
195 TRANSPORTA nON RESEARCH RECORD 1287 

Model of Turning Movement Propensity 


PETER G. FURTH 

A model is described for determining the seed or propensity 
matrix from which turning flow~ at nn intersection can be esti­
mated to match given inflow and outflow volumes. uSing the 
biproportional method when intersection-specific counts are 
unavailable. Normalizing counts to standard mflow and outflow I 

totals is demonstrated to reveal a striking similarity in underlymg 
propensities across intersections. Functional class is s~own to be.· . 
a poor explanator of different propensities. Propensity IS modeled. 
as a function of angle, competing short cuts. presence of dead­
end approaches, and grid density. Estimate~ ~ade using the pro­
pensity model seed are found to have prediction errors of about 
6 percent of inflow volume, compared to errors of 4 percent for 
estimates that use an intersection-specific count as seed. . 

Turning counts at intersections are needed for a variety of 
reasons, including signal design, capacity analysis, safety design .. 
and impact analysis. The traditional way of measuring these 
movements is manual, that is, to have one or more persons , 
count vehicles at the intersection. The cost of doing manual ' 
counts is prohibitive for some applications, such as making .;. 
statewide forecasts of intersection capacity needs and a variety 
of either preliminary or long-range analyses. For such anal­
vses inflow and outflow volumes at each approach are often 
kno~n (or estimated) from traffic counts made with automatic 
traffic recorders (ATRs) that use a pressured tube laid across 
a roadway. The availability of these inflow and outflow vol­
umes has set the stage for the development of estimation 
methodologies that distribute the flows among the various 
possible turning movements. If the turning movements are 
represented as an origin-destination (0-0) matrix. the incom­
ing approach volumes are then row totals and the outgoing 
volumes are column totals. In order to estimate turning move­
ments at an intersection, a seed matrix representing an initial 
guess of the turning movements is mathematically balanced 
to make its row and column total~ match the ATR-measured 
approach volumes. 

Estimation of 0-0 matrices that agree with summary data 
such as row and column totals has been a fruitful area of study 
for the last decade. For example, Van Zuylen (1), Mekky 
(2), and Hauer et al.(3) deal with turning m~vements at a 

.__ , 
j 

single intersection; Van Zuylen and Willumsen (4), Bell (5)",., 
and Geva et al. (6) deal with trip lUatrices ori road netwo~ks; !.,! 
Ben Akiva et a( (7), Simon and Furth (8), and Furth (9) deal 
with passenger trips along a bus route; and McNeil and Hen­
drickson (10) deal with general matrix estimation. Of the 
various methods proposed for estimating 0-0 matrices. one 
method that is generally acknowledged to yield good results 
is the biproportional method. Ben-Akiva et al. (7), who review 
three methods (including the biproportional method) based 
on a seed matrix, find that they give similar results. The 
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mathematical tractability of the biproportional method makes 
it therefore the preferred method. 

BlPROPORTIONAL METHOD 

Given a seed matrix of propensities or prior estimates «Pi,», 
and a set of desired row and column totals, the biproportional 
method produces a matrix of estimates «(Ii,» given by 

(1) 

where Ai and B, are row- and column-specific factors whose 
values are set so as to ensure that the estimated row and 
column totals match the given row and column totals. Unfor­
'tunately, there is no closed-form solution for the Ais and Bjs. 
One method for solving for the liiS is as follows. Beginning 
with the seed matrix, factor each row so that its total matches 

. the given row total. Then factor each column to match the 
",; given column total. Because this factoring will upset the row 

totals, repeat the process, balancing each row. then each col­
umn, until all row and column totals match. It can be proven 
that the procedure,will eventually converge. Let a~ equal the 
balancing factor applied to Row i in Iteration k, and let [37 
equal the balancing factor applied to Column j in Iteration k, 
and suppose that procedure converges in K iterations. The 
estimate for Cell (i.j) will be 

lij == pij(a)af ... af)([3J[31 ... [3f) (2) 

The uI~imate row and column factors are then 

A· . - 12K d B 
i - (ljQ i .. . (Xi an i 

- (litH (lK
- tJitJj ... 1--', (3) 

and with this substitution it is clear that Equation 2 is of the 
form of Equation I. Therefore, this method yields a bipro­
portional solution. 

Hauer et a\. (3) provide a theoretical basis for the method, 
interpreting the seed as a matrix of expected values, and the 

.,resulting matrix as the most likely realization of a random 
process governed by this seed that matches the given row and 
column totals. (This logic is the reverse of the usual maximum 
likelihood logic, in which expected values are estimated from 
a realization or sample of a random process.) Another inter­
pretation is that the method agrees with a gravity model the­
ory of travel. The seed matrix represents propensities (inverse 
impedances) for travel between the various 0-0 pairs, and 
each propensity is multiplied by an origin-specific factor 
(representing the origin's capacity to generate trips) and a 
destination-specific factor (representing the destination's 
capacity to attract trips). These origin and destination factors 
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are not exogenously specified, but are uniquely implied by 
the new productions and attractions of the various origins and 
destinations. 

PAST ATTEMPTS AT SELECTING A SEED 
MATRIX 

Biproportional estimates of turfling flows depend on the seed 
matrix. Schaefer (11) summarizes reported estimation accu­
racy using different sources' of seeds. The best accuracy is 
found when the seed is based on intersection-specific counts. 
These counts might be old counts, counts done for a short 
period, or counts done in a different period of the day. The 
author's research., based on data from 14 intersections in east­
ern Massachusetts, confirms the high. d~gree of aCcuracy 
attainable using such seeds. N9t:all interse'Ctions. had. the n~c--" 
essary data (e.g., an old count): and some intersections sup­
plied data for both an a.m. peak and a p.m. peak hour. The 
results, presented in Table 1, express accuracy in terms of 
relative root mean-squared (RMS) error, that is, the square 
root of the mean-squared prediction error divided by the mean 
inflow. The relative RMS error for seven intersection-specific 
seed types tested is shown to be smaIl, between 4 and 7 percent 
for left, straight, and right movements. Of particular interest 
is the satisfactory accuracy obtained using IS-min counts as 
a seed. These counts could be made by the technician that 
lays down the ATR equipment at little additional cost when 
A TRs are the source of inflow and outflow volumes. Furth 
(12) provides more detail on this study of intersection-specific 
seeds. 

The main intent, however, is to deal with the far more 
common case that old counts at an intersection are unavail­
able, and resources prohibit the collection of even short-period 
counts. In order to deal with this situation, a variety of seed 
types have been tested. As reported by Schaefer (11), they 
i\lclude two naive approaches: (a) equal propensities for all 
movements, and (b) the use of arbitrary standard propensities 
shch as 25/50/25 (left/through/right) or, following the 1965 
Highway Capacity Manual (13), 10/80110. A third approach 
is to use mean proportions derived from a city-specific sample 
of intersections. For example, Mountain and Steele (14) used 
average proportions (18.2 percent left, 66.0 percent through, 
15.8 percent right, with left-hand rule of road) in the Mer­
sey~ide, England, metro area aI)d found better estimation 
accuracy than using the two naive methods. 

A fourth approach is to classify intersections and use aver­
age proportions for each class, based on asample of intersec­
tions in each class. This approach was followed by Hauer et al. 
(3) using Toronto data. They originally examined five classes 
of intersections, corresponding to Toronto's grid network: 
central business district (CBD) ,~rterial-arterial, collector­
collector, and two orientations of·arterial-coIlector (depend­
ing on whether the arterial ran north-south or east-west). The 
distinction by orientation was dropped in the final model. The 
final model, with four intersection dasses, has five types of 
approaches (because an arterial-collector intersection has two 
types of approaches), and average qlovement proportions were 
calculated for each approach typ-e. These proportions are 
reproduced in Table 2. The striking differences between these 
proportions would seem to justify the n6tion that the approach 
types are very different from one another. and that therefore 
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TABLE 1 ESTIMATION ACCURACY FOR INTERSECfION-
SPECIFIC SEED SOURCES 

5=1 Source 	 Root Mean Squared Error as a Total number of 

FractiQO Q( M~il.Il Inf1Q~ VOlllm~ I:IS!:S 

15-min count, 

same period 

l&fi 
5% 

ThroUl:h 
6% 

Strail:bl 
6% 39 

15-min count just 

outside period 

4% 4% 4% 41 

15-min count in 

opposite period 
6% 7% 5% 22 

15-min count in 

opposi te period, 

transposed 

5% 5% 5% 22 

recent 6O-min 

count, same period 
5% 5% 5% 24 

recent 6O-min count, 

opposite period. transposed 
6% 6% 6% 41 

old 6O-min count. 
same period 

4% 5% 4% 41 
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TABLE 2 TORONTO CLASSIFICATION SCHEME 

£[Ol!llrtioD 
Approach Txpe Ldt Straight 

om 0.10 0.78 

Arterial to arterial 0.12 0.76 

Arterial to collector 0.04 0.91 

Collector to anerial 0.30 0.38 

Collector to collector 0.10 0.70 

using a different seed for each intersection class should dra­
matically improve estimation accuracy. However, no com­
parison was made of accuracy using four classes versus a single 
class. The next section will demonstrate that there is reason 
to believe that the four Toronto classes are not as different 
as they appear to be. 

VALUE OF NORMALIZING MATRICES 

An important feature of the biproportional method is that the 
solution is invariant to a biproportional adjustment of the 
seed matrix. A biproportional adjustment of the seed has the 
form 

(4) 

where Cj is a strictly positive row-specific factor and Dj is a 
strictly positive column-specific factor. Another way of stating 

·--ttri~roperty is that two seed matrices are equivalent (in terms 
of results) if one is a biproportional adjustment of the other. 

In order to prove this result, suppose matrices «(Pi;» and 
«q/,» are both used as seeds and are updated to the same set 
of row and column totals. The solution using «q;;) as the 
seed is given by 

(5) 

where A; and B; are the implicit row and column adjustment 
factors, whereas the solution using «(Pi;» as the seed is given 
by Equation 1: 

(1) 

It is clear that one solution to Equation 5 is for CiA; = 

Ai and D;B; = B;, in which case t;; = t,j" Then, since the 
biproportional method is known to yield a unique solution, 
this solution is it. 

Therefore, because seed propensities are not unique, they 
can be manipulated biproportionally for the convenience of 
the analyst. One reason to manipulate seeds is to permit a 
comparison. Matrices «(Pi;» and «qi/» might appear different 
even though they produce the same results. Their equivalence 
is visible, however, when they are manipulated to a common 
set of row and column totals. For example, the normalized 
Toronto seeds are sho.wn next to the inflow proportions in 

Normalized 

£rlll!!:Dsitx 
Left Straight 

Number of 
Approaches 
in Sample 

0.10 0.78 92 

0.12 0.76 83 

0.13 0.71 52 

0.14 0.71 53 

0.10 0.70 3 

Table 2. Normalized straight propensities for all five types of 
approaches are between 70 and 78 percent, and except for 
the collector-collector approach, which had only three obser­
vations in the sample, the left and right propensities are nearly 
equal. These results suggest that Hauer et al. (3) could have 
used one seed for all approach types and obtained nearly as. 
good a fit. They also demonstrate that the differences in turn­
ing proportions between functional classes are attributable 
mainly to the different inflow and outflow volumes they carry, 
rather than to intrinsic differences in turning propensity. 

Another striking example is shown in Figure 1. Part (a) 
shows the turning movements at an intersection in suburban 
Boston. Just east of this intersection is an interchange with a 
major freeway, and just north of it is a large industrial park, 
strongly skewing the flows. In Figure lb, these flows have 
been normalized so that all inflow and outflow volumes equal 
100. As this second figure indicates, the underlying propen­
sities at this intersection are quite normal-roughly 20/60/20 
at all four approaches-showing that the unusual traffic pat­
tern, in this case anyway, is not caused by unusual turning 
propensities, but to unusual productions and attractions. 

Other comparisons of normalized counts have revealed strong 
similarities between a.m. and p.m. peak propensities, a tend­
ency for left and right propensities to be equal, and a tendency 
for through propensities at the four legs of an approach to be 
equal. 

VARIATION AMONG MASSACHUSETTS 
INTERSECTIONS 

A total of 105 four-way intersections were examined in eastern 
Massachusetts. Most intersections are from the Boston sub­
urbs; none are from the downtowns of Boston or other central 
cities. Counts were obtained primarily from consulting firms 
and local governments. Most of the count data include both 
an a.m. peak and a p.m. peak count, yielding 201 peak-hour 
counts !altogether. As shown in Figure 2, the 804 approaches 
they comprise exhibit wide variety in the proportion of through 
volume. When normalized, however, the distribution tightens 
significantly, with about 75 percent of the approaches reflect­
ing a through propensity between 50 ,and 80 percent. 

The results of Figure 2 indicate that there is far more sim­
ilarity in propensity than might have been suspected from 
intersections with such widely varying turning patterns. 
Nevertheless, significant differences in turning propensities 

., 
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FIGURE 1 Example of actual versus normalized count. 

still persist. One goal was to explain the differences in under­
lying propensity and to develop a propensity prediction model 
that accounts for these factors, 

A classification analysis similar to that done in Toronto was 
performed to study the effect of functional class. The 804 
approaches were divided into five groups by entering volume, 
roughly corresponding to major arterial, minor arterial, major 
collector, minor collector, and local street. They were further 
subdivided into four groups by the average entering volume 
of the cross street, the two smallest groups having been com­
bined. All 20 categories were well represented in the sample, 
The mean percentages of the inflows going left, straight, and 
right for each category are presented in Table 3. There are 
significant differences, as expected. The farther above the 
diagonal, the smaller the proportion going straight, to a low 
of 21 percent for local street at major arterial, versus a high 
of 84 percent for major arterial at local street or minor col­

lector. The distribution of normalized counts is presented in 
Table 4. The normalized straight volumes are much more 
similar across categories, ranging from 56 to 68 percent. Left 
and right volumes are usually equal to one another, Although 
there are slightly higher straight propensities on the higher­
volume roads, there is no clear pattern, because the highest 
straight propensities are associated with major collectors, not 
with arterials. 

These results suggest that approach volume, and its relative, 
functional class, is not a very good determinant of turning 
propensity, at least in eastern Massachusetts. The similarity 
between classes is encouraging, demonstrating some consis­
tency in what otherwise appears as a highly chaotic phenom­
enon. However, the variation within the classes is still sig­
nificant. For each class, the standard deviation of the nonnalized 
propensities was calculated. They are similar across classes; 
about 15 percent (in absolute percentage points) for the straight 
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FIGURE 2 Distribution of actual and normalized percentage 
straight volume. 

movements and about 12 percent for the turns. (One can 
generally expect one-third of the observations to lie outside 
a range of one standard deviation.) Furthermore, the results 
shown in Figure 2 indicate that although most approaches 
have normalized straight volumes in the 50 to 80 percent 
range, many approaches are still outside this range. This high 
degree of variation argues against using as seed either a single 
category or as many as 20 categories on the basis of functional 
class or approach volumes. 

FACTORS AFFECTING TURNING PROPENSITY 

The data set of normalized counts was studied in detail to 
find factors that correlated with propensities. Intersections 

Ii: g ~ 5l Ii! 0 2 8 8 
g .Q g g g " g g g 

0 0 0 0 0 £I 
c;:> g ... 5l c- O) 8'" '" 

Percentage StraIght 

b) Normalized 

0 g 0 0... 5l Ii! .. 2 8 8'" 9 9 9 9 9 S 9 S 
0 0 0c;:> .., g .. g 9 
N ~ ~ 8 

Normalized Percentage Straight 

with pJrticUlarlY low or high straight propensities were exam­
ined cJrefully. Several clear patterns that proved consistent 
wit'h theories of travel behavior emerged. This preliminary 
analysis consequently suggested four factors that influenced 
propensities: the presence of dead-end approaches, the pres­
ence of diverting short cuts, angle, and grid density . 

First, intersections with low normalized straight volumes 
tended to. be those for which one approach was a dead end 
or other no-through street (e.g., a horseshoe). The fact that 

. a driver enters the intersection traveling in a given direction 
:Tis usually an indication that he or she wants to continue in 

that direction, implying a higher propensity for going straight 
than for turning. If a driver approaches an intersection from 
a dead end, however, his entering direction has no bearing 
on his desired direction, and so a much smaller straight pro­
pensity is expected. (Some approaches that were classified as 

· dead ends actually had more than one means of egress, e.g., 
a shopping mall or a horseshoe, which explains why the esti­
mated straight propensity for dead-end approaches is as high 
as it is, about 50 percent.) The transpose is also true; the 
propensityto go straight is lower if the facing approach is a 
dead end. 

Second, intersections with high normalized straight volumes 
· tended to be those for which other streets provided shortcuts 

that divert the turns that otherwise would have been expected. 
An example of competing shortcuts is the intersection shown 
in Figure 3, where there are strongly competing shortcuts for 
each possible turn, and normalized straight volumes are between 
94 and 96 percent ,on the four approaches, 

Third, a group of intersections with unusually low nor­
malized straight volumes was those for which the angle for a 
straight movement was outside the range of 180° ± 45°. As 
stated earlier, t~e fact that a driver approaches an intersection 
ina given direction usually indicates that he or she desires to 
continue in that direction. Therefore, movements at an angle 

"far from 180°, whether the movement is nominally a turn or 
a through movement, can be expected to have a smaller pro­
.pensity than a standard 180° straight movement. Angles, of 

· course, are also important factors when there is asymmetry 
between left- and right-turn propensity. 

Finally, there is good reason to believe that the propensity 
for going straight should be sensitive to grid density. In dense 
grid areas, intuition suggests that drivers turn more often per 
mile. However, because a dense grid offers more opportu­
nities to turn, drivers will actually turn less often per inter­
section, according to both Hauer's Toronto data (3) (see Table 
2) and the Massachusetts data. The propensity to turn would 
be lower where the grid is dense than, say, at an isolated rural 
intersection, which may be the only chance in several miles 
to change direction. 

MODEL DEVELOPMENT 

A data base of 95 intersections, with a single peak-period 
count for each intersection (a.m. when available) was pre­
pared for the model development effort. Those intersections 
excluded from the original set of 105 intersections had freeway 
ramps, turning restrictions, and other unusual features. With 
each intersection were coded the presence of dead ends, the 
strength of diverting shortcuts for each corner of the inter-

I 
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FIGURE 3 Example of competing shortcuts (Randolph Avenue 
at Brook Road, Milton). 

section, a binary variable indicating the grid density, and the 
intersection angles. In determining angles, curved approaches 
were treated as lines joining the intersection of interest with 
the approach's next intersection with a through street. These 
factors were determined for the most part from maps. How­
ever, some local knowledge was useful, particularly in deter­
mining the strength of a diverting shortcut, where there is a 
degree of subjectivity. 

Diverting shortcuts, where they existed, were classified at 
four levels. A Level 4 diversion implies that nearly all expected 
turns are diverted away from the intersection. Levels 3, 2. 
and 1 indicate increasingly weaker competition. In assigning 

a level of diversion to a corner of an intersection, the following 
factors were considered: 

1. The distance of the shortcut from the intersection. The 
closer the shortcut, the stronger the competition. 

2. The land use between the shortcut and the intersection. 
The greater the development, the weaker the competition, 
because trips generated between the shortcut and the inter­
section won't be able to use the shortcut. 

3. How well known the shortcut is. Maps may reveal a 
wonderful shortcut that may turn out to be a dirt road, or a 
narrow road connecting two broad roads that carry mostly 
long-distance travelers unacquainted with local side streets. 

No formula for assigning a diversion level was developed, 
because the data required for such a formula would be hard 
to quantify or obtain. Instead, judgment was relied on to 
weigh the three factors and assign a value. 

First, intersections without dead ends were analyzed. The 
first analysis centered on normalized straight volumes, there­
fore ignoring the effect of angle. (Those intersections for which 
the straight angle was not between 1350 and 2250 were excluded.) 
A composite variable DIY A YG was created for each inter­
section; it is the average diversion level assigned to the four 
corners, and therefore ranged from 0 (no diversions) to 4 
(Level 4 diversion at all four corners). A multiple regression 
of normalized straight volumes versus DIY A YG and the dense 
grid dummy yielded the results presented in Table 5. The 
effect of both variables is positive and significant. The multiple 
regression enabled the estimation of the straight propensities 
in the absence of diversion effect, for there were only three 
intersections in the whole data set that had no diversions or 
dead ends, and using just those three to estimate pure straight 
propensity would have been unreliable. According to the 
regression results, the straight propensity in the absence of 
dead ends and diversions is about 62 percent in the less dense 
suburbs, and about 68 percent in the denser suburbs. (There 
were no CBD data.) 

Next, the effect of angle on propensity was modeled. A 
functi$ was sought with the familiar bell shape, peaking when 
the an41e is 1800 with a smooth peak. The chosen function is 

TABLE'S DIVERSION AND GRID DENSITY EFFECT ON STRAIGHT 
PROPENSITY 

RESULTS (n,. 63 observations) 

hriabk Coefficient YilIa Sid. error 1:.W.li.1I.k 
NORSAVG ao·· ;' fl~7 1.94 31.7 

. OOI;JUMMY .a, '5.88 2.19 2.7 
DIVAVG a2 5.05 1.35 3.7 

R 2 ,. 0.24; standard error of regression,. 8.66 

Model: NORSAVG 	 aq + al(DGDUMMY) + a2(DIVAVa) 

where NORSAva 	 Average normalized straight propensity for four approaches 
of an intenection 

DGDUMMY 1 if intenection is in a dense grid area, 0 otherwise 

DIVAva 	 average diversion level assigned to four comers of inter­
section (diversion level at a given comer lies between 0 and 
4) 

J 

I 
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Another way of expressing the propensity function is to spec­
ify the ratio R, the desired ratio of the propensity of a 900 

movement to the propensity of a 1800 movement. Then the 
propensity can be expressed directly in terms of R. 

\ r(8) = e(ln R)(9-IBO)/90)' = RI<9-IBO)I90I2 	 (8) 
I 
j For example, to make left/straight/right propensities equal to 

20/60/20, choose R = 1/3 , which implies that k = 60.7. The 
propensity function drawn in Figure 4 reflects this propensity 
ratio. 

Based on the earlier analysis, the straight proportion for 
. nondense grid areas was about 62 percent, yielding a value 

of R of 19/62 or 0.306. For dense grid areas, R = 15/70 = 

0.214. These proportions differ slightly from the values sug­
gested by Table 5 because the multiple regression was highly 
simplified, with the diversion levels averaged together without 
consideration of their relative location and the diversion frac­

o 	 ~90 270 390 
tion assigned to each diversion level. 

Angle The effect of diversions was modeled as causing a fractional 
reduction in the propensity of the affected movement. Diver· 

'FIGURE 4 Gaussian-angle-based propensity function. 
sion level was treated as a discrete variable, with each diver­
sion level assigned a value representing the fractional reduc­

. the Gaussian curve shown in Figure 4, given by 	 tion in propensity it causes. Values were tested to obtain an 
improved fit in the multiple regression of average normalized 

(6) straight propensity versus DIVAVG, where DIVAVG was 
calculated from assigned fractions rather than from the orig­

Where 	 inal diversion level, and the grid density dummy. The resulting 
fractions are shown in Table 6. A more exact analysis for 

;- -.. i 8 angle of movement (0 :5 8 :5 360) 
estimating these fractions, such as maximum likelihood or 

, .!(8) propensity 
least squares based on individual movement propensities, was 

.--J k shape parameter controlling how peaked the dis­
not undertaken, in part for lack of time, but also because 

j tribution is 
the diversion levels are subjectively assigned and therefore 

At a right-angle intersection, the straight propensity is arbi­ approximate. 
trarily s~t to r(180) = 1,:mctttre propensity of a right or left The final form of the model for non-dead-end intersections 
tum is ' 	 is 

(9)r(90) = r(270) 	 (7) 

TABLE 6 CHOSEN CATEGORY MODEL PARAMETERS 

Non.Pense Grid Pense Grid 

Base SlI1Iigl1t PropenSity 62% 	 70% 

Right·to-Straight Propensity Ratio 0.306 0.214 

Assiened DiyersioD Level 
1 1 l i 

Diversion Fraction .0.2 0.4 0.67 0.94 

Propensities for Dead Ends and Approaches Opposite a Dead End 

Opposjne Dead Ends Non·Dead End Opposjne Dead End 

Straight Propensity 3% 	 50% 

Tum Propensity 48.5% 	 25% 

-
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where 

propensity of a movement from Approach i to j 

(i -J= j), 

angle from Approach i to j, 

grid type (dense or not dense), 

base ratio of 90° to 1800 propensity ~or Grid Type 

g, 
level of diversion assigned to movement i-j, and 

= fractional propensity reduction associated with 
diversion level d ij • 

Intersections with dead ends were split into two groups: those 
with opposing dead ends and those with a through street 
opposing a dead end. For the dead-end street and the street 
facing it, the propensity model was of the form 

p(straight) = constant 

p(turn) = constant 

where different constants are used for each of the groups. For 
the cross street, the propensity model for non-dead-end inter­
sections was used. Straight and turn propensities were ~hosen 
for the two groups so that, when combined with the propen­
sities modeled for the cross street, they yielded normalized 
propensities that agreed with the group average. Thosevalues 
are also presented in Table 6. 

EV ALUATION OF PROPENSITY MODEL 

.--; 

In order to evaluate the propensity model, true pe'!..k-hour 
counts were compared with counts predicted by the model 
for 95 intersections. Distributions of estimation error for left, 
straight, and right movements at non-dead-end and dead-, 
end intersections are shown in Figures 5 and 6. Errors are' 
expressed as percentages of the inflow volume. The distribu- . 
tions for low-, medium-, and high-volume approaches are. 
shown separately, with thresholds of 100 and 400 vph sepa~ 
rating the groups. At the non-dead-end intersections, the error 
for straight movements at high-volume approaches is within 
j: 5 percent of the inflow volume in 68 percent of the cases, 
and is within j: 10 percent in 93 percent of the cases. This 
level of accuracy is good for a seed that is not based on counts 
but only intersection characteristics. Relative errors for left 
and right movements are similar to those for straight move­
ments. At lower-volume approaches, relative errors are larger, 
with the fraction of straight volumes estimated to within ± 5 
and j: 10 percent dropping to 52 and 72 percent for medium­
volume approaches and 24 and 60 percent for low-volume 
approaches. The distributions for dead-end intersections seem 
slightly better. probably because there are fewer degrees of 
freedom in distributing the vehicle movements. For all inter­
sections combined, the RMS error for left, straight, and right 
flows was 6, 7, and 6 percent, respectively, of the mean inflow 
volume. As a basis of comparison, RMS prediction errors 
were 4 to 5 percent of inflow voitime when an intersection~ 
specific count was used as the seed (Table 1). 

The overall performance of the propensity model is encour­
aging. Recognizing the inherent day-to-day variability in flows, 
the average prediction e.rror caused by the model is probably 

Standard PercClntage Error 

-----0-­ left 

• straight 

• right 

FIGV.RE 5 Standard percentage error distributions of 
non-read-end intersections. 

! 

.	of the same order of magnitude as the average error inherent 
in a single day's count. Of course, prediction errors can be 
unacceptably large at some intersections, and counts will still 
be needed for uses like signal timing. However, for other 
purposes, the results suggest that when approach volumes (ins 
and outs) 'are known at an intersection, an estimate of turning 
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A. 	 High Volume Approaches movements made using data obt'ained from a map can be 
almost as reliable as going out and counting the turning mOve­
ments. If the approach volumes represent a multiday sample. 
the reliability may surpass that of an actual count. Intersection. 
specific counts, when available, provide superior estimates to 
those based on the propensity model. 
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