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Northeastern University, Boston, Massachusetts

“Alternating deadheading” is an operating strategy for urban bus
routes that have a directional imbalance in passenger demand in
which some of the vehicles operating on a route deadhead (return
empty) in the reverse direction while others return in service. By
reducing average cycle time, deadheading can reduce the number
of buses needed to serve a route. A formula is developed for the
number of buses needed to meet a regular alternating deadheading
_.schedule. Design procedures are then presented for finding the
alternating deadheading schedule that will minimize the number
of vehicles needed subject to the usual operating constraints, and
for minimizing total wait time for a given fleet size. Application
to a major local bus route demonstrates the potential of this
strategy to reduce fleet size within typical scheduling constraints.

During peak periods, bus routes commonly exhibit a considerable
directional imbalance in passenger flows. Matching supply to demand,
then, would suggest offering more frequent service in one direction than
another. In order to circulate vehicles on the route, some vehicles will
have to deadhead, or return empty, in the reverse direction, while other
vehicles return in service. This strategy is called “alternating deadhead-
ing.” By deadheading, vehicles become free to use the fastest path
available to cumplete the reverse direction trip and thereby become
‘available sooner to make another peak direction trip.

Deadheading vehicles on express routes is a common practice in the
transit industry. However, alternating deadheading is probably not prac-
ticed on local routes as much as it could be to improve operating
efficiency. Perhaps one of the reasons that it is not widely used is because
of the requirement, assumed throughout this paper, that the trips that
do not deadhead in the reverse direction should be evenly spaced in order
to maintain balanced loads and acceptable wait times. At the same time,
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peak direction trips must also be evenly spaced. These requirements
complicate the scheduling of alternating deadheading service.

In analyzing the deadheading strategy, this paper first considers the
problem of finding the fleet size needed to meet a given alternating
deadheading schedule. Next, it considers the design problem of construct-
ing the alternating deadheading schedule that minimizes the required
fleet size subject to level of service constraints. Another problem exam-
ined is finding the alternating deadheading schedule that minimizes wait
time for a given fleet size. The problem of minimizing a sum of passenger
and operator cost is also treated, using a continuous approximation.
Finally, an application demonstrates how alternating deadheading can
reduce fleet requirements on a heavy demand local bus route.

The strategy of systematic alternating deadheading on a local route
does not appear in the literature. In the general field of vehicle scheduling,
DaNTzIG AND FULKERSON™ have shown that finding the minimum
number of vehicles to meet a given schedule is a linear optimization
problem. They originally suggested solving it by the simplex method.
Later, by using Dilworth’s chain decomposition theorem, FORD AND
FULKERSON'? showed that it could be solved more efficiently with a
maximum flow algorithm. These classical approaches both require an
iterative search. More recently, CEDER AND STERN'* have used the deficit
function to compute the fleet size needed by a given schedule. This
approach requires only a computation ofithe cumulative departures and
arrivals over time at each terminal in the system. Based on this approach,
they have developed iterative heuristics to insert deadheading trips intq
a given schedule in order to minimize the fleet size required. This
approach, like the classical approaches, is applicable to a general schedule
involving many terminals and arbitrarily scheduled trips. In contrast,
the alternating deadheading problem that this paper addresses is much
narrower in that it involves only two terminals between which vehicles
circulate and because in-service trips in each direction have regular
headways, although the headways differ by direction. Because of these
restrictions, it is possible to determine in closed form the fleet size
required to meet a given alternating deadheading schedule. With this
result as a base, algorithms are then developed for the design of optimal
alternating deadheading schedules where service headways are them-
selves control variables,

1. MINIMUM NUMBER OF VEHICLES TO MEET A GIVEN
ALTERNATING DEADHEADING SCHEDULE
FOR THE SAKE of simplicity in presentation, we will assume throughout
this paper that the peak direction is inbound. We also assume that run
time is a deterministic function of headway, and that, in order to maintain
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balanced loads, in-service trips must be scheduled at regular intervals.
The following notation is used:

h, = headway inbound
hg = service headway outbound

ta = run time inbound (including minimum layover)

ts = run time outbound for in-service trips (including minimum
layover) :

tp = run time outbound for deadheading trips (including minimum
layover)

H, = maximum allowable inbound headway
Hp = maximum allowable outbound service headway
r = hs/ hA
R = HB/ H,
(x) = xrounded up
ns = number of vehicles needed if all deadhead
ng = additional number of vehicles needed
N = n, + np = required fleet size.

The maximum service headways, H, and Hjp, are determined by
constraints on the headway (policy headway) and the peak load.

Our approach is best introduced with an example. Suppose a route
using alternating deadheading has the following parameters:

HA = 4 min :
HB = 13 min ;
t4 = 30 min when h, = !
tg = 25 min when hg = :
tz = 29 min when hg = 13
tp = 11 min.

Conventional local service, at 4-min headways, would require ((30 + 25)/
4) = 14 vehicles.

Suppose that an alternating deadheading schedule is constructed in i
which the headways of in-service trips are set at their maxima, i.e. hy = F
4 min and hg = 13 min. The inbound frequency (in trips/min) would be
1/4, the outbound service frequency 1/13, and the deadheading frequency
(1/4 — 1/13) = 0.173. If no slack time (additional layover beyond the ;
minimum necessary) is built into the schedule, the number of vehicle- ;
hours needed per hour of operation would be 30/4 + 29/13 + (11)(0.173) :
= 11.63. Rounding up, the minimum number of vehicles needed to achieve
these headways would be 12, implying the inclusion of some slack time
in the schedule. However, it turns out that this amount of slack time is
insufficient to meet the restriction of evenly spaced service departures,
and that achieving these headways will actually require more than 12
vehicles, as shown below.
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The time-space network shown in Figure 1 illustrates the alternating
deadheading schedule that results when the evenly spaced departures
restriction is imposed. The left side of the network represents the uptown
terminal; the right side, the downtown. terminal. Each node represents a
point in time and space. The time axis moves downward along the page.
Bach arc (i, j) represents a possible Veh1cle trajectory. The network
contains five types of arcs: :

1. Inbound arcs, representing inbound [tnps, are directed from left ﬁo
right at intervals of hg, requiring ¢4 nlnnutes

2. Outbound arcs, representing outbound in-service trips, are dlrected
from right to left at intervals of hg, requiring ¢z minutes; i

3. Deadhead arcs, representing potentjal deadheading trips, are also
directed from right to left, departing 1mmedlately after every 1nbound
arrival, requiring ¢p minutes;

4. Wait arcs, representing extra layover (slack time) at a terminal, are
directed from every node to the node immediately below it on each
side of the network;

5. Garage arcs, representing bus movements out of and into the garage
are directed from the source node to each terminal and from each
terminal to the sink node. '

1 -:I-

The schedule pictured in Figure 1 has been constructed efficiently in
that its deadhead trips all depart 1mmed1ately following an inbound
arrival, and that at least one (the first) outbound service departure
1mmedlate1y follows an inbound arrival. The remainder of the schedule
is dictated by the inbound and outbound service headways.

Each arc (i, /) has a minimum required flow w;; and a maximum allowed
flow w;. For the service arcs (the inbound and outbound arcs), the
minimum required flow is 1 and the allowed flow is infinity. Wait arcs
and deadhead arcs have required flows of 0 and allowed flows of infinity.
A flow N enters the source node and leaves the sink node, representing
the total number of vehicles used on the route. Thus, the problem of
finding the minimum number of vehicles required to meet this alternatmg
deadheading schedule is equivalent to finding the minimum flow N in
this network that satisfies the flow requirements of every arc. This
problem is solved using the “min-flow max-cut” theorem (analogous to
the better known “max-flow min-cut” theorem), which states that the
minimum feasible flow in a network with a single source and single sink
is equal to the flow requirement of the cut with the greatest flow
requirement.”! In this context, a cut (X, Y) is defined as an imaginary
curve that separates the set of nodes in the network into two mutually
exclusive and collectively exhaustive subsets, X and Y, such that subéet
X contains the source node and subset Y contains the sink node. The

i

! DEADHE

Uptown terminal
ha=4 {ﬁ J

sl

16
24 -
3240

404

Eig. 1. Time-

flow requ1rement of cut (2
R(X Y) =3

The first term of Equati
increases by 1 for each ser
in set X and node j in set
intersects an arc (i, j) so :



s the alternating
»aced departures
sents the uptown
10de represents a
1 along the page.
y. The network

ted from left to

ips, are directed
ites;

r trips, are also
ar every inbound

: a terminal, are
elow it on each

into the garage,
and from each

ed efficiently in
ing an inbound
'rvice departure
of the schedule
ys.

aximum allowed
ound arcs), the
inity. Wait arcs
lows of infinity.
fe, representing
the problem of
this alternating
mum flow N in
avery arc. This
n (analogous to
states that the
and single sink
> greatest flow
s an imaginary
o two mutually
uch that subset
sink node. The

DEADHEADING IN BUS ROUTE OPERATIONS / 17

u n terminal Downtown terminal
ptow

(1]

ha=4 {] .
8l
16
24
32 i .
] with o en
cut U eau' =13
- s {500
TIME 48
‘ 563> <\ ST SO o4 56
é e g W
R
oS oS0 <S>t/ 69
7225 s S
SIS TS
80 "f"‘ ""“
S5 “
p P g

N
Fig. 1. Time-space diagram of deadheading route.

flow requirement of cut (X, Y), denoted R(X, Y), is defined as
R(X, Y) = Taiiex Tanjey Wij = Lallicy Lanjex Ui- (1)

The first term of Equation 1 implies that the flow requirement of a cut
increases by 1 for each service arc (i, j) it intersects so as to leave node i
in set X and node j in set Y. The second term implies that any cut that
intersects an arc (i, j) so as to leave node i in set Y and node j in set X
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has a flow requirement of —o. Figure 1 illustrates a cut (which happens
to be a maximum flow cut) with a flow requirement of 13.

Our goal now is to find a maximum flow cut (“maximum cut”). First,
we will show that the maximum cut will be a “single frame cut,” where a
single frame cut is defined as a cut that lies entirely within the “frame”
lying between two adjacent deadhead arcs, and that intersects every
inbound arc that enters that frame. To prove this, construct a single
frame cut. Fix the left end of the cut and imagine rotating the right end.
The right end cannot rotate up to another frame without making the cut
intersect a deadhead arc in such a way that the flow requirement becomes
—oo, If the right end rotates down to the next lower frame, the cut will
lose one inbound arc and will gain at most one outbound are, since the
width of a frame is h, and outbound arcs are spaced at intervals of hg,
and hg > hy4 by definition. Similarly, as the cut continues to rotate down
it will lose one inbound arc and gain| at most one outbound arc every
time it enters a new frame. Therefore, the cut requirement cannot be
increased by having a cut lie in more than one frame. By similar
argument, it can be shown that if a cut that lies in a single frame avoids
intersecting an inbound arc that partially traverses that frame, it can by
doing so intersect at most one additional outbound arc, and thus cannot
have a net increase in its flow requirement.

The flow requirement of a single frame cut is the sum of the number
of inbound arcs traversed by that cut and the number of outbound arcs
traversed by that cut. Every single frame cut, apart from those near the
source and sink, intersects a constant number of inbound arcs n4, given
by

na = ((ta + to)/ha). (2)

Note that n, is the number of vehicles that would be required to serve
the route if every trip deadheaded. In our example, n, = ((30 + 11)/4)
= 11, as the single frame cut in Figure 1 confirms.

To find the maximum cut, then, it is necessary to locate the single
frame cut that traverses the greatest number of outbound arcs. Consider
the frame whose lower deadhead arc departs from the right side at time
to. The earliest inbound arc intersected by that cut is the inbound arc
that arrives at time t,; this arc departs from the left side at time £, — ta.
Then since the cut intersects n, inbound arcs, the latest inbound arc
intersected by the cut departs at time £y — t4 + ha(ns — 1). The earliest
outbound arc intersected by the cut must therefore arrive at the left side
after this time, and hence it must depart from the right side after time ¢,
— ty + ha(ns — 1) — tg, which is an interval of length (r + h4) before
time t,, where = is the “effective deadhead premium” given by

T=ts+ tg — h«AnA- (3)
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Then since the latest outbound arc intersected by the cut must depart
from the right side before time ¢, the outbound arcs intersected by a
single frame cut will be those that depart within the interval of length
(m + h,) preceding an inbound arrival.

To find the maximum cut, then, we want to find the maximum number
of outbound departures that can occur in the interval of length (x + h,)
preceding an inbound arrival. This quantity depends in part on the
phasing of inbound and outbound departures. The optimal phasing
(which minimizes this maximum) is to have an outbound departure
immediately follow an inbound arrival at (at least) one point in the
schedule. Let time 0 be such a time of coincidence.

In order to find the single frame cut that intersects the greatest number
of outbound arcs, it is clear that we need only consider frames that
contain an outbound departure. (By argument similar to those given
previously, if another frame is chosen, one outbound arc will be lost, and
no more than one gained.) Consider then frame k, the frame during
which outbound arc k, the kth outbound departure after time 0, departs.
Also consider cut k&, the single frame cut lying in this frame. Let the first
inbound arrival that follows the departure of outbound arc k be called
inbound arrival k. Since inbound arrivals follow time 0 at intervals of h,
while outbound departures follow time 0 at intervals of ks, outbound
departure k will precede inbound arrival & by the interval of length I(k),
given by

I(E) = hu[1 — mod(kr)]

where r is the headway ratio hg/h, and where mod(x) is the fractional
component of x.

Using this result, then, the number of outbound departures that will
occur in the interval of length (x + h,) preceding inbound arrival k is
([ + ha — I(R)])/hg). Substituting for I(k), and taking k as a control
variable, the maximum number of outbound arcs intersected by a single
frame cut is

ng = maxg((w + hymod(kr))/hg).

This maximization is equivalent to maximizing mod(kr). If we express r
as the reduced ratio x/y (i.e. x and y are integers that have no common
factor other than 1), then this maximum is

&(r) = maxy- o _mod(kr) = (y — 1)/y (4)
and thus
ng = ((r + g(r)ha)/rha). (5)
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Applying these formulas to our example, we have

ny =11
m =30+ 29 — (4)(11) = 15 min
r=13/4 = 3.25
glr)=(4—-1)/4 =0.75

ns = ([15 + (0.75)(4)]/13) = 2
N=11+2=13.

2. MINIMUM NUMBER OF VEHICLES UNDER MAXIMUM HEADWAY
CONSTRAINTS

CONTRARY to what might be expected, setting the service headways at
their upper bounds does not necessarily yield the minimum vehicle
requirement. The problem of choosing the service headways that will
minimize the fleet requirement subject to the headway upper bound
constraints is studied in light of two operator policies. Some operators
may prefer that the service headway ratio r be an integer. This integer
policy makes operations more simple, for when r is an integer, the first
of every r trips will return in service and the remaining trips will
deadhead. Other operators may allow noninteger headway ratios, which
lead to more complex schedules.

We also make two very general assumptions. The first is that run time
is a nondecreasing function of headway. The second is that run time is
less than unit elastic with respect to service headwayj, i.e.

(0ta/0hs)(ha/ts) <1 and (dts/dhs)(hs/ts) <1.

(Since at greater headways each vehicle carries more passengers, entailing
more stops and longer dwell times, we expect the first assumption to
hold; and violation of the second assumption would imply that the
number of vehicle hours of operation needed on a route could be reduced
by reducing the headway, a possibility that in practice is virtually
inconceivable.)

When r is restricted to integer values, then g(r) = 0, and the following
results can be derived from seeking to minimize N. These results make
use of the ratio of the headway upper bounds R = H,/Hp and the integers
obtained by rounding R up and down, R* and R".

1. Given r, N decreases with h,, so therefore either hy = Hy, or hg =
Hsg;

2. Given hu, N decreases with r, so when hy = Hy,r=R~;

3. Given hg, N increases with r, so when hg = Hg, r = R*.
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Therefore the optimal solution is either [hy = Hs, r = R7], or [hg =
HB, F= R+]

Thus, in our example, R = 13/4 = 3.25, and the optimal schedule
parameters (h4, hg, r) when r is restricted to integer values are either (4,
12, 3) or (3.25, 13, 4). If we assume £, and tp are linear in this range with
slopes of 1.0 and 0.44, respectively, the first solution yields N = 13 and
the second N = 15; hence the first is the optimal integer headway ratio
solution.

When r is not restricted to integer values, the following results can be
found.

1. Given r, g(r) is fixed and N decreases with h,, so therefore either h,
- HA or hg = H B3

2. When h, = H,4, the optimal r lies between R~ and R;

3. When hg = Hp, the optimal r lies between R and R*.

For the case hy, = H,, we have to search for the optimal r over the
range R~ to R. It can be observed that for r within the range R~ to just
below R*, the function g(r) is bounded from below by the line z; = mod(r).
Note that g(r) = z, at all points for which mod(r) = (y — 1)/y, where y
is an integer. Eliminating these points of intersection, the remaining
values of g(r) are bounded from below by the line z; = (1 + mod(r))/2,
which intersects g(r) at all points for which mod(r) = (y — 2)/y, where y

" is an integer that is prime with respect to 2. Successive envelopes z, = (¢

— 1+ mod(r))/t, t = 3, 4, ..., may be constructed. These envelopes are
illustrated in Figure 2, where their intersections with g(r) are circled. We
can also approximate = (hy, r) as a linear function = = m + m, r over the
small range of r in which we are interested. With this approximation, np
is bounded from below by a family of inverse linear functions, suggesting
the following algorithm for finding the feasible value of r that minimizes
ng, given that hy = H, and that r may be noninteger.

Algorithm 1

1. Initialize. Set hy = Hy, r=r*=R™, r* =R, t = (1/mod(r)) — 1.
Using h, and r, compute n4 and ng.
2. With r variable, np is bounded from below by the function

(‘H'o + mr + h‘.‘[t -1+ mod(r)]ﬂ)frh,., (6)
which can be reduced to the function
ko + ky/r (7

where ky = 7,/hs and k;, = wo/ha + [t — 1 + mod(kr)]/t. (This step
may be skipped if ¢ has not changed since the last iteration.)

3. Letr™ = ky/(ng — 1 — ky). (r” is a lower bound for r assuming that ng
=ng—1.)If r~ > r* STOP, r* is optimal.
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Fig. 2. g(r) and linear envelopes 2, 23, .. . .

4. Lety = (t/(1 = r~ + R7) (y is the smallest integer for which r > r~,
givent) andletr=R™+ (y —t)/y. If r<r*,setr* =rand ng = ng
— 1 and go to Step 2. Otherwise let t = ¢ + 1 and repeat Step 4.

Applying this algorithm to our example, it is quickly shown that with
ha = Hy = 4 min, r* = 3, which is the integer ratio solution obtained
earlier.

Experience has shown that Algorithm, 1 rarely requires more than a
few iterations. Experiments have also shown that there is a high like-
lihood that the optimal headway ratio of a randomly chosen route will
be integer because of the g(r) term in (5).

For the second case, the case that hg = Hp, the optimal value of r lies
in the range R to R*. A precise algorithm for minimizing the fleet
requirement under this condition is not presented, however, because in
practical situations the headways hs and hp must usually be whole
minutes (a few properties will also accept half minutes), and since hy =
Hjg/r in this case, there will probably be very few values of r in the range
mentioned above that yield feasible values of h,. Thus, enumeration of
the feasible values of hs below H4, with special attention to the solution
r = R*, appears to be the most sensible optimization procedure.
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3. MINIMIZING WAIT TIME FOR A FIXED FLEET SIZE: EXACT
SOLUTION

So FAR we have sought only to minimize the number of vehicles needed
on an alternating deadheading route. Another objective is to maximize
passenger level of service for a given fleet size N. The principal level of
service attribute affected by a deadheading schedule is wait time, and so
the objective is to minimize the sum of the headways, weighted by the
ridership in the corresponding direction.

Consider first solutions in which the headway ratio r is an integer. For
a given value of h4, ns and hence ng = N — n, are determined. Then the
minimum integer r is

r = (mo/(ngha — m)) (8)

where © = mo + m,r is a linear approximation of =, given h4 and n,4.

Then finding the optimal integer solution requires only enumerating
over feasible values of h4, beginning with H, and then trying successively
decreasing acceptable values until the corresponding minimum r exceeds
Hp/h, and is therefore infeasible. Typically the number of feasible values
of hy will be very small, and experience, confirmed by the analysis
presented in Section 5, suggests that in nearly all cases the optimal h,
will be Hy.

In our example problem, suppose N is fixed at 13 vehicles and we seek
to minimize overall wait time. First, consider h, = H4 = 4 min. Then n,4
=11, so ng = 2. 7 is approximated as 9.22 + 1.77r, and so from Equation
8 the smallest integer ratio solution is 2, implying hg = 8 min. Next,
consider hy = 3.5 min. Then n4 = 12, so ng = 1. « is approximated as
10.73 + 1.55r, and so the minimum integer r is 6, which is infeasible
since it leads to hg = 21 min. So h, = 4, r = 2 is the best integer ratio
solution.

Relaxing the restriction of integer r, the minimum feasible r for a given
h4 lies between r* and r* — 1, where r* is the minimum integer solution.
The minimum r can be found using an algorithm similar to Algorithm 1.
However, the practical restriction that hz be in whole (or in some cases
half) minutes restricts the number of acceptable values of r in this range
to only a few, and so enumeration of acceptable values is a simple and
quick procedure.

Finally, to find the optimal number of vehicles and service headways
under an objective function that includes operator cost (assumed propor-
tional to number of vehicles) and passenger cost (assumed proportional
to wait time), one need only enumerate feasible values of N beginning
with the smallest feasible N and increasing by 1 each time. For each
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value of N, find the minimum wait time solution, and let the generalized
cost for that solution be F(IV). (Generalized cost can include ride time
as well as wait time since ride time is mildly sensitive to headway
changes.) In practical situations F(N) will be approximately convex, so
that one should have to examine only a few values of N before the optimal
solution is obvious. Then the optimal alternating deadheading schedule
found may be compared with the optimal nondeadheading schedule,
found using the classical square-root rule (described below) for the case
of fixed demand, or using the method described in FURTH AND WILSON!!
for the case of variable demand.

4. MINIMIZING OPERATOR PLUS PASSENGER COST: APPROXIMATE
SOLUTION AND ANALYTICAL INSIGHTS
IN THIS section, optimal headways are derived using some approxima-
tions that yield closed-form solutions resembling classical formulas for
optimal headways. These approximate solutions can be used to reduce
the amount of work done to find an optimal schedule by providing a
starting point for a more exact search. They also yield insights into the
nature of the optimal solution that one should expect in different situa-
tions. i
For convenience, this analysis will use as the decision variable fre-
quency instead of headway (its reciprocal). It accounts for a loading, but
not a policy headway, constraint. Also for convenience, it assumes
inbound to be the peak direction. The new variables used are:

ga = inbound frequency = 1/h,4

gp = outbound frequency of in-service trips = 1/hg

R; = ridership inbound per unit time in direction i (i = A, B)

¢; = ratio of peak volume to ridership in direction i

K = vehicle capacity

a =ratio of wait time to headway (a = 0.5 on a route with perfect
schedule adherence)

b = factor converting wait time to equivalent vehicle-hours (value of
time).

This analysis assumes that both ridership and run time are fixed, and
seeks to minimize the sum of total wait time, weighted by the factor b,
and vehicle-hours.

The number of vehicle-hours of service per unit time, including only
minimum necessary layover, is t4q4 + tggs + tp(ga — gg). This sum is a
negatively biased approximation for the number of vehicles needed, since
it ignores schedule slack that arises from bus integerness and from the
need to keep service departures evenly spaced. This bias is smallest when
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there is no deadheading, since then the need to keep service departures
evenly spaced does not contribute to schedule slack. Passenger wait time
per unit time is a(Rs/qs + Rs/qs). The capacity constraints take the
form ¢;K = ¢;R;. The problem of minimizing overall cost can thus be
approximated as:

min Z = t,qa + tgqs + tp(ga — qs) + ab(R4/q4 + Rs/qs). (9)

s.t. g4 = (caR4)/K (10)

gs = (caRp)/K (11)

g8 = qa (12)
The unconstrained solution, g4* and gz*, is

qa* = ((ab RA)/(ts + tp))°** (13)

gs* = ((ab Rp)/(ts — tp))"*. (14)

Note that (13) is the familiar “square-root rule” derived by NEWELL'®)
and MOHRING!” for the isolated, fixed-demand route whose round trip
time is £y + tp. It is also interesting that (14) represents an optimal
headway for a route whose round trip time is only ¢tz — tp, the deadhead
premium. :

Recognizing that cgRp < ¢4 R, (by virtue of A being the peak direction),
the constrained solution is:

ga = max(qa*, caRa/K) (15)
_Jaa if gg*>gqq
98 {max{qa‘, cgRp/K) otherwise. (16)

Equations 13-16 reveal some interesting insights concerning dead-
heading strategy in different situations. First, if the objective is to
minimize operator cost only (b = 0), the solution is that the inbound and
outbound schedules should be load-constrained.

Second, if peak direction capacity restrictions are not binding, i.e. if
gs* > caR4/K, we can show that: (a) on almost all routes, capacity
restrictions will not be binding in the outbound direction either, and (b)
on most routes the optimal schedule will have no deadheading.

To establish result (a), we should try to contradict the statement

QA‘ > csR4/K and qB‘ < ¢gRs/K. (17)

Multiplying the first inequality by Rp/c4 and the second by R./cg, a
necessary corollary of (17) is that

qa*Rp/ca > gs*Ra/cs. (18)
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After some manipulation, (18) becomes
(tg — tp)/(ta + tp) > (Ra/Rs)(cafca)®. i (19)

However, R4/Rp will be considerably greater than 1 (since A is the peak
direction); cp/c4 will usually be close to 1; and (¢t — tp), the deadhead
premium, will usually be far less than (¢4, + tp), the round trip time of a
deadheading vehicle, so that (19) will not hold under common ‘circum-
stances, implying a contradiction.

Thus we have shown that under usual circumstances, when the peak
direction schedule is not load-constrained, the reverse direction schedule
will not be load constrained either, so that (16) becomes

gs = min(gg*, ga*). i (20)

To establish result (b), we notice from (20) that there will be no
deadheading unless gg* < g4*. With some manipulation, this condition
can be expressed as

(tg — tp)/(ta + FB) > Rg/(Ra + Rp). (21)

Recognizing that this approximate approach overestimates the benefits
of deadheading, (21) can be interpreted as stating that if the peak
direction headway is not load-constrained, there should be no deadhead-
ing in the reverse direction unless the deadhead premium, as a fraction
of the in-service round trip time, considerably exceeds the reverse direc-
tion’s share of the route’s total patronage. This condition is one that will
not hold on most local routes. Hence, on most routes, the optimal
alternating deadheading schedule, if it includes any deadheading at all,
will have hy = Hj,.

5. APPLICATION

THESE DESIGN methods were applied to San Francisco Municipal Rail-
way Route 14, a trolley bus route which runs 9 miles along Mission Street
from the southern boundary of San Francisco to the Ferry Terminal
downtown. The route is paralleled by the I-280 freeway, making it a good
candidate for alternating deadheading if diesel buses were used. For the
sake of illustration, the data have been somewhat simplified. During the
a.m. peak, the route operates at 4-min headways in each direction, with
running times (including minimum necessary layover) of 56 min inbound
and 58 min outbound. It was assumed that the increase in running time
resulting from a 1-min increase in headway was 1 min in the outbound
direction and 2 min in the inbound direction. The deadheading time
outbound via I-280 was estimated to be 30 min, including necessary
layover.

Figure 3 shows the fleet size required with different inbound and
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Fig. 3. Fleet size required for different alternating deadheading schedules.

outbound service headways. Inbound headways of 3, 4, and 5 min were
examined: The only values of hp indicated in Figure 3 are the “superior
solutions”—the minimum feasible hg for a given N and h,4. These results
show that significant vehicle savings are possible through alternating
deadheading. At the existing inbound headway of 4 min, 29 buses are
needed if there is no deadheading (hp = 4). If the outbound peak passenger
volume is 2/3 of the inbound peak volume, implying that hz could be
raised to 6 min, then 2 out of 29 buses could be saved, a savings of 6.9%;
and if the outbound peak volume were half the inbound peak volume,
implying that hg could be 8 min, then 3 out of 29 buses could be saved,
a savings of 10.3%.

Alternating deadheading was also incorporated in a corridor route
design study that considered the complementary design of zonal local
and express bus routes (FURTH!®). It was assumed that express routes
would completely deadhead, while local routes were allowed to use an
alternating deadheading schedule. Algorithms for alternating deadhead-
ing design were embedded in a larger design routine that chose market
segments for each service type and service zones for each local and
express route as well as headway. Depending on the objective, alternating
deadheading schedules for the local routes were sometimes included in
the optimal design.

R .




28 / PETER G. FURTH
6. CONCLUSIONS

THE WORK reported in this paper provides the transit planner with
methods for computing the fleet requirements of an alternating dead-
heading schedule, and for finding the best alternating deadheading sched-
ule for a local route under the usual scheduling constraints. These
methods can be executed manually in a short amount of time, and the
more complex algorithms are very quickly performed on a computer. As
a strategy, alternating deadheading can reduce moderately the number
of vehicles needed on many existing routes, and should be incorporated
in the design of bus service in any high demand corridor.
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