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Abstract 

Suppose a subway train is delayed due to, say, a medical emergency. What adjustments 
to the following trains' itineraries should be made in order for the schedule to recover from this 
initial delay? An optimization framework for finding the optimal schedule adjustments is 
devised. It accounts for the impact of those adjustments on ride time and waiting time, and has 
as its objective the minimization of total passenger time. Optimality conditions and a solution 
algorithm are developed. Realistic constraints such as a safety headway, vehicle capacity, and 
maximum delay at the start of the line are explicitly incorporated. 

Examples illustrate the main features of the optimal adjustment pattern. After 
adjustment, a train will follow its leader by the scheduled headway minus an amount called that 
train's schedule recovery. Because the optimal solution involves a tradeoff between minimizing 
the ride time impact, which is accomplished by immediately recovering from the initial delay, 
and the wait time impact, which is minimized by spreading the recovery over a large number of 
following trains, the optimal recovery pattern lies between these two extremes. In general, there 
is an S-shaped pattern to the recovery distribution: large recovery for the first one or two trains 
following the initially delayed train, then rapidly diminishing recoveries per train, and finally 
small recoveries for the last few trains. The location of the initial delay influences the recovery 
pattern. Delays that occur on a boarding section, where many waiting passengers will be 
affected, tend to benefit most from an optimal recovery as opposed to a policy of immediate 
recovery. On alighting sections, where there are few waiting passengers, immediate recovery is 
often the optimal policy. Simulated application to ideal routes and to Boston's Orange Line 
suggest that the savings in passenger time by using an optimal recovery policy instead of 
immediate recovery vary from ato about 100 passenger-hours, depending on the location and 
duration of the initial delay and on characteristics of the route. The benefits are not large, but 
appear to be great enough to merit incorporation in automated train control. 

When a train is delayed due, say, to a temporary malfunction of the doors or a medical 
emergency, how should that delay be propagated to the following trains? One strategy would be 
to recover the schedule as quickly as possible, by holding the following trains only enough to 
make them follow the previous train by the minimum safe headway (the safety headway). 
Alternatively, the recovery could be spread over more trains, holding trains longer than the 
minimum required for safety. As with any holding strategy, spreading the headways offers some 
benefit to waiting passengers because it reduces headway variance in comparison with a strategy 
of having a few very small headways and then returning to full headways. Stated otherwise, 
spreading the recovery will allow more passengers to enjoy boarding during a time of reduced 
headway. However, as with any holding strategy, passengers already on board will suffer more 
delay. The problem at hand, then is to find the headway control/recovery strategy that 
minimizes overall delay, subject to realistic constraints. 
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This problem was originally posed by Turnquist [1989], who built upon original work 
showing the effect of headway variance on wait time by Welding [1957] and a considerable 
amount of work done in the late 70's and early 80's on service reliability that is reviewed in 
Turnquist [1982]. However, the derivation in Turnquist's 1989 paper missed some important 
aspects; for example, it did not account for the effect of headway variation on the number of 
waiting passengers, nor did it account for the spatial nature of the problem. 

This problem is of increasing relevance as more real-time information on train operations 
becomes available, and as trains move toward automated control. With real-time information on 
train location, passenger loads, and passenger boarding and alighting patterns, a more finely 
tuned solution can be devised. An optimal solution for schedule adjustments can also be more 
easily implemented if trains are subject to real-time automated control. However, the general 
pattern of optimal adjustments that will be developed can also illuminate manual decisions 
regarding schedule recovery for systems that do not have automatic control. 

PROBLEM FORMULATION 

Suppose trains are evenly spaced, one headway (H) apart. Then suppose a train, train 0, 
is delayed an amount do. The trains behind it are numbered train I, 2, .... 

The initial delay will increase train O's headway to H + do. After a short time required for 
detecting the delay, the trains behind train 0 can also be delayed. If there are several stations 
between a train and the train ahead of it when the delay is first detected, one issue is where that 
train should be delayed. Whenever possible, trains between stations should at least be advanced 
to the next station before being delayed, since this hurts no one and eliminates delay for 
passengers on board who are destined for that next station. For this analysis, we have limited the 
decision scope by assuming that trains that are in a station when the delay is detected will be 
delayed at that station (if they are to be delayed at all), and trains between stations will be 
delayed at the next station they reach. The station at which a train will be delayed will be called 
its decision station. 

The control issue is how much, if any, to delay the trains following train O. Our notation 
will be that train i will be delayed so that it follows its predecessor by H minus an amount called 
ri, the schedule recovery of train i. In this way, the initial delay do is recovered gradually over 
several trains. If the recovery is spread over N trains, 

(1) 

The total delay imposed on each train, and its headway with respect to the preceding 
train, is as follows, as illustrated in Figure 1: 

headway (time since previous train) 
delayed by after point of initial delay 

o dO ho=H+do 
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N dN =do- L
N 

ri =0 
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Because headway must always be at least as great as the given "safety headway" hs, 
H - rk ~ hS 

or 
rk ~ H - hs, k = t,... ,N (2) 

We assume that vehicle delays continue unchanged for the remainder of a vehicle's trip 
(no "catching up"). We also assume there is sufficient recovery time in the schedule that delays 
do not propagate to the return trip. Therefore there is no operating cost impact to this control 
issue. For now, we will also assume that each train's capacity is effectively unlimited so that no 
passengers are forced to wait for the next train due to crowding. The only impacts are on 
passenger ride time and wait time. 

Let Vi= volume on train i at the decision station. Vi should not include passengers 
boarding or alighting at the decision station. The total ride time delay is: 

(3) 

To evaluate the wait time impact, it will be helpful to aggregate stations into groups of 
stations for whom the first delayed train is train i. For our purposes, then, station group 0 is the 
station at which train 0 is (or the station it will first reach) when initially delayed, plus all 
downstream stations. Station group i (i>O) will consist of train i's decision station, plus all 
stations downstream up to, but not including, those in station group i-t. If trains i and i-I have 
the same decision station, station group i will be empty. Let: 

A.j = aggregate passenger arrival rate for station group j 

(headwaY)ij = 	time between train i's departure from a station in station group j and the 
previous train's departure from that station. 

For any train i and station group j, the wait time is the product of the number of people 
affected, A.j(headwaY)ij , and their average wait per person, 0.5(headwaY)ij' Wait time delay is 
the difference between wait time and the wait time that occurs under a normal schedule, when 
(headwaY)ij = H. The headway of train i at station group j depends on station group j's location, 
as follows: 

H if j < i (upstream of station group i) 
(headwaY)ij = H + di if j = i (at station group i) 

H - ri if j > i (downstream of station group i) 

The total wait time delay is then 
N-I 	 N i-I 
~ 	 2 2 ~~ 2 2W = .Lot 0.5 A.j [(H - dj) - H ] + .Lot.Lot 0.5 A.j [(H - rj) - H ] 
~ 	 ~I~ 

N-I

0.5; Aj (H+ i~rir+0.5~(H- rl(~ot-~ 0.5 H2L (N+ t-j) A.jAJ J 
j=o 	 (4) 
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N 

where ATot=L Aj 
o 

OPTIMALITY CONDITIONS 

Minimizing the sum (W + R), and inserting constraint 1 into the objective function with 
Lagrange multiplier ~, the first derivative of the resulting Lagrangian with respect to rk reduces 
to 

N-JN N-J N 

(
:~ = rk "'r" - :~>j 

J-~\~ r; - L Vi - Il 
k 

Equating to zero and solving for fk yields 

N-J N N-J 

L Aj L ri + L Vi + Il 

j=k i=j+l k 


rk = N 

~ot - LAj 
k (5) 

which can be solved recursively beginning with k = N, followed by k = N-l, etc. When k = N, 

(6) 


and so 

Il = rN (ATot - AN) (7) 

Using this last relationship to substitute for ~ (making ~ implicit), 

N-l N-J N 

rN (~ot - + L Vj + L Aj L rjAN) 
k j=k i=j+l 

N 

1- - ~ AJ.'''Tot £.oJ 
k for k = N-l, N-2, ... , 1 (8a) 

where r'k is the value of rk, ignoring the safety headway constraint (equation 2). To account for 
the ceiling imposed by that constraint, 

rk = min (r'k, H-hs) (8b) 

An important and interesting corollary of this result is that 
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(9) 

(This relationship is evident, since as k increases, the numerator shrinks and the denominator 
grows.) In other words, the recovery is not spread equally over N trains, which would result in 
equal headways among those N trains. Rather, the recovery decreases with each subsequent train, 
which results in a gradual increase in the overall headway from the first train, whose headway is 
quite short, until the last train, whose headway returns to the base headway H. 

A BASIC SOLUTION ALGORITHM 

The solution process can be divided into three steps: 

Step 1: Detennine N. 

Step 2: Given N, detennine fN 

Step 3: Given Nand fN' detennine fk for 0 < k <N. 


Working backwards, Step 3 is accomplished directly by recursive application of equation 
8. That is, once rN is detennined, the remaining recoveries follow directly from equation 8. Step 
2 can be accomplished by a one-dimensional search for rN, searching for the value that, upon 

application of Step 3, satisfies equation 1. If we call1:ri the total recovery, it is clear that as fN 
increases, so does the total recovery. Therefore, Step 2 is a search for the fN for which the 
resulting total recovery equals the initial delay. A standard interval reduction method such as 
bisection search can be employed. For now, boundaries for rN can be set at [0, do/N], although 
for some situations tighter boundaries can be established. 

Step 3, solving for N, is simplified by recognizing that, because rN = 0 is a permitted 
solution, a feasible solution with larger N will always be preferred to one with smaller N. Of 
course, N ~ do I (H-hs), for otherwise it would be impossible to satisfy equation 2 even if all the 
rk's were equal. 

Beginning with this lower bound (rounded up), successively increasing values of N can 
N 

be tested. As long as rN = 0 applied in Step 3 yields a total recovery L rk ~ do, there will be a 
1 

feasible solution by simply raising fN. As soon as the value of N is found for which, when fN = 
N 

0, L rk>do, set N=N-l and use that value for N. Furthennore, a tighter upper bound on fN will 
1 

then the value of fN-l obtained for the last trial value of N (Le., the value of N for which total 
recovery exceeded do). 

START OF LINE EFFECT 

If the initial delay occurs near the beginning of the line, or if N is large, the recovery will 
extend backwards in time to trains that have not yet begun their trip; these trains are called "on
deck trains." Assuming that the delay imposed on an on-deck train k will be small enough that it 
doesn't imply delaying train k's preceding trip, the decision station of train k is station 1. Its 
station group is an empty set, implying that Ak = O. Vk = 0 as well. For every on-deck train, 
then, equation 8 makes it clear that the rk's are all equal to rN, that is, all on-deck trains 
contribute equally to the schedule recovery. Furthennore, if in the optimal solution the recovery 
extends to even one on-deck train, it is easy to show that it must extend to an infinite number of 
trains, with each recovering an equal, infinitesimal amount, essentially spreading the delay 
evenly over remaining trips in the day. This is obviously the best way to minimize wait time 
since there are no through passengers and wait time is minimized by equalizing headways. 
P.G. Furth 5 



Practically, there will usually be two limitations against spreading the recovery over an 
infinite number of trains. First, there will be a maximum delay that can be imposed on on-deck 
trains beyond which their previous trips (in the opposite direction) will be affected. Because the 
first on-deck train has the greatest delay, it is necessary to impose this limit on the first on-deck 
train only. This limit depends on the headway, the scheduled recovery time, and the turnaround 
facilities at the end of the line. For example, on rapid transit lines in Boston with a yard at the 
end of the line, operations staff estimate that a 5 min delay in the start of a trip can easily be 
absorbed, but at terminals with only a crossover, the maximum is about 3 min. If this value is 
called dmax, the total recovery by on-deck trains is limited to dmax, since the delay of the first on
deck train equals the total recovery of all on-deck trains. If Step 3 calls for a larger total 
recovery by on-deck trains, this limit must be imposed, fixing the recovery of the on-deck trains. 
Then, letting f denote the latest train that is not on-deck (Le., the first train whose decision station 
is station 1), Step 2 becomes a search for rf such that 

f

L rk = do - d max . 

k=1 
If do - dmax > f (H - hs), there is no feasible solution, i.e., there is no way to avoid congestion at 
the turnaround with its effects on the opposite direction of travel. 

Second, it is impractical and of insignificant marginal value to make schedule 
adjustments of only a few seconds. In programming this algorithm, a minimum schedule 
recovery of 30 sec was imposed on all but the latest on-deck train. For example, if the optimal 
solution called for on-deck trains to have a total recovery of 160 sec, the delay would be spread 
over six trains, the first five each with rk =30 sec and the last with TN = 10 sec. 

CAPACITY CONSTRAINTS 

Whenever there is a delay, there is a risk of overcapacity, causing overflow queues on the 
platforms (passengers unable to board a crowded train). Accurately modeling passenger waiting 
time in the presence of overflow queues requires some adjustment to the waiting time formula 
(equation 4). In addition to their large impact on waiting time, overflow queues are highly 
undesirable because of the aggravation felt by passengers and because congestion near the doors 
can hamper operations. It has been assumed, therefore, that the subway operator's first objective 
will be to clear overflow queues, running trains at the safety headway until all queues are 
cleared. In the process of clearing the platforms, a portion of the initial schedule delay will be 
recovered. The second objective is then to recover the remainder of the schedule delay in a way 
that minimizes wait plus ride delay. Essentially, then, if it takes m trains running behind the 
originally delayed train at the safety headway to clear the platforms, their recoveries are each 
fixed at (H - hs). That m'th train can then be considered train 0 in our analysis framework, and 
its delay (relative to its schedule) the original delay. 

The capacity of a train for this kind of problem should reflect the number of passengers 
that can be expected to fit on a train in the presence of overflow queues. This value, sometimes 
called crush capacity, is greater than the design capacity normally used in scheduling, so that, 
even in peak periods, it will not usually be necessary to recover the entire schedule as quickly as 
possible to avoid overflow queues. 

EXAMPLES 

To illustrate the types of solutions given by this optimality framework, we begin with an 
ideal route. It has 26 stations, spaced 2 min apart, divided into five sections. Within each 
section the stations are identical. First there is an "inbound section" with eight stations at which 
passengers board only. Next, an "inbound shoulder" section with four stations having equal 
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boarding and alighting rates. Next, a "downtown" section with three stations which have heavy 
alighting and some boardings. Next, an "outbound shoulder" section with three stations with 
equal boarding and alighting rates half those of the inbound shoulder stations. Finally, there is 
an outbound "alighting section" of eight stations with alightings only. With a 300 sec headway, 
the peaks load is 1200 passengers, occurring between Stations 8 and 12. Further details are 
given in Table 1. 

The first example illustrates how the schedule is optimally recovered for an initial delay 
at Station 8, the last station of the boarding section. Capacity is assumed to be unlimited. 
Results for initial delays of 180 sec to 900 sec (3 min to 15 min) are displayed in Figure 2. As 
expected, recovery is greatest for the first train, and decreases with each later train. Also, 
recovery from longer initial delays is spread over more trains. The recovery distribution has an 
S-shape, with recoveries decreasing at first slowly, then rapidly, and then slowly again as the 
recoveries approach zero. Initial delays of 660 sec and greater propagate back to trains that have 
not yet left Station 1 (on-deck trains), whose recoveries are equal (except perhaps for the last 
one). With the longer delays, the effects of two of the constraints become evident. First, the 
early trains have their recoveries capped at 210 sec so that they do not violate the 90 sec safety 
headway. Second, the total recovery by on-deck trains is capped at dmax = 300 sec, limiting to 
15 the number of on-deck trains, each recovering 30 sec, the user-set minimum recovery for on
deck trains. For comparison, the "immediate recovery" policy would have trains (except the 
final one) recovering 210 sec until the initial delay was recovered. 

For the same example, the impact on wait, ride, and total time impacts are shown in 
Figure 3 in comparison with the immediate recovery policy. Because the immediate recovery 
policy minimizes ride time delay, the ride time savings are negative, but are outweighed by the 
wait time savings. Not surprisingly, benefits generally increase with initial delay, although not 
linearly. For a 900 sec (15 min) delay, the total savings compared to policy of immediate 
recovery is about 68 passenger-hours, not a very large amount. A veraging over the number of 
passengers on the five trains that would be involved under the immediate recovery policy, this 
amounts to 13 sec per person. (Averaging over passengers on all trains involved in the optimal 
policy is deceptive, since the optimal policy involves tiny impacts on a huge number of trains.) 

To show the effect of shorter and longer headways, the time savings from using an 
optimal policy vs. an immediate recovery policy is shown in Table 2 for varying headways and 
varying initial delays. As headway was varied, dmax was kept equal to the headway or 300 sec, 
whichever was greater. In general, savings increases with both headway and initial delay. 
However, for this example the demand, in passengers/sec, was kept constant. Travel time 
savings is proportional to the overall level of demand. Therefore the results in Table 2 can be 
scaled up or down to match an overall demand level. One reasonable scaling would be inversely 
proportional to the headway, such that total load on the train remains constant. For example, if 
demand were half as big as the base case and the headway were therefore changed from 300 sec 
to 600 sec, the travel time savings of the optimal policy vs. the immediate recovery policy for an 
initial delay of 900 sec would be 173 /2<== 87 passenger-hours. Even with this scaling, savings 
still generally increase with headway. 

The location of the initial delay is important. If the initial delay is near the beginning of 
the line, there are few passengers on board to worry about, and so the optimal policy approaches 
the minimize wait time policy, i.e., small recoveries for many trains. If the initial delay is near 
the end of the line, there are few passengers boarding downstream to worry about, and so the 
optimal policy approaches the minimize ride time policy, i.e., immediate recovery. Between 
these extremes, the S-shaped recovery distribution prevails. In Figure 4, two summary measures 
are shown vs. the location of the initial delay: the number of trains over which the recovery is 
spread, and the travel time savings in comparison with an immediate recovery policy. Number 
of trains and savings are both large when the delay is near the start of the line. Depending on the 
headway and the length of the initial delay, the immediate recovery policy becomes optimal or 
near optimal between station 9 (beginning of the inbound shoulder, after peak volume has been 
reached) and station 15 (end of the downtown section, after which there are few boardings). In 
general, delays on the outbound section of a route should be recovered immediately, or nearly 
immediately, while delays on the inbound section should be recovered more gradually. 
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The demand distribution on many subway lines differs from the ideal route in that the 
first station often has a heavier demand than normal. When the demand at the first station is 
high, the ride time impact of spreading out the recovery increases, and there is a tendency to 
move toward more immediate recovery. To illustrate this effect, the ideal route was altered by 
attributing to Station 1 three-eighths of the demand of the boarding section (versus one eighth in 
the base case). Results are shown in Figure 5 (distribution of recovery for an initial delay at 
Station 8) and Table 3 (travel time savings in comparison with immediate recovery for an initial 
delay at Station 8). Comparing these results with the base case results found in Figure 2 and 
Table 2, the tendency to move toward immediate recovery is clear. However, there still are 
substantial benefits from spreading the delay in certain cases, particularly when the recovery 
extends to on-deck trains. 

An analysis of the effect of capacity constraints found them to have very little impact. 
Typically, if the initial delay is large, the optimal solution calls for running the first few trains 
after the initially delayed train at the safety headway. The capacity constraint calls for doing just 
the same thing, although if the volume / capacity ratio is close to one, nearly all recovering trains 
will have to follow at the safety headway. However, for typical cases that were analyzed, the 
differences were very small. 

Finally, examples were run using demand and running time data from Boston's Orange 
Line. The southbound direction was used. In the a.m. peak, it operates at a 270 sec headway, 
with 11,000 boardings per hour (3.1/ sec) and a peak volume of 8000 / hr (2.2 / sec). There are 
19 stations, roughly grouped into a 4-station boarding section, a 3-station inbound shoulder, a 5
station downtown section, and a 7-station alighting section (there is no outbound shoulder 
section). Boardings are heavy at stations 2, 3, and 4. Running time is about 33 min. Crush 
capacity was set at 900 (150 passengers per car, consistent with the maximum observed in a 
recent count), which is about 1.5 times greater than the average peak load. 

The distribution of the optimal recovery from an initial delay at Station 4 (Sullivan 
Square) is illustrated in Figure 6. Because of the short length of the boarding section, it consists 
essentially of a mixture of one or two trains with maximum recovery (in this case, 180 sec) 
followed by trains with small recoveries. Minimizing ride time and alleviating overflows 
dominates for the first one or two trains, while minimizing wait time by equalizing headways 
dominates once the recovery reaches trains whose decision station is near or at the start of the 
line. 

USING REAL-TIME INFORMATION 

The optimization framework presented in this paper depends to some extent upon 
availability of real-time information, and as the amount of real-time information increases, still 
better solutions can be found. Of course, it is necessary to know where the initially delayed train 
is, and to estimate the duration of the delay. While the formulation presented assumed that the 
following trains were on schedule, that assumption is not necessary. By incorporating the actual 
location of each following train, a more precise recovery pattern can be derived. Perhaps the 
most important contribution real-time information can make to improving the solution is in the 
area of passenger counts. One important variable is the load on each train. In the absence of 
real-time information, loads must be estimated from historical on / off patterns. A subway 
system with automated fare collection could design a system that estimates load on every train 
from actual turnstile counts and actual train departure times at each station. Likewise, in 
estimating the impact on waiting passengers, instead of using arrival rates that may be years old, 
an automated fare collection system should be capable of producing predicted arrival rates over 
the next 5, 10, 15, and 20 minutes based on a combination of historical counts, recent counts, and 
counts on that day. Integrating the fare collection system with the train control system will then 
result in train control that is responsive to the actual loads on each train and the best estimates of 
arrival rate of waiting passengers so that the chance of overflow queues is reduced and the 
tradeoff between reducing ride time and reducing wait time is more finely tuned. 
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CONCLUSIONS 

An optimization framework for finding the optimal schedule adjustments to recover from 
an initial delay has been devised. It accounts for the impact of the schedule adjustments on ride 
time and waiting time, and has as its objective the minimization of total passenger time. 
Optimality conditions and a solution algorithm have been developed. Realistic constraints such 
as vehicle capacity and maximum delay at the start of the line have been incorporated. 

Examples illustrate the main features of the optimal recovery pattern. Because the 
optimal solution involves a tradeoff between minimizing the ride time impact, which is 
accomplished by immediately recovering from the initial delay, and the wait time impact, which 
is minimized by spreading the recovery over a large number of following trains, the optimal 
recovery pattern lies between these two extremes. In general, there is an S-shaped pattern to the 
recovery distribution: large recovery for the first one or two trains, then rapidly diminishing 
recoveries per train, and finally small recoveries for the last few trains. The location of the initial 
delay influences the recovery pattern. Delays that occur on a boarding section, where many 
waiting passengers will be affected, tend to benefit most from an optimal recovery as opposed to 
a policy of immediate recovery. On alighting sections, where there are few waiting passengers, 
immediate recovery is often the optimal policy. Simulated application to ideal routes and to 
Boston's Orange Line suggest that the savings in passenger time by using an optimal recovery 
policy instead of immediate recovery vary from 0 to about 100 passenger-hours, depending on 
the location and duration of the initial delay and on characteristics of the route. The benefits are 
not large, but appear to be great enough to merit incorporation in automated train control. 
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Table 1 

Summary of Ideal Route 


Section 
Boarding 
Inbound Shoulder 
Downtown 
Outbound Shoulder 
Alighting 

Total 

Ons/station 

Stations (pax/sec) 

8 0.500 
4 1 .000 
3 1 .000 
3 0.500 
8 0.000 

26 12.500 

Headway (sec) 

Safety headway (sec) 

Dmax (sec) 

Detection time (sec) 


Otts/station 

(pax/sec) 

0.000 
1.000 
2.000 
0.500 
0.125 

12.500 

300 
90 

300 
60 

End Volume 

(pax/sec) 

4.000 
4.000 
1.000 
1.000 
0.000 



Initial Delay ; 
(sec) 

180 

300 

420 

540 

660 

780 

900 

Table 2 

Travel Time Savings (pax-hr) 

With Initial Delay at Station 8 


Headway (sec) 

180 300 480 

0.53 3.79 1.23 

0.27 0.82 16.19 

2.19 14.10 34.39 

8.25 12.32 28.89 

14.03 32.39 53.42 

22.94 44.58 1 07.95 

34.76 68.01 84.48 

6001 
1.1 6 

20.98 


66.08 


105.30 


90.39 


109.49 
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173.44 



Initial Delay 
(sec) 

180 
300 
420 
540 
660 
780 
900 

Table 3 

Travel Time Savings (pax-hr), 


Heavy Demand at Station 1 


1 Headway (sec) 

180 300 480 
0.32 2.79 0.26 

0.02 0.04 11.36 

0.52 9.47 22.56 

3.84 4.02 9.23 

7.85 19.54 29.52 

16.34 33.11 76.59 

28.24 46.65 59.79 

60-01 
0.01 


10.84 


47.93 


81.52 


67.78 


83.46 


128.58 




Figure 1. Schedule Recovery Variables for N=4 
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Figure 2 
Recovery Distribution With Initial Delay at Station 8 
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Figure 3 

Travel Time Savings vs. Initial Delay 


for Initial Delays at Station 8 
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Figure 4 

a. Number of trains used to recover vs. point of initial delay 

b. Travel time savings vs. point of initial delay 
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Figure 5 

Recovery Distribution, Heavy Demand at Station 1 
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Figure 6 

Recovery Distribution for Orange Line; 


Initial Delay at Station 4 
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Figure 7 
a. Number of trains used to recover, Orange Line 

b. Travel time savings, Orange Line 
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