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a method for optimization of stop location on an existing route that 
includes realistic and localized estimates of its impacts on walking 
time, riding time, and operating cost. Application to two routes in 
the Boston, Massachusetts, area indicates that it finds a solution 
better than both the existing stop set and that derived by experts using 
simplistic yet state-of-the-art methods.

IMPACTS OF CHANGES TO STOP LOCATION

Changes to stop locations on existing routes (which stops to keep, 
drop, or insert) have three main impacts: walking time, riding time, 
and operating cost. As stops become farther apart, walking time 
increases, whereas riding time and operating cost decrease. These 
countervailing impacts create a trade-off whose optimum depends 
on the relative weights given to each impact.

A fourth possible impact that this analysis ignores is that demand 
may change. Demand response can be divided into two kinds. 
One is an elastic response to service in which service becomes 
slightly slower or faster and walking distances become slightly longer 
or shorter. Although impacts will be amplified when this effect is 
accounted for, it is unlikely to change the optimal decision because 
the best way to attract new passengers is to offer good service to 
existing passengers.

The second type of demand response is a loss of riders if stops 
become spaced so far apart that some riders consider the stop to be 
no longer accessible. This kind of demand change can be important 
if long distances between stops are considered. For this analysis, it 
is assumed that transit agencies are under a mandate not to space 
stops so far apart that they become inaccessible; when this constraint 
is accounted for by use of a maximum stop spacing, this second type 
of demand response can also be ignored.

CONTINUUM MODELS

A general formulation for determination of the optimal spacing 
between stops can be derived by use of a continuum model; good 
treatments are given by Wirasinghe and Ghoneim (2) and by Van 
Nes and Bovy (3). The street network is assumed to be rectilinear 
and infinitely dense, so walking paths to a stop can be divided into a 
component transverse to the transit line (which can be ignored) and 
a component parallel to the transit line. This assumption, in effect, 
places all demand along a single line. In addition, demand density 
is assumed to vary slowly along a line, so that one can meaningfully 
consider the demand density in a neighborhood to be a point. In those 
models, as in the one described here, the service area of a transit line 
is assumed to be an area within a fixed distance (e.g., 0.25 mi) of the 
transit line.
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A discrete model of bus stop location in which candidate stops are 
either selected or not has several practical advantages over classical 
continuum models. An evaluation method for stop sets that uses par-
cels as units of demand and the street network to model walking paths 
between transit stops and parcels has been proved effective and realis-
tic. In this framework, the on–off counts at existing stops are used to 
allocate demand to the parcels in each stop’s service area in proportion 
to the stops’ trip-generating ability. The result is a demand distribu-
tion that matches existing counts and reflects variations in land use. 
However, with demand modeled on the street network, the placement of 
service boundaries midway between neighboring stops becomes invalid 
because of irregularities in the network of access streets and curves in 
the transit route. The dependence of a stop on more than its immediate 
neighbors for determination of its service area complicates the process 
of optimization of stop locations by use of dynamic programming. The 
proposed solution expands the state space so that a stop’s service area is 
dependent on the two prior and the two succeeding stops. The resulting 
dynamic programming model was tested on two bus routes and found 
solutions that were better than the existing stop set and the stop sets 
proposed by consultants by use of simple yet state-of-the-art models. 
This paper describes a method for optimization of stop locations on 
an existing route that includes realistic and localized estimates of its 
impacts on walking and riding times and operating cost.

A common complaint about bus service is that it is too slow because 
buses make too many stops. A rule of thumb in the industry is that 
about 30% of the running time on a typical bus route is lost at stops. 
Although the loss of time required for passengers to board and 
alight is expected, other losses, such as those due to deceleration, 
acceleration, and opening and closing of doors, or roughly 8 to 15 s 
per stop, could be reduced by consolidation of stops. This reduction 
was shown by Reilly, who noted the greater stop spacing found on 
European transit routes and the correspondingly speedier service 
(1). In the last few years, several U.S. transit agencies have applied 
or considered the use of stop consolidation to make their services 
more efficient and competitive.

Until now, the methods used to make and analyze decisions about 
stop spacing have been extremely simplistic. This paper describes 
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With demand collapsed to a single dimension, the service area 
boundary for a stop simply becomes the midpoint to neighboring 
stops, adjusted to account for the fact that the cost-minimizing 
passenger will walk a bit farther downstream than upstream to take 
advantage of riding time savings (4, 5). As a result, service area 
boundaries shift upstream for boarding passengers and downstream 
for alighting passengers. Therefore, a stop’s service area bounda-
ries for boarding passengers traveling in one direction will differ 
from the boundaries for alighting passengers traveling in the same 
direction and for boarding passengers traveling in the opposite  
direction.

With the continuum approach, optimal stop spacing can be 
derived by the use of calculus. Although this approach is useful for 
establishment of a general guideline for stop spacing, it has three 
main weaknesses. First, demand often does not vary slowly. Sig-
nificant punctuations in demand can occur because of different land 
uses (compare, for example, a hospital versus a cemetery), and stop 
locations should be sensitive to the origins of the demand. Second, 
the street network is often not ideal; turns on the transit route and 
irregularities in the street network influence people’s walking paths 
and can make certain stop locations more favorable. Third, the result 
of such an optimization is hard to apply because stops should nor-
mally be located at intersections (both for shorter walk access and 
for proximity to crosswalks) and the optimal stop spacing may not be 
a convenient multiple of block length. For example, suppose inter-
sections are 200 m apart and the optimal stop spacing is 300 m; 
should stops be located at every stop, every other stop, or somewhere 
in between?

DYNAMIC PROGRAMMING  
WITH DISCRETE MODEL

Furth and Rahbee were the first to propose a discrete model for 
optimization of stop spacing for an existing route (5). It treats each 
intersection along the route as a candidate stop and then selects the 
optimal set of stops from that list. To model punctuations in demand 
density, they allowed an analyst to assign different levels of density 
(1, 2, 3, etc.) to each intersecting street and to the longitudinal streets 
between each intersection. For the existing set of stops, the demand 
at a stop [the numbers of on- and off-loadings (referred to here as 
ons and offs) per hour] is reflected back to the block faces in the 
stop’s service area by allocation of demand in proportion to a block’s 
strength, that is, its length multiplied by its demand density. When 
new combinations of stop locations are considered, the number 
of ons and offs at a stop can simply be determined by aggregation 
over the blocks in its service area. Walking distance can likewise be  
modeled as a sum of the transverse and longitudinal distances from 
the center of each block face.

In the discrete model, the impact of a candidate stop on riding 
time is a fixed loss that accounts for deceleration, acceleration, and 
opening and closing of doors multiplied by the probability of stop-
ping, which is based on a Poisson model of passenger arrivals. Both 
arriving and departing passengers contribute to the probability that 
a stop will be requested; passenger demand, in turn, is based on 
the demand in the stop’s service area multiplied by one headway. 
The discrete modeling framework is not designed to make fine-level 
decisions about where at an intersection a stop should be placed 
(e.g., on the near side or the far side); analysts are expected to make 
those choices on the basis of local factors. One paper has analyzed 

the effects of stop placement to recommend various values of time 
lost because of stopping (6).

The model of Furth and Rahbee still makes significant approxi-
mations by use of an assumption of a regular, rectilinear grid (5). 
This conveniently reduces the demand profile to a single dimen-
sion, equivalent to a combination of point demands and uniformly 
distributed demands along a line, like loads on a structural beam.

With demand thus reduced to a single dimension, the optimal 
stop location problem can easily be solved by use of dynamic pro-
gramming (DP). The impacts are additive, and a stop’s service area 
depends only on which candidate stops are selected to be a stop j 
for inclusion in the service area. The impact of the decision over 
what should be the next stop after stop j is independent of the stops 
that were chosen upstream of the stop at the starting point for all 
stops except the previous one, since that decision affects the prob-
ability that a bus would have to stop at the stop that comprises the 
starting point.

Let stops be numbered consecutively from the start to the end 
of the line, and consider three successive stops, i, j, and k. With 
demand along a line, this (i, j, k) triplet defines the service area of 
stop j and allows one to define stop-specific demand as ons( j; i, k) 
and offs( j; i, k (ons and offs per hour)), where ( j; i, k) represents 
the demands at stop j when its predecessor is i and its successor is j.

All of the impacts associated with stop j can then be determined by 
use of the defined model of walking routes, the probability of stopping, 
and delay because of stopping. These impacts are as follows:

 walk( j; i, k) =  walking cost for all passengers walking to or from  
stop j when its predecessor is i and its successor 
is j,

 ride( j; i, k) =  riding cost for all passengers between j and k when 
stop j’s predecessor is i and its successor is j, and

 oper( j; i, k) =  operating cost between j and k when stop j’s 
predecessor is i and its successor is j.

These cost functions include unit costs applied to walking time, 
riding time, and running time. The riding time and operating cost 
functions include dwell time and acceleration delay at stop j and 
deceleration delay at stop k.

The backward recursive DP formulation is
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where f ( j; i), the optimal return function, is the cost required to 
serve the route from stop j to the end, given that the stop before j 
is stop i. A maximum and a minimum permitted stop spacing are 
accounted for by definition of minimum (min) P( j) and maximum 
(max) P( j) to be the farthest and the closest predecessors of each 
stop j, respectively, and min S( j) and max S( j) to be the closest and 
the farthest successor of each stop j, respectively. In the DP algo-
rithm, the stage variable is j, and the algorithm has only one state 
variable, i. The algorithm begins with j as the final stop and initial-
izes f ( j; i) at 0 for all legal values of i; it then proceeds backwards, 
with j being reduced by 1 and Equation 1 used to solve for f( j; i) 
at 0 for all legal values of i. The algorithm thus proceeds until j is 
equal to 1. When stop 0 is allowed to be a dummy start stop, the 
value of f (1; 0), again found by the use of Equation 1, is the optimal 
solution for the route.
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DISCRETE MODELING ON REAL  
STREET NETWORK

Unlike continuum modeling, discrete modeling does not give a for-
mula for optimal stop spacing; it gives a list of optimal stop loca-
tions selected from a set of candidate stop locations, which makes 
the results directly applicable. However, although Furth and Rahbee 
proved the value of discrete modeling, the subjective assignment of 
demand intensity level required made it impractical, and its assump-
tion of a regular, rectilinear network made it too idealistic for many 
situations (5).

The first model of demand for the stop location problem that 
went beyond a single dimension was developed in two previously 
published papers (7, 8). The unit of demand is a land parcel which 
is located on the real street network. Passengers use shortest paths 
along the street network between their parcel and their stop. Existing 
geographic information system databases of parcels, streets, and tran-
sit stops make such an analysis feasible. For consistency, passengers 
are assumed to minimize their combined travel time (walking time 
plus riding time from the stop that they walk to, with the same weights 
used in the global optimization), which creates the same offset in 
service area boundaries mentioned earlier.

With demand originating at parcels on the street network,  
service area boundaries for each stop are no longer defined by 
one-dimensional constructs such as the perpendicular bisector of a 
line segment. Service areas are not modeled explicitly; rather, they 
simply fall out as an outcome of each passenger selecting the stop 
that minimizes that passenger’s weighted walking plus riding time 
from the stop that they walk to in a process that can be considered a 
Voronoi diagram on a network. The walking distance along the street 
network from each parcel to each stop is directly measured.

To assign demand to a parcel, service areas for the historic stop set 
are first determined by the shortest-path or Voronoi process. Then, 
for each historic stop, historic boarding demand (an input) is allo-
cated over all parcels in the service area in proportion to a parcel’s 
production strength. A parcel’s production strength is the product of 
its size variable (e.g., gross floor area) and a production coefficient 
reflecting the parcel’s land use (e.g., single-family residential, multi-
family residential, and commercial). Production coefficients were 
based on production factors found in the ITE handbook Trip Gen-
eration (9). Likewise, historic alighting demand is allocated over 
parcels in proportion to each parcel’s attraction strength. Additional 
factors account for diminishing demand as one gets farther from a 
stop and for competition with other transit routes.

With the use of allocation logic rather than direct estimation of 
demand for each parcel, demand along the route is completely con-
sistent with existing counts. However, when parcel attributes (land 
use type and size) are used to allocate demand, the spatial distribution 
of the parcel within each stop’s service area reflects the variations in 
land use within the service areas of historic stops. When demand is 
related to parcel attributes, candidate stop locations closer to parcels 
with a higher propensity for transit use are rewarded relative to 
locations farther from likely demand concentrations.

Multiple Stops Influencing 
Service Area Boundaries

As pointed out previously, when demand points are distributed spa-
tially and passengers use the real street network to access transit 

stops, a stop’s service area can be affected by more than the loca-
tion of its neighboring stops (8). Real street networks often have 
diagonal or curving streets and discontinuities (streets that do not 
continue uninterrupted within the route’s influence area), and transit 
lines often include curves and turns, which together make it pos-
sible for a stop’s service area to have boundaries with more than 
one upstream or downstream stop. Figure 1 shows an analysis of a 
service area for a transit stop in which one stop, Stop 11, has inbound 
service boundaries not only with Stops 10 and 12 but also with 
Stops 13 and 14 and even a small boundary with Stop 7.

This finding, called the “curve effect,” makes a model in which 
demand is distributed on the real street network violate a key assump-
tion of prior optimization models, including the model of Furth and 
Rahbee (5), as well as the continuum models. This assumption is that 
the demand at a stop—and, therefore, the impacts associated with a 
stop—depends only on the location of its neighboring stops. Because 
of the curve effect, it is impossible to define impacts on the basis of 
(i, j, k) triplets. The demand at stop j—and, therefore, the walking 
cost and other impacts associated with j—also depends on which 
stops precede i and which ones follow k.

The curve effect is accounted for when the discrete model is used 
to do an evaluation, that is, when the costs associated with a particu-
lar stop set are evaluated, as shown by previous examples involving 
a streetcar line in Boston and a bus route in the Albany, New York, 
area (5, 6). However, it was not accounted for by DP by use of Equa-
tion 1, which will give spurious results, depending on which stops 
before i and after k were assumed when the impact for triplet (i, j, k) 
is evaluated.

Optimization by Use of Expanded State Space

A goal of this research was to develop an optimization method by 
use of the realistic model of parcel-level demand located on the 
street network. The approach ultimately chosen to overcome the 
curve effect was to expand the DP state space to three variables with 
the assumption that a stop’s service area is defined by its previous 
two stops and its following two stops, which creates the paradigm 
of a quintuplet (i, j, k, l, m) for which impacts associated with stop k 
can be determined. This is an assumption that can be violated in 
theory but that is unlikely to be violated in most practical problems. 
Its violation would mean, for example, that Stop 10 has a service 
area boundary not only with Stop 9 and Stop 8 but also with Stop 7 
and that people along the last boundary would choose either Stop 7 
or Stop 10, skipping Stops 8 and 9.

The formulation based on quintuplets has the following recursion 
formula:
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where all of the variables are as defined previously and k is the stop 
whose impacts are being evaluated when the previous two stops are 
i and j and the succeeding two stops are l and m.

To check whether the assumption of dependence on stops out-
side the quintuplet is violated, one can track the demand (ons 
and offs) associated with each quintuplet in the optimal solution 
and check it against the given total demand. A violation of the 
assumption would mean that in the solution some parcels are dou-
bly counted or not counted at all. Given that the method seeks 
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to minimize cost and that walking cost will be underestimated if 
some passengers are not accounted for, it is likely to lean toward 
solutions in which some slivers of demand are unaccounted for, if, 
indeed, such solutions exist.

Boston, unlike most American cities, has a street network that is 
not at all rectilinear or regular. Nevertheless, the applications done 
on Boston bus and streetcar routes have had no violations or (as in 
the case in Figure 1) the amount of demand unaccounted for was 
small enough (no more than 1%) that it would not appreciably affect 
the optimal solution and would be readily detectable.

The state space expansion greatly increased the algorithm’s com-
putational burden. Because of space limitations, those computational 
issues and their solutions will not be discussed here. In the end, the 
algorithms that were coded are efficient and solved the problems 
reported in the examples section in less than 10 s on a standard 
desktop personal computer.

Accounting for Multiple Periods  
and Both Directions

As a practical matter, transit demand changes across the day, as do 
running times; however, it is impractical for stops to vary across the 
day. Multiple periods can easily be accounted for by summation of 
the impacts over all periods in Equation 2. For example, a variable 
such as walk(k; i, j, l, m) should be a sum of the impacts of walking 
cost associated with stop k over all the periods of the day for a stop 
set including the quintuplet (i, j, k, l, m).

If it is permissible to have different stop sets in the two directions 
of a route, each direction can be optimized separately. However, if 
policy is such that a route should have the same stops in each direc-
tion, then each of the terms within Equation 2 should include a sum 
over both directions.

EXAMPLE APPLICATIONS

The Massachusetts Bay Transportation Authority (MBTA) has shown 
an interest in stop consolidation on its bus and streetcar routes for 
several years. Recently, it has embarked on the Key Routes program 
to improve the service quality and image of its 15 most heavily used 
routes. Part of the Key Routes program considers stop consolidation 
to be one of several ways to increase service speed and reliability. 
Routes 1 and 57 were recently studied as part of this program.

Route 1

Route 1 is a cross-town route in Boston and Cambridge that runs 
between two major transfer points (Harvard Square and Dudley 
Square); crosses three rapid transit lines; and serves such destina-
tions as the Prudential Center, Boston Medical Center, and numer-
ous colleges and universities. Figure 2 depicts the three essential 
geographic data sets (street network, parcels represented by dots, 
and bus stops). The service area was assumed to extend 0.25 mi to 
either side of the route.

FIGURE 1  Service area boundaries on curved route with irregular street pattern (7).
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Available demand data included on and off volumes by direction 
in the a.m. and p.m. peak hours. For the purpose of this example, a 
representative “day” is treated as 5 h of a.m. peak service and 5 h 
of p.m. peak service. The two directions were optimized separately, 
consistent with MBTA policy that allows different stops by direction.

The parameters used in the cost function were as follows:

 walking speed = 1.2 m/s (4 ft/s),
 unit walking cost = $12 per passenger hour,
 unit riding cost = $6 per passenger hour,
 unit operating cost = $143 per vehicle hour,
 unit boarding time = 2 s per passenger,
 unit alighting time = 2 s per passenger,
 lost time per stop = 8.5 s, and
 headway = 8.75 min.

Parcel data were obtained from the city assessor’s offices. Rel-
evant land uses and their production and attraction coefficients for 
the a.m. period are shown in Table 1. For the p.m. period, production 
and attraction coefficients are reversed.

Analysis Results

Stop-level results for the a.m. peak southbound are shown in 
Table 2 for three scenarios: the historic stop set (which existed in 
spring 2011), the consultant’s tentative recommendation posted 
on MBTA’s website announcing a public hearing, and the optimal 
solution found by the use of quintuplet-based DP. The consultant’s 
recommendation was based on the kind of simple rule of thumb 

FIGURE 2  Streets, parcels, and southbound bus stops along Route 1.
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Route 57 Results

A second case study is MBTA Bus Route 57, which runs from 
Kenmore Station to the Watertown Yard running through Boston, 
Newton, and Watertown and whose service area also includes parts of 
Brookline and Cambridge, as shown in Figure 3. It has 45 inbound 
and 43 outbound stops and runs every 8 min during the a.m. peak 
and every 10 min midday. The analysis for Route 57 was similar 
to that for Route 1, except that the Route 57 analysis involved five 
inbound periods and six outbound periods. Table 4 shows the results 
for the inbound direction.

Stop spacing may sometimes be longer than the normal walking 
distance (U.S. customary spacing) of 0.125 mi. The optimal arrange-
ment shows spacings of 0.4, 0.46, and 0.26 mi between Stops 1 and 
3, 3 and 6, and 6 and 8, respectively, for Route 57. The reason for 
such a result is that Stops 1 and 3 are in the sparsely populated sec-
tion of the route, whereas Stops 3 and 6 have an interchange for a 
highway between them and the route geometry turns around, which 
makes the real spacing look longer than that which can be seen 
from a map. The interaction of walking path and route geometry is 
complex and may be captured only in the world of spatial analysis, 
which makes the decision for a stop to be included interesting.

Comparison of Results for Routes 1 and 57

The overall impacts are greater on Route 57 than on Route 1, with 
the DP optimum indicating a daily savings of $920, which comes 
from savings in running and riding times, offset by small increases 
in walking time. In comparison with the DP optimum, the consul-
tant recommendation, which eliminates a nearly identical number 
of stops and achieves a similar running time savings, is not as judi-
cious in its choice of stops to be eliminated and ends up increasing 
societal cost overall, at least for the parameter set chosen.

A check on total demand for all of the Route 57 and Route 1 
results shows that no demand was unaccounted for in any of the 
solutions, which supports the practicality of the quintuplet-based 
DP approach.

CONCLUSION

This paper introduces a method for optimization of stop spacing 
that is realistic. Demand is modeled at the parcel level and is sensi-
tive to both parcel attributes and historic on–off patterns. Walking 
distance to stops takes place along the actual street network, with 
passengers choosing shortest paths. The curve effect, which causes 
service areas for stops to be sometimes bordered by the service area 
of more than one upstream or downstream stop and which renders 
single-state variable DP unusable, was overcome, at least for typical 
routes, by use of a three-state formulation in which a stop’s service 
area and impacts depend only on the two prior and two succeeding 
stops. All of the necessary data from geographic databases were 
readily available.

Case studies of two Boston area bus routes revealed that on one 
route, the trade-offs involved in stop spacing appeared to be so flat 
that gains in speed were often countered by similar losses in walk-
ing times. On the other route, significant positive impacts were pre-
dicted from use of an optimal solution with 32 instead of 45 stops. 
In both cases, it was found that a consultant, using state-of-the-art 
logic, recommended similar cuts in the optimal number of stops 

TABLE 1  Land Use Parameter Data for a.m. Period

Description Code
Attraction 
Coefficient

Production 
Coefficient

Residential–commercial RC 0.05226 0.08774

Single family R1 0.0233 0.04141

Residential condo CD 0.0233 0.04141

Mobile home R1 0.0233 0.04141

Two-family dwelling R2 0.02479 0.04308

Three-family dwelling R3 0.02745 0.04293

NOTE: Measure of size is based on living area.

that represents the state of the art, which recommends that stops 
be eliminated if their demand is low and the resulting distance 
between stops would not exceed a threshold. This rule of thumb 
does not account for differential impacts to riding time (stop elimi-
nation is the most beneficial on those parts of the route with high 
through volumes), nor does it recognize that stop consolidation is 
the most beneficial at an intermediate level of demand in which 
about one person gets on or off per stop per bus, at which level the 
bus is still likely to have to stop but the number of people affected by 
consolidation is small. With higher demands, the impact on walking 
becomes large, and with low demand, the benefit of consolidation 
becomes small because stops with low demands are often skipped 
anyway.

The historic stop set has 35 stops in the southbound direction. 
Stop 20 was added at the suggestion of the consultant. The consul-
tant recommended that the number of stops be reduced to 29; the 
optimization model recommends a reduction to 20 stops. A more 
judicious choice of stops for elimination results in an optimal solu-
tion with a slightly less average walking time than that from the 
consultant’s recommendation, despite elimination of more stops, and 
therefore has a better total cost.

Impacts of Results

Results at a daily level are shown in Table 3. The two directions 
were optimized separately by consideration of the impacts on the 
two periods combined. Results for the two directions are summed. 
The number of stops recommended for the two directions combined 
falls from 71 for the historic case to 55 for the consultant recom-
mendation and 45 for the DP optimum. Compared with the historic 
case, the other two recommendations involve a little more walking, 
on average, and a little less riding time. For round-trip running time, 
the consultant recommendation saves 1.1 min and the DP optimum 
saves 2.4 min.

Despite a large difference in number of stops, the difference in 
overall impact is small, which indicates that the curve for total cost is 
rather flat near its optimum. Compared with the historic stop set, the 
optimal solution has a net societal savings of $130 per day, which is 
0.66% of the total walking, riding, and operating cost. Nevertheless, 
the value of an optimization method can be seen by comparison of 
the results obtained by that method with the consultant’s recommen-
dation, which actually has a negative overall effect for the set of unit 
costs used. Its main weakness is that its changes to stop locations 
increase the average walking time quite a bit, by 0.3 min, without 
comparable savings in riding time or operating cost.
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TABLE 2  Stop-Level Results for a.m. Period Southbound

Distance 
from Start 
(mi)

Departing 
Volume 
(pax/h)

Ons + Offs (pax/h)
Avg. Walking Time 
(min) Total Cost ($/pd)

Stop H R O H R O H R O

1 0 41 41 41.0 58.6 3.3 3.3 2.4 97 97 190

2 0.08 56 15 15.0 4.9 4.9 147 147

3 0.4 63 9 9.0 3.2 2.0 2.0 3.0 149 149 234

4 0.58 68 5 5.0 2.8 2.8 95 95

5 0.7 73 5 5.0 3.0 3.0 90 90

6 0.86 84 13 13.0 30.4 4.9 4.9 5.6 134 133 293

7 1.03 94 14 14.0 3.9 4.0 114 115

8 1.12 100 8 8.4 18.3 2.1 2.2 3.4 87 107 182

9 1.26 101 5 2.3 75

10 1.32 105 12 16.6 16.6 3.5 3.7 3.7 103 158 158

11 1.52 148 75 75.0 75.0 2.4 2.4 2.4 238 239 237

12 1.72 161 23 23.0 25.5 3.3 3.4 3.5 212 214 280

13 1.96 164 13 13.0 5.7 5.7 204 204

14 2.14 173 39 41.0 51.5 2.8 2.7 3.5 184 384 507

15 2.24 175 2 0.8 249

16 2.73 162 17 22.0 22.0 2.5 2.9 2.9 272 355 353

17 2.84 154 12 2.5 92

18 2.94 123 81 89.1 88.0 3.6 3.5 3.4 286 343 334

19 3.18 120 15 15.0 2.2 2.2 110 140

20 3.2 120 32.7 4.1 208

21 3.29 113 29 29.0 2.7 2.7 97 104

22 3.34 116 21 31.1 21.0 1.6 2.4 1.6 81 133 81

23 3.47 133 47 47.0 47.0 2.5 2.5 2.5 149 149 149

24 3.57 132 7 7.0 7.0 3.2 3.2 3.2 94 94 93

25 3.68 125 11 14.5 21.7 3.6 4.0 4.3 132 167 217

26 3.86 118 9 3.5 113

27 3.94 110 16 21.1 3.7 3.7 101 174

28 4.09 86 78 78.1 112.3 4.8 4.8 4.7 288 289 525

29 4.22 81 21 13.0 4.7 5.7 120 204

30 4.28 80 3 4.1 83

31 4.45 74 6 8.0 9.7 5.5 5.2 5.7 113 142 238

32 4.59 72 2 2.0 2.8 2.8 81 82

33 4.7 70 2 2.4 4.7 5.1 65 67

34 4.79 65 5 5.0 9.4 1.1 1.1 2.1 53 54 173

35 4.86 61 4 4.0 2.0 2.0 67 67

36 5.03 0 61 61.0 60.0 0.0 1.8 1.9 116 116 141

Total 726 717.1 721.1 3.0 3.3 3.3 4,693 4,775 4,631

NOTE: Pax = passengers; H = historic; R = recommended; O = optimal; avg. = average; pd = period (in hours).

TABLE 3  Results for Both Periods and Both Directions Combined for Route 1

Number  
of Total  
Two-Way Stops

Average Time (min)
Change in Cost ($/day)

Scenario Walking Riding
Two-Way 
Running Walking Riding Operating Total

Historic 71 3.46 36.4 88.5 0 0 0 0

Analyst recommendation 55 3.77 35.7 87.4 705 −267 −113 326

DP optimum 45 3.57 35.5 86.1 243 −218 −156 −132
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as DP but was unable to select them in a way that minimized the  
net impact. This result highlights the underlying complexity that 
makes trade-offs in stop spacing difficult to do by hand or use of 
rule of thumb.
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TABLE 4  Inbound Results for Route 57

Number 
of Stops

Change in  
Walking Time 
(pax-min/day)

Change in 
Running 
Time (min)

Change in Cost ($/day)

Scenario Walking Riding Operating Total

Existing 45 na na na na na na

Consultant recommendation 31 7,669 −1.9 3,672 −2,509 −488 674

DP optimum 32 3,955 −1.8 1,761 −2,211 −469 −920

NOTE: na = not applicable.


