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Abstract 

Holding buses to scheduled departure time at timepoints involves a tradeoff between 

reliability and speed, with impacts on user and operating cost. Two new measures of user 

cost, excess waiting time and potential travel time, are proposed. They relate to the early 

extreme of a bus’s departure time distribution from a passenger’s origin stop, and the late 

extreme of a bus’s arrival time distribution at the destination stop. A route with long 

headway service is modeled assuming that segment running times are independently 

distributed. Operating impacts of unreliability are captured by requiring enough recovery 

time that delay does not systematically grow with each cycle. Based on an objective of 

minimizing a sum of operating cost and user costs, optimality conditions are derived for 

the strictness of a timepoint and for dispatching reliability at the terminal, which are 

related to the amount of slack within the running time schedule and within the scheduled 

layover. It is shown that a timepoint’s optimal strictness (probability of holding)  

increases with the demand for boardings at the timepoint, with the effect diminishing as 

stops become farther from the start of the route; however, welfare benefits compared to 

using a uniform percentage of slack across the route may be small. It is also shown that 

there is no universally optimal dispatch reliability; the more slack is built into the running 

time schedule, the less reliable should be the dispatch from the terminal. Up to a point,  as 

scheduled running time increases, the optimal recovery time decreases, and slack time 

spent holding en route substitutes one-to-one for slack time spent holding at the terminal, 

so that holding at timepoints does not necessarily increase operating cost. 
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In order to improve service reliability, bus route schedules have timepoints – intermediate 

points at which early buses are held until a scheduled departure time.  Increasing the 

amount of slack time in a running time schedule will improve reliability, but hurt 

operating speed, affecting both riding time and operating cost. By modeling this tradeoff, 

one can determine optimal running time schedules (or equivalently, optimal scheduled 

departure times at timepoints). This work is focused on long headway routes, for which 

passengers time their arrivals to meet a targeted scheduled trip.  

 

Timepoint scheduling and holding to schedule are routine practice with  bus operations in 

many cities with most passenger train operations. However, practice in timepoint 

scheduling tends to be based on rules of thumb and professional judgment. Most of the 

literature on holding buses deals with short-headway routes, with passengers arriving 

independently of schedule, with an emphasis on the feedback mechanism that occurs as 

late buses become ever later due to the greater number of passengers waiting to board 

them [1, 2]. The only unreliability impact they consider is its effect on average waiting 

time. Timepoint scheduling for longer headway transit routes has seen relatively little 

attention in the literature; some recent papers are [3, 4, 5]. Our work advances the subject 

by using a further developed user cost function that captures the impact of unreliability 

on passengers, and by accounting for how unreliability propagates from one cycle to 

another as in [5].   

User Impacts of Reliability 
To model the tradeoff of reliability against speed, the first need is for a cost function that 

accounts for the impacts of unreliability on users. Traditional measures of reliability on 

long headway routes – percentage of trips that are early / on-time / late, or standard 

deviation of schedule deviation – are measures of operational quality, not measures of 

user impact. Extending our work on waiting time reliability [6], we propose two user 

impacts of unreliability:  excess waiting time, and potential travel time (also called buffer 

travel time), which are related to extremes of bus arrival time and departure distributions.  
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User impacts related to reliability and holding are illustrated in Figure 1. The top half of 

the figure shows the distribution of a bus’s departure time from a stop i and its arrival 

time at a stop j on a route without timepoint control. We treat segment running time as 

including dwell time at a segment’s end stop, so that if there is no holding, departure time 

equals arrival time. The travel time of a passenger going from i to j can be divided into 

four components. We use the following notation: 

 

Depi  = departure time at stop i 

DepMeani, Dep02i = mean and 2-percentile departure time at stop i  
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Figure 1. Impact of holding on departure and arrival time distributions and on user cost components. (a) Without  timepoint control; (b) with timepoint 
control. 
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DepSchi  = scheduled departure time at stop i  

Arri = arrival time at stop i  

ArrMeani, Arr95i = mean and 95-percentile arrival time at stop i 

Onsi, Offsi = boardings and alightings per trip at stop i  

C = scheduled cycle time 

hi = P[bus is held at stop i; also called the strictness of timepoint i 

 

The first part of a passenger journey, not shown in the figure, includes their access time 

to reach the stop, plus the time spent between their arrival and Dep02i, the 2-percentile 

departure time at i. As we argue in [6], passengers using long headway routes may be 

assumed to arrive before Dep02i in order to limit the chance that they miss the bus. Doing 

so internalizes the cost of occasional having to wait a long time for a missed bus. This 

part of a passenger’s waiting time is omitted from the cost function because it is 

unavoidable, related mainly to uncertainty in access time and to the planned headway. 

 

The second part of a passenger journey is excess waiting time, running from Dep02i to 

Depi, with average length DepMeani – Dep02i, which corresponds to the early tail of the 

departure time distribution. It is called excess waiting time because if service were 

perfectly reliable, it would be zero. The next part of a passenger journey is riding time, 

running from departure at i to arrival at j, with average length ArrMeanj – DepMeani. The 

final part is related to how much time passengers have to budget for their journey. We 

assume that passengers, wanting to limit the probability of arriving late at their 

destination, budget for the 95-percentile arrival time. Potential travel time is the 

difference between their actual arrival time and their budgeted arrival time; its average 

length is therefore Arr95j – ArrMeanj, which corresponds to the late tail of the arrival 

time distribution. While passengers are not actually traveling during this time, it still 

represents a cost to them, since time budgeted for travel, even when redeemed because 

the bus doesn’t arrive that late, cannot be used as freely as if it were not thus encumbered. 
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The bottom half of Figure 1 shows how user impacts change when timepoint holding is 

applied at stop i and at intermediate stops between i and j. The departure distribution at i 

has a probability spike hi, representing the early tail of arrival time distribution that is 

truncated by holding; excess waiting time is therefore reduced dramatically. Holding 

applied systematically along a route will tend to increase ArrMeanj increases more than 

DepMeani, resulting in an increase in average riding time. On the other hand, holding 

tends to increase Arr95j by a much smaller amount than it increases ArrMeanj, reducing 

potential travel time, because buses arriving very late at j are likely to be buses that were 

already late at earlier timepoints and therefore not affected by holding.  

Cost Function 
The objective is  

 minimize Societal Cost = User Cost + Operating Cost (1) 

 

User cost is the sum of the three components described earlier: 

 Excess waiting cost = uWait *∑ −
j

jjj DepDepMean*Ons )02(  (2a) 

 Riding cost = uRide* ∑ −
j

jjjj DepMeanOnsArrMeanOffs )**(  (2b) 

 Potential travel time cost = uPot *∑ −
j

jjj ArrMeanArrOffs )95(*  (2c) 

Unit costs uWait, uRide, and uPot should reflect traveler utility. As discussed in [6], a 

plausible set of relative values that is consistent with demand modeling research is 1.5 : 

1.0 : 0.75, respectively.   

The three user cost components shown in Eqs. 2(a)-(c) depend on four summary 

measures of the departure and arrival time distributions:  Dep02j, DepMeanj, ArrMeanj, 
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and Arr95j. The user cost function can be rearranged as a sum of components related to 

these four measures: 

 

User cost =       

  – uWait * )02(∑
j

jj*DepOns   

 + (uWait –  uRide) * ∑
j

jj DepMeanOns )*(   

 + (uRide –  uPot) * ∑
j

jj ArrMeanOffs )*(   

 + uPot *∑
j

jj ArrOffs )95*(  (3)  

 

A second challenge for modeling the reliability – speed tradeoff is to specify an operating 

cost function that accounts for the effects of reliability. Wirasinghe [3] used a penalty 

function for late arrivals, which only begs the question of how to weigh the penalty 

function. We observe that service reliability affects operating cost by determining the 

need for the scheduled recovery time needed to prevent lateness from growing 

systematically from cycle to cycle. Therefore, operating cost is assumed proportional to 

cycle length: 

 Operating Cost = uOp * C (4) 

where uOp is the cost per vehicle-hour and C is the sum of scheduled running time and 

layover or recovery time, with the constraint that C be long enough that mean dispatch 

lateness be the same at the start of a trip as at the start of the next cycle. Formally, then, 

we require that  

 DepMeann+1= DepMean1 + C (5) 
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where DepMeann+1 is the mean dispatch time for starting the next cycle after necessary 

layover and holding (if early) until the scheduled start of the next cycle.  

Operations Model 
To design a route running time schedule that minimizes the proposed cost function, an 

operations model is needed that will predict stop arrival and departure time distributions 

as a function of the running time schedule. The running time schedule consists of a cycle 

time C and a set of scheduled departure times at every timepoint. The set of stops 

designated as timepoints is assumed specified. By convention, scheduled departure time 

at stop 1 is time 0. 

 

A route is modeled as consisting of n stops that form a cycle. Stop 1 represents departures 

from the start terminal, stop n represents arrivals at the end terminal (which is typically 

the same location as the start terminal), and stop n+1 represents departure from stop 1 on 

the next cycle. Segments between neighboring stops represent running time, except for 

the segment between stops n and n+1, generically called a layover segment, which 

represents time needed to turn the vehicle around (or deadhead to the start terminal if the 

start and end terminals are not at the same location), load passengers for the next trip, and 

give operators a minimum necessary rest. If a route has a midcyle terminal, it can be 

modeled as a pair of stops (one for alighting, one for boarding) separated by a layover 

segment.  

 

The operations model is simplified by assuming that segment running time is 

independently distributed, unaffected by the lateness of a vehicle or its leader. On busy, 

short headway routes, this assumption is clearly invalid because of how dwell time is 

affected by passenger load, which depends on headway. On long headway routes, 

however, most passengers will use their targeted bus, and so dwell time independence is a 

plausible assumption. A more complex operations model may be needed if operators can 

speed up when running late, or if random traffic delays show significant correlation 
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between segments. On the other hand, intentionally slowing down (“killing time”) when 

running early can be ignored, because it simply shifts holding a little ways upstream of 

the timepoint, with minimal effect on user or operating costs. 

 

With the independence assumption, given an initial distribution of departure time at stop 

1, the distributions of arrival and departure times at subsequent stops can be determined 

recursively. Arrival time at a stop is the sum of departure time from the previous stop and 

running time on the segment between them, and so the arrival time distribution is the 

convolution of the distributions of those two addends. The departure time distribution at a 

stop is the same as its arrival time distribution, except at timepoints where early arrivals 

are truncated to create a probability spike hi at the scheduled departure time. Holding 

after the layover segment likewise applies at stop n+1, with departures held until time C. 

The requirement of consistent dispatch lateness (Eq. 5), along with inclusion of C in the 

cost function, makes the stop 1 departure time distribution endogenous.  

Numerical Example  
Our numerical examples use a hypothetical route with n = 6 stops linked by five running 

time segments and a layover segment that follows stop 6. Stops 2, …, 5 are eligible to be 

designated as timepoints. There are 160 ons and offs per trip distributed non-uniformly 

over the stops. Segment running time follows a shifted and truncated lognormal 

distribution with a standard deviation of 4.5 minutes on each segment. Necessary layover 

time has a triangular distribution of decreasing probability from a minimum of 1 minute 

to a maximum of 6 minutes. Aggregating over the route, the standard deviation of cycle 

time, without holding, is 10.1 minutes. 

 

Arrival and departure time distributions were calculated explicitly for each stop using 

MatLab. Consistency between the mean stop 1 and stop n+1 departure times was 

obtained by running several warm-up cycles, adjusting C as needed until the means of the 

distributions were within 0.1 s. By searching from below for the shortest possible 
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recovery time that avoids systematically increasing delay in the next cycle, the optimal 

recovery time is found for any running time schedule. 

 

Figure 2 shows how user and operating cost varies with the scheduled running time, with 

running time distributed along the route in proportion to uncontrolled running time. 

Every eligible stop is a timepoint. Scheduled running time is expressed as a ratio to mean 

uncontrolled running time. When that ratio is 0.6, there is no timepoint control because 

buses are always running late. Cost components are shown as differences from this no-

timepoint case in dollars per cycle, with unit costs of $9, $6, and $4.5 per passenger-hour 

for waiting, riding, and potential travel time respectively, and $80 per vehicle-hour. Cycle 

time, and therefore recovery time, is optimized in every case. 
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Figure 2. Cost components versus scheduled route running time. Route running time (x-axis) is given 
as a ratio to mean uncontrolled running time. Recovery time is optimized for each case. 
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Results show how the waiting cost falls dramatically as slack is added to the running time 

schedule. Adding slack time also reduces potential travel time, and increases riding time, 

as expected. Total cost has a U-shape, with an optimum when scheduled segment running 

time is 1.26 times the mean uncontrolled running time.   

 

A very interesting result is that until the amount of slack in the running time schedule 

reaches about 35%, the optimal operating cost, which is proportional to cycle length, 

stays virtually unchanged. In this range, slack time added to the running time schedule is 

essentially subtracted, minute for minute, from scheduled recovery time. This is 

significant, because it suggests that timepoint holding can be introduced without 

necessarily increasing operating cost, contrary to conventional wisdom. 

 

Results of more numerical experiments are given in [7]. In this paper, we focus on 

gaining insights into the form of an optimal running time schedule by analyzing 

optimality conditions.  

Marginal Impacts of Schedule Variables 
The control variables in the optimal running time schedule design problem are C and 

SchDepi for every timepoint. Thanks to the separable form of the cost function, the 

marginal impact of a change in any schedule variable can be formulated as the sum of its 

impact on operating cost and on Dep02j, DepMeanj, ArrMeanj, and Arr95j.  

Impact of a Change in Scheduled Departure Time 

Impact on 2-Percentile Departure Time 

If stop i is a timepoint, it can be assumed that 

 hi > 0.02  (6) 

 

and therefore that 

 Dep02i = DepSchi  (7) 
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Therefore,  

 

 
⎭
⎬
⎫

⎩
⎨
⎧ =

=
otherwise 0
for  1 ij

dDepSch
dDep02

i

j  (8) 

 

 

Impact on Mean Departure Time 

If stop i’s scheduled departure time is made later by a marginal amount dDepSchi, 

departure time at stop j will be affected only for trips that were (1) held at i, which occurs 

with probability hi, and (2) arrive late at i without being held at any timepoint between i 

and j, by virtue of arriving late at every timepoint in between. Because of the cyclical 

nature of the route, the change dDepSchi applies to previous cycles as well, and so an 

impact can also arise from trips that were held at i in a previous cycle, arrive late at j in 

the current cycle, and are not held (by virtue of being late) at any timepoint or terminal 

after being held at i. For stops that are timepoints, let  

 

P[unheldijk|heldi] = P[given that a bus departs stop i on time in cycle m, that it 

arrives late at j in cycle m + k without having been held in 

between]  

 

with P[unheldii0|heldi] = 1 by definition. Summing over past cycles, let 

 

 P[unheldij|heldi] = Σk > 0  P[unheldijk|heldi] 

 

Because recovery time tends to limit the probability of passing through a terminal 

without being held, contributions to the sum from previous cycles can be expected to be 

small. In any event, 
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  timepointa is if ]|[* jheldunheldPh
dDepSch

dDepMean
iiji

i

j =  (9) 

 

As a general trend, P[unheldij|heldi] decreases as the number of intervening timepoints 

between i and j increases, both because each intervening point is an opportunity to 

“catch” an early trip, and because timepoints have schedule slack that are meant to reduce 

lateness. Because of the especially strong ability of terminals to absorb lateness thanks to 

their scheduled recovery time, one can expect P[unheldij|heldi] to be small if j < i unless 

the route has no terminal (e.g., a loop shuttle in which vehicles never empty). 

P[unheldij|heldi] also depends on the relative strictness of timepoints i and j, increasing as 

timepoint i becomes stricter and as timepoint j is becomes less strict. 

 

If j is not a timepoint, the impact to mean departure time at j will be the same as the 

impact to the preceding timepoint. If we define 

  

 b(j) = j if j is a timepoint; otherwise, the timepoint before j 

 

then Eq. 9 can be generalized to  

 

  ]|[* )(, ijbii
i

j heldunheldPh
dDepSch

dDepMean
=  (9a) 

 

Impact on Mean Arrival Time 

The marginal impact of a change in DepSchi on mean arrival time at j is the same as its 

impact on mean departure time at (j-1), since by assumption running time from departure 

at (j-1) to arrival at j is unaffected:  
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  1

i

j

i

j

dDepSch
dDepMean

dDepSch
dArrMean −=  (10) 

 

It may seem intuitive that a change in DepSchi will only affect the riding time of 

passengers who are traveling through i; however, this is not necessarily the case. 

Consider passengers traveling from j to k, with i < j < k.   Their marginal change in riding 

time is  

 

(dArrMeank – dDepMeanj)  = dDepSchi *  hi * (P[unheldi,k-1|heldi] – P[unheldij|heldi]) 

 

which will be zero only if P[unheldij|heldi] =P[unheldi,k-1|heldi], which in general is not 

the case. In fact, because P[unheldi,k-1|heldi] > P[unheldij|heldi], holding tends to decrease 

the riding time of passengers who board downstream of the holding point.    

 

This apparently counterintuitive result arises because riding time is the sum of 

uncontrolled running time plus holding time. The former is (by assumption) unaffected 

by timepoint schedules; however, stricter holding at an upstream stop reduces the need 

for holding at later timepoints, lowering riding time for people boarding downstream.  

Impact on 95-percentile Arrival Time 

Let fArrj(t) and FArrj(t) be the PDF and CDF, respectively, of arrival time at j, and let to 

be the 95-percentile arrival time at stop j, that is, the time for which FArrj(to) = 0.95. If 

scheduled departure time at i increases by dDepSchi, trips that were held at i in either the 

current or a previous cycle, have not been held since, and arrive at j a moment before to 

will now arrive after to. The result will be to increase the fraction of arrivals after to, and 

therefore to decrease FArrj(to) by an amount dFArrj(to) given by: 

 

 dFArrj(to) = –hi * dDepSchi * Σk > 0  P(unheldijk) *  fRunijk|unheld(ijk)(to + kC – DepSchi) (11) 

 

where  
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P(unheldijk) = P(a trip will not be held between an on-time departure at i and its 

arrival, k cycles later, at j) 

fRunijk|unheld(ijk)(t) = probability density of running time from an on-time departure 

at i to arrival at j, k cycles later, given that it wasn’t held at any timepoint 

or terminal in between. 

 

With this decrease in FArrj(to), the 95-percentile arrival time at j will be changed to to + 

dArr95j , where 

 dArr95j = –dFArrj(to) /  fArrj(to) (12) 

 

Combining these last two results, 

 

 ( )  
)(*)(

* 0 )(|

jj

k ijijkunheldijkijk
i

i

j

Arr95fArr
DepSchkCArr95fRununheldP

h
dDepSch
dArr95 ∑ ≥

−+
=  (13) 

 

By Bayes’ theorem, this marginal impact is simply  

 P[held at i and not held since | arrive at j “very late”] 

where “very late” means in the neighborhood of Arr95j. As a general trend, this marginal 

impact should be greatest when i is a terminal or other strict timepoint, and should fall as 

j becomes more distant from i, especially if a terminal separates j from i (i.e., if j < i), 

because of how intervening timepoints and especially layover points decrease the 

probability of arriving at j without having been held in between.  

Impact of a Marginal Change in Cycle Time  

A marginal increase dC in cycle time increases recovery time at the terminal, changing 

the stop 1 departure time by –dC for the fraction (1 – h1) of trips that leave stop 1 late. 
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That change in departure time propagates to downstream stops until a bus is held at a 

timepoint. Using similar logic to before, 

 

  0
02

=
dC

dDep j  (14) 

 

  ]|[*)1(*)1(
0 1),(,1∑ ≥

+−−=
k kjbi

j unheldunheldPkh
dC

dDepMean
 (15) 

 

 

   1

dC
dDepMean

dC
dArrMean jj −=  (16) 

 

 

 ( )  
)(*)1(*)(

*)1( 0 )(|1
1

jj

k jjkunheldjkjkj

Arr95fArr
kCArr95fArrkunheldP

h
dC

dArr95 ∑ ≥
++

−−=   

 = P(not held at stop 1 or at any stop in between | arrive “very late” at j) (17) 

 

where fArrjk|unheld(jk(t) = probability density of arriving at time t at stop j after leaving the 

terminal k cycles earlier without being held there or at any timepoint since. The (k+1) 

term appearing in Eqs. 15 and 17 reflects that fact that each time a bus cycles back to stop 

1, its lateness will decrease by dC. 

 

Of course, a marginal change in cycle time also affects operating cost:  

 

  )Cost Operating( uOp
dC

d
=  (18) 
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Optimality Conditions 

Because of the separable cost function, the marginal cost to users of a change in a 

scheduled departure time or a change in cycle time is simply a sum of the various 

marginal impacts shown earlier, weighted by the appropriate number of ons, offs, and 

unit costs, consistent with Eqs. 1, 3, and 4. For a change in scheduled departure time, 

 

 d(Total cost) / DepSchi  =    

 – uWait * Onsi  

 + hi * (uWait –  uRide) * ∑
j

ijbij heldunheldPOns ) ]|[*( )(,   

 + hi * (uRide –  uPot) * ∑ −
j

ijbij heldunheldPOffs ) ]|[*( )1(,   

 + hi *uPot * ( )∑ ∑
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+
≥

j jj

k ijijkunheldijkijk
j Arr95fArr

DepSchkCArr95fRununheldP
Offs 0 )(| )(*)(

* (19)  

 

Setting this derivative equal to zero, one can solve for hi, yielding an optimality condition 

for the strictness of a timepoint:  

 

 ( )∑
=

)( involving many terms
*

unheldP
OnsuWait

h i
i  (20)  

 

Likewise, setting the derivative of total cost with respect to C equal to zero yields an 

optimality condition for dispatch reliability at stop 1, with implications for the optimal 

amount of recovery time: 



Furth & Muller   

 

 

19

 

 ( )∑
−=

)( involving many terms
11 unheldP

uOph  (21)  

We call h1 the dispatch reliability, since it is the probability of an on-time dispatch from 

the terminal. 

Insights into Optimal Running Time Schedules 
Because the conditional probabilities related to being held at upstream stops are 

themselves outcomes of operating under a given timepoint schedule, marginal analysis 

does not afford a closed form solution. Nevertheless, having explicit formulas for 

marginal impacts can still be useful in developing optimizing algorithms, and for the 

insight they offer into optimal scheduling. We have already mentioned the result that 

holding tends to reduce riding time for passengers boarding downstream of a timepoint. 

Some further points are offered in this section.    

Optimal Timepoint Strictness 

From Eq. 20, one can see that a timepoint’s strictness should increase with its boardings 

demand. This results stems from the fact that of the four marginal impacts of a change in 

scheduled departure time at a stop (Eqs. 8, 9, 10, and 13), the impact on waiting time is 

direct and concentrated on passengers boarding at that stop, while the other impacts are 

spread over many stops. There is no such concentrated effect from alightings demand, 

which therefore has far less influence on timepoint schedules. 

 

One corollary of this result is that if there are to be a limited number of timepoints, stops 

with heavier boarding rates are preferred. A second is that compared to a policy of 

distributing schedule slack uniformly along a route, an optimal schedule will shift 

running time to segments ending at stops with heavy boardings. This phenomenon can be 

seen in Figure 3, which presents, for the example route described earlier, a comparison of 

an optimal schedule against a schedule in which running time slack is distributed 

uniformly (with an optimized percentage slack). The excess boardings index shown for 
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each stop is proportional to the amount by which a stop’s boardings exceed average 

boardings per stop. A stop’s running time adjustment is defined as how much longer is 

the optimal scheduled running time for the segment ending at that stop compared to the 

uniform-slack running time. For example, at stop 4, a heavy boardings stop, the optimal 

running time for the segment ending at stop 4 is 3.25 minutes longer than what it would 

be if a uniform optimized percentage of slack were applied to the route, while stop 3, 

with less than the average boardings demand, has a negative adjustment to its segment’s 

running time.    
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Figure 3. Excess boardings (gray bar, dimensionless) and running time adjustment (dark bar, in 
minutes) by stop. 

 

The location of a stop along the route also has an effect on its optimal timepoint 

strictness. The denominator of Eq. 20, a sum involving probabilities that buses arrive at 

downstream stops without having been held since the subject stop, tends to be greatest for 

the early stops on a route, because later stops have fewer downstream stops they can 

affect without cycling through the layover point. Therefore, closeness to the start of the 

route tends to amplify the effect that boardings demand has on segment running time. 

This effect can be seen in Figure 3, where the size of the running time adjustments 
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(whether positive or negative) relative to excess boardings is far greater at the first two 

stops that at the later stops.  

 

For our example route, the welfare difference between using schedules optimized by 

timepoint and schedules with only an optimized percentage slack was small but not 

negligible. Compared to operating with no timepoints, the incremental benefit of 

optimizing each timepoint individually is 5.2%, or the equivalent of 0.34 minutes of 

riding time per passenger. 

Holding at Timepoints versus at Dispatch Terminals 

The optimality condition for dispatch reliability (Eq. 21) shows that there is no 

universally optimal dispatch reliability; instead, optimal dispatch reliability depends on 

how strict timepoint control is along the route. The more control is exercised at 

timepoints, the less need for control at the dispatch terminal, and therefore the smaller is 

the optimal dispatch reliability. This trend is illustrated for our example route in Figure 4. 

As the scheduled running time increases, optimal dispatch reliability falls from 92% 

when there is no timepoint control to 84% at the optimal scheduled running time (1.26 

times the mean uncontrolled running time), and lower still as more slack in inserted into 

the schedule.  
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Figure 4. Optimal dispatch reliability and slack time (expected time spent holding) spent en route 
and during layover versus scheduled running time. Running time and slack time are expressed as a 
ratio to mean uncontrolled running time. Recovery time is optimized for each case. 

 

Further insight into optimal schedules can also be seen in Figure 4 by examining how the 

expected amount of time spent holding (“slack”) varies with scheduled running time. As 

scheduled running time increases, so does expected time spent holding at timepoints (“en 

route slack”); but at the same time, almost in perfect 1-to-1 substitution, the amount of 

holding occurring at the terminal (“layover slack”) decreases, with the result that the total 

amount of slack in the schedule stays virtually unchanged, until the scheduled running 

time reaches a rather high level.  

 

This is an important result that runs counter to conventional wisdom. Many people tend 

to separate decisions about needed recovery time from en-route slack time, and imagine 

therefore that imposing stricter timepoints must necessarily lead to longer cycle times and 

therefore greater operating cost. However, when timepoints are made stricter, two effects 

diminish the optimal recovery time. First, the arrival distribution at the final stop 
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becomes tighter, making less recovery time necessary to achieve the same probability of 

on-time dispatch. Second, the optimal dispatch reliability is itself lower.  

 

An important practical consideration that can limit application of this result is the need, 

often contractual, for operators to have sufficient rest time during layovers. Our 

numerical experiments suggest that on routes with high running time variability, the 

optimal recovery time will often be sufficient to satisfy operator rest needs as typically 

expressed by both labor contracts and scheduling practice. However, on routes with high 

levels of reliability, the optimal recovery time may be too small to meet operator rest 

needs. In such a case, operator layover needs will govern the scheduled recovery time, 

and optimal scheduled running time will be smaller, because with more slack built into 

the layover, less will be needed en route.  

Optimal Number of Timepoints 

The fraction of stops that are treated as timepoints is a point of difference between U.S. 

practice and practice in the Netherlands and many other European countries. In the U.S., 

it is typical for about 5 to 10% of the bus stops serve as timepoints, which are the only 

stops shown in published schedules. In the Netherlands, scheduled departure times are 

published for every stop, and every stop with boardings is treated as a timepoint, except 

where space to hold buses is lacking. The nature of the cost function is such that it can 

only help to increase the number of stops that are designated as timepoints, assuming 

scheduled departure times are optimized for each point, because the solution space 

permits very early scheduled departures that have virtually the same effect as no control. 

However, one would expect that there are diminishing benefits to increasing the number 

of timepoints.    

 

For the simple route we modeled, the benefits of increasing the number of timepoints can 

be seen in Figure 5. In every case, the highest demand stops were selected as timepoints, 

and departure times at each timepoint and recovery time at the terminal are optimized. 
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One can see how the benefits continue to accrue with each added timepoint, although 

most of the benefit is realized when two of the four eligible stops are timepoints.  

 

 

 

Figure 5. Cost versus number of timepoints on a 6-stop route. 

 

Conclusion 
A proposed framework for measuring user costs related to unreliability permits one to 

explore the tradeoff between reliability and speed inherent in the design of running time 

schedules with timepoints. User costs are related to mean and extreme values of the 

arrival and departure time distributions at each stop. Optimality conditions for timepoint 

strictness and dispatch reliability were derived. They show that timepoints should be 

stricter where boardings are greater, with this effect strongest for stops near the start of 

the route, and that dispatch reliability should be worse as timepoint control becomes more 

strict. Up to a point, slack time added to a schedule en route (i.e., at timepoints) simply 

substitutes for slack time at layover, meaning than timepoint holding does not necessarily 
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increase cycle length or operating cost. Benefits increase with the number of timepoints, 

but with diminishing returns.    
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