
CSYE 7200

Big Data System Engineering

using Scala
Syllabus

Prof. Robin Hillyard, Boston

Spring 2020

r.hillyard@neu.edu

This course concentrates more on Scala and functional programming than on Big

Data. However, the goal of the class is to show that Scala has an important role to

play in both Big Data systems and concurrent systems. We will cover Spark—

currently one of the most important tools in the Big Data zoo—which itself is written

in Scala. Above all, this is a practical class: you will learn many aspects of

programming and software engineering that are useful whatever language you are

using.

Scala is also important for concurrent systems and we will also talk about reactive

systems and micro-services.

Recommended text(s):
 Programming in Scala—Odersky, Spoon & Venners, Artima (3rd edition)
 Functional Programming in Scala—Chiusano & Bjarnason, Manning

These are both excellent texts. The first is the definitive guide to Scala co-written
by the originator of the language. The second is a beautifully written introduction
to the concepts of functional programming, with the advantage that it uses Scala.

Course Objectives: Spark has revolutionized the approach to processing big data,
abstracting away the details of map/reduce such that programmers are hardly aware
of it. While much work with Spark can be programmed with Java, Python, R, or
even plain old SQL, it is often the ETL (ingestion) phase of Big Data work which
particularly requires Scala. Why should this be so? Most non-functional languages
are oriented towards doing things as long as everything is working fine. However,

real life encounters nulls and occasionally causes exceptions to be thrown. These
abnormal situations are very well handled using Scala. Secondly, it is when
gathering data that it is most important to be protected by type-safety.

In any case, Spark is implemented in Scala. Thus, programming in Scala helps you
not only with best practices, but also enables you to look “under the hood”. But
functional programming (fp) is not only ideal for parallel programming with Spark.
fp is ideally suited to concurrent programming (all modern computing is
potentially concurrent) because side effects and mutable state are either eliminated
or carefully encapsulated.

Nevertheless, fp requires a different way of thinking from imperative programming
(Java, C[++], etc.). This class aims to cover the fundamentals of fp (in Scala), and
to provide a basic, practical foundation for many different types of programming.
Topics to be covered, in addition to all basic programming techniques are:
numerical programming, reactive programming (using Akka), parser-combinators
and DSLs, testing frameworks and getting the job done. While fp has a solid
mathematical foundation, the mathematics required is really just basic logic and
axioms. You don’t need a “higher math” background.

The last third of the class will be largely concerned with projects which will not
only test your knowledge of Scala but will give you a great opportunity to tackle
something really interesting and, hopefully, useful.

Prerequisite: none, although it is probably helpful to have had some experience
with a programming language such as Java or Python.

Grading Breakdown: 20% mid, 25% final, 30% project, 25% homework.

Project Information: Projects will normally be worked on in pairs (or trios) and
will implement some analysis of Big Data (possibly streaming) typically using
Spark and maybe Zeppelin. Alternatively, a project might implement a reactive
system. Projects must include some significant Scala coding, with unit tests, and
demonstrate scalability. For more detail and ideas, see the Project page under
Course Materials on Blackboard.

Course Schedule (may vary somewhat):

Week 1 Introduction; Big Data systems; Spark overview;
Looking under the hood: Scala; Scala and Functional
Programming.

Week 2 Scala (continued); Important concepts. Parallel
Processing and Mutable State.

Week 3 More Advanced Scala Concepts (REPL, substitution,
type inference, lazy functions, lists and streams,
generics and variance); Dealing with Exceptional
Conditions.

Week 4 Collections; Streams; Managing State; Types.

Week 5 Functional composition and for comprehensions;
recursion.

Week 6 Syntax; Type Declarations; Functions, methods &
operators; Specifications & Unit Tests.

Week 7 Implicits; Serialization/de-serialization; Parallel
Processing and Futures; Monoids, functors, and
monads.

Week 8 Mid-term exam; Syntactic sugar; Repositories.

Week 9 Enumerated Types; Actors; Syntactic sugar
(continued) and pattern matching; Tour of the API;
Parsing and DSLs.

Week 10 Spark details; Zeppelin; GraphX, MLlib; Spark
Streaming and Spark SQL.

Week 11 Play/Activator; Numerical Computing.

Week 12
thru 13

Projects and other topics not already covered.

Week 14 Project presentations

Week 15 Final exam and remaining Project presentations.

Academic Integrity:

The Northeastern University academic integrity policy applies to your work in this
course. All students are expected to adhere to this policy. I expect each and every
one of you to familiarize yourself with this policy by visiting: http://
www.northeastern.edu/osccr/academic-integrity-policy/

I want you to take this very seriously. Most of you will be in your second year of
the program. If I give you an F because, for example, you cheated in an exam, you
may not be able to recover. You will have wasted more than a year of academic
study. It’s just not worth it.

