
INFO6205

Program Structure and 

Algorithms 
Syllabus


Prof. Robin Hillyard, Boston

Spring 2020

r.hillyard@neu.edu 

This course covers the fundamentals of designing data structures and the 

algorithms which manipulate them. This is an important class for any aspiring 

developer as data structures and algorithms are at the core of every application. My 

goal is not only to teach you the fundamentals of the subject, but also to give you 

an understanding of why? 

If you’re in any doubt whether to take this class, then you should take it. 

Prerequisites: INFO 5100 or permission of instructor. 

Introduction: In almost every aspect of programming, you will find an 

understanding of data structures, their accompanying algorithms, the invariants 

that bind them together and, of course, order of complexity, to be essential. We 

cover such basic structures as bags, sets, lists, stacks, queues, priority queues, 

trees, symbol tables (including hash maps), and graphs. Significant emphasis is 

placed on data-structures/algorithms for sorting and searching as these expend 

considerable resources in many applications. The course emphasizes the 

importance of reduction in the domain of problem-solving and, from this, we derive 

a number of standard problem-solving techniques: brute force, divide-and-conquer, 

space/time tradeoffs, dynamic programming. We also briefly cover data 

compression, greedy algorithms, iterative improvement, non-deterministic and 

other algorithms. Underpinning this whole subject, we also cover the fundamental 

concepts of (Shannon) entropy and complexity, as well as theoretical and 

experimental measurements of performance. The course will also illustrate the 



various design techniques with problems in graph theory, especially as it applies to 

social networking paradigms.  

Data structures, algorithms and invariants are the three fundamental pillars of 

programming. It makes no sense to have one without the other two (although, 

given two of them, you should usually be able to reconstruct the third). The class 

will be detail-oriented—at least for the major structures/algorithms—and will 

provide an essential component for anyone contemplating a career as a software 

developer. Although the subject could be studied using almost any language, the 

language of this class is Java. We will be using some aspects of Java 8 so you 

should try to familiarize yourself with the functional aspects of Java. Since INFO 

5100 is a pre-requisite, you are assumed to have a good grasp of programming in 

Java. If this is not the case, then you will need to do some significant brush-up 

before class begins. Don’t wait until the first quiz to discover you don’t really know 

Java. 

I also will spend some time giving you a short preparation for the “coding 

interview.” 

The course is only 14 weeks—and part of that time you will be working on a 

significant project—so there will be some details of algorithms for which we simply 

do not have time. These are easy to assimilate from the class textbook or from the 

internet. But we will cover all the most important topics in sufficient detail for you 

to be able to understand them—and reproduce them on demand. 

Teaching style: If there is one difference between my lectures and other similar 

lectures, it is an emphasis on the fundamentals. You will learn the most important 

standard technique: how to reduce an O(N) problem to an O(log N) problem. If you 

take only one thing away with you, it should be this. 

Although I use presentation slides to cover the detail of the course, I also spend 

quite a lot of time interacting with the class on the blackboard in order to get the 

fundamental concepts across. 

Each week (or at least most weeks), we will typically have a quiz (probably on 

HackerRank) which will take 30 minutes or so. This is to a) help you to inwardly 



digest the material from that week and b) give you some practice with coding 

exercises. I do the quizzes because students asked for them. In the past, I have 

made the mistake of granting your wish that you have at least a few days to study 

the topic of the quiz. Unfortunately, this has an overall deleterious effect—so you 

should expect to do the quiz on a topic you have just learned. You must also be 

present in class in order to do a quiz. 

Office Hours: Many past students have been reluctant to meet with me (or the 

TAs) during office hours. We are a resource for you to use, especially if you are 

finding the work difficult. My office hours are posted at my home page (http://

www1.coe.neu.edu/~rhillyard/). 

Labs: I may set some labs for you to get some interactive programming 

experience. We particularly emphasize testing, source control (github) and good 

coding practice. 

Discussion forum: If you have general questions about the assignments, lectures, 

textbook, or other course materials, please post on our Slack channel (see 

Blackboard). 

Grading: Your grade for the course will be based on the following components (see 

Blackboard for details—please note that this may vary slightly):  

1. Programming assignments (17%); 

2. In class quizzes—typically executed in HackerRank (18%); 

3. Mid term exam (17%); 

4. Term project (usually in teams of two) (22%); 

5. Final exam (22%); 

6. Class participation via TopHat (4%) 

Textbook: The following textbook is required. It contains a wealth of information 

beyond what we can cover in lectures; it is certain to enhance your understanding 

of data structures and algorithms.  

Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne, Addison-

Wesley Professional, 201x, ISBN 0-321-57351-X.  



Programming assignments: The programming assignments involve applying the 

material from the lectures to solve problems in science, engineering, and 

commerce. The assignments emphasize the practical aspects of performance tuning 

(including, of course, design-for-performance) measured typically by experiment 

(i.e. benchmarking). Most programming assignments (and quizzes) will be based on 

the notion of TDD (test-driven development). We strongly emphasize the 

importance of unit tests, as well as source control (such as GitHub). 

Quizzes: The quizzes will be available on HackerRank. They consist of short 

multiple-choice questions on the material in the lectures and readings, usually 

accompanied by one simple coding problem.  

Exams: The schedule for the in-class midterm exam will be announced. The final 

exam is scheduled by the Registrar during the finals week. The midterm exam will 

be closed-book. The final exam may be (partially) open-book. Please see my 

Guidelines to Exams (on Blackboard). 

Academic Integrity: We take honesty, avoiding plagiarism, and academic integrity 

in general very seriously in this class. All of the work you will be doing has been 

done by someone else and is freely available on the internet. But you learn nothing 

by copying code from the internet. This all makes it very difficult to develop quizzes 

and exams that are challenging. So, we must have a strict policy of no copying 

during our quizzes and exams. We use various tools to try to ensure this but there 

are usually ways to cheat. Don’t do it. You risk getting in F—or worse. You must 

familiarize yourself with the University’s policy at http://www.northeastern.edu/

osccr/academic-integrity-policy/. You may collaborate in assignments (and of 

course the group project) but, for assignments, the actual submission must be your 

own. 

Computers: You may develop your programs on any machine that you like: we 

encourage you to use your own equipment. I recommend IntelliJ IDEA as an IDE 

(it’s free). 

TopHat: We will utilize TopHat as an aid to encourage participation in class. For this 

you must subscribe to the App. 

http://www.northeastern.edu/osccr/academic-integrity-policy/
http://www.northeastern.edu/osccr/academic-integrity-policy/


Course Outline. The following topics will be covered, depending on time: 

Approximate Schedule of INFO6205

1 Introduction; Intro to 
Reduction.

Programming Model; Abstract 
Data Types; Practical Thinking

2 ADT contd Bags, Stacks, Queues; Hash-
coding.

3 Analysis Entropy, Induction, Numbers.

4 Union Find UnionFind contd.

5 Elementary sorts Mergesort

6 Quicksort QuickSelect

7 Heapsort Elementary Symbol Tables

8 Mid-term exam Binary Search Trees

9 Balanced Search Trees Hash Tables

10 Hash Tables contd. How to ace your technical 
interview.

11 Project kickoff. Undirected Graphs

12 Directed Graphs Minimum Spanning Trees

13 Minimum Spanning Trees 
continued

String Sorts

14 Regex, P/NP, etc., Finite 
Automata

Software Engineering




	Program Structure and Algorithms

