SOME NUMERICAL METHODS TO COMPUTE THE
EIGENVALUES OF A TIME-DELAY SYSTEM USING MATLAB
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Abstract. Several properties of time-delay systems can determined from the set of solutions of
the characteristic equation. We mention some ways to numerically determine parts of this solution
set using the popular tool Matlab. In particular, we give illustrative Matlab code for some methods
and discuss methods suitable for problems of very large dimension.

In the first or second chapter of many books related to delays, we are faced with
a formal description of several qualitative properties of time-delay systems using the
solution set of the characteristic equation of a linear delay-differential equation (DDE).
For a system of DDEs with a single delay, this transcedental equation

det(—sI + Ag+ A1e77%) =0 (1)

is known to have an infinite number of complex solutions which, in general, can
not be expressed explicitly in terms of elementary functions. We mention some of
the numerical methods to compute solutions of the characteristic equation which
are available for the popular software package Matlab. Since the simplicity of the
implementation of some methods seems to be not widely known, we illustrate the
essential ideas of some methods with a couple of lines of Matlab code.

An explicit formula. For some special cases, the solutions of (1) can be ex-
pressed explicitly with formula containing the inverse of x — ze®, known as the
Lambert W function:

s=lambertw(k,tau*al*exp(-aO*tau))/tau+al (2)

Here Ag = ag, A1 = a1 € C and k € N is the branch index. The impact of this exact
analytic explicit formula should not be overestimated, as one of the motivations for
the introduction of the elementary-like function Lambert W was indeed to be able to
express the solutions of the scalar characteristic equation [Corless, Connet, Hare, Jef-
frey and Knuth On the Lambert W Function, Adv. Comput. Math. 5:329-359, 1996].
Note that it is only directly applicable to scalar problems. However, the formula does
generalize to non-scalar DDEs with simultaneously triangularizable system matrices
Ap and A;. The generalization given in [E. Jarlebring and T. Damm The Lambert W
function and the spectrum of some multidimensional time-delay systems, Automat-
ica, 43(12):2124-2128, 2007] contains a matrix-version of Lambert W. Obviously, this
class of DDEs is also very restricted.

Discretization of the PDE-representation. There are mature numerical al-
gorithms for the problem of determining eigenvalues of a matrix. Two branches of
methods in the literature exploit this by approximating the characteristic equation in
such a way that approximate solutions of (1) can be computed from the eigenvalues
of a matrix. These types of methods are either based on an approximation of the
solution map or a discretization of the PDE-representation of the DDE. We describe
these two types of methods in this and the next subsection and give the ideas in terms
of Matlab code in (3) and (4).

It is widely known that a DDE can be rewritten as a hyperbolic partial differential
equation (PDE) with interrelated boundary conditions. The operator corresponding
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to the boundary value is a (so-called) infinitesimal generator, and its spectrum co-
incides with the solutions of the characteristic equation. Hence, the eigenvalues of a
matrix resulting from a sufficiently fine discretization of the PDE will approximate
the solutions of the characteristic equation.

The approach based on the discretization of the PDE-representation was taken
in [Bellen and Maset, Numerical solution of constant coefficient linear delay differen-
tial equations as abstract Cauchy problems, Numer. Math. 84:351-374, 2000]. Similar
ideas were used in [Breda, Maset, Vermiglio, Pseudospectral approzimation of eigenval-
ues of derivative operators with non-local boundary conditions Appl. Numer. Math.,
27:318-331, 2006] by applying a discretization scheme based on a Chebyshev nodes.
The method can be implemented in three lines of code:

N=10; n=length(AO); % Discretization nodes N and size of DDE n
D=-cheb(N-1)*2/tau; (3)
eig([kron(D(1:N-1,:),eye(n)); [Al,zeros(n, (N-2)*n), A0I])

The code above uses on the function cheb.m which returns a Chebyshev differentiation
matrix. This function is given in [Trefethen, Spectral Methods in MATLAB, 2000]
and is publicly available on the book’s home page.

Discretization of the solution operator. The linear operator transforming
the initial function segment to the solution segment at some time-point is referred to
as the solution operator. The other branch of methods are based on a discretization
of the solution operator. This idea is used in the software package DDE-BIFTOOL
[Engelborghs, Luzyanina, Roose, Numerical bifurcation analysis of delay differential
equations using DDE-BIFTOOL, ACM Trans. Math. Software 28:1-24, 2002], where
the solution operator is approximated by a linear-multistep discretization. More re-
cently, the solution operator has also been approximated with a Chebyshev differen-
tiation matrix:

N=10; n=length(AO); % Discretization nodes N and size of DDE n
DD=cheb (N-1)*2/tau;
DN=kron([DD(1:end-1,:); [zeros(1,N-1),1]1],eye(n));

(4)
MA=kron([eye (N-1,N);zeros(1,N)],A0);
MB=[kron([eye (N-1,N)],A1) ;kron([1,zeros(1,N-1)],eye(n))];
(log(eig(MB,DN-MA) ) +k*2*pi*i)/tau 7% branch k

This approach was taken in [Breda, Numerical computation of characteristic roots for
delay differential equations, PhD thesis, 2004] and in a series of papers by Butcher,
Ma, Bueler, Averina and Z. Szabo in the more general setting of DDEs with periodic
coefficients. The first paper of this series of papers [Butcher, Ma, Bueler, Averina
and Szabo, Stability of linear time-periodic delay-differential equations via chebyshev
polynomials, Int. J. Numer. Methods Eng., 59:895-922, 2004] appeared in 2004 and
the most recent is [Bueler, Error bounds for approximate eigenvalues of periodic-
coefficient linear delay differential equations, SIAM J. Num. Analysis 59:2510-2536,
2007]. Apparently, the works of the group of Breda and the group of Bueler occurred
independently and around the same point in time.

Nonlinear eigenvalue problem. Problems of the type det(M(s)) = 0, where
M (s) is a parameter dependent matrix, are sometimes referred to as nonlinear eigen-
value problems. This very general class of problems is typically computationally dif-
ficult and no globally convergent numerical methods are available. There are how-
ever a number of numerical methods which can be adapted to the problem at hand.
Many methods are listed in [Mehrmann and Voss, Nonlinear Figenvalue Problems:
A Challenge for Modern Eigenvalue Methods, GAMM Mitteilungen 27:121-152, 2004]
and [Ruhe, Algorithms for the nonlinear eigenvalue problem, STAM J. Numer. Anal.



10:674-689, 1973]. The Matlab code for several of these methods are publicly available
online.

The characteristic equation (1) clearly belongs to this class of problems and any of
the methods for the general nonlinear eigenvalue problems can be applied to (1). Sim-
ilar to the case for the linear eigenvalue problems, so-called projection type methods
have turned out to be efficient for very large nonlinear eigenvalue problem. This also
seems to be the case for DDEs. Parts of the spectrum of DDEs of dimension 10° are
computed using a projection method in [Jarlebring, The spectrum of delay-differential
equations: numerical methods, stability and perturbation, PhD thesis, 2008].

Other methods. The characteristic equation is a root-finding problem, f(s) =
0. Even though many traditional algorithms for the root-finding problem, such as
Newton-iteration, secant method and Halley-iteration have a high-order local conver-
gence, they are not often used for (1) in practice. Fast local convergence is sufficient
for many root-finding problems. This is however typically not the case for (1). In
practice it is often desirable to find all solutions of (1) within some region in the com-
plex plane, say the (shifted) open right half plane. For a stability analysis, missing
one eigenvalue is not acceptable. For those problems, fast local convergence is not
sufficient.

It should also be noted that the representation (1) is not numerically stable, e.g.
f(s) &= 0 does not always imply that the approximation s is good. This holds in
particular for large problems.

However, for problems of small dimension, determining the intersections of the
level sets have been successfully used [Vyhlidal, Analysis and synthesis of time delay
system spectrum, Ph.D. thesis, 2003] to find a large number of solutions of (1).

Example. Consider the DDE
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appearing in the modelling of a neural network [Campbell, Edwards, van den Driess-
che, Delayed coupling between two neural network loops, STAM J. Appl. Math., 65:316-
335, 2004]. We illustrate the use of (3) by applying it to this DDE. The numerically
computed spectrum for 7 = 1 is given in the figure below.
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