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Abstract:   
 
Conditional priority for buses at signalized intersections means that late buses are given 
priority, while early buses are not. This scheme is method of operational control that can 
improve service quality by keeping buses on schedule.  An implementation in Eindhoven, 
the Netherlands, is described.  Results show the strong improvement in schedule 
adherence, compared to when there is no priority.  An experiment at an intersection 
measured traffic impacts under three scenarios: no priority, absolute priority, and 
conditional priority. Compared to no priority, absolute priority caused severe increases in 
delay, while conditional priority had almost no impact. 
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PRIORITY CONTROL AT SIGNALIZED INTERSECTIONS 

 Giving priority to transit vehicles at signalized intersections is one of the most 
powerful strategies for improving transit service that operates at grade or in mixed traffic. 
Advances in technology continue to create new and less costly means of providing 
priority, while increasing traffic congestion and concerns about air quality, livability, and 
the cost of rail construction make the need for transit priority ever more pressing.  
Priority at signalized intersections has been practiced and studied in the U.S. at least since 
the seventies (1). In Europe, transit priority began even earlier, and is common in 
countries such as Switzerland, Germany, and the Netherlands (2).  Current interest in bus 
priority in the U.S. is high, spurred on by the Federal Transit Administration's Bus Rapid 
Transit Initiative (3) and by the intelligent transportation systems (ITS) community (4, 5). 
 
 Transit priority strategies at signalized intersections can be classified along three 
broad dimensions.  

 First is the distinction between active and passive priority. Active priority involves 
detecting and responding to transit vehicles in real time, while passive priority 
involves such measures as favorable cycle lengths, green splits, and progression (6, 7, 
8). 

 Second, priority strategies can be categorized as giving full, partial, and relative 
priority. Under full priority, which is common in Europe, the traffic control program 
seeks to give the transit vehicle zero-delay service. Under partial priority, which is 
more common in the U.S. (9), only the least disruptive priority tactics such as green 
extension and early green start are allowed, usually with rather stringent limits on 
extension lengths. Under relative priority, transit vehicles compete with other traffic 
for green time and permission to get priority. Transit vehicles are given a greater 
weight to account for their high passenger load (10), but may be denied priority 
depending on competing traffic volumes or queues.  

 A third dimension is the choice between unconditional and conditional priority. 
Unconditional priority means that every transit vehicle is given priority. We use the 
term absolute priority to refer to full, active, unconditional priority.  Conditional 
priority, which has been implemented in both the U.S. (5) and in Europe, means that 
transit vehicles request priority only if they are behind schedule. In this paper, we 
shall use the term conditional priority to mean conditional full priority. It should be 
noted that others have used the term "conditional" to refer to schemes where priority 
is granted depending on competing traffic (volumes or queue lengths); we classify 
these schemes as relative priority.  

OPERATIONAL CONTROL AND SERVICE RELIABILITY 

 Early applications saw transit priority primarily as a means of improving speed, 
which reduces operating cost and passenger riding time, and therefore used absolute 
priority to get the maximum speed improvement.  Researchers noted that by reducing 
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intersection delays, a major source of randomness in operations, service reliability 
improved as well (11). 
 
 Service reliability has long plagued the transit industry, and many transit agencies 
and researchers have sought methods of operational control that will improve punctuality 
(schedule adherence) and regularity (keeping the proper headway) (e.g., 12, 13). Poor 
service reliability increases waiting time and crowding, drives up operating costs as 
recovery time and frequencies are increased to compensate for uncertain running times 
and fluctuating loads, and is seen by customers as one of the greatest sources of 
dissatisfaction. However, apart from priority at signalized intersections, the only control 
tactic that has proven viable in improving service reliability is holding early vehicles at 
control points, a practice that is customary at many transit agencies. (Other suggested 
strategies, such as inserting a reserve bus, have very limited applicability.)  However, 
holding is a one-sided control strategy – it can be applied to early vehicles, but does 
nothing for late vehicles, except for the indirect effect of keeping the vehicles ahead of 
them from running early.  
 
 In contrast, conditional priority – giving priority at signalized intersections to late 
vehicles, but not to early vehicles – offers a means of operational control that tends to 
directly correct both early and late schedule deviations.  Vehicles that are ahead of 
schedule are denied priority, and will tend to be delayed at traffic signals, while late 
vehicles are given priority and thus pushed ahead. This gives transit operations the kind 
of “push-pull” control needed to keep it on schedule. 

 
 Conditional priority makes operational control a primary objective, rather than a 
fringe benefit, of priority at signalized intersections.  While absolute priority improves 
schedule adherence somewhat by eliminating intersection delay, schedule deviation has 
other causes which are not corrected by absolute priority – early and late dispatching 
from the initial stop, other traffic delays, and randomness in passenger arrivals and 
service times.  Many Dutch tram and bus lines have had absolute priority for years, but 
still suffer persistent problems with schedule adherence. For example, the Amsterdam 
trams, which have absolute priority at most of their signalized intersections, still have to 
plan their service needs to accommodate 150 percent of the expected peak load because 
of widely varying headways. 
 
 Moving from absolute to conditional priority involves a small sacrifice in 
operational speed to get a large improvement in punctuality. For example, on Line 1 in 
Eindhoven, scheduled running time (one way) during the a.m. peak was reduced from 24 
min to 20 min when absolute priority was installed. When the system was changed to 
conditional priority, scheduled running time had to be raised to only 21 min. Thus, 
conditional priority preserves most of the speed advantage of absolute priority, while 
adding the advantages of strong punctuality control. The net effect, we believe, is better 
service quality. At the same time, conditional priority has another advantage over 
absolute priority – it interferes less with traffic. 
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LIMITING IMPACT TO OTHER TRAFFIC 

 Priority interruptions for transit vehicles usually have a negative impact on other 
traffic.  Of course, traffic in the same stream as the priority vehicle or in a compatible 
stream may benefit, but the net effect is usually a decline in capacity and overall level of 
service. The impact on other traffic depends on the tactics used by the signal controller in 
granting priority, the tactics used to recover from interruptions, and the frequency of 
priority interruptions. Green extension is the least disruptive priority tactic, which 
accounts for its popularity in partial priority systems, as compared to tactics such as 
skipping and truncating phases.  Recovery tactics, especially in coordinated networks, 
have received less attention than priority strategies. They remain a pressing research 
need, since they can influence vehicular delay as much as priority tactics.  
 
 The frequency of priority interruptions is important because the intersection may 
need some time to recover, i.e., to clear queues that built up during a priority interruption, 
or to return to a background cycle that provides progression.  If interruptions occur too 
frequently, the intersection may not get a chance to recover, and cycle failures (failures to 
clear queues) will be common.  For this reason, some relative priority schemes inhibit 
priority requests for either a fixed period of time after an interruption, or while there are 
long queues. With conditional priority, the frequency of interruptions will be naturally 
reduced. Conditional priority systems can also be tailored to minimize their impact at 
critical intersections by varying the 'lateness' criterion (the number of seconds late a bus 
must be before it gets priority) from intersection to intersection. By using a larger lateness 
criterion at the busiest intersections, the likelihood of interruption at those intersections 
goes down. Of course, the likelihood of interruption at the succeeding intersections will 
go up.  By the same token, using a smaller lateness criterion at one or two intersections 
upstream of a critical intersection will lessen the likelihood that a bus arrives late and 
therefore requests priority at the critical intersection. 

PREREQUISITES FOR CONDITIONAL PRIORITY 

 Implementing conditional priority requires tracking bus location, comparing it 
against the schedule to determine schedule deviation.  Tracking can be based on global 
positioning or wayside devices that use low power radio or infrared communication. One 
system architecture has the tracking done by on-board computers, who communicate their 
schedule deviation to the traffic control system. Another is for the tracking to be done 
centrally at a transit control center using and automatic vehicle location system. The 
transit control center then communicates schedule deviations to the traffic control system.  
Both alternatives are recognized in the National ITS Architecture (4). Experience in the 
Netherlands points to the advantages of decentralized control, and emphasizes that where 
possible, responsibility to maintain the system should lie with those who benefit the most, 
the transit agency or its supervising public authority (14). 
 
 Proper application of conditional priority also requires carefully tailored schedules 
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and a cooperative process that engages bus operators and supervisors.  If schedules are 
too tight, buses will always be running late, and the system will function like absolute 
priority.  If the schedules are too loose, buses will tend to run early, and the system will 
function as though there was no priority.  This is exactly what happened in an early 
application of conditional priority on tram lines 1 and 9 in the Hague.  They had the same 
scheduled running time for the entire day, with the result that during the peak they always 
ran late, and off-peak they ran early.  In both cases, the control margin needed for 
conditional priority to keep the vehicles on schedule was lost.  A good schedule should 
provide a control margin at each intersection, meaning that the probability that a bus will 
be late is neither too close to zero nor too close to one.  This requires collecting a lot of 
data on schedule deviations and adjusting schedules to maintain the proper control 
margin at each intersection.  More detail on constructing timetables that support 
operational control and on the organizational process of implementing conditional 
priority at a transit agency is found in Muller (15). 

THE EINDHOVEN BUS PRIORITY SYSTEM 

 A comprehensive program of transit improvements, including conditional priority 
on bus lines, is underway in Eindhoven, a city of 300,000 inhabitants in the southeast of 
the Netherlands.  The Traffic and Transportation Engineering Laboratory of the Delft 
University of Technology provides technical support, including research and 
development of methods and software tools.  To date, the conditional priority system is 
fully operational on Line 1, which runs from the central station to the northern edge of  
the city, offering 10 min service during the day.  Local buses are all equipped with on-
board computers that track vehicle location using VECOM™ two-way communication 
loops connected to traffic signal controllers, and dead reckoning between loops. The on-
board computers record trip time events in detail, such as times when the vehicle stops or 
opens and closes its doors, together with time and location stamps.  The data is 
automatically uploaded each evening to a computer at the Delft University Traffic and 
Transportation Engineering Laboratory, where it is reduced by a program called 
TRITAPT (Trip Time Analysis for Public Transport)  to stop module records (a stop 
module is a bus stop and the interstop segment preceding it) and stored in a database.  
Thus, detailed operation data is available from nearly every trip, every day.  TRITAPT 
then produces useful reports of schedule deviation, delays, recommended running times, 
and so forth (16, 17).  
 
 The on-board computers also monitor schedule deviation in real time, displaying 
it in units of 10 s on a small screen visible to the operator.  On lines without conditional 
priority, these displays help the operators know when they should try to “kill time” and 
when to speed up.  About 300 m upstream of each controlled intersection, buses 
communicate their identification, desired direction (through, left, right), and on-time 
status (early / on time / late) to the local controller via a VECOM loop.  "On time" is 
defined as +10 s from the scheduled time at the loop.   Controllers can be set to give 
buses priority (a) regardless of on-time status (absolute priority), (b) only if it is not early, 



Furth & Muller    6 

or (c) only if it is late.  
 
  Buses on Line 1 operate in mixed traffic.  Giving a bus priority therefore means 
giving priority to a regular vehicle stream. In this sense the priority system acts like an 
electronic bulldozer, pushing ahead any cars that are queued up in front of a bus – a very 
different kind of operation than if transit vehicles operate in their own right of way.  In 
response to the priority request, the controller will estimate the arrival time of the bus, 
add an estimated amount of time to clear the queue ahead of it, and ensure that the light is 
green for the bus stream, if possible. The controller will truncate and skip conflicting 
streams as well as extend green on the priority stream. Safety constraints ensure that any 
green period, once started, must last at least 6 s, and that clearance times (yellow and all 
red) are enforced.  VECOM loops at the stopline serve as exit detectors, which terminate 
the priority call.   

SCHEDULE ADHERENCE RESULTS 

 A TRITAPT schedule deviation report for a typical day is shown in Figure 1.  
Each broken line shows the schedule deviation of a trip on Friday, May 29, along the 
route (stop codes such as NS are given on the horizontal axis) for Line 1 inbound. Not 
counting the last stop (a turnaround with no passengers boarding and often no alightings), 
it shows that buses were rarely more than 60 s early or more than 120 s late.  Throughout 
the line, the distribution of schedule deviation remains tight.  It should be noted that this 
level of punctuality is achieved in spite of imperfect dispatch control – departures from 
the first stop are evenly distributed over a range from 0 to 120 s late.  
 
 A contrasting picture comes from a summary of operations just three days earlier, 
when the conditional priority system was not operational because the timetable in the on-
board computers had expired, and the new timetable had not yet been loaded.  (This 
underscores the importance of system maintenance.).  The schedule deviation report, 
given in Figure 2, shows much larger schedule deviations as the natural processes causing 
randomness were not checked by the conditional priority system. 
 
 To get a feeling for the human impact of the conditional priority system, we rode 
Line 1, standing next to the operator where we could see the schedule deviation display.  
If the bus was late as it approached red light, one could observe the light quickly turning 
green so that the bus could proceed unimpeded.  If the bus was early, no such priority was 
given.  During the entire trip, the bus was never more than 60 s late or 30 s early.  When 
questioned, the operator told us that the conditional priority system was so popular with 
the operators that the union had agreed that no operator should get to serve on Line 1 
more than half a day.  Whereas on other lines the operators have continually adjust their 
driving behavior to stay on schedule, the conditional priority system on Line 1 keeps the 
bus on schedule automatically, making the operating task far more relaxed. 
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Figure  1: Schedule deviations on Friday, May 29 with conditional priority 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Schedule deviations on Tuesday, May 26 without priority. 
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EXPERIMENT AND SITE DESCRIPTION 

 To evaluate the traffic impact of conditional priority, an experiment was 
conducted on May 26, 27, and 29 (Tuesday, Wednesday, and Friday), 1998 at the busiest 
intersection along Line 1. Here, the Ring Road crosses Montgomery Laan, the north-
south radial avenue that carries Lines 1 (with 10 minute service) and 9 (with 30 minute 
service). Traffic was observed each day from 7-11 a.m. and 2-6 p.m.  With the 
cooperation of the city traffic department, the controller was set to operate with the no 
priority for buses Tuesday morning and Wednesday afternoon; with absolute priority on 
Tuesday afternoon and Wednesday morning; and with conditional priority (the normal 
mode) on Friday. There were no special events or unusual weather during the observation 
period. 
 
 No bus lines operate on this segment of the Ring Road, which has more traffic 
than Montgomery Laan. All four approaches have two through lanes, a protected left turn 
lane, and a separate bicycle path and sidewalk.  Clearance times (yellow plus all red) are 
rather long – about 6 s – due to the wide intersection layout, with an additional 2 s of all-
red time imposed on the northbound and eastbound through traffic streams, where 
bicycles get a 2 s advance green to reduce conflicts with right turning traffic.  Both 
northbound and southbound directions use far-side stops.  
 
 When there are no priority interruptions, the controller follows a fixed-time plan 
with protected, lagging left turns.  Cycle time and green splits vary by time of day.  The 
cycle and offsets are set so as to produce a green wave for the Ring Road in the 
westbound direction.  If a priority request arrives from a bus on a traffic stream whose 
light is red, conflicting streams will be truncated (subject to a 6 s minimum green), and 
the priority stream will turn green after the appropriate clearance time.  If the priority 
stream was not next in sequence, intervening streams are skipped, and the priority 
stream's green ends as soon as the bus passes the stopline (subject to a 6 s minimum).  
Service then goes to the stream that was next in sequence when the priority call was 
received, and continues in the regular sequence.  If the priority stream is green when the 
priority request is received, the green will be extended until the bus passes. 
 
 Priority interruptions invariably cause the traffic control program to get behind in 
its cycle.  In order to return to the background cycle (the cycle used for progression on 
the Ring Road), the controller follows a "hurry" tactic, giving streams minimum (6 s) 
green times until the program catches up. 
 
 To measure vehicular delays, video cameras were mounted on four utility poles, 
one for each approach, giving a view from the stopline upstream to an approach entry 
point located beyond where the queue normally reaches.  Teams of two students reduced 
the data by replaying the videotapes and using a computer program that records the 
moment at which any key is pressed.  The students hit designated keys each time a 
vehicle passed the entry point, the through / right stopline, and the left stopline.  Each 
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four-hour observation period began with a car that entered an approach when there was 
no queue, so that if cumulative arrivals and departures are plotted as a function of time, 
the total time spent in the approach would equal the area under between the cumulative 
arrival and departure curves.  Because this type of analysis is sensitive to miscount errors, 
checks on the number of cars “trapped” between the entry line and stopline were made 
approximately every three minutes by direct counting, stopping the videotape if 
necessary.  If the difference between the cumulative arrivals and departures at that 
moment did not match the trap count, the videotapes were replayed, using slow motion 
when necessary, and the entry / exit records corrected.  
 
 Average total vehicular delay for an approach was found by dividing the total 
time spent in the system (the area between the cumulative arrival and departure curves) 
by the number of passing vehicles, and subtracting the normal passage time.  Normal 
passage time was taken as the average passage time of several sample vehicles that 
passed through the intersection unimpeded. Total vehicular delay should be distinguished 
from stopped delay, a measure commonly used to determine intersection level of service.  
When an approach is not oversaturated, total delay is about 30 percent greater than 
stopped delay (18). As delays increase due to cycle failures, the difference becomes 
smaller.  Because it was not possible to distinguish vehicles upon arrival by intended 
turning movement, average delays could only be measured by approach. 
 
 In addition to observing traffic, the signal system behavior was tracked since 
traffic impacts due to transit priority are due primarily to the way the controller responds 
to priority requests.   Taps to the green signal head leads were fed into a computer to 
record the moment at which each signal’s green time began and ended.  The computer is 
housed in a special-purpose data collection van owned by Delft University’s Traffic and 
Transportation Engineering Laboratory, and is capable of recording data from 128 input 
channels. 

TRAFFIC IMPACT 

 In Figure 3, average vehicular total delay is given by hour under the three 
scenarios.   
 
 
 
 
 
 
 
 
 

 
Figure 3: Average Vehicular Total Delay, All Approaches combined 
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 The general pattern is striking: compared to no priority, vehicular delays under 
conditional priority are about the same, while absolute priority causes large increases in 
delay.  Total delay increased by 40 s per vehicle in the three busiest hours when buses 
were given absolute priority, while conditional priority caused no significant change in 
delay.  Traffic volumes during the observation period, shown in Figure 4, slightly favor 
conditional priority, but not enough to account for the enormous difference in impact 
between absolute and conditional priority.  
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Traffic Volumes during observation periods 
 
Impacts are shown by approach in figure 5, the corresponding traffic volumes in Figure 6.  
 
 
 
 
 
 
 
 
 
 

Figure 5. Delay times per approach 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Volumes per approach 
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 The Ring Road (eastbound and westbound approaches) clearly suffers the most 
from absolute priority, since it conflicts with the priority streams.  Even though absolute 
priority favors the northbound and southbound directions, their average delays show a 
small overall increase compared to no priority.  What can be seen here is that there is not 
simply a tradeoff between the priority road and the cross street.  The priority interruptions 
reduce overall efficiency, so that while the priority road's level of delay remains largely 
unchanged, the cross street suffers severely.   
 
 The changes in delay under the different priority scenarios can be explained 
primarily by changes in capacity resulting from priority interruptions.  The tactics used 
for giving priority and for returning to the background cycle result in extra phases for the 
north-south through traffic, requiring more phase changes with their corresponding lost 
time.  Because lost time at this intersection is large, the impact is sizable.  In the critical 
conflict group, the lost time rises from 29 percent of each cycle under no priority to 39 
percent under absolute priority during both the a.m. and p.m. observation periods.  In 
contrast, conditional priority causes lost time increases of 4 and 2 percent of the cycle in 
the two periods, respectively.  Because of the priority given to the north-south street, it is 
able to maintain its share of the green time, with lost time taken mostly out of the cross 
street green time.  An indication of how approach capacity changed is shown in Figure 7, 
where relative capacity is the number of seconds of green weighted by the number of 
lanes, scaled to equal 100 for the base case (no priority).  
 
 
 
 
 
 
 
 
 
 

Figure 7. Relative Capacity under Different Priority Schemes 
 
 While northbound and southbound capacity hardly changed under absolute 
priority, the eastbound and westbound approaches lost over 20 percent of their capacity.   
The impact of conditional priority is much smaller – the eastbound and westbound 
approaches lose only about 5 percent of their capacity.  
 
 The green time and lost time analysis suggests some improvements to the traffic 
control program.  First, a recovery strategy involving long cycles, rather than hurrying 
through 6 s phases with 6 s lost time between phases, would limit the capacity loss, which 
is critical in the peak hours.  Second, the recovery strategy should seek to balance the 
green time loss between the approaches, rather than take all the green time away from the 
cross street.  Third, the recovery strategy should aim first to prevent cycle overflows 
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(queues remaining when the light turns red), and only after that aim to maintain 
progression, as progression is meaningless when there are cycle overflows. 

BUS DELAYS 

 To get a more detailed view of the success of the priority system in giving 
unimpeded service to priority buses, bus delays in the stop modules that include the study 
intersection approaches were analyzed for the observation periods using data from the on-
board computers and TRITAPT software.  "Delay" is defined by TRITAPT as time spent 
standing still or at speeds of less than 5 km/h, excluding time spent at bus stops.  While 
delay is most likely to occur at the intersection, it could also include delay elsewhere in 
the stop module.  Average delays under the three priority scenarios are shown in Figure 8.   
 
 
 
 
 
 
 
 
 
 

Figure 8. Average transit delay 
 

When there is no priority, buses are delayed an average of 27 s, falling to 3 s when buses 
have absolute priority.  Thus, absolute priority comes close to achieving its goal. 
 
 Average delay under conditional priority lies in between, with greater reductions 
northbound than southbound. This difference can be explained partly by the fact that 
northbound, a higher proportion of vehicles arrive late (because of the proximity of the 
central station terminal, from which buses are often dispatched one or two minutes late). 
We also found that the conditional priority system is not as effective at giving zero-delay 
service to priority vehicles as absolute priority.  While over 90 percent of the buses got 
zero-delay service under absolute priority, only 45 out 61 late buses (74 percent) got 
zero-delay service under conditional priority, and several late buses had delays of over 30 
s.  It seems that some system improvement may be needed to either the schedule 
deviation tracking system, the controller, or communication links between them in order 
to achieve the goal of near-zero impedance for late vehicles. 

CONCLUSIONS 

 Conditional priority – giving full priority at signalized intersections to transit 
vehicles that are behind schedule – is an effective and practical strategy for improving 
service reliability on urban bus routes.  Its technological practicality and effectiveness in 
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keeping buses on schedule are clear in the Eindhoven project.  Its political practically is 
demonstrated by our findings, taken from the busiest intersection along the route with 
conditional priority, that the gains in operational quality for public transport come at 
nearly no cost to other vehicular traffic.  In contrast to absolute priority, conditional 
priority causes substantially less traffic disruption, while improving service quality. 
 
 Our findings also highlight areas in which further attention is needed in designing 
and implementing priority systems.  Better traffic control algorithms are needed to help 
the system recover from priority interruptions.  Careful attention after implementation is 
needed to ensure that the priority system is functioning as designed. 
 
 Finally, this project highlights the importance to public transportation of having 
the support of the municipal traffic engineering department.  In Eindhoven, the city traffic 
engineering department is committed to the public transportation improvement program. 
It is involved not only in providing priority to buses at signalized intersections, but also 
(in other sectors of the city) in converting general traffic lanes to bus lanes, in metering 
traffic on oversaturated roads used by buses, and in implementing parking restrictions in 
the city center.  Conditional priority for transit can only succeed with the support and 
active involvement of both the transit agency and the city traffic engineers. 
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