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Bus Route O-D Matrix Generation:
Relationship Between Biproportional and

Recursive Methods

PeTER G. FURTH AND DAviD S. NAvick

Planners must sometimes synthesize transit route origin-
destination (O-D) matrices with limited data. usually on-off counts
and sometimes a small or outdated O-D survey sample. When a
small O-D sample is available. iterative methods such as the bi-
proportional method that begin with the sample as a seed matrix
can be used. adjusted to match on-off totals. When only on-off
totals are available. the recursive method of Tsygalnitsky has been
found to match O-D patterns on some routes better than others.
This method is in fact a special case of the biproportional method
using an implicit null seed matrix that contains information on
directionality and minimum trip length. It illustrates why the
recursive method is inappropriate when there is significant com-
petition between routes. and offers a correction for when on-off
data have been aggregated to the segment level. Estimation errors
are then compared to help indicate how large the seed sample
should be in order to producc a more accurate estimate than an
estimate produced with a null seed.

A route-level origin-destination (O-D) matrix (trip table) gives
the number of passengers traveling between each pair of stops
or stations on a transit route in a particular direction. It can
be specific to any period of interest. from the individual ve-
hicle trip to an éntire day. A route-level O-D matrix is an
important descriptor of passenger demand that has been used
for such analyses as systematic route evaluations (/.2). route
and schedule design for short-turning (3). zonal service (4).
limited-stop service (5). and complementary express and local
service (6).

A route-level O-D matrix can be obtained by directly sam-
pling passengers. The typical passenger survey, in which pas-
sengers fill in a questionnaire asking where they boarded and
where they plan to leave. leaves a lot to be desired. Response
rates are often low, and vary according to critical factors such
as trip length—did the passenger have enough time to fill out
the questionnaire?—and origin-stop—did the passenger get
a seat? Is this stop in a low literacy neighborhood?—which
may bias the results. A special purpose survey method, called
by one author the *'no questions asked™ method (2). appears
to overcome this nonresponse problem. Passengers are given
origin-coded cards when they board and are asked to return
the cards when they alight. By careful collection of the cards
by alighting stop, O-D information is obtained. Practitioners
report response rates of over 90 percent (2.7). However, this
method is not in common use, because it requires one checker
at each door and careful pre-trip preparation.

Far more common and easier to obtain than O-D data are
on-off counts. In the context of O-D matrix generation. on-

Department of Civil Engineering. Northeastern University. 360
Huntington Ave., Boston, Mass. 02115.

off counts represent row and column totals. It is not difficult
for a ride checker to obtain a 100 percent sample of on-off
counts, and measurement error is generally agreed to be quite
small. Therefore an O-D matrix whose row and column totals
agree with the on-off counts should be preferred to one ob-
tained by simple expansion of a small O-D sample. Of course.
there are many possible O-D matrices whose row and column
totals match the on-off counts. The problem of O-D matrix
synthesis is to generate an O-D matrix that agrees with a
given set of row and column totals and that meets some criteria
of being the best or most likely O-D matrix. Ben-Akiva et
al. (8) describe three methods for combining a small O-D
sample with on-off counts: the biproportional method. con-
strained maximum likelihood. and constrained generalized
least squares. All three of these methods involve iterative
computations. The first two are preferable because the third
sometimes generates negative matrix entries. even though all
three yield very similar results. The biproportional method is
computationally more attractive. is better known, and has
been used in a variety of contexts (9-11). In further work.
Ben-Akiva (/2) shows how the maximum likelihood approach
can be used to derive estimation methods that combine var-
ious imperfect sources of information. In an application to
transit route O-D estimation, his assumptions about the struc-
ture of the nonresponse bias lead again to the simple bipro-
portional method.

It is often the case. however. that a small O-D sample is
not available. or that the small sample is so small or suspected
of bias that an estimate based on it may not be reliable. A
method for synthesizing a route-level O-D matrix from on-
off counts alone was proposed by Tsygalnitsky (/3). It is a
very simple method involving a single pass of recursive cal-
culations, and can be done by hand (although use of a spread-
sheet or computer program is still advisable). This method
has also been used by London Transport in at least one study.
presumably having been developed independently (7). Tsy-
galnitsky found that his recursive method fit well with data
from Toulouse. France. Simon and Furth (7) also tested it
against O-D data from two routes in Los Angeles. and again
found a good fit. although the fit on one route was better
than that on another. Ben-Akiva et al. (8) tested the recursive
method against O-D matrices generated using the bipropor-
tional and constrained maximum likelihood methods for two
Boston area routes and found that it yielded matrix ¢stimates
that differed substantially from the estimates obtained by the
iterative methods based on a small-sample O-D survey.

Although Tsygalnitsky's recursive method and the bipro-
portional method are motivated from different assumptions.
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the recursive method is actually a special case of the bipro-
portional method. The biproportional method takes an initial
matrix. called a seed matrix. and factors it to match on-off
counts. The seed matrix contains information concerning the
preferences for the various O-D pairs. Typically. the seed
matrix is an O-D sample. If there is no O-D sample to begin
with. a reasonable guess is to use a 'null seed.” one that
assumes that every permissible O-D pair is equally preferred.
It is demonstrated that Tsygalnitsky's recursive method is the
same as the biproportional method using a null seed.

This insight makes it possible to better analyze which method
is more appropriate under various circumstances. A small
O-D sample contains valuable site-specific information about
O-D pair preferences but is also subject to sampling error
and nonresponse bias. A null seed has no sampling error or
nonresponse bias but lacks site-specific information. In ad-
dition. two common factors—aggregation of stops into seg-
ments and competition from other routes—are shown to be
in contradiction to the assumptions underlving the null seed.
and consequently the recursive method should not be ex-
pected to perform well under these circumstances.

BUS ROUTES ANALYZED

Repeated reference is made to four bus routes that have been
previously analyzed. Lines 16 and 93. analyzed by Simon and
Furth (7) are operated by the Southern California Rapid Tran-
sit District. For Line 16. virtually complete O-D data. en-
compassing 266 passengers. were obtained from five inbound
short-turning trips over a 5-mi radial route containing 40 stops.
For Line 93. virtually complete O-D data were obtained on
four a.m.-peak (383 passengers) and four p.m.-peak (273 pas-
sengers) trips. Four trips were local trips covering the entire
140-stop route from downtown Los Angeles to the San Fer-
nando Valley. three trips were short-turned in North Holly-
wood (about 90 stops). and one p.m. trip ran express from
downtown to the valley. Routes 77 and 350. analyzed by Ben
Akivaet al. (8). are operated by the Massachusetts Bay Trans-
portation Authority. These routes were analyzed inbound in
the a.m. peak and outbound in the p.m. peak. The available
data consist of a small O-D sample augmented by on-off counts.
Route 77 is a heavily used radial route. 5.5 mi long. running
through the suburb of Arlington into Harvard Square in Cam-
bridge. In the a.m. peak. 2.148 passengers were counted. and
O-D data were obtained from 54. In the p.m. peak. 1.617
passengers were counted. with O-D data obtained from 138.
Route 350 is 15.2 mi long. with a large collection/distribution
section in suburbs north of Boston. connected by express
operation to selected stops in Cambridge and downtown Bos-
ton. In the a.m. peak. 485 passengers were counted. with
O-D data obtained from 76. In the p.m. peak. 200 passengers
were counted, with O-D data obtained from 61.

TSYGALNITSKY'S RECURSIVE METHOD

Tsvgalnitsky's recursive method proceeds stop by stop. dis-
tributing alightings at each stop among origin stops in pro-
portion to the number of people from each origin stop who
are eligible to alight. To be eligible. passengers must have
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traveled a minimum distance. and must not have alighted
previously. Taking each stop as a node. with nodes consec-

utively numbered from 1 to n in the direction of travel. let
1,, = passenger trips from i to j.

1,, = boardings ati = X, .

t, = alightingsatj = X,

m, = first node at which passengers who board at / are
eligible to alight (m, = i).

E = set of nodes that can serve as origins for passengers
alighting at j.

e,, = number of passengers who boarded at i who are eli-
gible to alight at j.

e., = total number of passengers eligible to alight at j =
Ze,. and

f, = fraction of eligible passengers who alight at j =
ile,,

Initially. set e, = 0 for all (i, j) except when j = m,. in

which case set e, = r.. Computation begins with the first node
at which passengers are eligible to alight: call it Node k. After
calculating e, and f;. let

t, = e,f, for all ieE; (1)

Stop if k = n: otherwise update:

Crk- 1" Bk T for all ieE, (2)

and advance to the next node (let A = k + 1) and return to
Equation 1.

Simon and Furth call this method a fluid analogy. because
passengers on the bus are likened to a thoroughly-mixed fluid
out of which alighting passengers are drawn at each alighting
stop in proportion to their representation in the fluid. Newly
boarding passengers are added to the fluid after they have
met the minimum travel distance criterion. (This minimum
distance may be expressed in stops. distance. or time units.
and may vary from stop to stop.) Ben-Akiva et al. (§) call it
an intervening opportunities method. because it follows the
logic of classical intervening opportunities models in giving
priority to closer destinations.

BIPROPORTIONAL METHOD

Additional notation that will be used is

s, = seed matrix.
A, = overall adjustment factor for row i,
B, = overall adjustment factor for column k.

The seed matrix contains information about relative like-
lihoods of O-D pairs to be chosen by travelers. It may be a
small-sample O-D matrix or an out-of-date O-D matrix. If no
empirical seed matrix is available. a seed matrix can be created
by an analyst to reflect information available on preferences
between O-D pairs. as done by Furth (74) for vehicular traffic
at an intersection.

The method is to alternately balance rows and columns to
match the desired row and column totals until convergence.
Initially. we set 7, = s,. Then, for iteration /. rows are
balanced:

th, = tidal for all rows i (3)
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where the balancing factor a; is the ratio of the desired row
i total to the current row i total. Next, columns are likewise
balanced:

W G
Lic =l Oy

for all columns & (4)
where the balancing factor b} is the ratio of the desired column
k total to the current column & total. Since balancing columns
upsets the balance of the rows, the process is repeated until
convergence is reached. that is, until, after balancing the col-
umns. all the row totals agree (to some arbitrary tolerance)
with the desired row totals. Reflecting the logic of the cal-
culations, one name that has been used for this method is
“iterative proportional fit.”” The name "‘biproportional method™
derives from the form of the final estimate for cell (i. k).
which is

L, = s.AB, (5)

where the overall balancing factor for row i is A, = Il,a” and
the overall balancing factor for column & is B, = Il,b}. Itis
well known that the biproportional method has a unique so-
lution (75.16): In general. there is no closed form or single-
pass recursive algorithm for determining the overall balancing
factors, which must therefore be found by an iterative method
such as the iterative proportional fit.

The biproportional method has been derived in several dif-
ferent ways. Several authors, including Ben-Akiva et al. (8)
and Lamond and Stewart (16), derive it as a case of minimizing
a measure of discrepancy between the estimate and the seed.
Hauer et al. (/0) derive it as the most likely realization of a
random (either Poisson or multinomial) process in which the
seed represents the known ocurrence rates. Ben-Akiva (72)
derives it as the maximum likelihood estimate of the popu-
lation trip rates. assuming that the seed is a random sample
subject to sampling bias. and the relative bias is a product of
two factors, one from the origin stop and one from the des-
tination stop.

RECURSIVE METHOD AS SPECIAL CASE OF
BIPROPORTIONAL METHOD

The estimates produced by Tsygalnitsky's recursive method
are actually a biproportional form. Implicitly underlying the
recursive model is a null seed containing information on whether
travel is permitted or not. based on directionality and mini-
mum trip length, given by

1
Slk 5 {0

The recursive method also implies the following restrictions
on the seed: 5, = 1forall/,and forall k <n.s,,., = 1if
S = 1.

if travel from i to k is permitted
otherwise

(6)

Theorem

The recursive method is a special case of the biproportional
method in which the seed matrix is the null seed matrix given
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by Equation 6. More specifically. the recursive estimates
. = e,fi (Equation 1) are equivalent to the biproportional
estimates , = s,A,B, (Equation 5). where

A =e, forallis=abeinpw n (7)
B, =f,=1 (8)
and
B iy i for.allsk sl s . n-=1 (9)
flo-n

Proof (by construction)

Because the biproportional method has a unique solution. it
is sufficient to prove that estimates produced by the recursive
method have a biproportional form. Consider column » (i.e..
let kK = n). By inspection. it is clear that Equations 1 and 5
are equivalent. Now consider column n — 1 (i.e.. let k =
n = 1). By construction. the recursive method vields e, , =
e,,(1 = f,_,) if travel from i to n — 1 is permitted. Rear-
ranging. we obtain

] e,; iftravel fromiton — 1ispermitted
€n-1= v (10)
0 otherwise

Substituting for e, ,,_, vields

= fn~l )
Lin=n = S:.n—lem<] 2 f,,-] (ll)

which is a biproprotional form with the balancing factors given
by Equations 7 and 9.

Now consider columnn — 2 (i.e.. k = n = 2). By similar
argument.

&

A A

if travel fromiton — 2is permitted
- = fn— . (1-))

La=2

0 otherwise
Combining Equations 11 and 12 yields
i o R

=2

1
Nl T AT

0 otherwise (13)

iftravel fromiton — 2is permitted

Substituting for e, ,_. in Equation 1 with k = n — 2 again
yields a biproportional form. with balancing factors given by
Equations 7 and 9. Similar reasoning can be applied to each
successive column k& = n — 3. n — 4. ... Equation 13
becomes generalized to

;:j-l =en iftravel fromito k is permitted
eu= it oot 716
0 otherwise (14)
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from which the equivalence of Equations 1 and 5. using the
substitutions given by Equations 7 and 9. is obvious. Q.E.D.

This theorem provides a framework for determining which
method of transit route O-D matrix generation. the recursive
or biproportional method. is better. Because the two methods
differ only in which seed is used. the question can be reframed
in terms of which seed is better. a null seed or a seed derived
from exogenous data such as a small sample. We have already
mentioned a few empirical studies of the methods. The re-
mainder of this paper examines theoretical deficiencies of
both the null seed and the small sample seed in common
situations along with some experimentation. offering further
guidance as to which seed is most appropriate in various
situations.

One interesting corollary of this theorem is that when the
seed has the form of a null seed. the recursive method provides
asingle-pass algorithm for finding the biproportional solution.
Another corollary is that the recursive method is reversible:
that is. it will yield the same results if one works backward
or forward along the route. In this sense. the recursive method
is not myopic like other intervening opportunities models. It
appears to be myopic since it determines demand to stops
along the route without explicitly considering what oppor-
tunities lie further downstream.

FACTORS AFFECTING APPLICABILITY OF
RECURSIVE METHOD i

The fact that the recursive method is the same as the bipro-
portional method with a null seed helps indicate the types of
routes and situations in which the recursive model can or
cannot be expected to perform well. It can be expected to
perform well when there is little a priori reason to believe
that anvthing other than the popularity of the origin and des-
tination stops is responsible for the demand for travel between
O-D pairs. In the two situations suggested by Tsygalnitsky
(13). a null seed appears plausible. These situations are (a) an
express route with a collection segment outside the city and
a distribution segment downtown. with travel permitted only
between the collection and distribution segment: and (b) a
short local route free from interference (e.g.. competition)
with other routes.

However. there are other situations in which a null seed
violates a priori knowledge of trip-making behavior. the fore-
most being when significant competition from other routes
affects demand. For example. imagine a local route between
Segment A and Segment E. with several intermediate seg-
ments. If there is another route that goes express from Seg-
ment A to Segment E. we would expect that the express route
would capture most of the demand from A to E. The seed
matrix for the local route should therefore have a relatively
low propensity for stop pairs that are served by the express
route. rather than equal propensities throughout. Likewise,
if two local routes begin at a common intersection uptown
and end at a common location downtown and use different
paths to get there, the travel market that can use either route
will be split between the routes, lowering on both routes the
propensity to travel between stop pairs served by both routes.
Other network effects can affect travel propensity along a
route as well. For example. a large transfer volume from a
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feeder route can influence propensity for travel between that
transfer point and other stops on the main route because these
transferring passengers may have a high propensity to go to
certain portions of the main route. but not to other portions
(e.g.. there may be a more expedient path to some portions
of the main route than via that transfer point).

Long local routes may be another example of the unsuit-
ability of a null seed. Travel propensity is commonly agreed
to decline with distance. except for very short distances. where
competition with walking yields the opposite effect. On short
routes. travel time differences between different O-D pairs
are sufficiently minor that an equal-propensity seed is still
plausible. But on long routes. even if there is no competition
from other routes. propensities should be expected to be smaller
for long trips than for short trips. It has yet to be shown how
long a route can be before the null seed assumption becomes
unrealistic.

Results reported in the literature confirm these expecta-
tions. For example. Tsygalnitsky found that his method per-
formed very well on the two routes he tested. one an express
route with separate collection and distribution areas. the other

- a short local route. Simon and Furth (7) found that Tsygal-

nitsky’s recursive method worked very well on a short local
route. but that on a longer route with competition from ex-
press routes. it overpredicted very long trips. It should be
noted that. because the average trip length is determined by
the given on and off totals on the route. any model for O-D
matrix generation must vield the correct average trip length.
Therefore. an overprediction of long trips must be accom-
panied by an overprediction of short trips. Ben-Akiva et al.
found that the recursive method overpredicts very long and
very short trips. particularly on Route 350. a long route with
competition from express service. It is not clear. however.
whether the discrepancies on these longer routes arise because
of interference from competing routes. from route length. or
from using segment-level data.

O-D MATRIX ESTIMATION WITH
SEGMENT-LEVEL DATA

An important factor affecting the applicability of the recursive
method is whether the on-off counts are by individual stop
or by segment (aggregations of stops). With stop-level data.
travel along the diagonal of the O-D matrix (i.e.. beginning
and ending at the same stop) is not permissible. but with
segment-level data. travel along the diagonal is permissible.
Although the recursive method recognizes only the dichotomy
permissible/not permissible (1 or 0). the possibility of intra-
segment travel calls for a finer level of gradation. Intraseg-
ment travel in a segment with n stops is an aggregation of n-
stop pairs. If propensity is 1 for stop pairs for which travel is
permissible and 0 for ineligible pairs. then the average pro-
pensity for stop pairs contained in that segment is at most
(n — 1)2n. which is less than 0.5. Similarly. average travel
propensity between nearby segments can be less than 1 if the
minimum travel distance is greater than one stop. because the
pair of nearby segments could contain stop pairs that are
ineligible for travel. In the example given in Figure 1. a null
seed containing only 0's and 1's at the stop level is shown to
be equivalent at the segment level to a matrix of average
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FIGURE 1 Stop-level null seed and segment-
level equivalent.

propensities that include, besides 0's and 1's. fractional values
ranging from 1/16 to 23/24.

Because the recursive algorithm itself does not permit frac-
tional propensities. applying it to segment-level data will bias
results, because this method forces all those fractional pro-
pensities to be 1's. For example. Ben-Akiva et al. apply the
recursive method to segment-level data. setting the minimum
travel distance to zero in order to make intrasegment travel
permissible. As should be expected. they find that the method
predicts too many intrasegment trips. In contrast. Simon and
Furth (7) and Tsygalnitsky apply the recursive method at the
stop level, although the results are often presented at the
segment level, avoiding this bias. This effect no doubt ac-
counts in part for the poor fit found by Ben-Akiva et al. using
the recursive method.

When only segment-level data are available. a method of
synthesizing O-D matrices that is consistent with the recursive
method at the stop level is the biproportional method with a
seed matrix consisting of segment-level average propensities.
An example using data from Line 93 demonstrates how using
this ““equivalent null seed™ avoids the large bias of a naive
segment-level application of the recursive method. Table 1
shows four sets of results (presented at the segment level even
if the analysis was done at the stop level): (a) the actual
O-D matrix; (b) the stop-level estimate using a stop-level null
seed (minimum trip length = 2 stops). which is the same as
a recursive estimate; (c) the segment-level estimate made
using the segment-level equivalent null seed: and (d) the
segment-level estimate made using a naive null seed (mini-
mum trip length = 0 segments), which is the same as a re-
cursive estimate made at the segment level. Three different
error measures are used: relative root-mean-square error
(RRMSE). root-mean-weighted fractional error (RMWFE).
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and x*. The RMWFE can be used to judge whether the actual
data obtained agree with the model. Formulas for these mea-
sures applied at the segment level are

L

RRMSE = {15 Z 2 [(r, = 1,,):]} - (15)

=1 g

RMWEE = {ll S [(—'—:—')—]} (16)

L . ("” — Il/):
B [—— ] (17)

=1 =1 ’/,

where
t, = passenger trips from i to j,
1, = synthesized passenger trips from i to j.
t. = total passenger trips. and
K = number of matrix cells containing permissible trips.

The segment-level estimate made using the equivalent null
seed is almost as good as the stop-level estimate. The equiv-
alent null seed minimizes aggregation bias. and aggregation
error, as shown by the increase in the error measures. is small.
The results are markedly worse when the recursive algorithm
is applied naively at the segment level. The tendency in this
case to predict too many very short and very long trips is
clearly seen. The same analysis was performed for Line 16
and similar results were obtained.

An attempt was also made to assess the effect of aggregation
bias on the tests performed by Ben-Akiva et al. (§). Three
segment-level estimates for Route 77 outbound are shown in
Table 2: the “best™ estimate. a biproportional estimate gen-
erated using a small-sample O-D survey as a seed: the estimate
using an equivalent null seed based on a minimum trip length
of three stops: and the naive estimate using a segment-level
null seed (minimum trip length = 0 segments). Because stop-
level data were not available. it was impossible to generate a
stop-level estimate and compare the results with the true dis-
tribution. Measures of error are in comparison with the best
estimate. The equivalent null seed estimate approximates what
would be obtained from a proper stop-level application of the
recursive method. The comparison of these cases clearly shows
how the naive segment-level application of the recursive method
increases the estimated number of very short and very long
trips.

SAMPLING ERROR AND BIAS WITH
SMALL-SAMPLE SEED

It may seem that any empirical seed. whether from a small-
sample O-D survey or an old O-D survey. would be superior
to pleading ignorance and using a null seed. However. a null
seed is not such a bad guess for many situations. being con-
sistent with our understanding of travel behavior and having
been confirmed on a few test routes. Before an empirical seed
is used with the biproportional method or another iterative
method. the value of its information content should be con-
sidered. Although information content can in many contexts
be difficult to judge. in the case of a small-sample O-D matrix



TABLE 1

ESTIMATES. LINE 93. am.

COMPARISON OF STOP-LEVEL AND SEGMENT-LEVEL

a. Actual O-D Marrix

From | To 1 a 3 4 5 6 7 8] On
1 0 14 9 o] 8 b 5 3] 51
2 12 10 12 22 25 7 1 89
3 3 18 16 2 18 0| 57
4 3 20 12 3 2 40
5 6 25 11 3 45
6 8 28 2 38
7 32 15 47
8 16! 16
Off 0 26 22 38 72 79 104 42| 383
b. Siop-Level Estimate
From | To| 1 2 3 4 3 6 ] 8 On
1 00 116 64 76 103 83 55 1.4 51
2 144 121 138 200 156 107 24 89
3 35. 118,122 124 %4 27 57 RRMSE = 0.352
4 48 140 129 69 14| 40
5 105 195 132 209 45 RMWFE = 0479
6 103 256 2.2 38
7 i 33.7 133 47 Chi Squared = 47.2
8 2 160 16
Offf 0 26 22 38 72 79 104 42| 383
c. Segmeni-Level Estimate with Equivalent Null Seed
From | To| 1 2 3 4 L] 6 7 8] Om
I QO S8 20 =99 16 355 O S1
2 119 122 148 207 159 116 2.0 89
3 40 120 169 130 95 16 57 RRMSE = 0.368
4 42 147 114 83 14| 40
5 98 189 139 23 45 RMWFE = 0.513
6 g 12021 38 38
7 33.0 140 47 Chi Squared = 52.2
8 16.0 16
Off] 0 26 22 38 72 79 104 42| 383
d. Segmeni-Level Estimate with Naive Null Seed
From | To 1 2 3 4 > 6 7 8 On
IW* V0TS 53 R0 T 8RS 19 51
2 165 . 93 127,185 156131 33 89
3 73 100 146 122 106 26 57 RRMSE = 0.534
4 80 TMFETeeN g3 21 40
$ 165 4139, 11.7 29 45 RMWFE = 0.641
6 185 156 3.9 38
7 376 94 47 Chi Squared = 94.8
8 16.0 16
Offf 0 26 22 38 72 79 104 42| 383
TABLE 2 COMPARISON OF SEGMENT-LEVEL ESTIMATES.

ROUTE 77 OUTBOUND

a. Estimate using Small O-D Sample Seed

From | To 1 73 3 4 b 6 70 On
W00, 46 162 32, 1.6 k6 9241 130
2 6.5 567 65 13.0 843 298.1| 465
3 97 32 16 389 2285 282
4 65 32 49 1977 212
5 0.0 9.7 1102 120
6 40.5 367.8| 408
7 0.0 0
Off 0 21 83 19 19 180 1295[ 1617
b. Segment-Level Estimate with Equivalent Null Seed
From | To 1 2 3 4 i 6 7] On
1 0.0 11.8 162 24 2.1 146 829 130
2 92 579 94 80 57.0 323.4| 465
3 89 6.1 $.5 392 2223| 282 RRMSE =0.197
4 11 34 311 1764] 212
- 0.0 154 1046 120 RMWFE = 0.427
6 227 385.3| 408
7 00l 0 Chi Squared = 106.3
Off 0 21 83 19 19 180 1295[ 1617
c. Segment-Level Estimate with Naive Null Seed
From | To 1 2 3 4 S 6 7 On
if 00 46 122 22 19 133 958" 130
2 164 435 78 1.0 476 342.7| 465
3 273 49 44 299 2154 282 RRMSE = 0.242
4 4.1 36 249 179.3] 212
5 2.1 144 1035 120 RMWFE = 0.407
6 49.8 358.2| 408
2 0.0 0 Chi Squared = 126.1
Off 0 21 83 19 19 180 1295[ 1617
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seed. the information content can be evaluated in terms of
bias and sample size.

The main bias in O-D surveys is nonresponse bias. which
is present if the response rate is substantially below 100 per-
cent, a condition endemic to surveys on busy bus routes. and
the nonresponding population is different in its O-D patterns
from the responding population. The differences most often
cited are as follows: nonresponders (a) are more likely to
come from segments of the route in neighborhoods that have
lower literacy or are less cooperative, or both: (b) are more
likely to board where the route is crowded and they can’t get
aseat: and (c) are more likely to be making short trips. leaving
them too little time to complete a survey. Fortunately. the
first two biases are proportional to the response rates at each
origin and each destination stop. and since the biproportional
method correctly expands origin and destination totals. these
biases disappear, as confirmed by Ben-Akiva (/2). The third
bias. however, remains. and can be significant. though its
extent is hard to judge.

The effect of sample size on quality of information in an
O-D matrix is also well known. A common rule of thumb is
that an observation of fewer than five travelers in a cell is
unreliable. since a difference of one or two people can effect
an enormous relative change in the value. In the extreme
case. a cell with no observations poses a special challenge.
since a biproportional estimate for a cell must be zero if its
seed value is zero. If a small-sample O-D matrix. aggregated
to the segment level. where the segment is the level of the
detail one is finally interested in. has a substantial number of
cells with fewer than five observations. the information con-
tent of the seed may be so compromised by sampling error
that it is worse than the information content of a null seed.

For example. the small-sample O-D surveys used by Ben-
Akiva et al. (8) are all quite small. containing 61. 76. 138,
and 54 responses for ihe four route‘direction combinations
studied. In the case with the greatest sample size. Route 77
outbound. only 8 of 25 segment-to-segment cells contain five
or more observations. and six of these all lie in the same
column of the matrix alighting at the last stop. Ten of the 23
cells contain no observations at all. An estimate based on
such a seed seems risky.

Ben-Akiva et al. respond to the problem posed by cells
with zero observations by offering a correction to deal with
these ““non-structural zeros.” Even with this correction. es-
timates based on the empirical seed are heavily influenced by
patterns that appear in the seed. Their estimate for Route 77
outbound made using this empirical seed (Table 2a. equiva-
lent to their Table 3) contains the peculiar pattern in which.
although there is substantial demand from Segments 1 to 7
(92 passengers) and from Segments 2 to 6 (84 passengers).
there is virtually no demand from Segments 1 to 6 (1.6 pas-
sengers), because in the small-sample O-D survey. no one
went from 1 to 6. In contrast. the estimate resulting from the
equivalent null seed (Table 2b) has a much more typical pat-
tern, assigning a far larger volume (14.6 passengers) to O-D
pair 1-6. Because Route 77 is a short route and. at the time
of data collection, had no significant competition from other
routes, a null seed seems quite plausible. The question is
whether the peculiar pattern found using the small-sample
seed is a reflection of true patterns in the population. or just
the spurious outcome of a random sampling process.
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The effect of sample size can be addressed more rigorously.
Ben-Akiva et al. provide equations for determining the ap-
proximate standard error of a biproportional estimate based
on the number of observations in a cell. and also report
approximate standard errors of their estimates. However. be-
cause many of their results are reported normalized to a stan-
dard grand total. the level of accuracy attained is not im-
mediately apparent. Reversing the normalization. it was found
that for the case of Route 77 outbound. the relative standard
error of their estimates (standard error divided by estimate)
is quite small (below 13 percent) for all six eligible cells in
which the destination is Segment 7. These were the cells with
many observations in the empirical seed. In the remaining 19
eligible cells of the matrix. the seed contained only 26 ob-
servations. Consequently. the relative standard error is greater
than 100 percent in a majority of those cells. For the entire
matrix, the average passenger volume per eligible cell is 17.
and the average approximate standard error is 8.4. With a
smaller sample size, as in the other three cases examined by
Ben-Akiva et al. (8). errors can be substantially larger.

How large should a small-sample survey be for it to be a
more reliable seed than an equivalent null seed for O-D matrix
estimation? To explore this issue. a Monte Carlo simulation
was conducted that repeatedly drew samples at random from
the population of passengers surveved on Lines 16 and 93.
the two routes for which complete stop-level data were avail-
able. Simulated sampling was done without replacement. and
there was no bias in the sampling process. Biproportional
estimates were generated for various sample sizes using the
simulated sample as a seed and compared with the true distri-
bution. For each sample size. 100 to 200 repetitions were
made. The final measure of fit reported is the RMSE as av-
eraged across all cells and all repetitions for a given sample
size. The results. shown in Figure 2. show how estimation
error decreases with the sample size.

Also shown in Figure 2 is the RMSE resulting from a stop-
level estimate using a null seed. While the three cases ex-
amined are too few to draw any firm conclusions. the results
consistently show that a null seed is better than the ideal small-
sample seed with fewer than 100 observations. When real-
world sampling biases. response errors. and coding errors are
accounted for. the sample size at which a null seed is as reliable
as a small-sample survey will be still higher. On the other
hand. if the route under study has significant competition from
other routes. the null seed model is theoretically flawed. and
so a small-sample seed will be preferred even with a sample
size under 100.

CONCLUSIONS

Planners who need route level O-D matrices have had two
primary approaches to use for generating O-D matrices from
on-off counts. One is the biproportional and similar iterative
methods that require a seed matrix containing information
about relative preferences for O-D pairs. The seed matrix is
usually a small-sample O-D matrix. The other technigue. Tsy-
galnitsky’s recursive method. is a computationally simple
technique that requires no seed matrix. The recursive method
is actually a special case of the biproportional model using a
“null seed.” a seed matrix in which entries are either zero or
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FIGURE 2 Estimation error versus sample size.

one. corresponding to whether travel between stop pairs is
permissible based on direction of travel and minimum travel
distance. A null seed is theoretically plausible on certain types
of routes. such as relatively short routes with little interference
(e.g.. competition) from other routes. Empirical tests on dif-
ferent bus routes confirm this hypothesis.

The structure of the null seed underlying the recursive method
implies that it is unsuitable for application to segment-level
data. Instead. the biproportional method should be applied
using an “equivalent null seed.” a seed whose values are the
average stop-level null seed propensity averaged over the stop
pairs comprehended in a segment-level pair. This method
vields results that closely approximate estimates made using
the recursive method with stop-level data. It is probably the
best method available for generating a transit route O-D ma-
trix from segment-level data when there is no reliable small-
sample survey or old O-D matrix to serve as a seed.

Finally. a comparison of estimation error using an equiv-
alent null seed versus using a small O-D sample seed indicates.
at least for the routes tested. that an ideal small-sample survey
is preferable to a null seed when the sample size is over 100.
and that a null seed is preferable when the sample size is
smaller. In real-world applications, modifications to this
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threshold should be made to account for imperfections in the
sampling process and competition between routes.
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