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EXISTING CYCLE LENGTH PREDICTION METHODS

The seminal research on actuated operation by Newell and Osuma
(1) showed that although a pair of one-way traffic streams could
be easily analyzed and efficiently operated, complications arising
when parallel streams were considered made the analysis muddy
and removed much of the theoretical efficiency of actuated control.
Their analysis assumed that controllers can detect the moment of queue
discharge when in fact the performance of actuated controllers is
driven by their inability to discern a sharp boundary between saturated
and unsaturated flow.

Lin (2) considered multiphase control with the gap-seeking logic
of modern controllers together with their minimum and maximum
green constraints. His work focuses on estimating the length of the
extension green period and, for that purpose, modeling headway dis-
tributions for single and multilane approaches. He proposes an iter-
ative, deterministic approach to estimating cycle length without
considering interactions with noncritical phases. Akcelik (3) built
on Lin’s work as part of NCHRP Project 3-48; since 1997, his work
has been adopted in the Highway Capacity Manual (HCM) (4). It
includes further development of headway distributions and consid-
eration of dual-ring control. However, interaction with noncritical
phases is almost trivial because like Lin, a largely deterministic
analysis is used, which predicts that noncritical phases never affect
cycle length.

LOST TIME IN CRITICAL CIRCUIT

A four-leg intersection is considered with left and through–right
phases on each approach, with signal control following the standard
dual-ring, eight-phase structure, as shown in Figure 1. Phase lengths
(splits) vary from cycle to cycle depending on traffic. Barriers in the
dual-ring structure divide the signal cycle into half-cycles, each
containing two half-rings that must start and end simultaneously at
the barriers but otherwise can run independently. In any given pass
through a half-cycle, depending on traffic, either half-ring may be
dominant. The half-ring with the greater average demand is consid-
ered the critical half-ring, and its phases critical phases. Because of
the barriers, the cycle length can be treated as the sum of the times
(splits) of the four critical phases.

For each critical phase, the time is divided into used and lost time.
For every vehicle that passes the stopline, a time (1/si), the saturation
headway for phase i, is accounted as used; the remainder of the split
is treated as lost time. Thus, if the saturation headway is 2 s and two
cars pass with a headway of 3 s, 2 s is accounted as used and 1 s as lost.
With the familiar terms Li, total lost time for phase i; v i, approach
volume for phase i; si, saturation flow rate for phase i; and C, cycle
length and use of expected values of C and Li, the mean number of
phase i vehicles served per cycle is Cvi, and so, summing over critical
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phases, the mean amount of time used per cycle is Σ Cvi/si. At the same
time, the mean amount of time used per cycle is C − ΣLi. Equating
these quantities leads to the familiar cycle time formula:

The usefulness of Equation 1 depends on an ability to determine
generalized lost time.

ACTIVITY NETWORK FOR PHASE 
NOT ENDING AT BARRIER

An actuated signal cycle can be modeled as an activity network (5, 6),
in which each node represents a moment in time and each arc rep-
resents an interval. Figure 2 shows an activity network for a single
phase that terminates independently of other phases (i.e., does not
end at a barrier). The convention that square nodes represent events
in the usual sense of the word is used, with the following meanings:

SG = start of green (start of split);
SQ = start of queue discharge;
EQ = end of queue discharge;
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SX = start of extension green;
UX = start of unsaturated part of green extension;

LXD = moment at which front of last vehicle that extends green
passes downstream edge of extension detector;

LXS = moment at which front of last vehicle that extends green
passes stopline;

GD = moment at which gap long enough to end green is
detected (gap-out);

SY = start of yellow;
SPX = start of parallel extension flow period (which appears

only in Figure 3);
SLA = start of late arrival period; when cars that arrive after

gap-out but before clearance time are served;
SCl = start of effective clearance time;

E = end of split; and
MaxG = maximum green expired (max-out).

Round nodes are not events in the usual sense of the word; they are
a device used to divide an interval into subintervals of interest.

The network has three kinds of arcs:

• Solid lines represent intervals with externally determined length;
• Dashed lines represent slack time that ensures that every arc

arriving at a common node arrives at the same time; the length of slack
arcs must be nonnegative; when two slack arcs arrive at a common
node, one of them usually has zero length in any given pass through
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the cycle; however, averaging over many cycles, both may have a
nonzero expected length; and

• Dotted lines represent subdivisions of an interval into used time
and lost time.

Activities and events concerned with signal timing are shown in
the lower part of Figure 2, and activities and events concerned with
traffic flow are shown in the upper part. In both the network and the
equations that follow, phase indices are suppressed except where
phases interact.

Start-Up Lost Time, Queue Discharge, 
and Minimum Green

In the upper part of Figure 2, arc SG–SQ represents start-up lost time
with length Ls, as defined in the HCM. Arc SQ–EQ represents queue
discharge (tqd) at a uniform rate s. Traffic volumes and maximum
green settings are assumed to be such that an approach can discharge
its queue before reaching maximum green. Expected queue discharge
time is given by the following well-known formula:

where r is the effective red, v is the arrival volume, and s is the
saturation flow rate.

In the lower part of Figure 2, arc SG–SX represents a phase’s
minimum initial green period Gmin, after which the phase enters its
extension green period. Controllers have a minimum green period
for one or all of the following purposes: to allow traffic flow to get
beyond start-up irregularities, to prevent gap-out until after the dis-
charge of a queue that does not reach back as far as an upstream
detector, and to provide sufficient pedestrian crossing time.

UX, the start of the unsaturated part of extension green, has two
predecessor events connected to it by slack arcs: with respect to
timing, UX follows Event SX, and with respect to traffic flow, it
follows Event EQ. When EQ precedes SX, a condition called early
queue discharge, the minimum green constraint governs. In that case,
the slack arc from EQ to UX has nonzero length. If n is the number
of arrivals during the preceding red period, early queue discharge
will occur when

n n< 0
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with

in which case the unsaturated part of the minimum green has the
following length:

During this slack period, cars are expected to arrive at a rate v, and
each arrival will use a period 1/s. The unused part of this slack period
is LminG, lost time due to minimum green:

Taking expectation over possible values of n,

Equation 5 applies when the phase is set to recall, meaning that it
may not be skipped. If the phase is not set to recall, it will be skipped
if n = 0, in which case there will be no lost time. For a phase without
recall,

Akcelik (3) and the HCM (4) use a deterministic approach to
model the impact of the minimum green. For a given cycle length,
they determine E[n], and depending on whether it is less than no,
minimum green is assumed to govern either in every cycle or never.
In spite of being iterative, this approach underestimates the impact of
minimum green on cycle length for phases in which minimum green
governs in some, but not all, cycles. If it is assumed that minimum
green always governs, there is an error from ignoring those cycles
in which the phase lasts longer than the minimum green, and if the
minimum green constraint is ignored, there is an error for those cycles
in which it actually extends the phase length.
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Extension Green and Extension Lost Time

During the extension green, if the maximum green constraint is not
binding, the signal is kept green until the Event GD, when a gap
longer than a controller parameter minGap is detected by a presence
detector. This parameter is invariably set long enough that a phase
will not gap out during queue discharge. minGap corresponds to a
critical headway:

where

Lend = detector length,
Lenv = vehicle length, and

u = approach speed in the absence of queues.

Using hcrit rather than minGap allows one to treat detection as an
instantaneous event occurring when the front of a vehicle passes the
downstream edge of a detector.

The time during which traffic flows between SQ and SCl can be
divided into four periods with differing flow rates:

• Queue discharge with flow rate s, ending at Node EQ (which is
simultaneous with Node UX when minimum green is not binding);

• An unsaturated flow period during which headways are sub-
critical—that is, shorter than hcrit—ending with Events LXD and LXS
when the last extending vehicle (last vehicle with subcritical headway)
passes the detector and the stopline, respectively;

• Period of no flow while the critical headway passes, ending with
Event SLA; and

• Late arrival period at flow rate v running from SLA to SCl.

For a phase that terminates independent of other phases, the same
general logic is followed as that of Akcelik and the HCM for deter-
mining the duration of the unsaturated extension green. Headways
are assumed to be random and independent. The unsaturated flow
period consists of a series of subcritical headways. On the basis of the
chosen headway distribution, one can determine p = P(H < hcrit) and
E(H �H < hcrit), where H is headway length. Headways are treated as
a sequence of Bernoulli trials, with the expected number of headways
before gap-out equal to

(If a phase is prone to sometimes max out, that is, end its green because
of the maximum green constraint, Equation 8 overestimates nux.)

Multiplying by E(H �H < hcrit) gives tux, the length of the unsaturated
extension period, and subtracting the used time (nux/s) gives the
extension lost time, Lx:

In the activity network in Figure 2, a distinction is made between
when the last green-extending vehicle is detected (LXD) and when
it crosses the stopline (LXS). In intersection flow models, arrivals are
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defined with reference to the stopline. Therefore, the time covered
by the nux subcritical headways runs from Node UX to Node LXS.

With a shorter, “snappier” critical gap, extension lost time is dimin-
ished by two mechanisms: p is shortened, reducing nux, and the lost
time per subcritical headway is reduced as well.

Unsaturated Headway Distribution

The form of the assumed unsaturated headway distribution matters
mostly with single-lane approaches on which very small headways
do not occur. Akcelik and the HCM use a two-parameter modification
of the exponential distribution. One parameter is hmin, a minimum
headway; the other is a bunching parameter that determines the
proportion of headways that equal the minimum headway.

A special case of the two-parameter model has only one externally
specified parameter, hmin. It assumes an underlying exponential
distribution with parameter λ and transforms to hmin all headways
shorter than hmin. With this distribution,

and

The value of λ is determined by equating E[H] to 1/v. Then

In numerical experiments with the simulation software VISSIM, the
authors found that on one- and two-lane approaches, the one-parameter
model yielded a slightly better fit than the two-parameter model with
parameter values recommended in the HCM.

Gap Lost Time and End Lost Time

If the maximum green constraint is not binding, the final portion
of a phase’s split begins at LXD, when the last extending vehicle
passes the detector. The signal timing track continues through Nodes
GD and SY (which follows GD immediately for phases not end-
ing at a barrier) and, after the yellow and all-red interval (YAR),
Event E.

On the vehicle flow side, LXS follows LXD by the travel time Dds/u,
where Dds is the distance from the downstream edge of the extension
detector to the stopline and u is speed. If the downstream edge of the
extension detector lies beyond the stopline, this travel time is nega-
tive. Following LXS there is a period of no flow of length hcrit as the
critical gap passes, ending at Node SLA; this interval is a component
of lost time called gap lost time, given by

Equation 14 shows how the minimum gap setting, already shown to
affect extension lost time in two ways, affects gap lost time as well.
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The clearance interval begins at the moment within the YAR
period after which vehicles no longer enter the intersection. Assum-
ing that vehicles follow the “stop if you safely can” convention on
seeing the yellow signal, Event SCl follows the onset of yellow by
the interval

where tr is the reaction time, taken in these experiments to be 1.0 s,
and a is the deceleration rate, taken to be 0.35 g = 11.3 ft/s2.

From the network diagram, the length of the late arrival window is

The expected number of late arrivals is vtlate, and the time they use
is (v/s)tlate. End lost time represents the clearance interval and the
unused part of the late arrival interval:

Equation 17 shows how lost time can be reduced by using an
upstream detector, a well-known result reported by, for example,
Bonneson and McCoy (7 ). With a stopline detector, the critical
headway crosses the stopline while the light is green, wasting a lot
of time; when the detector is moved upstream, much of the critical
headway passes after the signal has transitioned to its clearance
interval.

Maximum Green

If the wait for a gap becomes too long, a maximum green constraint
will trigger the start of the yellow (the phase “maxes out”). This
logic is shown in Figure 2 by the node MaxG positioned a time Gmax

(the maximum green setting) from the start of the green, and a slack
arc, whose length must be nonnegative, running from SY to MaxG.
When the maximum green is not binding, the slack arc SY–MaxG
is harmlessly nonzero, but if the green period’s length reaches Gmax,
the nonnegativity constraint on the slack arc will force the start of
the yellow.

When the green ends because of max-out, Arcs LXD–GD and
LXS–SLA can have any length less than hcrit; however, those two arcs
will have equal length (h* in Figure 2), and therefore the position of
SLA becomes fixed at Gmax − Dds/u.

When there is a max-out, the period of subcritical headways extends
from UX all the way to SLA. Accounting for the fraction of that
period that is used, and because it may be assumed that the minimum
green will not be binding in any cycle that maxes out,

where vsubcrit = 1/E[H �H < hcrit]. Equation 19 shows how maximum
green constraints improve the efficiency of an actuated signal by
eliminating gap lost time. Of course, that efficiency gain is negated

L G
D

u
t

v

sx max-out ds
EQ

subcrit= − −⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝max � 1⎜⎜

⎞
⎠⎟

( )19

Lgap max-out = 0 18( )

L
D

u

v

s
t

u

a

D

urend
ds dsgap-out YAR= − − ⎛

⎝⎜
⎞
⎠⎟

+ −max
2

,, ( )0 17
⎛
⎝⎜

⎞
⎠⎟

t t
u

a

D

urlate
ds= + −⎛

⎝⎜
⎞
⎠⎟

max , ( )
2

0 16

t
u

ar +
2

15( )

156 Transportation Research Record 2128

if Gmax is too short to allow the queue to discharge, which prevents
Gmax from being set too aggressively.

In a deterministic approach, like that followed in the HCM, if
the expected number of arrivals during an expected cycle results in
max-out, max-out will be assumed to always occur, overestimating
phase length because max-out will not occur in every cycle; and if
expected values do not predict max-out, the maximum green con-
straint will be assumed nonbinding, again overestimating phase length
because maximum green will limit phase length in some cycles.

Instead of the always-or-never approach, the impact of the maximum
green on expected gap lost time can be accounted for as follows:

where pmax-out is the fraction of cycles in which the phase maxes out.
Without detailed modeling, it may be difficult to estimate pmax-out

with confidence for a given phase; however, one can often make a
rough estimate or prior guess of pmax-out, in which case Equation 19
models the maximum green effect on a continuous scale rather than
as all-or-nothing.

JOINT TERMINATION OF PHASES AT BARRIER

Controllers offer two options to ensure that the two phases that end
each half-cycle (at the barrier) end simultaneously. One is simulta-
neous gap-out, a default setting in at least some American controllers,
which requires that both phases must have a gap greater than or equal
to minGap at the same moment to force an end to the extension green.
In the other option, nonsimultaneous gap-out, normally used in the
Netherlands, whichever phase gaps out first enters a green subphase
of length Gp called the parallel green until the other phase gaps out
(or until max-out), and then both phases end their green.

Nonsimultaneous Gap-Out

An activity network representing nonsimultaneous gap-out of phases i
(critical) and j is shown in Figure 3, where maximum green effects
have been omitted for clarity. The start of the yellow waits until
both phases have independently gapped out, represented by the Event
GDboth, which follows Nodes GDi and GDj with slack arcs representing
parallel green time. The parallel green time on the critical phase’s
slack arc is G i

px.
In the upper part of the diagram, representing traffic flow, LXSi,

is followed by an interval of lost time as the critical gap passes and
then by a period of flow with unconstrained headways whose length
is Gi

px plus the late-arrival period given by Equation 16.
The lost time during the late-arrival period is incorporated into the

end lost time formula (Equation 17). Lost time for the parallel green
extension, Lpx, represents the unused time during the parallel green
and is given by

When gap-out processes are modeled deterministically, parallel
extension lost time will always be zero for critical phases, biasing
cycle length estimates downward. The error will be negligible when
the demands of the noncritical half-rings are small compared with
their parallel critical half-rings but not otherwise.
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Simultaneous Gap-Out

An activity network representing simultaneous gap-out of two
phases, i (critical) and j, is shown in Figure 4. Assuming that minGap
is large enough to prevent gap-out if either phase is discharging its
queue, the search for a gap does not effectively begin until both phases
have discharged their queues and passed their minimum green. This
is Event UXboth, which follows UXi and UXj by slack arcs representing
the time during which the first phase that has discharged its queue
and passed the minimum green waits for the other to do the same.
The fraction of this average slack that is not used is called parallel
discharge lost time, Lpd, which is the average length of the critical
phase’s slack arc multiplied by (1 − vi/si).

Following Node UXboth, the usual gap-out logic applies, but with one
big difference: the headway distribution must represent the combined
volumes of both phases, vi + vj, and should account for the number of
lanes serving both phases combined, making the extension green and
its associated lost time longer than it would be with nonsimultaneous
gap-out, especially on multilane approaches. (It also makes max-out
far more likely.) Using volume shares to determine the fraction of the
critical phase vehicle represented by those headways, Equation 8
becomes modified as follows:

with p based on the combined (two-directional) headway distribution.
Equation 9 for extension lost time is still valid with the headway
distribution for phase i.
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RECALL AND PHASE SKIPPING

If a phase has no queue when its turn in the cycle comes, it will be
skipped unless it is set to recall. It is common for left-turn phases, and
sometimes minor through phases, not to be set to recall.

The impact of skipping can only be evaluated by using a probabilis-
tic analysis, which is included in the HCM’s recommended procedure.
The probability of phase i’s being skipped assuming a Poisson arrival
process is exp(−vir′i ), where r′i is the expected length of phase i’s red
period minus the intergreen following the conflicting phase preced-
ing phase i. (The controller decision of whether to skip is made just
before that intergreen phase.)

The skipping of a critical phase increases the chance of a non-
critical phase’s becoming dominant, increasing parallel lost time
and thus reducing some of the apparent benefit of phase skipping.
No attempt has been made to estimate this effect.

DIRECT ESTIMATION OF CYCLE LENGTH

Under certain simplifying conditions—nonsimultaneous gap-out, low
noncritical demands, no phase skipping, and minimum and maximum
green constraints can be ignored—the only lost time components are
Ls, Lx, Lgap, and Lend, of which the first consists of data and the
remainder can be determined by formulas (Equations 9, 14, and 17)
without prior knowledge of the cycle length. In such a case, average
cycle length can be determined directly from Equation 1.

The ability to readily determine lost time components and cycle
length makes it easy to explore the impact of demand and design param-
eters. Figure 5 shows expected cycle length under the simplifying
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conditions mentioned earlier for varying levels of demand (Σv/s),
detector setback, critical headway, and number of through lanes per
approach (number of left-turn lanes per approach is always 1). Critical
phase volumes for the single-through-lane case are shown in Figure 1
for low- and high-demand scenarios; intermediate scenarios are
linear interpolations. Through volumes are simply doubled to create
the two-through-lane scenarios. Saturation flow rate, measured exper-
imentally from the microsimulation model used to verify results, was
1,950 (veh/h)/lane; start-up lost time, also measured experimentally,
was 1.5 s for each phase.

Figure 5 shows how sensitive average cycle length is to detector
setback and hcrit. For a given level of demand, using an upstream
detector instead of a stopline detector reduces average cycle length
by about 20 s, and making hcrit 1 s shorter reduces average cycle
length by about 12 s. Reductions of this size make a substantial
difference in level of service.

Figure 6 shows how demand and design parameters affect extension,
gap, and end lost time for the main street through movement. The main
design effect is reducing end lost time by a combination of detector
setback and critical gap; also substantial is the effect on gap lost time
by reducing hcrit. The impact on extension lost time is relatively minor.
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VERIFICATION

To verify the model developed, simulation experiments were per-
formed with VISSIM, using its default parameters for vehicle behav-
ior. Each experiment consisted of a 1-h simulation after four cycles
of start-up. Figure 7 shows the good agreement in expected cycle
length between the model’s formula-based results and the simulation
experiments. The scenarios reported in Figure 7 include not only those
covered in Figure 5 but also the scenarios described later involving
minimum green constraints (with recall) and cases with nonsimultane-
ous gap-out, in which the demand of noncritical phases was as great
as 85% of the critical phase demand.

IMPACT OF MINIMUM GREEN CONSTRAINTS

Two sources of randomness affect the distribution of n, which is
needed to evaluate Equation 5 or 6: random arrivals for a red period
of given length r and different values of r resulting from varying
cycle lengths. In most practical situations, the second effect is small
compared with the first and may be neglected.
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FIGURE 6 Selected lost time components per cycle as a function of critical 
headway H in seconds and detector setback S in feet.
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A two-pass procedure amenable to spreadsheet calculation 
was tested against both iterative spreadsheet calculation and full
simulation in the case of 8-s minimum green constraints applied
to left-turn movements with and without recall. In the first pass,
Equation 1 was used to find cycle length and splits assuming that
the left turns were governed by minimum green; in the second
pass, n’s distribution was Poisson over the phase’s red period as
determined in the first pass. For each possible value of n < no, its
probability and conditional impact were calculated to evaluate
Equation 5 or 6.

The two-pass process yielded cycle length estimates within 0.5 s
of average cycle length as determined by using repetitive iterations,
confirming the validity of the two-pass process when only minor
movements are affected by minimum green constraints and when there
is no phase skipping. Errors compared with microsimulation were
similarly small.

Figure 8 shows minimum green lost time determined by using
simulation results for a single left-turn approach for various levels
of demand when demand on other streams is such that the cycle length
is about 60 s. (Results when cycle length is about 75 s or 90 s were
similar.) When there is no phase skipping, minimum green lost time
diminishes with volume, as expected, from a maximum of (Gmin − Ls).
When there is phase skipping, minimum green lost time varies little
with demand, holding close to 2 s for a wide range of left-turn volumes.
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IMPACT OF NONCRITICAL PHASES 
AND SIMULTANEOUS GAP-OUT

Until now, all of the results were obtained by assuming that noncritical
phases do not affect the cycle length. For the nonsimultaneous gap-out
setting, VISSIM and its application programming language VAP were
used to determine average parallel extension lost time for a phase
terminating at a barrier as a function of the ratio of noncritical to
critical phase demand under different levels of overall demand.
Results are shown in Figure 9a.

For ratios near 1, lost time due to waiting for a parallel phase to
gap out was as great as 6 s in the high-demand scenario. However,
for ratios between 0.15 and 0.85, Lpx grew gradually from near 0 to
about 2 s and was stable for a wide range of critical phase demands;
an equation for predicting Lpx is shown in Figure 9. As an example,
these results indicate that if noncritical demand rises from 40% to 80%
of the critical phase demand, the added lost time will be only about
1 s per half-cycle.

The formula for Lpx was implemented into the spreadsheet model
and very good agreement was found between predicted and simulated
cycle length; comparisons are included in Figure 7.

Figure 9b compares simultaneous and nonsimultaneous gap-out,
showing the sum of extension lost time (which for simultaneous
gap-out is a function of combined demand in the two directions) and
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either parallel extension or parallel discharge lost time for a case
with moderate demand. Results are from VISSIM simulations, with
VAP programming to mark key events. As the graph shows, simulta-
neous gap-out creates more lost time, especially when the noncritical
phase volume is high. A simple formula for estimating Lpd. has not
been proposed here.

CONCLUSION

Modeling the interactions between signal timing and traffic flow by
using an activity network allows one to better understand how actuated
traffic signals perform and in particular to understand how demand and
design parameters affect average cycle length. The network frame-
work is especially useful for understanding interactions between
parallel signal phases in a ring-and-barrier system. It was also shown
how deterministic estimation of cycle length, even if iterative, has a
downward bias with respect to minimum green and parallel green
effects and an upward bias with respect to the maximum green effect.

Seven lost time components were identified, and simple methods
for estimating them were proposed for six of them—lost time
associated with start-up, minimum green, parallel queue discharge
(for simultaneous gap-out), extension green, parallel extension (for
nonsimultaneous gap-out), the passing of the critical gap, and phase
end. Simulation experiments verify the simple formulas used.

With lost time components and cycle length estimates less of a
black box, it is the authors’ hope that this approach will allow engi-
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neers to focus more clearly on designs that improve actuated signal
operation.
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