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Innovative Sampling Plans for Estimating 
Transit Passenger-Kilometers 

PETER G. FURTH 

Estimating passenger-kilometers or passenger-miles to meet National 
Transit Database requiremenlS usually involves eostly sampling. Three 
innovative sampling plans are described that have been developed to 
reduce sampling requiremenlS. The first method, which proved to be very 
effective when total boardings is known, uses a small number of ride 
checks (ons and offs by stop) on each route. Average trip length is esti­
mated as a combined ratio estimator from a stratified sample. The second 
method was applied where the boardings total is not known. It uses both 
a sample of ride checks and another sample (needed for another purpose) 
that measures only boardings. A "mixed estimator" is derived that opti­
mally combines two separate estimators: a simple mean from the ride 
check sample and an average trip length from the ride check sample mul­
tiplied by average boardings from the other sample . TItis second method 
proved effective for a single Light-rail line but only marginally effective 
for a large bus system with widely varying route lengths. The third 
method exploilS the pattern of symmetry in boarding and alighting pat­
terns in opposite directions to estimate average trip length by roule using 
boardings data only. Average trip length is the algebraic difference 
between the boardings centroids in the two directions. For the two routes 
analyzed, this method turned ou t to be ineffective in comparison with 
other melhods because of high between-trip variability in the hoardings 
cenu-oids. 

To comply with FT A guidelines for the National Transit Database 
(NTD), transit agencies arc required to report annual passenger board­
ings aud passenger-kilometers (or passenger-miles) by mode. Some 
agencies know total boardings because they count every boarding pas­
senger, but many agencies do not. And most transit agencies do not 
know passenger-ki lometers because they do not record each passen­
ger's on stop and off stop. Agencies that do not know passenger 
boardings and passenger-kilometers from routine counts must esti­
mate these quantities from a sample. The estimates are required to 
attain a specified level of accuracy: a precision of ±1O percent at the 
95 percent confidence level. The sampling process is generally man­
ual and expensive, involving on-board surveyors called "checkers," 
who perform "ride checks," recording the number of passengers 
gelting on and off at each stop for a set of sampled trips. 

AVAILABLE SAMPLING PLANS 

At this time only one default sampling plan has been approved by 
Ff A for general usc on bus systems; it is described in FT A Circu­
lar 27 10.1A (1). Agencies may use other sampling plans iflhey have 
a stati stician certify that they meet the specified accuracy cri teria. 
The default plan, which includes a few alternatives, caUs for the 
random sampling of at least 549 sing le bus trips. On each selected 
trip, a ride check is conducted, from which total boardings and 
passenger-kilometers for the trip are calculated. This sampling plan 
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is based on simple expansion of the sample means, Necessary sam­
ple sizes are based on default estimates of trip-level coefficients of 
variation of passenger-kilometers, which are typically more variable 
lhan boardings. 

The expense involved in lhis sampling process can be consider­
ab le. For example, sampling a single 30-min trip usually requires far 
more than 30 min. Checkers using a car nearly always have to make 
a round trip in order to return to their vehicle; checkers without a car 
need time to ride to the start of the selected trip and then to their next 
dUly afler checking the selected trip. it is not unusual , then, that 
0.5 or more fu ll-time equivalent employees are used for NTD ride 
checks. 

In an effort to improve sampling efficiency, a revenue-based 
sampling plan was published by FTA in 1985 (2) that required only 
208 uips a year, provided that cash revenue could be recorded for each 
sampled trip along with ons and offs by stop. This method involves 
estimating from the sample the ratio of passenger-kilometers to cash 
revenue and expanding by annual total cash revenue. The smaller 
sample size was justified by the strong correlation between cash rev­
enue and passenger-kilometcrs. However, with the widespread adop­
tion of passes, tickets, and other fonns of prepayment, cash revenue 
has grown to be a less reliable indicator of trip patronage, and thus 
IT A no longer approves this plan by default, although it may still be 
used if certi fied by' a s tatistician. 

Other sampling plans have been developed by various transit 
agencies, either to reduce their sampling cost or to satisfy more 
stringent accuracy c riteria. An early example developed by Phifer 
(3) is based on a regress ion estimator. A dala collection manual 
published by ITA (4) encourages statistical estimation of route­
level measures for improved management and planning. Furth and 
McCollom (5) describe the application of ratio estimators for im­
proving sampling effic iency. Furth et a1. (6) discuss the benefits of 
sampling by a cluster of trips (e,g" round trips or a 4-h chain of trips 
on a single route), a technique that improves efficiency by reducing 
the overhead associated with sampling each trip. The widespread 
usc of electronic fareboxes, which, in some systems, provide reli­
ab le boardings counts, has led (Q sampling plans that take advantage 
of thi s infonnation. For example, Huang and Smith (7) explored 
various cluster sizes for NTD sampling in the presence of complete 
boardings counts and found that an efficient sampling plan involved 
round trips and a ratio of passenger-kil?metcrs to boardings. Furth 
and Kumar (8) describe the application of two-stage sampling in 
lhe context of a single light-rail line (without a fare box) requiring 
accurate patronage estimates. 

It is convenient at this point to Slate the sample size fonnula for 
sin g le~staget single-stratum sampling: 

"(ev)' 
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where fl is the sample size required to achieve a specified precisio n 
(expressed as a decimal , c.g., prec = 0. 1 fo r ±IO percellt precision) 
at a confidence level for an associated (-value (e.g., for the 95 per­
cent confidence level, t = 1.96 when the sample s ize is large, and it 
rises above 2.04 when the sample size is smaller than 30). Besides 
these two parameters, which depend on the specified accuracy level, 
necessary sample size also depends on coeffi cient of variation (ev) 
of the variable being estimated. This fo rmula can be appJjed with 
simple expansion of the sample mean, in whjch case ell is the ev of 
passenger-kilometers. It can also be applied with ratio estimation 
using the unit ell aC the ratio. as desc ribed by Furth and McCollom (5). 

MOTrv A TION FOR NEW SAMPLING PLANS 

In the last two years, Ff A and the American Public Transit Associa­
tion have sponsored a program caUed the Transit Passenger Monitor­
ing System (TPMS) that encourages transit agencies to implement a 
regular program of surveying passengers us ing a short self-service 
questi onnaire to help detennine what benefits the passengers are get­
ting from using transit. Part of the rationale fo r T PMS is that it should 
follow a statistically valid sampling plan , with sampling spread over 
the whole year. II made sense, therefore, to coordinate sampling for 
TPMS with NTD sampling. Because TPMS was implemented in 
several cities, lhere was the opportunity to develop improved NTD 

. sampling plans as well as TPMS sampling plans and to coordinate 
sampling for the two programs. ln this paper three innovative sampling 
plans are described that were developed in the course of this project. 

The first sampling plan deals with a sma] I transit system of eight 
routes that routinely counts boardings. Because of the small number 
of routes in the system, it is easy to ensure that the ride check sam ­
ple covers all o f the routes and thus to treat it as a stratifi ed sample, 
eliminating most o f the between-route vari ability. A technique 
called combilled ratio esrimation was applied because it permits 
sma] I sample sizes per route, resulting in a very e fficicnt sampling 
plan. This technique should have wide applicability to systems of up 
to 50 routes. The second sampling plan involves a large city that 
needs to estimate both board ings and passcnger-kilometers by sam­
pling. A new sampl ing technique was devcloped !.hal combines data 
from ride checks with boardings counts that are m ade in the course 
of TPMS sampling. This method proved e ffec ti ve fo r a single light­
rail line but not fo r a large and varied bus systcm. The third sampling 
plan involves a new method to estimate average trip length on a light­
rail line by recording ons by stop only, on the basis of the concept of 
symmetry in board ing and alighting pattem s in opposite directions 
of a route. This method turned out to be comparatively ineffective for 
the two routes analyzed, although it could have application in other 
contex ts where boarding pauems are less variable. 

ROUTE·LEVEL STRA TIFICATION WITH 
COMBINED RA TID ESTIMA TION 

Kenosha (\\,isconsin) Rapid Transi t (KRT) is a small , eight-route 
system. Bus operators coun t passengers on every trip . Passenger­
kilometers is estimated from a sample of ri de checks, from which 
average (passenger) tri p length (ATL), the ralio of passengcr­
kilometers to boardings, is estimated and then expanded by annual 
boardings. \Vith only eight rou tes, it is clear that a ride check sam­
ple of any reasonable size can easily cover all of the rou tes. Because 
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it is typical of transit systems that most of the variation in average trip 
length is berween rather th~ wi thin routes, stratification by route can 
eliminate some or all of the effect of between-route vari ation, thereby 
reducing the needed sample s ize. 

Stratified Sampling and Combined Ratio Estimation 

One approach to stratifying by route, which at the same lime takes 
advantage of the available data on boardings by route, is to estimate 
ATL for each route, expand it by route boardings, and aggregate over 
all routes. On the surface thi s method, call ed stratified ratio estima­
tion, appears to be a very efficient method, because it eliminates all 
the between-route variation. However, the effectiveness of thi s 
method is limited by the need 10 avoid bias. The bias associated with 
ratio estimators does not become negligible until the sample is at least 
of moderate size (9). One analysis of transit ridership data resulted in 
the recommendation of a minimum of 10 samples for ratio estimates 
to avoid significant b iases (4). Because this method involves esti­
mating and expanding a ratio for each route, a lower limit for the sam­
ple size is 10 samples per route, or 80 trips overall for KRT. Analysis 
of KRT data showed that this number of trips is more than needed to 
meet I\TTD accuracy requirements and represents a large savings 
compared with 550 trips in the default plan. 

in fact, if bias in the ratio estimates could be ignored , the neces­
sary sample size would be onl y two or three trips per route. This 

result led to the exploration of a related stratifi ed sampli ng techniq ue 
known as combined ratio estimation (9) . It is no t quite as efficient 
as stratifi ed ratio estimation, because it does not eliminate all of the 
between-route variation , but because it is not as subject to b ias, it 
can permit smaller sample sizes. The combined rati o estimato r is 
found using the following steps: 

I. Fo r each stratum (route), fi nd the sample mean passenger­
kilometers and boardings; 

2. Find the estimated stratum total passenger-kilometers and 
boardings by expanding the stratum sample mean~ by the total 
number of trips in the stratum; 

3. Find the estimated passenger-kilometers and boardings grand 
totals by summing the estimated stratum totals; 

4. Take the combined ratio, which is the ratio of the estimated 
passenger-kilometers grand total to !.he estimated board ings grand 
tota]; and 

5. Expand the combined ratio by total syste m boardings to yield 
estimated total passenger-kil ometers. 

Because each of the estim ated stratum totals is unbiased (regard­
less of sample size), and because the number of samples involved in 
calcul ating the ratio when it is fi nall y taken in Step 4 is much larger 
than the number Lh at would be involved in a single stratu m's ralio, 
the bias associated. with the combined estim ato r may be considered 
negligible when the overall sample size is more than 30. Another 
advantage of this technique is that it can be applied even if a transit 
system has only system-level, not route-level, boardings data. 

Variance of the Combined Ratio E stimator 

The variance of the combined ratio estimator depends in part on how 
the sample is allocated between strata. Allhough it is possible to 
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determine an optimal allocation, it is usuaUy the case with stratified 
sampling that proportional allocation (distri buting the sample among 
the strata in proportion to stratum size, i.e., me numbcrof2-h cycles 
in each route's daily schedule) is nearly as efficient as optimal allo­
cation. and it is simpler for sample selection, expansion, and analy­
sis. With proportional allocation, the unit cv of the combincd ratio 
estimate (defined as the square root of the relative variance per 
sample) can be estimated from historical data by 

1 
cv =-y 

where 

L Wh(J-;h + R2s.;h -2RrX)'h s)"hS",h ) 
h 

II = stratum, 
y = passenger-kilometers, 
x = boardings, 
S = sample standard deviation, 
r = sample correlation coefficient, 

(2) 

w .... = relative (population) size of s tratum II (such that the sum of 
the w .... ·s is I), and 

R = combined ratio = )iIi, where the grand means, using the 
standard estimate based on stratified sampling, are 

Results and Discussion 

An analys is of ride check data from four of KRT' s routes revealed 
that the within-route variation in average trip length is indeed very 
small. The data available were one weekday ride check for every 
scheduled trip in the system. To make sampling more cost-effecti ve, 
the sampling unit chosen was not the single trip, but a "2-h cycle," 
which on most routes is simply a round trip and on the shorter routes 
is a chain of two round trips. The data were therefore aggregated by 
2-h cycle, with most routes having 16 such cycles in a weekday. The 
within-route levels of variation, as measured by the unit cv of the 
passenger-kilometers to boardings ratio, are given in Table l. As 
indicated in the data, route-level unit cv's of average trip length were 
between 0.10 and 0.26. For comparison, Huang and Smith 's work 
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(7) in Madison, Wisconsin, found that without stratification by 
route, the unit cv of average trip length at the round trip level was 
0.36, and experience with other transit syste ms suggests that values 
as high as 0.60 are not unusual. 

On the basis of an analysis of four of the e ight KRT routes, the unit 
cv for the combined estimator was found to be O. I 9. With this Iow a 
unit cv, the necessary sample size to achieve the NTD accuracy stan­
dard is, following Equation I, only 18 two-hour cycles a year. To pro­
vide a margin of safety, the sampling plan recommended in Lh..is study 
calls for one 2-h cycle per week, or 52 per year. TIlis represents a dra­
matic savings compared with the 550 or so nips that are called for by 
Circular 271O.IA and a moderate savings over the stratified ratio esti­
mation method, which required 80 samples per year. The resulting 
precision, at the 95 percent confidence level, is ±5.4 percent. 

There is good reason to expect thi s method to be similarly effec­
tive in other transit systems with up to 50 rOUles, a small enough size 
that the ride check sample can provide at least three round trips on 
each routc. Beyond 50 routcs, other methods that do not require 
sampling on every route are likely to be more effic ie nt. 

MIXED ESTIMATOR USING PAIRED SAMPLE 
AND BOARDINGS-ONLY SAMPLE 

TIle Niagara Frontier Transportation Authority (NFf A) in metro­
poLitan Buffalo is representative of a transit agency that docs not have 
daily route·level passe nger counts on either its bus system or its light­
raillinc. Revenue-based estimation is not possib le either, for practi­
cal reasons. Therefore, NITA practice has been to estimate both 
boardings and passenger-kilometers by simple expansion of the 
mean from a sample of ride checks. On the basis of historical data 
from single-trip samples, simple expansion of sample means requires 
a minimum of 450 single-trip ride checks for bus and 197 for rail to 
achieve NTD accuracy. 

The TPMS project presented an opportuni ty for reducing the NTD 
ride check sample size by taking advantage ofboardings counts (used 
as control totals) obtained from the TPMS samples. These boardings 
counts offer additional information about the mean boardings per trip, 
which when combined with an average trip length ratio estimated 
from ride checks provides a better estim ate of passenger-ki lometers 
than could be obtained from the ride checks alone. An estimation 
method called the mixed esrimator was developed to make optimal 

TABLE 1 Route-Level Statistics and Combined Ratio Estimator Results 
for Kenosha Rapid Transit 

Route 2 

size 16 16 
relative size 0 .286 0.286 
mean boardings 33 5 I 

boardings 0 .542 0.440 
cv pass-km 0 .633 0.526 
co rrelation 94. 1% 97.4% 
unit cv of ratio 0.22 1 0. 139 

necessary n 
recommended n 15 15 
precision 

5 

16 
0 .286 

53 

0.4 17 
0.469 

98.2% 
0.098 

15 

6 

8 
0 . 143 

36 

0 .646 
0.509 

92.2% 
0.264 

7 

Combined 

0.193 

18 
52 

5.4% 
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use of the available information. lIS derivation, given in the fo llowing 
two subsections, can be skipped without loss of cOlllinuity. 

Derivation of Mixed Estimator 

A fonnal presentation of the sampling and es ti mation method 
follows. Let 

Xi. Yi = boarding (passenger-km) on Lrip j 

The quantity to estimate is 

Y = population mean passenger-kilometers per trip 

There is a sample of 'I, ride checks, each consisting of a paired 
observation of Xi and Y;, with sample means 

x, y = sample mean of X, Y from the ride check sample 

from which an estimate of the average trip length is obtained, 

There is also a TPMS sample of II I/ trips for which only hoardings is 
measured: 

k X 
~ = sample mean of X from the TPMS sample 

From these basic s tatistics, one can obtain two estimators of the 
mean passenger-ki lometers per lrip: 

(3) 

The first estimator is obviously unbiased. The second may also be 
considered unbiased, because the bias associated with ratio es ti­
mates is negligible provided the sample size is large (9), which is 
the case in this application. A general estimator, called the mixed 
estimator, is a weighted sum of the previous two estimators: 

(4) 

In thi s fo rmula, W can be any constant between 0 and I and may be 
selected to minimize the variance of the estimator. 

Variance of Mixed Estimator 

The variance of the mixed estimator is the sum of three terms: 

V(y, ) = (1- w)' V(y, ) + w' V(y,) + 2",(1-1V) Cov(y"y, ) (5) 

To funber develop Equation 5, note fi rst that, trom simple random 
sampling, 

V( - ) _ ,,;Y' 
)'1 - --

", 
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in which v stands fo r the coefficient of variation. For the second tenn, 
assuming independence between the ride check and the boardings 
count samples, 

V(y,) = V(R,x,) = E'(R,)V(x, ) + V(R,)E'(x,) 

where IIR is the unit (i.e. , per sampled trip) coefficient of variation 
of the average trip length ratio, given by (9) 

(6) 

in which rxy is the correlation coefficient between trip-level board­
ings and passenger-kilometers. 

For the third term of Equation 5, the covariance is nonzero 
because both estimates depend on the ride check sample . Write 

Cov(y" R,x,, ) = ~y{~)x" ] - E(y,) E(R,x,,) 

(7) 

Condit.ioning on the Sample I mean boardings, write 

The second term inside braces is simply the vari ance of the ratio 
estimator, sca1ed by a constant.. Assuming that the relative variance 
of the ratio is constant, 

Now dropping the condition by laking expectation over all possible 
Sample I boardings, 

and so the covariance term (Equation 7) reduces to 

C ( - R -) y-' uk oV)'I, !XU = -", 
Combining all three components of Equation 5 and dividing by the 
squared mean of Y to get a relative variance (squared coefficient of 
variation), 

(8) 

Optimal Weights 

As was pointed our earlier, the weight )II is arbilrary in that the esti ­
mator is unbiased for any value of w between 0 and I . In the inter­
est of sampling efficiency, W can be chosen so that it minimizes the 
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variance of the estimator. Taking the derivative of Equation 8 with 
respect to w yields 

~ _ !1 
111 II! 

or, substituting with Equation 7, 

IV", = 2r,,", ("' ) 
2r v - v I - !!J. 

$J Y "" lin 

(9) 

The optimum is rather flat, meaning that values of w near the optimal 
perform almost as well as the optimal , so that there is no practical 
penalry for choosing simple, rounded values for w. One intuitive way 
of selecting w is to examine an estimator based on expanding the ride 
check ratio by a combined estimator of the mean of x: 

This estimator is equivalent to that given in Equation 4, with weight 

\v=~ 
"I + "11 

(10) 

which can serve as a heuristic value for w. It may be noted that the 
heuristic weight equals the optimal weight when ·v ... = r .oyVy , which is 
not far from true for typical transit systems. 

Application to NITA Bus and Light-Rail System 

Mixed estimator sampling requirements were determined for both 
NFf A's bus and light-rail systems. The number of TPMS trips pro­
viding boardings counts was 182 for bus and 104 for light rail. To get 
an indication of the effectiveness of the mixed estimator, the ques­
tion is how many ride checks would be necessary to achieve the NTD 
accuracy goal using a mixed estimator that takes advantage of the 
TPMS data versus the number of ride checks using simple expansion. 
The numerical analysis, including key statistical parameters, is given 
in Table 2. A sununary of the results folJows. 

For the bus system, little is gained using the mixed estimator 
because the ride check sample requirement drops by only 6 percent 
(from 450 to 419 trips). The small gain is due to the rarher weak 
correlation between boardings and passenger-ki lometers (0.59), 
which makes extra boardings information of lillie value in estimat­
ing average passenger-ki lometers per trip. The weak correlation 
be tween boardings and passenger-kilometers is primarily due to 
large differences between routes in average (passenger) trip length; 
that is, there are some routes (short rOlltes) where the average trip 
length is small , and others (long, express routes) where average trip 
length is large. 

On the other hand, using a mixed estimator yields a significant 
gain for the rail system, with the ride check sampling requirement 
falling by 38 pereen. (from 197(0 123). Unlike Ihe bus sySlem.lhe 
light-rail system consists of a single line, so there is no between-route 
variation in average uip length, only between-uip variation (which 
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TABLE 2 Analysis of Mixed Estimator Versus Simple 
Expansion for NITA Bus and Light-Rail Systems 

Statistical Parameters 
cv boardings 
cv pass-km 
correlation coefficient 
unit cv or ratio 
nil (boardings count s) 

Mixed Estimator Results 
optimal w 
necessary nl (ride checks) 

resulting precision 

Simple ExpallSion Results 
necessary n (ride checks) 
resulting precision 

Bus 
(many routes) 

0.782 
1.082 
0.589 
0.886 

182 

0.215 
419 

9.98% 

450 
9.99% 

Ligltt R(lil 
(Oil !! Iill !!) 

0.580 
0.715 
0.874 
0.350 

104 

0.494 
123 

9.98% 

197 

9.98% 

9' 

is typically considerably smaller), resulting in a strong correlation 
between boardings and passenger-kilometers (0.87). 

On a practical note, sampling plans using the mixed estimator 
were developed for both NFrA's bus and light-rail system using 
greater sample sizes than those shown to provide a margin of safety 
with respect to the statistical parameters. The sampling plans also 
use cluster sampling to improve their cost-effecti veness. The 
improvements in efficiency from the mixed estimator, together with 
those from cluster sampling, enabled the development of a plan for 
obtaining both the TPMS sample and the necessary NTD sample 
using 23 percent fewer checker hours than would have been needed 
fo r a plan based on simple expansion and single-trip sampling. 

Although it is dangerous to generalize from these two examples, 
it appears that the mixed estimator can be a valuable strategy in a 
setting that satisfies the following three conditions: 

1. Total passenger boardings are not known but must be esti­
mated through sampling; 

2. A sample of boar dings counlS will be available or is useful for 
other purposes; and 

3. The system has little variation in average passenger trip length 
because it consists either of a single route or of a group of routes that 
are similar in length and in express-local orientation. 

SYMMETRY-BASED ESTIMATOR USING 
BOARDINGS DATA ONLY 

Port Authoriry Transit in metropolitan Pinsburgh operates two heav­
ily traveled light-rail lines, 42L and 42S, which share a common trunk: 
extending 13 kIn south from the central business district (CBD). The 
tota1lengths of the two routes arc 22 and 17 km, respectively. Con­
ducting tlle TPMS passenger survey on these lines is particularly 
labor-intensive. In order 10 get good control totals (boardings) and 
give each boarding passenger a questionnaire, a surveyor is needed 
at each of three doors for approximately 48 h a year. Because stops 
on the light-rail lines are well known and spaced farther apart than 
stops on most bus lines, the surveyors can record boardings by stop. 
However, it is impractical (0 have them record alightings by stop. 
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Good estimates of boardings on these lines are available from 
other data collection efforts. Estimating passenger-kilometers 
therefore calls for determining average trip length, which normally 
requires data on both boardings and aligbtings. However, if pas­
senger travel patterns over the day are symmetric, the boarding 
pattern in one direction should be the same as the alighting pattern 
in the opposite direction. A recent study done at Northeastern Uni­
versity by Navick and Funh (unpubli shed data) explores thi s 
assumption with the hope of estimating passenger-kilometers from 
enhanced farebox data. Full-day ride check data from five Los 
Angeles area bus routes were analyzed, with the result that differ­
ences in boarding and alighting panerns in opposite directions 
were nOi practically significant on most of the routes. If the sym­
metry assumption also holds on Pittsburgh 's light-rail lines, it 
should be possible to estimate average trip length from boardings 
data only. 

Derivation of Symmetry Estimator 

A derivation of the symmetry estimator of average trip length, 
using boardings data only, follows. It takes a different approach 
than the Navick and Furth study, one that better lends itself to 

deriving an estimate from a sample. For convenjence, let the 
downtown end of the line be specified as a reference point. Con­
sider a single passenger, passenger j, traveling inbound on trip i. 
Let bij represent the location of hi s or her boarding stop, measured 
as the di stance from the boarding stop to the reference point. Sim­
ilarly, let a jj represent the location of the alighting stop. The dis­
tance traveled by thi s passenger is therefore (bij - a;]). Summing 
over all passengers in that direction yields total passenger-kilo­
meters and di viding by the total number of passengers gives the 
average trip length (A TL): 

ATL = ~2:(b.- aij ) = ~ 2:biJ - ~2:aiJ = b - a 
'.J 'J IJ 

(11) 

where N is total number of passengers on that line in that direction. 
Equation II gives the interesting result that the average trip length 
is simply the difference between the mean boarding location, which 
may be called the boardings centroid .. and the alightings centroid. 
With trip-level boardings data, which can be considered cluster 
sampling of passengers, the boardings centroid is estimated by 

(12) 

where fl is number of sampled trips, X; is number of boardings on trip 
i, and the boardings centroid on trip i is 

(13) 

Following the symmetry assumption, the overall alightings centroid 
is.equal to the boardings centroid in the opposite direction of travel 
(with locations measured from the same reference point), and average 
trip length is the same in both directions. Thus, a sample of trips in 
both directions with boardings recorded by stop provides a means of 
estimating average Uip length, which can then be expanded by tOlal 

TRANSPORTATION RESEARCH RECORD 1618 

route boardings to yield an estimate of total passenger-kilometers on 
the route. The procedure'is as follows: 

1. Define the loca~ion of each stop as its distance from a refer­
ence point (one end of the route). The same reference point (e.g., the 
downtown end of the route) must be used for both directions. 

2. For each trip, calculate the trip level boardings centroid 

(Equation 13). 
3. For each direction, aggregate over all trips to find the overall 

boardings centroid (Equation 12). 
4. Average trip length is the absolute difference between the two. 

TIle following section, in which a method for detennining the vari­
ance of the symmetry estimate is derived, may be skipped without 

loss of continuity. 

Variance of Symmetry Estimator 

There are two potential sources of error in using the symmelI)' esti­
mate: sampling error and modeling error, which occurs if the sym­
metry assumption is not tme. Sampling error arises from the fact that 
the boardings centroids are estimated from a limited sample of trips. 
Assuming independence (a reasonable assumption, even if with 
round trip sampling, because inbound and outbound patterns at the 
same time of day are unrelated), the relative sampling variance of 
the centroid-based estimator is 

(14) 

where Il ] and " 2 are the number of trips sampled in Directions I and 
2 and 

5;1, S;2 = variance of the boardings centroid in direction I , 2 

The variance of the boardings centroids should be determined fol­
lowing fonnulas for cluster sampling with the ratio-to-size estimator 
(9). For Direction I, 

(15) 

with only trips jll Direction I included in the sum. An analogous 
equation holds for Direction 2. 

Normally the sample sizes in the two directions will be very 
nearly equal; if II is total number of sampled trips, III and 112 will each 
equal 11/2. In that case, the square of the unit ev (found by removing 
Il fTom Equation 14) becomes 

2_ 2( , ') ell - ATfl. SbJ + Sb2 (16) 

Modeling Error 

The precision of the es timate depends not only on sampling error 
but also on mOdeling error. Modeling error can be roughly esti­
mated from a hi stori c data set of ride checks. The ATL for this set 
of trips is known. Assuming an equal number of passengers in both 
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directions and that the reference end of the route is at the alighting 
end of Direction I, and suppress ing the notation for grand mean, 
ATLis 

1 
ATL~< = 2[1>, - a, -(b, - a,)] 

and the symmetry estimate is 

ATL"m= ~ [b, - a, - (b, - a,)] 

where the modifier" has the usual meaning "estimator of." The esti­
malOr of a l is b2, which may be considered a sample estimate wi lll 
variance Sl/'~, and analogously for the estimator of bl • Therefore 
the standard error of ATLsym is 

(17) 

and its mean-squared error is 

MSE(ATL "m ) = E[(ATL"m- ATL ~)'] 

(18) 

where e is the relative modeling error. An estimate of the relative 
squared modeling error can be found by replacing the E[ ] term or 
Equation 18 with the value obtained from the sample: 

e' = max{AT~' [(ATL ,)'m- ATL ~< )' -S' (ATL"m)] ,O} (19) 
,~< 

lfthe quantity in square brackets is negative, it means that the true 
and the estimated A TL differ by tess than what would be expected 
because of sampling error, and therefore the modeling error may 
be safely neglected. U the quantity in square brackets is positive, 
the modeling error may still be zero, because the greater-than­
expected deviation could just be a case of larger-than-expected 
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sampling error. Under conventional hypothesis testing, in which 
the null hypothesis is Lhat symmetry holds, the modeling error 
would be accepted as being zero at the 5 percent significance level 
as long as the squared difference between A TL measures was less 
than twice the variance of Lhe estimate. Absen t that prejudice 
lOward the symmetry assumption, the best estimate of the squared 
modeling error is given by Equation 19. It should be emphasized, 
however, thal this is a rough estimate based on a rather limited set 
of data. 

Under the assumption thaI modeling error could lead as easily 
to overes timation as underes timation (an assumption thaI can­
not be tested without a larger and more varied data set), the mod­
eling error can be considered as an additional variance term that 
does not diminish wiLh sample size. The precision of an estimate 
of passenger-kilometers based on Lhe symmetry method can then 
be expressed in terms of the relative root mean squared error, 
given by 

rmse = 

and the preciSion of the estimate will simply be 

precision = t (rmse) 

where t, as usual, is the t-value associated with the specified confi­
dence level. The number of degrees of freedom is hard to specify 
because of the inclusion of the modeling error term, but it is rea­
sonable to use II - 2 as the number of degrees of freedom, since one 
degree of freedom is lost in estimating each of the Sbl tenns. 

Results for Symmetry Estimator 

The symmetry estimator was analyzed for both lines 42L-and 42S 
using data from July 1995 to June 1997. Some of the data had both 
ons and offs by SLOP; some had only ons by stop. The CaD (north­
ern) end of the line is used as reference point. The results are shown 
in Table 3. Key aspects are the following. 

TABLE 3 Analysis of Symmetry Estimator for IJjttsburgh Light Rail 

Route 42L Route 42S 42L, Excluding 
Downtown TriDs 

". Centroid me~), SId dev /I meall sId dev /I meall st~~~v 
(km (km) (km) (lcm) (lcm) 

Boardings In 12.7 4.8 29 9.8 4.9 33 14.4 2.7 
Alightings Out 12.6 2.2 12 9.8 3.2 17 14.1 1.7 
Boardings Out 2 .2 1.9 29 2.2 1.0 33 2.3 2.2 
AliclitinRs In 2.1 1.4 12 1.1 D.5 17 2.4 2.1 

b. Average Trip "d std 
Length mean 111/;1 ev en mean unit cv en meall IIl1il ev 

(km) (km) (km) (km) (km) 

Inbound 10.6 8.8 12.D 
Outbound lOA 7.6 11.7 
Combined 10.5 0.30 8.2 D.34 11.9 0 .24 
Symmetry estimate 10.5 0.70 0.48 7.7 0.9 1 D.43 12.1 0.40 

n,)", I llnlio 5.4 7.2 2 .7 

Relative modeling D.O% 3.2% 0.0% 
error 
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First, regarding whether symmetry holds or nOl, the resuhs are 
mixed. The two routes afford four centroid comparisons, one for 
each route and direction. Three of the four are vcry c lose. The 
fourth, with a discrepancy of 1.1 kIn, occurs on Route 42S, where 
inbound alightings are morc heavily concentrated toward the CBD 
end of the line (centroid = 1.1 kru) than are outbound hoard ings 
(centroid = 2.2 km). Averaging over both direc tions on a route, lhe 
symmetry estimate for ATL on Route 42L matches the Lme value 
(for the set of sampled trips) almost exacLl y (10.5 km). However, 
on Route 42S, the discrepancy between the centroids at the CaD 
end leads to a difference between the two A TL measures of 0.5 
km. morc than can be explained by sampling error alone. The rel­
ative modeling error for Route 42S is estimated to be 3.2 percent. 
However, it should be noted that for both routes the alightings cen­
troids are estimated from smalJ samples ( 12 and 17 tri ps, respec­
tively), and therefore the resu lts must be regarded as somewhat 
tentative. 

Second, regarding between-trip variability of the boardings cen­
troids, the results are again mixed. In the outbound direction , the 
standard deviation is 1.9 kIn and 1.0 km on Routes 42L and 42S, 
respectively. However, in the inbound direction for both lines, the 
standard deviation of the boardings centroid is about 4.8 km, which 
is about half the average trip length. This very high level of vari­
ability can be explained in pan by two phenomena. One is that at a 
pair of transfer poinlS only about 3 kIn from the CBD end of the 
route (and thus outside the primary boarding area), the number of 
passengers boarding on a.m. peak trips fluctuates wi ldly, for exam­
ple, from 0 on one trip to 50 on the next, because of connections 
with other transit routes. In the p.m. peak the number of passengers 
alighting at these stations is far less variable and smaller as well. A 
second reason is that in the a.m. peak some trains serve the trunk 
only. Naturally, those trips have a boardings centroid that is closer 
to the CaD; at the same time, they distort the boardings pattern for 
the fo llowing trips, whose boardings centroid moves farther from 
theCBD. 

The large variation in the inbound boardings centroid leads to a 
high unit (i.e., per trip) cv for the symmetry estimate of average tri p 
length. On Route 42L, the unit cv is 0.70, which compares unfavor­
ably with the ratio estimate's unit cv of 0.30. (The ratio estimator is 
the method used with ride check data when an nual boardi ngs are 
known.) As necessary sample size is inversely proportional to tIle 
square of the unit CV, Lhis means that the symmetry estimator would 
require sampling SA times as many trips as would the ratio estima­
tor. Although the symmetry samples require counting only board­
ings by stop , whereas the ratio samples require counting bOUI 
boardings and alightings by stop, thi s difference is nOl enough to 
compensate for a sample five times as large. The effect is even 
stronger on Route 42S. 

To get an idea of the applicability of the symmetry esti mate to 
other transit lines, the analysis for Rome 42L was repeated with 
passengers whose entire trip lies within 4 km of the CBD end of 
the line excluded. The result, also given in Table 3, is a large 
decrease in the standard deviation of the inbound boardings cen· 
troid and a decrease in the unit cv of average trip length to 0040. 
Comparing with the unit cv of the ratio est imate (which drops to 
0.24 with downtown passengers excluded), the symmetry estima­
tor stiiJ needs 2.7 times as many trips sampled, with boardings 
recorded only, as the ratio estimator needs with both boardings and 
alightings recorded by stop. ]f other causes of sharp variabi lity 
(e.g ., short-turning trips) were also absent, that factor would likely 
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be smaller still. Depending on the number of boardings·only 
counts needed fo r other data collection efforts and the relative cost 
of a ride check versus a boardin gs count, the symmetry estimator 
may be usefu l in some contex ts. 

CONCLUSIONS 

When additional data, be they from electronic fareboxes or board­
ings counts done for another survey, are available, sampling plans 
to es timate passenger-kilomelers can often be developed that are 
more efficienl than simply expanding a sample mean or following 
the default NTD sampling plan. Three sampling plans are described 
that were developed fo r different contex ts. Variance formulas are 
given so that others may use them, and numerical results from U.S. 
transit systems arc presented to give an idea of the value of the three 
methods. 

In the first context, a small bus system with complete boardings 
data, a stratified sampling method called combined ratio estimation 
was applied and shown to be very efficient. This method is applic­
ab le in transit systems in which total boardings are known and is 
li kely to be effective for systems with up to 50 routes. 

The second context is a transit system without infonnation on 
total boardings but with a sample of boar dings counts available. An 
estimator that mixes ride check. data and boardings counlS was found 
10 lead to sizable reductions in the number of ride checks needed for 
the rail system, which consists of a single line , but not for the bus 
system, which has a large number of rou tes with widely varying 

route lengths. 
The third contex t is a light-rail line with known total boardings 

and available counts of boar dings by stop but not alighlings by stop. 
Data show mixed support for an assumption of symmetry in board­
ing and alighting patterns in opposite directions of travel. Moreover. 
the between-trip variance in boardings centroid on the routes stud­
ied was too great to make thi s method of estimation effective com­
pared with oUler methods. Nevertheless , it may have promise in 
other contexts where boarding patterns do not fluctuate as much 

between trips. 
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