves to 169.7ms.
While properly partitioning the resource at each level in-
dependently, as described above, alleviates the interfer-
ence, neither partitioning results in the optimal configu-
ration for these two workloads.

On the other hand, an exhaustive search of both the
cache and bandwidth settings yields an ideal setting
where the storage access latency is 9.64ms for Workload-A
and 171.3ms for Workload-B. In our simple case, the allo-
cation solution found by the exhaustive search algorithm
is just a combination of the solutions found by the two
independent partitioners, for cache and disk. However,
as we will show, due to the interdependence between re-
sources, this is not the case when more resources are con-
sidered. Finally, iterating through all possible configura-
tions and taking experimental samples for the exhaustive
search is clearly infeasible for non-trivial combinations
of resources and workloads.

These experiments and observations thus motivate us
to design and implement a coordinated multi-resource
partitioning algorithm based on an approximate system
and application model, which we introduce next.

3 Dynamic Multi-Resource Allocation

In this section, we describe our approach to providing
effective resource partitioning for database servers run-
ning on virtual storage. Our main objective is to meet
an overall performance goal, e.g., minimize the overall
latency, when running a set of database applications on a
shared storage server. In order to achieve this, we use the
following:

1. A performance model based on minimal statistics
collection in order to approximate a near-optimal
allocation of resources to applications according to
our overall goal, and

2. An experimental sampling and statistical interpola-
tion technique that refines the initial model.

In the following, we first introduce the problem state-
ment, and an overview of our approach. Then, we in-
troduce our performance model, and its sampling-based
fine-tuning in detail.

3.1 Problem Statement

We study dynamic resource allocation to multiple appli-
cations in dynamic content servers with shared storage.
In the most general case, let’s assume that the system
contains m resources and is hosting n applications. Our
goal is to find the optimal configuration for partitioning

the m resources among the n applications. Let’s de-
note with r1,7s5,..., 7, the data access times of the n
applications hosted by the service provider. For the pur-
poses of this paper, we assume that the goal of the service
provider is to minimize the sum of all data access laten-
cies for all applications, i.e. U = min)_ ., 7.

However, our approach does not depend on the partic-
ular goal we set. For example, alternatively, we can op-
timize the provider’s revenue expressed as a utility func-
tion based on the application latencies. Whichever goal
we set, we assume that our algorithm is aware of that
goal, and can monitor application performance in order
to compute the total benefit obtained for all applications,
in any resource quota configuration.

Finding a practical solution to this problem is diffi-
cult, because the optimal resource allocation depends on
many factors, including the (dynamic) access patterns of
the applications, and how the inner mechanisms of each
system component e.g., cache replacement policies, af-
fect inter-dependencies between system resources.

3.2 Overview of Approach

Our technique determines per-application resource quo-
tas in the database and storage caches, on the fly, in a
transparent manner, with minimal changes to the DBMS,
and no changes to existing interfaces between compo-
nents. Towards this objective, we use an online perfor-
mance estimation algorithm to dynamically determine
the mapping between any given resource configuration
setting and the corresponding application latency. While
designing and implementing a performance model for
guiding the resource partitioning search is non-trivial,
our key insight is to design a model with sufficient ex-
pressiveness to incorporate i) tracking of dynamic access
patterns, and ii) sufficiently generic assumptions about
the inner mechanisms of the system components and the
system as a whole.

For this purpose we collect a trace of I/O accesses at
the DBMS buffer pool level and we use periodic sam-
pling of the average disk latency for each application in
a baseline configuration, where the application is given
all the disk bandwidth. We feed the access trace and
baseline disk latency for each application into a perfor-
mance model, which computes the latency estimates for
that application for all possible resource configurations.
We thus obtain a set of resource-to-performance map-
ping functions, i.e., performance models, one for each
application. Next, we enhance the accuracy of each per-
formance model through experimental sampling. We use
statistical regression to re-approximate the performance
model by interpolating between the precomputed and ex-
perimentally gathered sample points.

We then use the corresponding per-application perfor-

74

7th USENIX Conference on File and Storage Technologies

USENIX Association



mance models to determine the near-optimal allocation
of resources to applications according to our overall goal.
Specifically, we leverage the derived performance model
of each application, and use hill climbing [21] to con-
verge towards a partitioning setting that minimizes the
combined application latencies. In the following sub-
section, we describe our model that estimates the per-
formance of an application using multi-level caches and
a shared disk.

3.3 Per-Application Performance Model

We use two key insights about the inner workings of the
system, as explained next, to derive a close performance
approximation, while at the same time reducing the com-
plexity of the model as much as possible.

Key Assumptions and Ideas: The key assumptions
we use about the system are i) that the cache replace-
ment policy used in the cache hierarchy is known to be
either the standard, uncoordinated LRU, or the coordi-
nated DEMOTE [31] policy and ii) that the server is a
closed-loop system i.e., it is interactive and the number
of users is constant during periods of stable load. Both of
these assumptions match our target system well, leading
to a performance model with sufficient accuracy to find
a near-optimal solution, as we will show in Section 6.
With the assumptions above, our key idea is to replace
the search space of a cache hierarchy with the simpler
search space of a single level of cache, in order to ob-
tain a close performance estimation, at higher speed, as
described next.

3.3.1 Approximate Performance Model

We approximate the cache hierarchy with the model of a
single-level cache, and we specialize this model for two
most commonly deployed, or proposed cache replace-
ment policies, i.e., uncoordinated LRU and coordinated
DEMOTE [31]. We also derive a simplified disk model.
Based on our models, assuming that the application is
given quotas i.e., fractions p., ps and pg of the buffer
pool cache, storage cache and disk bandwidth, respec-
tively, we estimate the overall data access latency for the
respective quotas through a combination of selective on-
line measurements and computation.

In the following, we first introduce an approximation
of the cache miss ratio of a two-level cache hierarchy,
M (pe, ps ), as a function of the cache quotas p. and ps,
for the two types of replacement policies we consider.
Then we introduce our disk model that computes the disk
latency as a function of the disk quota, L4(pq). Finally,
we describe our overall data access latency model.

Modeling the Cache Hierarchy: In a cache hier-
archy using the standard (uncoordinated) LRU replace-

ment policy at all levels, any cache miss from cache level
q; will result in bringing the needed block into all lower
levels of the cache hierarchy, before providing the re-
quested block to cache 7. It follows that the block is
redundantly cached at all cache levels, which is called
the inclusiveness property [31]. Therefore, if an applica-
tion is given a certain cache quota ¢; at a level of cache
1, any cache quotas g; given at any lower level of cache
J, with g; < g; will be mostly wasteful.

In contrast, in a cache hierarchy using coordinated
DEMOTE [31] cache replacement, when a block is
fetched from disk, it is not kept in any lower cache lev-
els. The lower cache levels cache blocks only when the
block is evicted from a higher cache level. Therefore,
the application benefits from the combined quotas at all
levels due to cache exclusiveness. Based on these ob-
servations, we make the following simplifications to ap-
proximate the overall miss ratio of a two-level cache, i.e.,
M (pe, ps), based on a single-level cache model.

In an uncoordinated LRU cache hierarchy, only the
maximum size quota given at any level of cache matters;
therefore, we approximate the miss ratio of a two level
cache, consisting of a buffer pool (with quota p.) and
a storage cache (with quota p) by the following formula:

—

M(pe,ps) = Mec(max(pe, ps|) ()

In a coordinated DEMOTE cache hierarchy, the
combined cache quotas given to the application at all
levels of cache has the same effect on the overall miss
ratio as giving the total quota in a single level of cache.
Therefore, for DEMOTE cache replacement, we use the
following formula to approximate the miss ratio of a
two-level cache:

—

M(pc,ps) ~ Mc(pc +ps) (2)

Modeling the Disk Latency: For modeling the disk
latency, we observe that the typical server system is an
interactive, closed-loop system. This means that, even
if incoming load may vary over time, at any given point
in time, the rate of serviced requests is roughly equal to
the incoming request rate. According to the interactive
response time law [10]:

N
Li=7% —* 3)
where L, is the response time of the storage server, in-
cluding both I/O request scheduling and the disk access
latency, N is the number of application threads, X is the
throughput, and z is the think time of each application
thread issuing requests to the disk.
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We then use this formula to derive the average disk
access latency for each application, when given a cer-
tain quota of the disk bandwidth. We assume that think
time per thread is negligible compared to request pro-
cessing time, i.e., we assume that I/O requests are ar-
riving relatively frequently, and disk access time is sig-
nificant. If this is not the case, the I/O component of a
workload is likely not going to impact overall application
performance. However, if necessary, more precision can
be easily afforded e.g., by a context tracking approach,
which allows the storage server to distinguish requests
from different application threads [25], hence infer the
average think time.

We further observe that the throughput of an applica-
tion varies proportionally to the fraction of disk band-
width that the application is given. Since disk satura-
tion is unlikely in interactive environments with a lim-
ited number of I/O threads, this is very intuitive, but also
verified through extensive validation experiments using
a quanta-based scheduler and a variety of workloads.

Through a simple derivation, we arrive at the follow-
ing formula:

Lq(1)
Pd

La(pa) = “)
where L4(1) is the baseline disk latency for an applica-
tion, when the entire disk bandwidth is allocated to that
application. This formula is intuitive. For example, if the
entire disk was given to the application, i.e., pg = 1, then
the storage access latency is equal to the underlying disk
access latency. On the other hand, if the application is
given a small fraction of the disk bandwidth, i.e, p; ~ 0,
then the storage access latency is very high (approaches
00).

Finally, the total cache quota allocated to an appli-
cation influences the arrival rate of I/O requests at the
disk, hence the baseline disk latency for that applica-
tion. For example, a larger cache quota may result in
a smaller disk queue, which in its turn limits opportuni-
ties for scheduling optimizations to minimize disk seeks.
Hence, in the absence of disk bandwidth saturation, a
larger cache quota may result in a higher baseline disk
latency for the corresponding application.

Therefore, to compute the baseline disk latency for
an application given a particular cache configuration, we
use linear interpolation based on experimental measure-
ments, taken for a few cache settings, instead of a single
measurement.

Computing the Overall Performance Model: As-
suming that the hit access latency in the buffer pool is
negligible, the overall latency is determined by the ac-
cesses that miss in the buffer pool and either i) hit in the
storage cache or ii) miss in the storage cache, hence ac-
cess the disk.

Assuming that the access latency for a hit/miss in the
storage cache is approximately the network/disk latency,
i.e., Lyet/Lg, respectively, then the average application
latency is:

Lavg(pmpa:pd) = MC(pC)HS(pCva)LnCt (5)
+ Mc(pc)MS(pC7pS)Ld(pQ)

where the miss (and hit) ratio at the storage cache, i.e.,
M(pe, ps), is a function of both the quota at the first
level cache (p.), and the quota at the second level cache
(ps), while the miss ratio of the buffer pool, M. (p.),
is only a function of p.. We can further approximate
the fraction of accesses that miss in both levels of cache,
hence reach the disk, i.e., M.(p.) M (pe, ps) from the
formula above, with the fraction of disk accesses given
by the miss ratio of our previously introduced single-
level cache model as:

—

MC(/)C)MS(PCJ)S) = M(pm/%) (6)

By using the previously derived models for M (pe, ps)
e.g., in the case of uncoordinated LRU (Equation 1), we
obtain:

Mc(max[pcv ps])

M (pe, ps) Mc(pe)

)

Therefore, we can approximate the miss ratio in the
storage cache, M(p., ps), in terms of the miss ratio
of a single-level cache model. By replacing the respec-
tive miss/hit ratio of the storage cache in Equation 5,
we derive the application latency based on our single-
level cache performance model for either type of cache
replacement policy.

Finally, in order to derive a complete resource-to-
performance model, we perform access trace collection
and compute the miss ratio curve (MRC) only at the
buffer pool level. Then, we vary the quota allocations for
the two caches and the disk bandwidth for the applica-
tion, to all possible combinations in the model. For each
quota setting, we then compute the corresponding appli-
cation latencies based on the precomputed buffer pool
MRC by Equation 5.

Model Adjustment to Dynamic Changes: The
model needs periodic recalibration, in order to account
for load variations. Recalibration involves taking new
samples of the disk latency for each application in a few
cache configurations, to recompute the baseline disk la-
tency. A new application trace needs to be collected and
the new MRC recomputed only if the application pat-
tern changes. If a new application is co-scheduled on the
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same infrastructure, we need to sample and compute the
performance model only for the new application.

3.4 Sources of Inaccuracy

In our simple performance model we ignore the effects
of locking for concurrency control, dirty block flushes for
the cache model, and imperfect I/O isolation at small disk
quanta for the disk model.

Specifically, whenever a dirty block evicted from the
buffer pool is flushed to disk, the write access goes
through all lower levels of cache on its way out. Hence,
the evicted block remains cached in the storage cache, vi-
olating our assumption of redundancy for uncoordinated
LRU caches, hence impacting cache miss ratio predic-
tions.

Moreover, for low disk quanta, the disk scheduler
incurs frequent and potentially large disk seeks be-
tween the data locations of different applications on disk.
Thereby, our disk latency prediction, as well as the un-
derlying I/O bandwidth isolation mechanism itself would
be inaccurate in this case. In particular, the disk quanta
cannot be less than the maximum duration of a disk read-
/write, which is that of a block size of 16KB in our case
(for MySQL).

3.5 Model Fine-tuning

In order to fine-tune our performance model at run
time, hence adaptively correct any inaccuracies, we use
more expensive sampling-based approaches to correct
the model at runtime. We collect experimental samples
of application latency in various resource partitioning
configurations, and use statistical regression i.e., support
vector machine regression (SVR) [8], to re-approximate
the resource-to-performance mapping function without
sampling the search space exhaustively. SVR allows us
to estimate the performance for configuration settings we
haven’t actuated, through interpolation between a given
set of sample points.

We iteratively collect a set of k£ randomly selected
sample points. Each sample represents the average ap-
plication latency measured in a given configuration. We
replace the respective points in our performance model
with the new set of experimentally collected samples.
Using all sample points, consisting of both computed and
experimentally collected samples, we retrain the regres-
sion model. We also cross-validate the model by train-
ing the regression model on a sub-set of all samples and
comparing with the regression function obtained using
the remaining samples. If during cross-validation, we
determine that the regression-based performance model
is stable [8], then we conclude that we do not need to
collect any more samples, and we have achieved a highly

accurate performance model for the respective applica-
tion. Otherwise, we iterate through the above process
until convergence is achieved.

3.6 Finding the Optimal Configuration

Based on the per-application performance models de-
rived as above, we find the resource partitioning set-
ting which gives the optimum i.e., lowest combined la-
tency in our case, by using hill climbing with random-
restarts [21]. The hill climbing algorithm is an iterative
search algorithm that moves towards the direction of in-
creasing combined utility value for all valid configura-
tions at each iteration. To avoid reaching a local opti-
mum, we conduct several searches from several points
chosen randomly until each search reaches an optimum.
We use the best result obtained from all searches.

4 Prototype Implementation

Our infrastructure (Akash') consists of a virtual storage
system prototype designed to run on commodity hard-
ware. It supports data accesses to multiple virtual vol-
umes for any storage client, such as, database servers
and file systems. It uses the Network Block Device
(NBD) driver packaged with Linux to read and write log-
ical blocks from the virtual storage system, as shown
in Figure 3. NBD is a standard storage access proto-
col similar to iSCSI, supported by Linux. It provides a
method to communicate with a storage server over the
network. The client machine (shown in left) mounts
the virtual volume as a NBD device (e.g., /dev/nbdl)
which is used by MySQL as a raw disk partition, (e.g.,
/dev/raw/rawl). We modified existing client and
server NBD protocol processing modules for the stor-
age client and server, respectively, in order to interpose
our storage cache and disk controller modules on the I/O
communication path, as shown in the figure.

In addition, we provide interfaces for creating/destroy-
ing new virtual volumes and setting resource quanta per
virtual volume. Our infrastructure supports a resource
controller in charge of partitioning multiple levels of
storage cache hierarchy and the storage bandwidth. The
controller determines per-application resource quotas on
the fly, based on our performance model introduced in
Section 3, in a transparent manner, with minimal changes
to the DBMS i.e., to collect access traces at the level of
the buffer pool and to monitor performance. In addition,
we modify the MySQL/InnoDB buffer pool to support
dynamic partitioning and resizing of its buffer pool, since
it does not currently provide these features.

! Akash is a Sanskrit word meaning “sky” or “space”.
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Figure 3: Virtual Storage Architecture: We show one client
connected to a storage server using NBD.

4.1 Sampling Methodology

For each hosted application, and given configuration, in
order to collect a sample point, we record the average
and standard deviation of the data access latency, for the
corresponding application in that configuration. For each
sample point where we change the cache configuration,
we wait for cache warm-up, until the application miss
ratio is stable (which takes approximately 15 minutes on
average in our experiments). Once the cache is stable, we
monitor and record the application latency several times
in order to reduce the noise in measurement. Once mea-
sured, sample points for an application can also be stored
as an application surface on disk and later retrieved.

4.1.1 Efficient Sampling for Exhaustive Search

For the purpose of exhaustive sampling i.e., for com-
paring our model to measured optimum configurations
(see Section 6.3.3), the controller iteratively sets the de-
sired resource quotas and measures the application la-
tency during each sampling period. We use the follow-
ing rules of thumb in order to speed up the exhaustive
sampling process:

Cost-aware Iteration: We sort resources in descend-
ing order of re-partitioning cost i.e., cache repartition-
ing has higher re-partitioning sampling cost compared to
the disk due to the need to wait for cache warm-up in
each new configuration. Therefore, we go through all
cache partitioning possibilities as the outermost loop of
our iterative exhaustive search; for each cache setting we
go through all possible disk bandwidth settings in an in-
ner loop, thus making fewer changes to stateful resources
overall.

Order Reversal: The time to acquire a sample can be
further reduced by iterating from larger cache quotas to
smaller cache quotas i.e., from 1024MB to 32MB in a
1024MB cache. In this case, the cache warm-up of the

largest cache quota will be amortized over the sampling
for all cache quotas for the application.

5 Evaluation

In this section, we describe several resource partitioning
algorithms we use in our evaluation. In addition, we de-
scribe the benchmarks and methodology we use.

5.1 Algorithms used in Experiments

We compare our GLOBAL™ resource partitioning scheme,
where we combine performance estimation and experi-
mental sampling, with the following resource partition-
ing schemes.

1. GLOBAL: Is our resource allocation scheme where
we use only the performance model. As opposed to
the GLOBALT scheme, we do not add any runtime
performance samples.

2. MRC: Uses MRC to perform cache partitioning in-
dependently at the buffer pool and the storage cache,
based on access traces seen at that level. The disk
bandwidth is equally divided among all applica-
tions.

3. DISK: Assigns equal portions of the cache to all ap-
plications at each level and explores all the possible
configurations at the disk level.

4. MRC+DISK: Uses the cache configurations produced
by the MRC scheme and then explores all the pos-
sible configurations for partitioning the disk band-
width.

5. IDEAL*: Finds the configuration with best overall
latency by exhaustive search through all possible
cache and disk partitioning configurations. We al-
locate the caches in 64MB chunks, and the disk in
20ms quanta slices, yielding a total of 16 x 16 x5 =
1280 samples measured for each application. A
more accurate solution can be obtained at finer grain
increments, e.g., 32MB chunks, but the experiments
are estimated to take months in this case.

5.2 Platform and Methodology

Our evaluation infrastructure consists of three machines:
(1) a storage server running Akash to provide virtual
disks, (2) a database server running MySQL, and (3) a
load generator for the benchmarks.

We use three workloads: a simple micro-benchmark,
called UNIFORM, and two industry-standard benchmarks,
TPC-W and TPC-C. In our experiments, the benchmarks
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share both the database and storage server machines, us-
ing the (default) LRU replacement, and containing 1GB
of memory each. Cache quotas are allocated in 64MB
increments, with a minimum of 64MB. Disk quotas are
allocated as 20ms disk quanta slices.

We run our Web based applications (TPC-W) on
a dynamic content infrastructure consisting of the
Apache web server, the PHP application server and the
MySQL/InnoDB (version 5.0.24) database engine. We
run the Apache Web server and MySQL on Dell Pow-
erEdge SC1450 with dual Intel Xeon processors running
at 3.0 Ghz with 2GB of memory. MySQL connects to
the raw device hosted by the NBD server. We run the
NBD server on a Dell PowerEdge PE1950 with 8 Intel
Xeon processors running at 2.8 Ghz with 3GB of mem-
ory. To maximize I/O bandwidth, we use RAID 0 on 15
10K RPM 250GB hard disks.

We configure Akash to use 16KB block size to match
the MySQL/InnoDB block size. Each workload instance
uses a different virtual volume: a 32GB virtual disk for
TPC-C, a 64GB virtual disk for TPC-W, and a 64GB disk
for UNIFORM. In addition, we use the Linux O_DIRECT
mode to bypass any OS-level buffer caching and the
noop I/O scheduler.

5.2.1 Benchmarks

UNIFORM: We generate the UNIFORM workload by ac-
cessing data in an uniformly random order. The behavior
is controlled by two parameters: the size of the data set
(d) and the memory working set size (w). We run the
workload with d=64GB and w=1GB.

TPC-W: The TPC-W benchmark from the Transaction
Processing Council [1] is a transactional web benchmark
designed for evaluating e-commerce systems. Several
web interactions are used to simulate the activity of a re-
tail store. The database size is determined by the number
of items in the inventory and the size of the customer
population. We use 100K items and 2.8 million cus-
tomers which results in a database of about 4 GB. We
use the shopping workload that consists of 20% writes.
To fully stress our architecture, we run 10 TPC-W in-
stances in parallel creating a database of 40 GB.

TPC-C: The TPC-C benchmark [20] simulates a whole-
sale parts supplier that operates using a number of ware-
house and sales districts. Each warehouse has 10 sales
districts and each district serves 3000 customers. The
workload involves transactions from a number of termi-
nal operators centered around an order entry environ-
ment. There are 5 main transactions for: (1) entering
orders (New Order), (2) delivering orders (Delivery), (3)
recording payments (Payment), (4) checking the status of
the orders (Order Status), and (5) monitoring the level of
stock at the warehouses (Stock Level). Of the 5 transac-
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Figure 4: Miss Ratio Curves: At the buffer pool for our
workloads.

tions, only Stock Level is read only, but constitutes only
4% of the workload mix. We scale TPC-C by using 128
warehouses, which gives a database footprint of 32GB.

6 Results

We evaluate our approach using the TPC-C and TPC-W in-
dustry standard benchmarks. We also use the synthetic
UNIFORM workload. We first characterize our work-
loads by preliminary experiments showing their com-
puted MRC at the buffer pool level, then report and com-
pare the average data access latency, measured at the first
level cache, for each application, when using different re-
source partitioning schemes.

6.1 Miss Ratio Curves

Figure 4 shows the miss ratio curves at the first level
cache (buffer pool) for all applications. We can see that
TPC-W and TPC-C are more cacheable than UNIFORM.
UNIFORM has comparatively higher miss ratios, and it
benefits greatly from larger cache allocations. On the
other hand, TPC-W and TPC-C are less affected by cache
allocations past 128MB.

6.2 Opverall Performance

We run either identical workload instances, or different
workload instances, concurrently, on our infrastructure,
and compare the performance of our partitioning algo-
rithms. Figures 5-8 show the latency of each applica-
tion after each partitioner produces a solution. We also
show the respective partitioning solutions, and the time
in which they were achieved by each resource partitioner
(we include the time to collect a reliable access trace in
the timing for our algorithms, although this is overlapped
with normal application execution).

We notice the following overall trends in our results.
Our GLOBALT partitioner arrives at the same partition-
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Figure 5: Identical Instances: Comparison for UNIFORM.

ing solution as, and provides identical performance to
IDEAL*, at a fraction of the cost. The performance of
the GLOBAL partitioner, based only on the computational
model, is relatively close to the ideal performance as
well. GLOBAL registers significant improvements with
experimental sampling only for workload combinations
that include TPC-C, an application with a substantial
fraction of writes. Moreover, with one exception, our
GLOBAL partitioner is both faster and generates better
partitioning settings than the combination of single re-
source controllers i.e., the MRC+DISK partitioner.

The single resource partitioning schemes, i.e., MRC
and DISK, are limited in their ability to control perfor-
mance. For example, DISK is ineffective for cache-bound
workloads (see Figures 5, 6, 7). A more subtle point is
that in some cases, the poor choices made by the MRC
scheme can be corrected by providing more disk band-
width to disadvantaged applications in the MRC+DISK
scheme.

We discuss our performance results in detail next and
we examine the accuracy of our model and its refine-
ments in Section 6.3.

6.2.1 Identical Workload Instances

First, we look at cases where we run two instances of the
same application. Figure 5 presents our results for the
UNIFORM/UNIFORM configuration. The results for TPC-
C/TPC-C and TPC-W/TPC-W are similar.

In these experiments, the miss ratio curves of
the two applications are identical. Thus, the
MRC/MRC+DISK/DISK schemes choose to partition the
cache levels equally at both the client and storage caches.
With this setting, due to cache inclusiveness, the second
level cache, i.e., the storage cache, provides little bene-
fit, resulting in poor performance for these partitioners.
For the results shown in Figure 5, our GLOBAL scheme,
finds a resource partitioning setting of 64MB/960MB
and 960MB/64MB between the two instances of UNI-
FORM, at the buffer pool and storage caches respectively.
This setting provides a much better cache usage scenario
than equal partitioning of the two caches.

W TPC-W
S0t [T UNIFORM -~ ]

GLOBAL GLOBAL+ MRC DISK  MRC+DISK IDEAL*

(a) Latency

Scheme B.Pool S.Cache Quanta Time

TPC-W UNIF ‘ W U w 8] (mins)
GLOBAL 64 960 | 896 128 | 40 60 16
GLOBAL™ 64 960 | 896 128 | 40 60 59
MRC 128 896 | 384 640 | 50 50 32
DISK 512 512 512 512 40 60 5
MRC+DISK 128 896 | 384 640 | 40 60 37
IDEAL* 64 960 | 896 128 | 40 60 3660

(b) Allocation

Figure 6: TPC-W/UNIFORM: Comparison for TPC-W (W)
and UNIFORM (U) run concurrently.

GLOBAL GLOBAL+ MRC

DISK MRC+DISK IDEAL*

(a) Latency

Scheme B.Pool S.Cache Quanta Time

TPC-C  UNIF C u C U | (mins)
GLOBAL 64 960 | 896 128 | 40 60 16
GLOBAL™ 64 960 | 512 512 | 40 60 760
MRC 128 896 | 512 512 | 50 50 32
DISK 512 512 512 512 40 60 5
MRC+DISK 128 896 | 512 512 | 40 60 37
IDEAL* 64 960 | 512 512 | 40 60 3660

(b) Allocation

Figure 7: TPC-C/UNIFORM: Comparison for TPC-C (C) and
UNIFORM (U) run concurrently.

Overall, GLOBAL provides the same partitioning solu-
tion as IDEAL* and obtains a factor of 2.4 speedup over
MRC+DISK. For the experiments with two instances of
TPC-W and TPC-C, GLOBAL obtains a factor of 1.05 and
1.5 speedup, respectively, over MRC+DISK.

6.2.2 Different Workload Instances

Figures 6-8 present our results for different concurrent
workloads. The results show that the allocations cho-
sen by the GLOBAL partitioner are non-trivial, and good
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MRC+DISK 384 640 | 384 640 | 60 40 37
IDEAL* 256 768 | 768 256 | 60 40 3660
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Figure 8: TPC-W/TPC-C: Comparison for TPC-W (W) and
TPC-C (C) run concurrently.

performance is obtained only when the settings of all re-
sources are considered.

First, we examine the TPC-W/UNIFORM configuration,
shown in Figure 6. The UNIFORM workload has both
larger cache and disk requirements than TPC-W. Since
the miss ratio curve of UNIFORM is steeper than that
of TPC-W, once the first 128MB is allocated to TPC-W,
the MRC partitioner allocates the rest of the buffer pool
(896MB) to UNIFORM. However, UNIFORM is penalized
by the 50/50 disk bandwidth partitioning in this case.
On the other hand, the DISK partitioner selects a 60/40
disk bandwidth allocation in favor of UNIFORM. But, di-
viding the caches 50/50 results in poor performance for
this partitioner. The MRC+DISK scheme corrects the disk
quanta allocation of the MRC scheme. However, due to
the underlying uncoordinated LRU replacement policy,
it fails to obtain a synergistic configuration for the two
caches. Therefore, GLOBAL performs a factor of 1.12
better than MRC+DISK, by obtaining a better cache con-
figuration overall, in addition to allocating the disk band-
width in favor of UNIFORM. GLOBAL performs a factor of
1.29 better than MRC, and a factor of 2.61 better than
DISK.

Next, we look at the TPC-C/UNIFORM configuration,
shown in Figure 7. The results are similar to the TPC-
W/UNIFORM configuration, with one exception. The
model for our GLOBAL partitioner mispredicts the cache
behavior at the storage cache. The assumption about
block redundancy between the buffer pool and storage
cache does not hold for TPC-C, an application with a sub-
stantial fraction of writes. Hence, allocating more stor-
age cache to TPC-C, as in the solutions of all other par-

titioners is beneficial, resulting in increased hit rates in
this cache. The DISK and MRC partitioners under-perform
for the same reason as before i.e., because allocating ei-
ther cache or disk resources 50/50 penalizes UNIFORM.
Hence, GLOBAL* performs a factor of 1.14, and 2.29
better than MRC, and DISK, respectively, and similar to
MRC+DISK.

Finally, we study the TPC-W/TPC-C configuration,
shown in Figure 8. As the miss ratio curve for TPC-C
is slightly steeper than TPC-W, the MRC partitioner al-
locates a larger fraction of the buffer pool (640MB) to
TPC-C. Moreover, the miss ratio curves of the two ap-
plications are similar to each other at the storage cache
level. Therefore, the same greedy MRC cache algorithm
allocates a larger fraction of the storage cache (640MB)
to TPC-C as well. This results in over-allocation of to-
tal cache space to TPC-C, severely penalizing TPC-W,
when compared to the cache configuration, and perfor-
mance achieved by IDEAL* (and our GLOBAL™). Allocat-
ing a larger disk fraction to TPC-W in MRC+DISK com-
pensates for the poor cache partitioning of MRC alone.
The GLOBAL* scheme allocates a larger proportion of the
storage cache than GLOBAL to TPC-C, correcting the ini-
tial mis-prediction, while still balancing the allocation at
the two caches for avoiding redundancy, hence provid-
ing overall better performance. As a result, GLOBAL™ is
a factor of 2.89 better than MRC, a factor of 1.72 better
than DISK, and a factor of 1.51 better than MRC+DISK.

6.3 Performance Model Accuracy

In this section, we evaluate the accuracy of our cache
and disk approximations in our performance model. In
addition, we present results for online refinement of our
model through experimental sampling.

6.3.1 Two-level Cache Approximation

We evaluate the accuracy of the two-level cache miss ra-
tio prediction. Figure 9 presents our results for TPC-W
and TPC-C. We first provide a detailed analysis for TPC-
W, for three buffer pool size (64MB, 256MB, 512MB)
and a range of storage cache sizes, where we plot two
cache miss ratio curves: experimentally measured (solid
lines) and predicted by model (dashed lines). As we can
see, the predicted and measured miss ratio curves are
close together, hence, our cache approximation is accu-
rate in calculating the miss ratio at the storage cache. The
areas of inaccuracy, where the relative error is greater
than 2%, occur when the storage cache is equal to the
buffer pool size i.e., 512M. The replacement policy is af-
fected by concurrency control i.e., through the fix/unfix
of buffer blocks and some other thread optimizations to
mitigate cache pollution for table scans, in this case.
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Figure 9: Two-level Cache Approximation: Errors for cache configurations with TPC-W and TPC-C. Figure 9a shows the
Measured and Predicted miss ratio curves for buffer pool sizes (64MB,256MB,512MB). Figures 9b-9c show error heatmaps where
light/dark colors represent low/high error, respectively. The magnitude of the error is shown in the legend on the right.

We further present the error of our model as a more
general heat-map, where low errors (0-20%) are shown
in light colors, whereas higher errors are shown in darker
colors, for a wide range of cache configurations, for both
our benchmarks. For both benchmarks, the area of any
significant inaccuracy is where the two cache sizes are
equal, especially for large cache sizes. However, these
very configurations are unlikely to be used as an allo-
cation solution, because they correspond to a high level
of redundancy for uncoordinated two-level LRU caches.
Moreover, for high cache sizes, the miss ratio of most
applications is low, hence the error is less relevant. The
errors are higher for TPC-C due to its large fraction of
writes, hence unpredictable hits in the storage cache for
dirty blocks previously evicted from the buffer pool. For
both benchmarks, the error falls below 2% when the stor-
age cache is at least a factor of 2 larger than the buffer
pool size.

6.3.2 Quanta-based Scheduler Approximation

We evaluate the accuracy of our disk latency approxima-
tion, when using a quanta-based scheduler (Equation 4).
We plot both the predicted and the measured disk latency,
for each application, by varying the storage bandwidth
quanta. Figure 10a and Figure 10b present our results
for TPC-C and TPC-W, respectively. In each graph, we
plot and compare two lines: measured (solid lines) and
predicted (dashed lines), for different cache sizes (given
mostly at the buffer pool).

Overall, the predicted disk latency significantly devi-
ates from the measured latency only for small quanta val-
ues. Moreover, slightly higher errors can be observed for
higher cache sizes. In both of these cases, the explanation
is the higher variability of the average disk latency over
time when i) the underlying disk bandwidth isolation is
less effective due to frequent switching between work-
loads and ii) disk scheduling optimizations are less ef-
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Figure 10: Accuracy of Quanta Scheduler Approximation:
We plot the Predicted and Measured disk latency by varying the
disk scheduler quota, in different cache configurations, from
128MB cache to 960MB cache.

fective and reliable due to fewer requests in the scheduler
queue. Moreover, our model ignores the “think time” be-
tween successive requests for the same workload. On the
other hand, we can see that our model successfully cap-
tures the latency deviations due to changes in the cache
size for TPC-C.

6.3.3 Model Refinement with Runtime Sampling

As shown, our model is inaccurate in very localized ar-
eas of the total search space, where inaccuracies may not
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Figure 11: Online Sampling: We refine our model accuracy
at runtime with experimental sampling.

matter, or can be improved by experimental sampling.
Figure 11 shows the accuracy improvement through on-
line performance sampling. In the x-axis we show the
number of samples added to our performance model ex-
perimentally, and on the y-axis we show the error be-
tween the predicted and the actual latencies. For both
TPC-W and TPC-C, adding samples by online sampling
significantly reduces the error rate from 72% to 16% for
TPC-C and from 38% to 10% for TPC-W.

7 Related Work

Previous related work has focused on dynamic alloca-
tion and/or controlling either memory allocation or disk
bandwidth partitioning among competing workloads.
Dynamic Memory Partitioning: Dynamic memory
allocation algorithms have been studied in the VMWare
ESX server [28]. The algorithm estimates the working-
set sizes of each VM and periodically adjusts each
VM’s memory allocation such that performance goals
are met. Adaptive cache management based on applica-
tion patterns or query classes has been extensively stud-
ied in database systems. For example, the DBMIN al-
gorithm [7] uses the knowledge of the various patterns
of queries to allocate buffer pool memory efficiently. In
addition, many cache replacement algorithms have been
studied e.g., LRU-k [15], in the presence of concurrent
workloads. LRU-k prevents useful buffer pages from be-
ing evicted due to sequential scans running concurrently.
Brown et al. [3] study schemes to ensure per-class re-
sponse time goals in a system executing queries of mul-
tiple classes by sizing the different memory regions. Fi-
nally, recently, IBM DB2 added the self-tuning memory
manager (STMM) to size different memory regions [26].
Disk Bandwidth Partitioning: Dynamic allocation
of the disk bandwidth has been studied to provide QoS at
the storage server. Just like in our prototype, SLEDS [5],
Facade [12], SFQ [11], and Argon [27] place a schedul-
ing tier above the existing disk scheduler in order to con-
trol the I/Os issued to the underlying disk. However,

these techniques assume that proportions are known e.g.,
set manually. However, more recent techniques, e.g.,
Cello [22], YFQ [4] and Fahrrad [19] build QoS-aware
disk schedulers, which make low-level scheduling deci-
sions that strive to minimize seek times as well as main-
tain quality of service.

Multi-resource Partitioning: Multi-resource parti-
tioning is an emerging area of research where multiple
resources are partitioned to provide isolation and QoS
for several competing applications. Wachs et al. [27]
show the benefit of considering both cache allocation
and disk bandwidth allocation to improve the perfor-
mance in shared storage servers. However, the resource
allocation is done after modelling applications through
extensive profiling. Chanda et al. [6] implement pri-
ority scheduling at the web and database server lev-
els. Wang et al. [30] extend the SFQ [11] algorithm to
several storage servers. Padala et al. [17] study meth-
ods to allocate memory and CPU to several virtual ma-
chines located within the same physical server. How-
ever, these papers focus on either 1) dynamic partitioning
and/or quota enforcement of a single resource on mul-
tiple machines [6, 30] or ii) allocation of multiple re-
sources within a single machine [17, 27]. In our study,
we have shown that global resource partitioning of mul-
tiple resources located at different tiers results in signifi-
cant performance gains.

8 Conclusions

Resource allocation to applications on the fly is increas-
ingly desirable in shared data centers with server consol-
idation. While many techniques for enforcing a known
allocation exist, dynamically finding the appropriate per-
resource application quotas has received less attention.
The challenge is the exponential growth of the search
space for the optimal solution with the number of ap-
plications and resources. Hence, exhaustively evaluating
application performance for all possible configurations
experimentally is infeasible.

Our contribution is an effective multi-resource al-
location technique based on a unified resource-to-
performance model incorporating i) pre-existing generic
knowledge about the system and inter-dependencies be-
tween system resources e.g., due to cache replacement
policies and ii) application access tracking and baseline
system metrics captured on-line.

We show through experiments using several standard
e-commerce benchmarks and synthetic workloads that
our performance model is sufficiently accurate in order
to converge towards a near-optimal global partitioning
solution within minutes. At the same time, our per-
formance model effectively optimizes high-level perfor-
mance goals, providing up to factors of 2.9 and 2.4 im-
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provement compared to state-of-the-art single-resource
controllers, and their ad-hoc combination, respectively.
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