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ABSTRACT: Traditional transit service quality measures separate waiting time from 
service reliability, thereby underestimating the real cost of waiting and failing to evaluate 
the impact of unreliability on passengers. Analyzing passenger behavior, we show that 
for short headway service, the cost of waiting involves not only the mean time spent 
waiting on the platform, but also “potential waiting time,” the additional time that 
passengers have to budget for waiting. Budgeted waiting time is based on an extreme of 
the waiting time distribution such as its 95-percentile value, which is extremely sensitive 
to service reliability. Methods for determining the distribution of passenger waiting time 
from automatic vehicle location (AVL) data are derived. For long headway service, 
actual and budgeted waiting time are shown to be related to high and low extremes of the 
schedule deviation distribution, which can likewise be determined from AVL data. Two 
other components of long headway waiting, schedule inconvenience and synchronization 
cost, are also analyzed. Waiting cost functions and waiting time measures that account 
for both headway and service reliability are developed, and are harmonized in a 
framework that provides a smooth transition from short- to long-headway waiting. 
Examples show how service reliability can be measured as a waiting cost, and how 
service reliability improvements can reduce waiting cost as much as a large reduction in 
headway. 
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Waiting time is an important deterrent to using transit, and therefore an important 
determinant of both demand and service quality. Predicting and monitoring passenger 
waiting time is therefore important for planning and management. Unfortunately, direct 
measures are not feasible because transit passengers are not individually tracked arriving 
and departing at stations. As part of TCRP project H-28 concerning the use of archived 
automatic vehicle location (AVL) data to improve transit management and performance 
(1), we have investigated how this detailed, though still indirect, source of data might 
offer new insights into passenger waiting.  

The importance of good performance measures to strategic management is 
underscored by recent publications (2, 3). However, traditional measures of waiting time 
tend to focus on mean values, while passengers’ perceptions tend to be based on extreme 
values, which are highly dependent on service reliability. At the same time, traditional 
measures of service reliability (e.g., headway coefficient of variation (cv), on-time 
performance) are indicators of operational quality; they do not express reliability’s 
impact on passengers. Consequently, waiting time is underestimated, and service 
reliability is undervalued.  

Our objective is to develop measures and models that properly account for the 
impacts of service reliability on waiting-related user cost. For example, while everybody 
agrees that improving on-time performance from 80% to 90% is a good thing, we lack 
methods to estimate the resulting impact on passengers in standard units, which planners 
could then translate into an economic impact or a ridership forecast.  

First short headway service is analyzed, then long. For each, we develop a waiting 
cost model, key measures of waiting time, and example reporting formats. The short- and 
long-headway waiting cost models are then harmonized. The paper ends by dealing with 
some practical issues and offering conclusions. 

SHORT HEADWAY WAITING  
When headways are short, passengers can be assumed to arrive independent of vehicle 
arrivals. This assumption, together with the assumption that passengers can always board 
the first vehicle (i.e., no pass-ups), is sufficient to derive a distribution of passenger 
waiting time from the distribution of headways. 

Mean Platform Time 
Passengers’ most obvious burden related to waiting is “platform time,” the time spent 
waiting at the station. It is the time between a passenger’s arrival and the next vehicle 
departure. For simplicity, we use the term “bus” to represent any transit vehicle. 

Let H be the bus headway at a given station, i.e., the time between its departure 
and the previous bus’s departure. Passengers arriving during that headway have a 
uniform waiting time distribution on the interval [0, H]. If Hschedule is the mean scheduled 
headway, and every departure in a given period has the same headway h = Hschedule, the 
waiting time distribution for the period as whole is uniform on the interval [0, Hschedule]. 
This is the basis of the nominal waiting time commonly used in planning applications, 
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 Wnominal  = 0.5 Hschedule  (1) 

Of course, headways are not all equal. Passengers arriving during long headways 
will, on average, have longer waits than those arriving during short headways. And 
because passengers are more likely to arrive during a long headway than during a short 
headway, mean waiting time is skewed toward that of the longer headways, and is 
consequently greater than 0.5 E[H]. One of the classic results of transportation science is 
the formula for mean waiting time (4):  

 ( )21][E5.0]E[ HcvHW +=  (2) 

where W = waiting time and cvH = headway cv.  
Through this formula, a relationship between service reliability and average 

waiting time has been known for many years. However, as we will show later, average 
waiting time is not a measure that adequately reflects passengers’ waiting cost, and 
therefore this formula falls short of accounting for the impact of reliability on waiting 
time.  

Ideal and Excess Waiting Time 
The mean waiting time formula is a product of two terms. The first (E[H]) is often seen 
as a result of planning, and the other a result of operations. In fact, however, planning and 
operations affect both terms, since planned headways sometimes have variations, and 
operations, through missed, added, and delayed trips, can result in a mean headway that 
differs (particularly in a prescribed period) from what was planned.  

Still, the concept of separating the incremental impact of operations from that of 
planning is a useful framework. Following Wilson et. al. (5), mean waiting time can be 
partitioned into ideal and excess mean waiting time: 

( )2
,1]E[5.0 scheduleHscheduleideal cvHW +=  

 idealexcess WWW −= ]E[  (3) 

where cvH,schedule is the cv of scheduled headways. In London, where a public agency 
establishes headways while private contractors operate bus service, excess mean waiting 
time is used as an incentive in service contracts. Note that by adding extra trips, excess 
waiting time can be negative. 

Distribution of Waiting Time 
Under the same assumptions behind the mean waiting time formula (passengers arrive 
independent of the timetable, and no pass-ups), the distribution of waiting time can be 
derived from the headway distribution. Let 

 fH(h) = probability density of headways, distributed over bus trips 

 fH,pax(h) = probability density of headways, distributed over passengers 
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 fW(w) = probability density of passenger waiting time, distributed over passengers 

The first density relates to the probability that a randomly selected trip will have a 
headway h; the second, to the probability that a randomly selected passenger arrives 
during a headway h. Newell (4) showed that 

 ( ) ( )hf
H
hhf HpaxH ]E[, =  (4) 

In words, the probability that a passenger arrives during a headway of length h is 
proportional both to the popularity of that length, and to the length itself, since longer 
headways serve more passengers. (E[H] appears in the formula simply as a normalizing 
factor making the area under the density function equal 1.)   

Consider passengers who arrive during headways of length h. Their waiting time 
distribution is uniform on the interval (0, h), with cumulative distribution function (CDF)  
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Taking the derivative with respect to w yields the desired result: 

 ]E[/)](1[)( HwFwf HW −=  (5) 

Very simply, the probability of waiting an amount of time w is proportional to the 
fraction of headways that are greater than w. 

To illustrate, suppose headways have a uniform distribution on the interval [hmin, 
hmax]. That distribution and the resulting waiting time distribution are pictured in Figure 
1. The waiting time distribution is constant from 0 to hmin, because waits of less than hmin 
can occur with any headway; it then falls linearly to a value of 0 at hmax, reflecting the 
fact that waits of length w can only occur with headways that are at least that long, which 
become rarer as w increases.  

From this waiting time distribution, extreme values such as W0.95 (the 95-
percentile waiting time) can readily be calculated. While a closed form expression for 
W0.95 can be obtained for the uniform headway distribution, it cannot be derived for a 
general headway distribution. 
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Constructing the Waiting Time Distribution from Headway Data  

The distribution of waiting time can also be generated from a set of n observed headways. 
The waiting time distribution takes the form illustrated in Figure 2. Each headway hj is 
represented by a rectangle, flush left, of length hj and height 1/T, where T = Σ hi is the 
total amount of time represented by the set of headways.  

Corresponding calculations are shown in Table 1, columns (a)-(e), yielding the 
cumulative distribution of waiting time FW(w). Headways are numbered in decreasing 
order, but listed in increasing order. Define hn+1 = 0, and FW(0) = 0. Let Δhi = hi – hi+1.  
Then beginning with i = n, apply the recursion 

 ThihFhF iiWiW /)()( 1 Δ+= +  (6) 

Between values of h and FW(h) found in the table, linear interpolation applies. For 
example, one can directly read that the fraction of passengers waiting 10 minutes or less 
is 93.7%; by interpolation, one can find that the 95-percentile waiting time is 10.6 
minutes. 

A convenient way of presenting the passenger waiting time distribution is to show 
the fraction of passengers in various waiting time ranges or “bins.” Choosing bin 
thresholds corresponding to various levels of customer expectation allows one to see 
what fraction of passengers had various levels of service. Natural thresholds for a 3-level 
gradation (“good,” “marginal,” “poor”) are Hschedule and Hschedule+x; the lower threshold, 
because if headways are perfectly regular, no passenger’s wait will exceed E[Hschedule]; 
the second, using a value of x (say, 2 minutes) reflecting customer expectations.  

While bin frequencies can be calculated from the cumulative waiting time 
distribution, they can also be calculated directly, as shown in Table 1, columns (f)-(i). 
Because each minute of a headway represents the passengers arriving during that minute, 
the minutes belonging to each headway are distributed into bins, filling the low waiting 
time bins first. For example, the 9-minute observed headway contributes 8 minutes’ 
worth of passengers to the bin [0-8] and 1 to the bin [8-10]. In the last row, one can see 
that 2.1% of the passengers waited longer than 12 minutes, and 6.3% waited more than 
10 minutes, i.e., more that Hschedule+2 minutes. 

Being able to determine the waiting time distribution supports service standards 
related to extreme values of waiting time, such as “No more than 5% of passengers 
should have to wait longer than Hschedule + 2 minutes” which can be restated as  

 W0.95 < Hschedule + 2  (7) 

A similar standard, except that it uses 90-percentile waiting time for bus and 98-
percentile waiting time for metro, is published by AFNOR Certification (6) and used in 
such cities as Paris, Brussels, and Lyon to certify service quality.  

Sensitivity to Service Reliability 
Extreme values of waiting time are far more sensitive to headway variability than is 
E[W], as demonstrated in Table 2. There, for various levels of cvH, mean, 90-, and 95-
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percentile values of waiting time are shown, calculated using numerical integration and 
assuming normally distributed headways. The final column shows results for the data of 
Table 1. One can see, for instance, that an increase in cvH from 0 to 0.35 causes W0.95 to 
rise by 30%, while E[W] rises by only 12%. 

Also shown for comparison in Table 2 are two related statistics: P[H > 10], a 
description of operational quality, and P[W > 10], a measure of service quality, both 
assuming  E[H] = 8 minutes. Good news: it is much less likely for a passenger to have a 
long wait than for a bus trip to have a long headway – because only those passengers 
arriving in the early part of a long headway experience a long wait (unless there are pass-
ups). Thus, for example, with normally distributed headways, a 95-percentile waiting 
time standard of 10 minutes (equation 7) can be met even if 24% of the headways exceed 
10 minutes.  

Budgeted and Potential Waiting Time 
The 95-percentile waiting time can be interpreted as a measure of budgeted waiting time. 
When planning a trip, passengers must allow more time for waiting than mean waiting 
time; otherwise, they will reach their destination late about half the time! By budgeting 
an amount of time equal to W0.95, one’s probability of arriving late will be limited to 5%, 
meaning a weekday commuter will arrive late about once a month.  

The difference between budgeted and mean waiting time can be called potential 
waiting time, Wpotential. For short headway service, 

 Wpotential = W0.95 - E[W] (8) 

For example, a passenger going to work served by the headway distribution of Table 1 
will budget W0.95 = 10.6 min for waiting. Usually, he will wait less then this – on average, 
he will wait E[W] = 4.6 minutes. The balance, which varies from day to day and averages 
6 minutes, is his potential waiting time, which he will spend waiting for work to begin.  

As this example shows, potential waiting time is a hidden form of waiting, spent 
at the destination end of one’s trip. Potential waiting time does not hurt passengers as 
much as platform time, because it is the part of the travel budget that is “redeemed,” and 
can be spent more enjoyably or productively than waiting on the platform. Still, it 
represents a real cost to passengers, because it cannot be used as freely or reliably as if it 
were not encumbered by the travel budget. Our example traveler could use his 6 minutes 
of potential waiting time to stroll or start work early, but he could not use those 6 minutes 
to sleep later; neither could he rely on that time to get breakfast. When a journey involves 
a transfer from a short-headway route to a long-headway route, potential waiting time for 
the first leg of the trip will be usually be spent waiting at the transfer station.  

Waiting Cost and Equivalent Waiting Time 
A waiting cost function expresses the disutility of waiting in some standard units; we use 
equivalent minutes of in-vehicle time. Traditionally, waiting cost is based on nominal 
waiting time, and is assigned a unit cost between 2 and 2.5 minutes of in-vehicle time per 
minute of waiting. The premium placed on waiting time is understood to encompass both 
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exposure to the waiting environment (weather, security, etc.) and “stress” related to the 
randomness of waiting time. The weakness of this approach is that it makes waiting cost 
completely insensitive to service reliability. 

When cvH is known or can be predicted, many researchers have based waiting 
cost on E[W], which accounts for service reliability through the term cvH. However, this 
approach is incomplete. While E[W] captures the effect of service reliability on mean 
waiting time, it fails to account for passengers’ need to budget more waiting time when 
service is less reliable. 

We propose the following cost function for short headway waiting:  

 potentialbWWa += ]E[ cost  waiting  (9) 

where a and b are unit costs (minutes of in-vehicle time per minute of waiting).  
It can be helpful to express waiting cost in a more natural unit, minutes of 

platform waiting, which we call equivalent waiting time: 

 potentialequivalent WabWW )/(]E[  +=  (10) 

While original behavioral research to estimate coefficients a and b is beyond the 
scope of this project, it is possible to propose plausible values: 

a = 1.5,    b = 0.75 

Because platform waiting is time actually consumed, and involves exposure to the 
waiting environment, a should be greater than 1; and because potential waiting time is 
not actually consumed but only restricted in use, b should be less than 1. These values 
have been scaled so that with cvH in the typical range [0.2, 0.35], they are consistent with 
the a unit cost of about 2.4 minutes of in-vehicle time per minute of nominal waiting.  

One convenience of having the ratio b/a equal 0.5 is that equivalent waiting time 
becomes a simple average of mean and budgeted (95-percentile) waiting time: 

 ( )95.0]E[ 50  WW.Wequivalent +=  (11) 

 

Reporting Measures and Formats 
A graphical format for short headway waiting is shown in Figure 3’s first three columns, 
using Table 1 data. (The last three columns pertain to long headway waiting.) Column 1 
shows mean platform time, 95-percentile or budgeted waiting time, and equivalent 
waiting time. This format can be applied to single stop as well as to sets of stops (e.g., a 
route or zone) by aggregating over stops, weighted by mean boardings at each stop. 

The concept of “ideal” and “excess” waiting time, separating the impacts of 
planning from those of operation, is applied in columns 2 and 3 to budgeted and 
equivalent waiting time as well as to mean waiting time. “Ideal” is what would result 
from following the timetable; “excess” is the difference between actual and ideal. One 
can see that mean platform time is 0.6 minutes in excess of ideal (4.6 versus 4 min); 
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budgeted waiting time is 3.0 minutes in excess of ideal (10.6 versus 7.6 min); and 
equivalent waiting time is 1.8 minutes in excess of ideal (7.6 versus 5.8 min).  

Because it accounts for the hidden waiting cost of potential waiting time, excess 
equivalent waiting time more accurately reflects the impact of operations on customer 
service than excess mean waiting time. If the company responsible for the Table 1 data 
were being judged on excess mean waiting time, they would be deemed responsible for 
0.6 minutes per passenger, which is 15% greater than ideal. Using excess equivalent 
waiting time, they would be deemed responsible for imposing a cost of 1.8 minutes of 
waiting per passenger, a 31% increment above ideal. 

LONG HEADWAY WAITING 
With long headway service, passengers are expected to time their arrivals to meet a 
targeted scheduled departure. If service is punctual and early departures prohibited, 
platform waiting time can be quite small. One of the authors recalls a company bus that 
picked up his father and other employees from their village each day at 7 a.m. to take 
them to the factory. At 6:58 each morning, the stop was empty; at 7:01, it was empty 
again.  

However, with long headway waiting, there are also forms of hidden waiting that 
contribute to passengers’ waiting cost. We count four components of long headway 
waiting: platform waiting, potential waiting, schedule inconvenience, and 
synchronization cost, the latter two being unique to long headway waiting. 

Offered Waiting Time 
Determining passenger waiting time requires that some assumption be made about when 
passengers arrive at the station. One option is to assume that passengers arrive at a 
specified “arrival offset” (say, 0, 1, or 2 minutes) before the scheduled departure, perhaps 
consistent with advice published in a user’s guide. The time until the bus departs can be 
called “offered waiting time.” With long headway waiting, ridership on a given trip can 
be considered independent of schedule deviation; therefore, the distribution of offered 
waiting time corresponds directly to the distribution of schedule deviation. For example, 
if the arrival offset is set at 1 minute, the fraction of passengers with offered waiting time 
greater than 10 minutes is the fraction of trips departing more than 1 minute early or 9 
minutes late.  

With this framework, the distribution of schedule deviation is a good (and 
commonly used) measure of passenger service quality. As with short headway waiting, 
offered waiting time can be graded into various categories. The most common grading 
has just three categories, early, on-time, and late, with thresholds at 0 or –1 minute (the 
latter being an example of a non-zero passenger arrival offset) and 5 minutes.  

To many customers, it is an exaggeration to call a bus “on time” when it is 4 or 5 
minutes late. To put a sharper focus on service quality, one can use a finer grading for 
schedule deviations. However, because of the importance of extreme waiting times, it is 
perhaps more important to give attention to the fraction of passengers having large 
schedule deviations than to the fraction falling into a narrow “good service” category 
such as 0-3 minutes late.  
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Excess Platform Time 
An alternative assumption about passenger behavior is that they base their arrival times 
on experience of service reliability. Let V = the schedule deviation of the trip a passenger 
is trying to meet, defined by 

V = departure time – scheduled departure time 

Early departures are represented by negative values of V.  
We assume that passenger choose for their arrival time offset a low percentile 

value of V, one that limits the probability of missing their targeted bus. Taking that 
probability as 2%, we assume then that passengers arrive at or before V0.02, the 2-
percentile departure time, so that they will miss their targeted departure at most once 
every 50 trips.  

Waiting time between when a passenger actually arrives and V0.02 is hard to 
observe. However, it is largely unavoidable, having to do with uncertainty in access time. 
We want to focus on the part of waiting that is affected by service reliability. If service 
were perfectly reliable, there would be no waiting after V0.02. The time that passengers 
wait after V0.02 can therefore rightly be called excess platform time, with mean  

 Wexcess = E[V] – V0.02 (12) 

Reducing excess platform time is essentially a matter of reducing the early tail of 
the departure time distribution. Holding to a scheduled departure time is an obvious 
strategy for reducing excess platform time. 

Potential Waiting Time 
Just as with short headway service, passengers must be prepared to wait beyond the bus’s 
expected departure time. Assuming that passengers budget for the 95-percentile departure 
time, expected potential waiting time is 

 Wpotential = V0.95 – E[V] (13) 

As with short headway service, potential waiting represents hidden waiting time spent at 
the destination end of a trip. 

Just as excess platform time deals with the early tail of the departure distribution, 
potential waiting time deals with the late tail. Measures that shrink the late tail of the 
distribution, such as conditional priority at traffic signals (and to a lesser extent, holding, 
because it shifts the mean) will reduce potential waiting time. 

Schedule Inconvenience 
Schedule inconvenience, WSI, is another hidden waiting time representing the difference 
between passengers’ desired departure time and the departure time to which they are 
limited by the timetable. For example, suppose a passenger has to board a bus by 8:48 in 
order to get to work on time, and that scheduled departures around that time have 
scheduled, mean, and 95-percentile departure times, respectively, of {8:15, 8:17, 8:20} 
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and {8:45, 8:47, 8:50}. IF she budgets for a 95-percentile departure time, she cannot use 
the 8:45 trip; she will have to take the 8:15 trip. Her average departure time is 8:17, and 
her potential waiting time is 3 minutes (because she can rely on boarding by 8:20). Her 
schedule inconvenience is then the interval between when she can count on boarding and 
her desired boarding time, or 28 minutes. She will “spend” her schedule inconvenience 
time at the destination end of her trip (for home-bound trip, however, WSI will be spent at 
the origin side of the trip). Because she can rely on this time, she could use it for a 
planned activity such as breakfast or extended work time. WSI is equally likely to take any 
value between 0 and h. 

Schedule inconvenience differs from potential waiting time because a passenger 
can count on having the schedule inconvenience time each day, and can therefore plan 
activities to make better use of it. Therefore, its unit cost should be less than that of 
potential waiting time. 

Synchronization Cost  
Synchronization cost combines several burdens related to a passenger’s need to adjust to 
a given schedule. One is the stress of arranging one’s day to conform to a timetable. Most 
people would gladly suffer an extra minute of waiting for the freedom of arriving without 
the constraint of a bus or train schedule. Another is the waiting time between when a 
person actually arrives at a stop and their target arrival time, assumed to be V0.02. The 
limits of human punctuality and randomness in access time demand that people arrive 
early, on average, if they don’t want to miss their bus. Third is the stress of worrying 
about missing one’s departure, which should increase with h. Fourth is wait of a full 
headway for the rare occasions for which if one misses the bus. These costs are either 
constant or proportional to headway; a reasonable proposal for synchronization cost, in 
equivalent minutes of in-vehicle time, is 

 synchronization cost = 2 + 0.05 h (14) 

Waiting Cost  
A passenger’s cost of long headway waiting combines the four components just 
presented. For excess platform time and potential waiting time, proposed unit costs are a 
= 1.5 and b = 0.75, as for short headway waiting; a unit cost of 0.60 is proposed for 
schedule inconvenience. For an individual traveler with given schedule inconvenience, 
the long headway waiting cost function becomes 

 SIWVVVVh 6.0])E[(75.0)](E[5.105.02cost 95.002.0 +−+−++=  (15) 

Averaging over all users at a stop,   

 ])E[(75.0)](E[5.135.02cost 95.002.0 VVVVh −+−++=  (15a)  

The first two terms in equation 15a reflect the inevitable parts of waiting cost that 
arise simply from having a long headway; the last two terms are the excess waiting cost 
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arising from unreliability. This cost function is illustrated in the long headway region of 
Figure 4 using example reliability cases described in the next section.  

Example Results 
Six reliability cases are used in Figure 4 and Table 3 to illustrate the sensitivity of waiting 
cost to reliability. Cases A-E represent worsening reliability, with normally distributed 
departure deviations with standard deviation σV ranging from 1.0 to 2.6 minutes. On-time 
performance (departures within a 5-minute window) for those cases ranges from 97% to 
66%. Case D+OC represents a route with the same underlying randomness as case D, but 
with operational control (7) by means of holding, with stop-level scheduling tuned such 
that the earliest 30% of trips are held and are assumed to run, on average, 1 minute late.  

As shown in the table, excess waiting cost varies from 4.4 to 11.2 minutes of in-
vehicle time, showing strong sensitivity to reliability. It is especially instructive to 
compare cases D and D+OC. In terms of operational performance, operational control 
clearly offers an improvement, raising on-time performance from 73% to 92%. But what 
is the effect on passengers? Without a waiting cost function that accounts for service 
reliability, it is difficult to evaluate how much passengers benefit from this reliability 
improvement. With the proposed function, we have an answer: operational control 
reduces waiting cost by 4.5 minutes of equivalent in-vehicle time. Achieving the same 
benefit by reducing headway alone would require a headway reduction from 30 to 18 
minutes, involving a 67% operating cost increase. This kind of analysis (it can also be 
seen in Figure 4) is needed to show the value of improving service reliability.   

If excess waiting cost is expressed in units of equivalent minutes of waiting time 
rather than units of in-vehicle time, it becomes excess equivalent waiting time, defined 
just as with short headway waiting, but given for long headway waiting by 

 { } ])E[()/(]E[ 95.002.0 VVabVVW vExcessEqui −+−=  (16) 

Results for the six example cases are also given in Table 3. Analogous to short headway 
waiting, when the ratio b/a = 0.5, excess equivalent waiting time is simply the average of 
excess platform time (E[V] – V0.02) and excess budgeted waiting time (V0.95 – V0.02). 

The reporting format used for short headway waiting applies equally to long 
headway waiting. In Figure 3, the last three columns give results for cases A, D, and 
D+OC. One can readily see excess platform time, excess budgeted time, potential waiting 
time (the difference between the first two), and excess equivalent waiting time. This 
format makes it clear that the main difference between cases D and D+OC is that excess 
platform time was reduced – an expected consequence of holding, which primarily 
shrinks the early tail of the departure time distribution.  

TRANSITION FROM SHORT- TO LONG-HEADWAY 
WAITING 
The proposed short- and long-headway waiting cost models accomplish the objective of 
making waiting cost a function of service reliability. However, for planning and service 
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design applications, one factor is still missing: the boundary at which passengers switch 
from short- to long-headway waiting. That boundary depends on service reliability, and 
so it should not be given exogenously; rather, it should be derived as a result of 
passengers choosing the least cost waiting strategy.  

With historic data for a given route, the cost of the two waiting strategies can 
simply be evaluated and the best chosen. For planning applications, however, predicting 
waiting cost under the two strategies requires predicting extreme values of headway and 
of schedule deviation. Because headway deviation and schedule deviation are not 
independent, a service reliability model relating them is needed.  

We take σV as the parameter describing a given reliability case. We assume a 
normal distribution of schedule deviations, with a correlation coefficient ρ = -0.2 between 
successive schedule deviations (implying a degree of bunching). With these assumptions, 
the headway distribution can be derived using the fact that a headway deviation is the 
difference between successive schedule deviations. We make one further assumption: 
that for h < 10 minutes, cvH is maintained at the value achieved when h = 10 minutes (this 
prevents cvH from rising to infinity as h becomes small). The headway cv corresponding 
to specified values of σV and h is then given by  

 
)10,max(

22),(
h

hcv V
VH

σρσ −=  (17) 

A passenger’s choice between long- and short-headway waiting depends on their 
schedule inconvenience, which varies across the population with a uniform distribution 
between 0 and h. Equating short headway waiting cost (equation 9) with long headway 
waiting cost (equation 15) for given h, one can determine an indifference value of 
schedule inconvenience, SI*(h). Passengers whose schedule inconvenience is lower than 
SI*(h) will prefer long headway waiting. When SI*(h) < 0, everybody chooses short 
headway waiting; when SI*(h) > h, everybody chooses long headway waiting.  

A transition region exists where 0 < SI*(h) < h. In that region, the fraction of 
passengers choosing long headway waiting – the fraction with WSI less than SI*(h) –  is 
SI*(h)/h. Their waiting cost uses the long headway cost function with E[WSI] = SI*(h)/2. 
Waiting cost for the remainder follows the short-headway cost function. Overall waiting 
cost is the sum of these short- and long-headway waiting costs, weighted by the fraction 
of passengers choosing either strategy.  

“Indifference headway,” for which half the passengers choose short- and half 
choose long-headway waiting, is shown in Table 3 for the six example cases, ranging 
from 8 to 14 minutes. Case C, a level of reliability that might be considered typical in 
large U.S. cities, has an indifference headway of 11 minutes, consistent with 
expectations. When operational control is applied to case D, indifference headway falls 
from 13 to 8 minutes – illustrating how with better operational control, passengers 
become more likely to rely on the timetable. 

With the short- and long-headway waiting models thus harmonized, the waiting 
cost function for a full range of headways can be determined, as shown in Figure 4. At 
long and short extremes, waiting cost is linear with headway, with a steeper slope in the 
short headway region. At long headways, differences between reliability levels are 
substantial and constant. At short headways, differences between reliability levels are 
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smaller. (As a practical matter, for very short headways, the principal benefit of 
improving regularity is balancing loads, which can both reduce operating cost and 
indirectly reduce waiting time by reducing the incidence of pass-ups.) 

Clearly visible in Figure 4 is the smooth transition from the steeply sloped short-
headway waiting cost function to the less steep long-headway waiting cost function. This 
smooth transition avoids the pitfall of the often-used bi-linear waiting cost model, in 
which all passengers shift from short- to long-headway waiting at a critical headway, 
resulting in a slope discontinuity known to cause bizarre results when applied in headway 
optimization (8).  

PRACTICAL ISSUES 
As we have shown, passenger waiting time is strongly affected by extreme values of 
headway and schedule deviation. Estimating extreme values requires a far greater sample 
size than does estimating a mean, making fleetwide AVL vital for estimating these 
measures. The need for a large sample size is most critical for estimating the 2-percentile 
schedule deviation. Using the “rule of 5,” a sample of 5/0.02 = 250 observations is 
desirable – something only achievable with automatic data collection and some level of 
aggregation, such as combining several trips within a period of the day.   

Passenger waiting times are based on vehicle departure times from a stop. 
Therefore, accuracy will be enhanced if AVL systems make this moment easy to 
determine – for example, by recording when the last door closes and the wheels start to 
roll, or when a vehicle leaves a GPS-defined zone around a stop. If an AVL system is 
configured to record only when a vehicle enters the zone around a stop, departure time 
estimates will be approximate. 

At longer headways, respecting scheduled departure times helps passengers 
reduce their waiting time. However, getting the full benefit of this strategy requires 
publishing departure times for every stop, something common in European but not in 
U.S. practice, where departure times are typically published for timepoints only. This 
forces passengers boarding at intermediate points to estimate scheduled departure time 
conservatively, increasing their waiting time.  

CONCLUSIONS 
This paper shows that waiting cost has several components, of which two, platform and 
potential waiting, apply to both short- and long-headway waiting, and are strongly 
affected by service reliability. It develops waiting cost functions and measures of 
passenger waiting time that incorporate the effects of service reliability, allowing service 
reliability improvements to be translated into savings in passenger waiting time. The 
proposed models can help management measure service quality and evaluate investments 
that improve service reliability. 

We have shown how with AVL data, one can calculate the distribution of 
passenger waiting time, as well as the extreme values of headway deviation and schedule 
deviation that are critical to passenger waiting cost.  
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For planning applications, we developed a waiting cost function that harmonizes 
short- and long-headway waiting strategies. By overcoming the discontinuity of the bi-
linear cost model, it offers an improved framework for service design and demand 
forecasting. 
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TABLE 1  Cumulative Waiting Time Distribution and Waiting Time Bin Frequencies  

(a) (b) (c) (d) (e)  (f) (g) (h) (i) 
h  

(min) 
Δh 

(min) 
i 
 

 i Δh 
(min) 

FW(h) 
 

 min in 
bin 0-8 

min in 
bin 8-10 

min in 
bin 10-12 

min in 
bin 12+ 

4 4 6 24 0.500  4     
5 1 5 5 0.604  5     
7 2 4 8 0.771  7     
9 2 3 6 0.896  8 1    

10 1 2 2 0.937  8 2    
13 3 1 3 1.000  8 2 2 1 

T = 48   48   40 5 2 1 
mean = 8      83.3% 10.4% 4.2% 2.1% 
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TABLE 2  Relationship of Headway Variation to Various Measures of Waiting Time  

headway cv 01 0.151 0.25 1 0.351 0.451  0.382 

E[wait] 3 0.50 0.51 0.53 0.56 0.60 0.57

90-percentile wait 3 0.90 0.93 0.99 1.08 1.18 1.14

95-percentile wait 3 0.95 1.02 1.12 1.24 1.37 1.33

P[headway > 10 min] 4 0 5% 16% 24% 29% 17%

P[wait > 10 min] 4 0 0.3% 1.9% 4.6% 7.7% 6.3%
1. Headway distribution assumed normal. 
2. Headway distribution as given in Table 1. 
3. Relative to mean headway. 
4. E[headway] assumed to equal 8.
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TABLE 3  Results for Six Example Cases 
Reliability Case A B C D E D+OC1 
σV (min) 1.0 1.4 1.8 2.2 2.6  
Long Headway Results      
P[0 < V < 5] 97% 91% 82% 73% 66% 92% 
E[V] – V0.02 (min) 2.1 2.9 3.7 4.5 5.3 1.9 
V0.95 – E[V] (min) 1.6 2.3 3.0 3.6 4.3 2.9 
excess waiting cost (min of 
in-vehicle time) 4.4 6.1 7.8 9.5 11.2 5.0 

equivalent excess waiting 
time (min of waiting time) 2.9 4.1 5.2 6.3 7.5 3.4 

cvH at low headways 0.15 0.22 0.28 0.34 0.40 0.24 
indifference h (min) 7.9 9.4 11.0 12.7 14.4 8.0 

1. Case D with operational control.
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FIGURE 1  Uniform headway distribution and resulting waiting time distribution. 
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FIGURE 2  Waiting time density for an arbitrary set of headways. 
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FIGURE 3  Passenger waiting time summary. Values are represented by cumulative heights. 
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FIGURE 4  Waiting cost vs. headway for different cases of service reliability. 
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