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Optimal Bus Stop Spacing Throﬁgh
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A discrete approach was used to model the impacts of changing bus-stop
spacing on a bus route. Among the impacts were delays to through riders,
increased operating cost because of stopping delays, and shorter walking
times perpendicular to the route. Every intersection along the route was
treated as a candidate stop location. A simple geographic model was used
to distribute the demand observed at existing stops to cross-streets and
parallel streets in the route service area, resulting in a demand distribu-
tion that included concentrated and distributed demands. An efficient,
dynamic programming algorithm was used to determine the optimal bus-
stop locations. The model was compared with the continuum approéch
used in previous studies. A bus route in Boston was modeled, in which the

"imal solution was an average stop spacing of 400 m (4 stops/mi), in

_.rp contrast to the existing average spacing of 200 m (8 stops/mi). The
model may also be used to evaluate the impacts of adding, removing, or
relocating selected stops.

A design decision in establishing or reviewing a bus line is the spac-

ing and location of stops. The main societal costs and benefits related

to stop location can be quantified, and therefore using a quantitative
model to select optimal stop locations is a reasonable expectation.
Even if practical and political considerations play a role in such design
decisions, the political process must include results of the best avail-
able scientific analysis.

- Bus-stop location decisions have three main societal impacts that
involve a trade-off between the costs and benefits of more frequent
stops:

1. Riding time—the more frequent the stops, the more time
through passengers spend in the vehicle;

2. Operating cost—the more frequent the stops, the greater the
cycle time and therefore the operating cost of the route; and

3. Walking time—the more frequent the stops, the shorter the
walking time to access the route.

A fourth potential impact is that greater spacing between stops
may result in longer walking distances and a loss of passengers.
A primary objective of most transit systems, however, is to maximize
ridership; therefore, stop location decisions are usually constrained

hat they do not have a significant impact on ridership. This analy-
s’ imposed such a constraint and held ridership fixed. Also, factors
were excluded that tend to dominate rail station location decisions,
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such as capital cost, neighborhood and development impact, and a
prevalence of nonwalking (automobile and bus) access modes.

. Most transit agencies recognize the trade-offs in stop spacing deci-
sions by establishing stop spacing guidelines. A recent study found
that 95 of 111 responding U.S. agencies have stop spacing guidelines,
with about one-half recommending spacing of 200 to 270 m (six to
eight stops/mi), and closer spacing in business districts (/). However,
policies are not uniform, ranging from more than 400 m (fewer than
4 stops/mi) to less than 130 m (more than 12 stops/mi) in areas out-
side the central business district (CBD).

A motivation for this research was the Massachusetts Bay Trans-
portation Authority’s (MBTA) review of its bus lines in an effort to
increase operating speed by eliminating or relocating stops. Bus
stops in northern Europe, where transit has a much greater market
share despite comparable levels of affluence, are generally located
considerably farther apart than in the United States. One observer
noted an average bus-stop spacing between 400 and 530 m, and cited
arecommendation of 300 m spacing from one German city official,
versus the standard U.S. practice of 160 to 230 m (7 to 10 stops/mi)
(2). The MBTA’s guideline, albeit an informal one, is that bus stops
should be spaced about 200 m apart (8 stops/mi) outside commercial
areas, which is the spacing used by many other large transit systems
(3). In contrast, according to Benn, the Chicago Transit Authority
recommends 400 m spacing (4 stops/mi), unless there is a major
intersection or generator, and Philadelphia’s transit authority speci-
fies a minimum spacing of 320 m (5 stops/mi) on suburban and new
urban routes (/). Benn cites a 1992 study by the New York City Tran-
sit Authority that favorably evaluated bus-stop relocations that
increased average stop spacing from about 160 to 230 m (from 10 to
7 stops/mi). .

The political nature of stop location decisions may account for the
close spacing in the United States. The benefits to nearby residents of
addfng a stop are clear and concentrated, while the impacts on other
riders and to the operating agency are diffuse. One purpose of stop-
spacing guidelines is to give transit agencies an objective way to resist
the pressure to add unnecessary stops or eliminate stops. However, the
generality of the guidelines, and the large leeway planners necessar-
ily exercise in their application, hampers the guidelines’ effectiveness.
A scientific framework that accounts forssite-specific impacts, evalu-
ating the social costs and benefits of stop location choices and deter-
mining optimal locations, should therefore be valuable for public
relations and operations analysis.

Until now, scientific studies of stop spacing have used a contin-
uum modeling approach that yields optimal stop spacing. Convert-
ing the recommended spacing to actual stop locations has been left
for a later, subjective stage of design. By coatrast, the approach
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described herein finds optimal locations, with optimal spacing as a
byproduct.

First, the continuum approach is reviewed, pointing out its short-
comings and advantages compared with the discrete approach taken
in this study. Next, the discrete formulation and its dynamic pro-
gramming solution are presented, as well as the geographical model
used to support the discrete formulation. The method is then applied
to a bus line in Boston. The application demonstrates the model’s
practicality and its sensitivity to various parameters, and offers a com-
parison with the continuum approach. Finally, some model extensions
are described and conclusions are presented.

CONTINUUM APPRCACH

The best-developed exposition of the continuum approach is found in
‘Wirasinghe and Ghoneim (4). The bus route is modeled as a contin-
uum in one dimension, with x describing the distance from the start of
the route. Demand for boarding and alighting is modeled as a contin-
uous function of x, which is assumed to be smooth (slowly changing)
except for concentrations at transfer points, assumed to be locations
of bus stops. Every point on the route is a candidate stop location. The
three main impacts—passenger riding time, operating cost, and pas-
senger walking time—are formulated as functions of parameters
describing the demand density and cruising speed in the neighborhood
of x, unit costs associated with the three impacts, constants such as the
bus acceleration rate, and the decision variable s(x) equals the stop
spacing in the neighborhood of x.

Using calculus, optimal conditions were derived for the value of
5(x) that minimized the sum of the societal costs in the neighborhood
of x. If buses were assumed to stop at every bus stop whether pas-
sengers were waiting or not, there was a closed form solution; other-
wise, the solution may be obtained by a simple one-dimensional
search. : ,

The continuum approach to stop spacing was pioneered by Vuchic
and Newell, whose focus was on rail station spacing, assuming feeder
bus as the access mode and end-of-the-line demand (5). Vaughn and
Cousins extended the continuum approach to bus lines, with many-
to-many demand and walking access (6). The focus was the effect of
stop spacing on the competition between walking for the entire trip
and taking the bus, using an origin-destination (O-D) matrix as an
input. Vaughn and Cousins found little competition between the travel
modes, without which the O-D specification of demand is unneces-
sary. They also recognized that practical constraints do not allow stops
to be spaced exactly at the regular intervals, and thus the average
walking distance will be one-quarter longer than the stop spacing.
However, their assumption of Poisson-distributed stops, which effec-
tively double the average walking distance, seems hardly plausible.
Lesley also applied the continuum approach to bus lines, but an
assumed radial service area around each stop, with the radius equal to
one-half of the stop spacing, led to the peculiar result that demand
grows as the stops move farther apart, distorting the walking distance
comparisons (7).

The main advantage of the continuum approach is that it readily
shows the sensitivity of optimal stop spacing to various parameters.
For example, this approach demonstrates that, in contrast to most
planning guidelines, optimal stop spacing should vary with local con-
ditions. For example, spacing should be greater on sections of a route
with high through volume and little local on-and-off traffic, as often
occurs in the middle of a route, and smaller if through volume is
small and on-and-off traffic is relatively heavy, which is typical at
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the end of a route. If buses only stop for waiting passengers, the con-
tinuum model gives the interesting, and correct, result that stop spac-
ing should be very small—even to the point of stopping on demanc
(i.e., every point is a bus stop)—on sections with sufficiently low
demand. These insights can be used qualitatively, and perhaps quanti-
tatively, by planners to adapt stop spacing to local conditions. Another
possible use of the continuum model is to derive an optimal spacing
guideline based on “typical” input.

The continuum approach, however, does have shortcomings. After
optimal spacing is determined, the process of applying it to a realistic
street network, in which stops usually are at intersections, is hardly
trivial. For example, if intersections are spaced every 200 m, and the
optimal spacing is 300 m, should stops be placed at every intersection
or every other intersection? Or should they be located at two out of
three intersections, consistent with the optimal stop density?

The other major shortcoming of the continuum approach is that
demand is not a smooth, continuous function of location along the
route, but is sharply punctuated aseach cross-street brings its demand -
to a specific point on the line—the intersection of the cross-street with
the line. Optimal stop locations that recognize those demand concen-
trations will tend to align themselves with the demand concentrations
and may vary considerably from optimal locations, assuming contin-
uously distributed demand. In fact, it should not be surprising if the
optimal stop density, based on an approach that recognizes demand
concentrations, varies considerably from the optimal density based on
a continuum approach.

In conclusion, compared with the continuum approach, the dis-
crete approach is more realistic and provides a more readily appli-

* cable solution. Another advantage is its use in evaluating specific sets

of stop locations that may be suggested by planners, elected officials, | -
or citizens.

DISCRETE FORMULATION

The discrete approach differs from the continuum approach in two
respects. First, a discrete set of candidate stop locations along the route
is used (i.e., normally all of the intersections along the route). This
approach is consistent with industry practice and with the well-known
result of network theory that locating facilities (in this case, bus stops)
at intersections minimizes average access distance (8).

Second, a geographic model is used to distribute demand to the
blocks in the route’s service area, without any restriction that the
demand should vary smoothly. Because some of the demand is dis-
tributed to cross-streets, the punctuated nature of demand along the
route is accurately modeled.

Candidate Stop Locations

In the simplest formulation, a bus route is analyzed in a single direc-
tion. The street along which the bus operates is called the main
street. Initial and terminal stops, numbered 1 and &, respectively, are
given. A given set of candidate stop locations is used, normally
including all the intersections along the route, numbered 2, . .., N—1
in the direction toward the terminal stop. Candidate stop locations
are assumed-to be at intersections; midblock stops lc?m still be
accommodated in the general framework of the discrete model but
require more complex formulas for market splitting and walking
distance. For some of the following formulas, it is also helpful to
define stops 0 and N + 1 as artificial stops just beyond the end stops.
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( As mentioned earlier, if certain intermediate stop locations are
fixed (e.g., transfer points), the problem decomposes into finding
optimal stop locations between the fixed stop locations, yielding
several smaller problems structurally identical to the original (4).

Stop Shed Lines

Consistent with the objective of minimizing social costs, including
walking and riding times, passengers are assumed to use the stop
that minimizes a weighted sum of their walking and riding times,
with weights c,, ¢, equal to the values of the walking time and rid-
ing times, respectively; and v,, v, equal to the average walking and
riding times, respectively.

This assumption provides a basis for determining the shed lines
between each stop’s market. As shown in Figure la, if the distance
between adjacent stops is L, the shed line for boarding passengers is
located a distance (1 — r)L/2 from the upstream stop, with r chosen
so that the weighted travel time from the shed line to the downstream
stop is the same whether a passenger walks to the upstream or to the
downstream stop. The shed line for alighting passengers is shifted
identically in the opposite direction, that is, toward the downstream
stop. For boarding passengers, this is expressed as

ooty o

~';ading to the shed line formula
S «IT

=aclc,

B f— 4

Similar results have been derived by others (3, 9). A typical value
of rfor an urban application is 0.1, which follows from a typical dis-
utility ratio ¢,/c,, = 0.4 and typical riding and walking speeds of
20 km/h (12 mph) and 5 km/h (3 mph), respectively. This value of
r puts the stop shed line for boarding passengers at 45 percent of the
distance from the upstream stop, a rather small departure from the
simpler assumption that passengers walk to the nearest stop. With a
smaller disutility ratio and slower riding speed, the departure from
midstop shed lines is greater; for example, with a disutility ratio of
1 and an average operating speed of 15 km/h (9 mph), = 0.3 and
the boarding shed line is about one-third of the distance from the
upstream stop.

Geographic Model for Distributing Demand

Demand is assumed to be fixed and along streets within a fixed dis-
tance w from the main street. To the extent that stop spacing deci-
sions affect passenger travel time, they can be expected to contribute
to marginal changes in demand in keeping with a general level-of-
demand elasticity. However, it is reasonable to ignore this demand
effect—even when ridership is an important institutional priority—
on the grounds that with small service changes such as changing stop
locations, the best way to attract new passengers and retain existing
9d:engers is usually to offer the best possible service for the exist-
x}r*' passengers. A simple way to explicitly account for demand
changes is to apply a multiplier to the passenger-related aspects of
the objective function. The small effect of competition with walking
is also neglected.
Existing demand data for a bus route are assumed to come from
available on-and-off and transfer counts. The purpose of the geo-
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graphic model is to distribute the demand observed at the existing bus
stops to the blocks of the main street, parallel streets, and cross-streets
in each stop’s service area. As alternative stop locations are examined,
the distributed demand is allocated to those stops based on natural
shed lines, enabling the walking distance to each stop to be determined.
In effect, the geographic model is a rational means for redistributing
demand from existing stops to alternative stop locations.

Ideally, the demand observed at a stop should be distributed to the
blocks in its service area in proportion to “opportunities” along each
block, as determined from either a detailed passenger survey or a
geographic information system with data on the block, including
data on the population, jobs, and retail space. Because these detailed
data sources were available for the example application in Boston,
a method was developed for allocating demand based on simple map
information and subjective assessments of development intensity
along the different streets in the service area.

The service area was assumed to be a rectilinear network with
streets lying parallel and perpendicular to the main street, as illustrated
in Figure la. This assumption, which may require some abstraction
of the street network, captured the essential features that affect
walking distance without requiring the coding of a network of access
streets. For each block along the main street, parameters were assigned
to indicate the relative density of opportunities for generating and
attracting trips along the main street, a typical parallel street, and the
cross-street. '

The on-and-off demand observed at an existing stop, excluding
transfer demand, was allocated to all the block faces in the stop’s
service area in proportion to the product of a block face’s density
parameter and its length in the stop’s service area. Density parame-
ters for trip generation were used to distribute boardings, and attrac-
tion density parameters were used to distribute alightings. Even if
the density parameters were determined subjecuvely (e.g., for trip
generation, 1 for detached homes, 3 for low-rise multlfamlly, 5 for
mid-rise development), this model enabled the demand to be redis-
tributed from existing stops to alternative stops in a consistent man-
ner that recognized the influence of the underlying street network
and development patterns.

Walking distance perpendicular to the bus line is independent of
stop-spacing decisions and therefore was omitted from the formula-
tion. All demand effectively was projected onto the main street.
Demands from the main street and paralle] streets became distributed
demands, and demands from the cross-street, along with transfer
demands, became concentrated or point demands, as illustrated in Fig-
ure 1. Demand originating before Stop 1 and ending after Stop N
was similarly projected to Stops 1 and NV, respectively. For computer
implementation, the modeled boarding and alighting distributions are
most easily represented as cumulative arrays.

A special case of geographical allocation occurs when the network
of cross-streets and parallel streets is regular and uninterrupted, with
an average block length L, for the cross-street and L,, for the main
street and parallel su*eets.k?{f the opportunity density parameters are
the same for every block type, the fraction of demand allocated to the
cross-streets will be L /(L. + L,). For example, if cross-streets blocks
are twice as long as main-street blocks, two-thirds of the demand will
be allocated to the cross-streets and represented by point, rather than
distributed, demands.

Woalking Impacts

Passenger impacts were measured relative to a base in which pas-

'sengers ride the bus without any unnecessary stopping delays from
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FIGURE 1 Service area assumptions: (&) idealized street network, (&) geographic

demand distribution.

the point on the main street closest to their ultimate origin to the
point on the main street nearest their ultimate destination. To make
the optimization process efficient, all impacts were separated into
contributions attributed to the individual stops.

Given three consecutive stops i, j, and k, the shed lines for stop j's
service area were determined. Total passenger demand at stop j could
be determined straightforwardly from the cumulative boarding (B)
and alighting (A) profiles generated from the geographic modeling of
the existing demand, expressed as B(J; i, k), A(j; i, k) equals board-
ings and alightings, respectively. per unit time at stop j, given that the
preceding stop is stop i and the succeeding stop is stop k.

To determine the time spent walking to stop J, the portions of its
service area lying upstream and downstream of the stop must be dis-
tinguished and the demand centroid of each portion must be deter-
mined for both boarding and alighting passengers. To be consistent
with a passenger strategy of minifmn.ng the weighted sum of walk-
ing and riding times, the net walking time. rather than walking time,
should be tracked. Net walking time is defined as the walking time
paralle] to the bus route minus the change in riding time resulting
from that walk, with the riding ime weighted to refiect the disutil-
ity ratio between walking and riding umes. If the demand centroids
for the upstream and downstream poruons of astop’s market are dis-

tances x, and x,, respectively, from the stop, it can easily be shown
that, for boarding passengers, the corresponding net walking times
per person are as follows:

j—'(l-r)and :—d(1+r) 3)

w

For alighting passengers, the form{i)las are the same, except that

(1 —r)and (1 +r) are reversed. These net walking times, expanded by
the number of boardings or alightings in the corresponding portion of
the market and then summed, yield total net passenger walking time
for a stop. To avoid the complexity of aggregation and centroid for-
mulas, a ‘simplc notation is used: W( J: I, k) equals the total net passen-
ger “’31@3_8 time per unit time for passengers boarding and alighting
at stop J. given that its neighboring stops are i and k.

Riding Time and Operating Cost Impacts
If a bus St0Ps at location j, it wil] be delayed, affecting through rid-

ers fxnd operating cost. The delay can be divided into independent and
variable components, with the variable component depending on the
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y, -amber of passengers boarding and alighting. Let D(}) equal the

.ependent component of delay at stop j, given that a bus stops
there. The independent component of delay can be further subdivided
into two parts. The first part is a fixed amount o( ) for the opening and
closing of doors and returning to traffic, which can vary between
stops depending on street geometry and traffic levels. The second
part is the delay incurred while decelerating and accelerating, which
can also vary between stops depending on the cruise speed, defined
as the average speed of a bus not stopping as it passes a specific stop,
and the grade, which influences the acceleration rate. The cruise
speed at a stop depends not only on the local speed limit, but also on
traffic control and possible intersection queuing. Low cruise speed at
signalized intersections is a factor that favors locating stops at sig-
nalized rather than unsignalized intersections. If the cruise speed at
stop jis v(j) and the local deceleration and acceleration rates are a,( j)
and a,(}), respectively, fixed delay is given as follows (4):

1 1
Bli) = 0.5 _— 4
() = a(j) + 0.5v(j o) + m(;)] 4

If the variable component of stop delay is assumed to be a linear
function of boarding and alighting movements (e.g., requiring n, sec-
onds per alighting passenger plus n, seconds per boarding passen-
ger), its impacts are independent of stop location and therefore may
be omitted from the formulation. The time needed for passengers to
board and alight may change from one stop location to another, but
the net impact on riding and cycle times will not change.

In standard operations, buses will stop at a bus stop only if pas-

“rers want to board or alight there. Assuming that passengers
armve in a Poisson process and that the service operates with a regu-
lar headway, the probability that a bus will stop at stop j is a function
of the expected number of passenger movements at the stop (4):

P(j;i,k) =1 — exp{h[B(Jj; i, k) + A(J; L, B)[} (&)

where P(J; i, k) equals the probability of stopping at j, given that the
straddling stops are i and k, and & equals the service headway.

Of course, if buses stop, according to transit policy, at stop j,
P(j; i, k) equals 1. This will typically be the case at the initial and
terminal stops, and perhaps at other stops en route.

Delays due to stopping are responsible for two social costs. One
cost is the time lost for through passengers. Let O(j; i, k) equal the
through volume at stop j, given that the neighboring stops are ; and
k. Q(j; i, k) equals the cumulative boardings from the start of the
route to the (i, j) boarding shed line, minus cumulative alightings
through the (j, k) alighting shed line.

The second social cost is a higher operating cost from increasing
the cycle time and thus the amount of vehicle-hours required for the
route. The increase in vehicle-hours per unit time because of a stop
is the expected delay at the stop multiplied by the service frequency.
The unit cost is given as c,,, which equals the marginal operating cost
per unit time delay.

If a short-term view is taken, the argument could be made that
changes in cycle time because of stop location changes are likely to
be too small to affecting the operating cost, thus c,, equals 0. How-

% in the long run, changes in cycle time from changing stop loca-
-«is will be combined with changes from other factors, such as traffic
and demand, and thus can be expected to have a proportional influ-
ence on the necessary fleet size and operating cost. For the long run,
then, it is appropriate for c.p to equal the marginal cost of a vehicle-
hour, which may vary with the time of day.
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‘Objective Function and Constraints

A decision must be made about which subset S is to be used from a
set of candidate stops. It is helpful to define predecessor and suc-
cessor functions for each stop je S as p(}) for the stop preceding j and
s(j) for the stop succeeding j

The objective of the discrete model is to select the members of §
to minimize

Zuee = X [ W L U 50N + €, QUi PG S

JjEeS

X PLi pU) SUN DU) + 22 2L p() ) Du)}

=D {ZUis p(G) s + Z,Ls p(G), s

+ Z,[J; (), s(NT} 6

where

Z, = net walking time cost per unit time,_
Z, = riding delay cost per unit time, and
Z,, = operating cost per unit time (all functions attributed to stop ;).

The chief constraint on S membership is a maximum-—allowed stop
spacing. A general way of expressing this constraint, which allows
for different stop-spacing policies on different portions of the route
and for exceptions because of topographical features such as rivers
and parks, is to speéify the most distant neighboring stop locations
allowed for each potential stop location: s,0.(J) equals the most dis-
tant stop that may succeed stop j, and p,..( ) equals the most distant
stop that may precede stop j.

DYNAMIC PROGRAMMING ALGORITHM

Because the discrete optimization problem can be separated by stop,
it lends itself well to a solution using dynamic programming (/0).
The stage variable is j, a candidate stop location. At stage j, the objec-
tive is to find the least-cost solution for serving the route from j to its
end (i.e., to stop V). The stage variable is the index of the preceding
stop, the only information needed about decisions made upstream of
stop j to optimize the remainder of the route. The optimal return func-
tion is f(j; i), which equals the minimum cost of serving stop j to stop
N, given that the stop preceding j is i.

The optimization progresses backward, beginning at stage N with

;) ={Z,(N;i, N+ 1) + Z(Y;i,N + 1)

Z,(N: 1, N + 1)} N=% )

for i = \Pullow (N)v :-- 3

Stages j=N—1toj=1 are processed in order, with the recursion
at each stage being
fd= SJZGL ) + 26 k) + Z,(3 1 k)

L=,+l

+ f(k )} fori = pueu(i)....j =1 ®

The optimization process ends when f(1; 0) is determined, which
is the minimum cost of serving the entire route. The solution can
then be derived by tracing back through the optimal decisions made
at each application of Equation 8.
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The dynamic programming algorithm is computationally effi-
cient. With 100 candidate stop locations, for example, the number
of alternative sets of stops is too large for exhaustive enumeration.
In contrast, the dynamic programming algorithm requires on the
order of NR? calculations, where R equals the average range, in the
number of candidate stop locations, between a stop and the farthest
allowable adjacent stop. Because the number of calculations is lin-
ear in &, the algorithm places no practical limit on route length.
Storage requirements are also very modest.

CORRESPONDING CONTINUOUS FORMULATION

To compare the continuum and discrete approach solutions, a contin-
uum model was developed using logic corresponding to the discrete
model. In most respects, the continuum model follows that of Wiras-
inghe and Ghoneim (4). Demand density at any point x was deter-
mined by using the geographic model to find the total demand rate in
an 800-m (0.05-mi) interval centered on x, excluding transfer vol-
umes, and dividing by 800 m. In determining the impacts on walking,
passengers were assumed to minimize net walking time, consistent
with the discrete model and with the objective. With this assumption,
and with the evenly distributed demand of the continuum model, the
ratio of average net walking time to the walking time between neigh-
boring stops is (1 — r2)/4, which only.slightly differs from the ratio of
1:4 that exists when passengers minimize walking time only. Assum-
ing that buses stop only if passengers are waiting, the optimal solution
could be obtained by a one-dimensional search.

APPLICATION AND RESULTS

Both the discrete and continuous models were applied to MBTA
Route 39, one of Boston’s busiest bus routes, running from Forest
Hills to Back Bay Station. Route 39 is 7.2 km (4.5 mi) long and can
be divided into three sections: a 3.3-km (2-mi) section from Forest
Hills to Heath Street in the dense residential neighborhood of Jamaica
Plain; a 2.6-km (1.6-mi) section, ending at Northeastern University
(NU), through the even denser Mission Hill and East Fenway areas,
with residences and large employment centers, including several hos-

STOPS/MI

X & B XXB X B X B

Transportation Research Record 1731

pitals and universities; and a 1.3-km (0.8-mi) section in the Back Bay,
an extension of Boston’s CBD. A streetcar line parallels Route 2
along the Heath-NU section of the route. The only major transfer point
is Forest Hills, although smaller transfer demands exist at several other
points along the route. The inbound direction was modeled during the
morning peak period, with a headway of 3 minutes.

Demand was determined from historic on-and-off counts. Because
the MBTA does not count transfers routinely, transfer volumes were
estimated subjectively. The service area was assumed to extend 400 m
(0.25 mi) on either side of the line. Every intersection on the main
street was treated as a potential stop. For each main-street block, the
number of parallel streets in the service area was determined from
maps. Opportunity density parameters were assigned subjectively on
the basis of development density. Cruise speed was set at 48 kmv/h
(30 mph) at unsignalized intersections and 24 km/h (15 mph) at
signalized intersections.,

Values of walking time, riding time, and marginal operating cost
were set at $10/h, $4/h, and $80/h, respectively. Bus operating speed
and walk speed were 20 km/h (12 mph) and 5 km/h (3 mph), respec-
tively. Bus deceleration and acceleration rates of 1.33 m/s* (3 mph/s)
and a constant lost time of 9 s were assumed for every stop. The
maximum allowed interstop spacing was 530 m (0.33 mi).

The dynamic progmmmjng procedure was implemented in a
Microsoft Excel workbook using Visual Basic. In this approach, the
user enters parameters in several worksheets and the program calcu-
lates the optimal solution or, at the user’s option, evaluates a given
solution. Graphical output includes the stop location—stop density dia-
gram shown in Figure 2 and the demand distribution diagrams shown _.
in Figure 1b, each drawn to scale. {

Figure 2 shows the optimal stop locations versus existing stop
locations. Many existing stops are eliminated, and some are shifted
to locations that do not have a stop. Although the existing route
has 37 stops (average spacing equals 202 m, about 8 stops/mi), the
optimal solution has 19 stops (average spacing equals 404 m, about
4 stops/mi). The striking difference between the existing and opti-
mal solutions suggests that eliminating bus stops is the appropriate
direction for U.S. transit agencies.

A numerical comparison between the optimal solution, also called
the base case, and the existing situation is found in Table 1. Compared
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FIGURE 2 Existing versus optimal stop locations and stop density.
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TABLE 1 Summary of Results
i/ Scenario Number Average Total Cost Average Average Incremental
of Stops  Spacing Walking Time Riding Delay Running Time

(m) ($/hr) (min) (min) (min)

Existing situation 37 202 734 7 3.58 9.06

Base case optimum 19 404 602 1.41 e 4.85

No point demand 20 382 680 1.69 1.84 5:18.

Zero unit operating cost . 28 269 441 —~ 0.90 2.68 7.18

No walk time premium 19 404 429 1.64 1.74 476

Delete one stop 36 208 726 0.80 3.48 8.85

with the existing situation, the optimal solution saves $132/h in
total social costs, with passengers walking 0.6 min more and riding
1.8 min less on average, and each bus saving 4.3 min of operating
time per trip. '

The optimal solution is strongly constrained by the maximum
allowed stop spacing. Ten of the 18 segments reach the most distant
intersection permissible. More sample applications are needed to
determine whether or not this is the general situation.

Figure 2 also compares the optimal stop density as determined
by the discrete model, continuum model, existing situation, and the
MBTA'’s guidelines. Optimal stop density was calculated for the con-
tinuum model at sample points every 80 m (0.05 mi). The density for

" = existing situation and the optimal discrete solution is simply the

jerse of the segment length, changing for each segment.

" The discrete solution optimum has the same general magnitude as
the continuum optimum, but does not track the latter very closely. The
center of the Heath-NU segment highlights the difference between the
discrete and continuum models. In response to high demand in this
region, the continuum model calls for an increase in stop density,
while the discrete model does not. The discrete model recognizes the
large point demands coming from cross-streets with hospitals and
other major generators, and although it locates stops at the major
cross-streets, it still allows considerable distances between stops.

SENSITIVITY ANALYSIS

Several variations of the base case and existing solution were also
run to indicate the sensitivity of the solution to various parameters.
Table 1 summarizes these runs. The first sensitivity run explored the
effect of the geographic model by setting the opportunity density on
the cross-streets to 0 and making the opportunity densities on all main-
street blocks equal. The result is a small change from the base case—
one stop is added and two stops are relocated. The difference would
probably be greater if the solution were not so tightly constrained by
the maximum allowed spacing. d

A substantially different solution results if the marginal operating
cost is set to 0, effectively minimizing only passenger walking time
(weighted) and riding time. The optimal number of stops rises to 28,
*“*h an average spacing of 269 m (six stops/mi). However, removing
__walking time premium (i.e., walking time valued the same as rid-
ing time) resulted in almost no change in the optimal solution, which
is to be expected, because the base case solution is already strongly
constrained by the maximum allowed spacing. The only difference

is a slight relocation of two stops from unsignalized intersections
to signalized intersections, with the marginal cost of stopping being
smaller and resulting in a slightly longer walking distance and shorter
riding time. _

The final sensitivity run reduced demand on a 1.6-km (1-mi) seg-
ment after Forest Hills to 0.5 percent of its original value. The dis-
placed boardings were replaced as transfer volume at Forest Hills, and
the displaced alightings were replaced as transfer volume at the stop
following the test segment. In the optimal solution, two stops were
added to the middle of the segment with little demand, resulting in
stops at three consecutive intersections with interstop spacings of only
64 m and 200 m. This result demonstrates the phenomenon—shared
by the discrete and continuum models—that as demand becomes
small, the optimal solution is to locate stops as frequently as possible.
The reason for this conclusion is that by spacing stops far apart (i.e.,
collecting demand at discrete points), losses associated with stopping
are distributed over more passengers. At low-demand levels, how-
ever, a bus will rarely serve more than one boarding or alighting pas-
senger per stop, even if stops are widely spaced, so the bus might as
well stop wherever a passenger is waiting.

EVALUATION OF GIVEN STOP LOCATIONS

To demonstrate its usefulness in evaluating stop location decisions,
the model was used to evaluate the elimination of one stop (at 590
Huntington Avenue in the Heath-NU segment). As indicated in
Table 1, this change resulted in a societal benefit of $8/h compared
with the existing solution, $5.60 of which was in operating cost sav-
ings. Extending this change over 1 year easily might represent an
annual societal benefit of $16,000 (with an operating cost savings of
$11,000), strongly justifying removal of the stop.

J

MODEL EXTENSIONS

As indicated by Wirasinghe and Ghoneim, stop spacing should be
optimized over the entire day, not one time period, because changing
stop locations for specific times of the day is impractical (4). Also,
symmetry in stop locations for both directions is probably beneficial
to help orient passengers. Optimizing spacing for all periods of the
day requires only a direct extension of the discrete model, in which
costs in the optimal return function are simply summed over all peri-
ods. Periods may be defined as narrowly as desired, to the point of
treating each trip as a period. Optimizing over both directions simply
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requires a choice set consisting of pairs of stops, one for each direc-
tion, and that costs in the optimal return function be summed over
both directions, with one direction processed forward and the other
backward. Variable definitions and formulas will require some adjust-
ment but will not complicate the solution. The optimal stop locations
for the entire day are not likely to vary much from a period-specific
optimum because the optimal solution varies little with respect to a
scaling of demand, if the service frequency is similarly scaled. In prac-
tice, service frequency is related to demand, although when shifting
from a peak to an off-peak period, service frequency is typically scaled
down less than demand. As a result, off-peak vehicle loads tend to be
smaller, which makes the optimal stop spacing greater. However, the
practice of scheduling for lower average loads in the off-peak period
partly results from the smaller marginal cost of a bus hour during the
off-peak hours, which, if properly considered, would tend to reduce
optimal stop spacing. The net effect of these opposing tendencies will
most likely be little or no change.

CONCLUSIONS

A discrete approach to modeling bus stops, passenger demand, and
operations is a practical and highly efficient method for evaluating and
making the best stop-location decisions. This approach is superior
to a continuum model in most ways.

The results of the example application support stop spacing in
busy urban corridors that is closer to the standard European value of
320 to 400 m (4 to 5 stops/mi) than to the standard U.S. value of 160
to 230 m (7 to 10 stops/mi). However, the model needs further test-
ing before general conclusions can be reached. The model also needs
to be refined for practical applications, including the consideration of
each travel direction, multiple periods, and calibration of some model
constants.

Transportation Research Record 1731

ACKNOWLEDGMENTS

The authors thank the Central Transportation Planning staff for {
assisting in data collection for the case study. ;

REFERENCES

1. Benn, H. P. TCRP Synthesis of Transit Practice 10: Bus Route Evalua-
tion Standards. TRB, National Research Council, Washington. D.C.,
Jan. 1995.

2. Reilly, J. M. Transit Service Design and Operation Practices in Western
European Countries. In Transportation Research Record 1604, TRB,
National Research Council, Washington, D.C., 1997, pp. 3-8.

3. MacDorman & Associates, and N. H. Wilson. Design of Service Qual-
ity Measures and Service Evaluation Standards. Final Report to the
Massachusetts Bay Transportation Authority and Conservation Law
Foundation, Boston, 1995. ‘

4. Wirasinghe, S. C., and N. S. Ghoneim. Spacing of Bus Stops for Many-to-
Many Travel Demand. Transportation Science, No. 15, 1981, pp. 210-221.

5. Vuchic, V. R., and G. F. Newell. Rapid Transit Interstation Spacings
for Minimum Travel Time. Transportation Science, No. 2, 1968,
pp. 303-339.

6. Vaughn, R.J., and E. A. Cousins. Optimum Location of Bus Stops on a
Bus Route. Proc., 7th International Symposium on Transportation and
Traffic Theory (T. Sasaki and T. Yamaoka, eds.), 1977, pp. 698-716.

7. Lesley, L. J. S. Optimum Bus-Stop Spacing: Parts 1 and 2. Traffic Engi-
neering and Control, 17, 1976, pp. 399—401, 472-475.

8. Hakimi, S. L. Optimum Locations of Switching Centers and the Absolute
Centers and Medians of a Graph. Operations Research, 12, 1964,
pp. 450-459.

9. Hurdle V. F., and S. C. Wirasinghe. Location of Rail Stations for Many-
to-One Travel Demand and Several Feeder Modes. Journal of Advanced
Transportation, 14, 1980, pp. 29—46. ¢

10. Bellman R.E., and S. E. Dreyfus. Applied Dynamic Programming, (
Princeton University Press, Princeton, N.J., 1962.

Publication of this paper sponsared by Committee on Bus Transit Systems.

N



