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Control of Delay-ODE, Delay-PDE,
and PDE-ODE Cascades

Miroslav Krstic

I. INTRODUCTION

Delay systems occupy a special place within the field of distributed parameter systems. Certain problems
for this class of distributed parameter systems lend themselves to more elegant, or even explicit solutions.

An enormous wealth of knowledge and research results exists for control of systems with state delays
and input delays. Problems with long input delays, for unstable plants, represent a particular challenge.

It has been known for about three decades now [1], [2] that the system

Ẋ(t) = AX(t)+BU(t−D) , (1)

where D is an arbitrarily long delay and (A,B) is a controllable pair, can be stabilized with the infinite-
dimensional ‘predictor’ feedback

U(t) = K
[

eADX(t)+
∫ t

t−D
eA(t−θ)BU(θ)dθ

]
, (2)

where the gain K is chosen so that the matrix A+BK is Hurwitz.
The predictor feedback (2) represents a particular form of ‘boundary control,’ commonly encountered

in the context of control of partial differential equations. Motivated by our recent advances in solving
boundary control problems for various classes of PDEs [3], [4], we have considered various extensions
to the problem of LTI ODE systems with input delays. These extensions are the subject of our upcoming
book [5].

II. DELAY-ODE CASCADES: ADAPTIVE AND NONLINEAR

The key to various extensions that we develop in [5] is the observation that one can find a Lyapunov
functional for the system (1), (2) as

V (t) = X(t)T PX(t)+
a
2

∫ t

t−D
(1+θ +D− t)W (θ)2dθ , (3)

where P is the solution of the Lyapunov equation P(A+BK)+(A+BK)TP =−Q and the function W (θ)
is given by the invertible ‘backstepping’ (identity plus a Volterra operator) transformation

W (θ) = U(θ)−K
[∫

θ

t−D
eA(θ−σ)BU(σ)dσ + eA(θ+D−t)X(t)

]
, (4)

with −D ≤ t−D ≤ θ ≤ t.
From this point on, the ability to construct a Lyapunov functional can be exploited in various ways,

including deriving disturbance attenuation estimates when the system (1) is subject to an additive dis-
turbance, proving robustness to a small (positive or negative) error in D, conducting an inverse optimal
redesign of the predictor feedback law (which results in a feedback law which minimizes a cost functional
with a positive definite penalty on X(t), U(t), and U̇(t)), and solving the following two major problems:
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• adaptive control in the presence of a completely unknown and arbitrarily long D,
• predictor feedback design for some classes of nonlinear systems.
The delay-adaptive design uses a certainty-equivalence form of the feedback law (2) and employs a

particular update law for the estimate D̂(t) of the unknown delay D. Starting from a severely overestimated
D̂(0), or from an initial estimate as small as D̂(0) = 0, the adaptive controller stabilizes an unstable LTI
plant with an unknown D.

delay nonlinear ODE
plantU(t) Y(t)

The nonlinear predictor design is developed for two classes of systems. For the broad class of forward
complete systems, i.e., systems that do not exhibit a finite escape time for any initial condition and
any input signals that remain finite over finite time intervals, which includes many mechanical and other
systems, predictor feedback is developed which achieves global asymptotic stability, as long as the system
without delay is globally asymptotically stabilizable. However, the ‘predictror’ requires the solution of a
nonlinear integral equation (or a nonlinear DDE) in real time.

For the strict-feedforward subclass of forward complete systems, we develop an explicit formula for
the predictor, and thus an explicit formula for the stabilizing feedback law in the presence of delay of
any length. The following example illustrates this concept. The following third-order strict-feedforward
system, which is not feedback linearizable,

Ż1(t) = Z2(t)+Z2
3(t) (5)

Ż2(t) = Z3(t)+Z3(t)U(t−D) (6)
Ż3(t) = U(t−D) , (7)

is globally asymptotically stabilized by the predictor feedback

U(t) = −P1(t)−3P2(t)−3P3(t)−
3
8

P2
2 (t)+

3
4

P3(t)
(
−P1(t)−2P2(t)+

1
2

P3(t)+
P2(t)P3(t)

2

+
5
8

P2
3 (t)− 1

4
P3

3 (t)− 3
8

(
P2(t)−

P2
3 (t)
2

)2)
, (8)

where the D-second-ahead predictor of (X1(t),X2(t),X3(t)) is given explicitly by

P1(t) = Z1(t)+DZ2(t)+
1
2

D2Z3(t)+DZ2
3(t)+3Z3(t)

∫ t

t−D
(t−θ)U(θ)dθ

+
1
2

∫ t

t−D
(t−θ)2U(θ)dθ +

3
2

∫ t

t−D

(∫
θ

t−D
U(σ)dσ

)2

dθ (9)

P2(t) = Z2(t)+DZ3(t)+Z3(t)
∫ t

t−D
U(θ)dθ +

∫ t

t−D
(t−θ)U(θ)dθ +

1
2

(∫ t

t−D
U(θ)dθ

)2

(10)

P3(t) = Z3(t)+
∫ t

t−D
U(θ)dθ . (11)

Note that the nonlinear infinite-dimensional feedback operator employs a finite Volterra series in U(θ).

III. DELAY-PDE CASCADES

When a plant with an input delay is a PDE, this introduces special challenges, particularly if the PDE
is actuated through boundary control, which makes the B operator unbounded. In [5] we consider two
benchmark delay-PDE cascades, one where the plant is a parabolic PDE and the other where the plant
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is a second-order hyperbolic PDE. We review here the parabolic case, where the plant is an unstable
reaction-diffusion equation with an arbitrarily large number of unstable eigenvalues in open loop.

delay unstable
reaction-diffusion PDEU(t)

Consider the PDE system

ut(x, t) = uxx(x, t)+λu(x, t) (12)
u(0, t) = 0 (13)
u(1, t) = U(t−D) , (14)

where λ is an arbitrary constant. We derive a stabilizing feedback law in the explicit form,

U(t) = 2
∫ 1

0
sin(πnξ )λξ

I1

(√
λ (1−ξ 2)

)
√

λ (1−ξ 2)
dξ

×
∞

∑
n=1

(
−e(λ−π2n2)D

∫ 1

0
sin(πny)u(y, t)dy+πn(−1)n

∫ t

t−D
e(λ−π2n2)(t−θ)U(θ)dθ

)
, (15)

where I1(·) is a Bessell function.

IV. PDE-ODE CASCADES

The third major class of problems that we consider in [5], which represents a seamless transition from
the classical predictor feedback (2), are PDE-ODE cascades. This is motivated by the observation that (1)
is a boundary control problem for a cascade of a transport PDE and an ODE.

In [5] we consider three classes of PDEs in cascade with ODEs:
• first-order hyperbolic PDEs (the pure delay is a special case in this class),
• parabolic PDEs,
• second-order hyperbolic PDEs.

We review the solution to the third problem in this list here.

force
actuation

x = 0x = D

dX/dt = AX + Bu

Consider an ODE controlled through the undamped wave (string) PDE:

Ẋ(t) = AX(t)+Bu(0, t) (16)
utt(x, t) = uxx(x, t) (17)
ux(0, t) = 0 (18)
u(D, t) = U(t) , (19)

The explicit feedback law is designed as

U(t) = KΣ(D,c)X(t)+
∫ D

0
ϕ(D− y)u(y, t)dy+

∫ D

0
ψ(D− y)ut(y, t)dy , (20)
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where

Σ(D,c) = M(D)+ c
∫ D

0
M(y)Ady (21)

M(x) =
[

I 0
]

e

[
0 A2

I 0

]
x [

I
0

]
(22)

ϕ(τ) = µ(τ)+ cK(I +M(τ))B (23)

µ(s) =
∫ s

0
KM(ξ )ABdξ (24)

ψ(τ) = m(τ)− c+ c
∫

τ

0
µ(η)dη (25)

m(s) =
∫ s

0
KM(ξ )Bdξ (26)

and c > 0.

V. OTHER PROBLEMS AND TOOLS

We consider a few other problems in [5], including
• observer problems for system with sensor delays,
• observer problems with sensor dynamics modeled by PDEs,
• predictor feedback for systems with time-varying delays.
Three major technical elements should be of interest and possible use for many researchers interested

in delay systems:
1) the construction of backstepping transformations that allow one to deal with delays and PDE

dynamics at the input (or in the main line of applying control action, such as in the chain of
integrators for systems in triangular forms),

2) the construction of Lyapunov functionals and explicit stability estimates, with the help of direct and
inverse backstepping transformations,

3) the connection between delay systems and an array of other classes of PDE systems which can be
approached in a similar manner, each introducing a different type of challenges.
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