Young Scholars Program, Northeastern University

Department of Mechanical and Industrial Engineering

Feedback Control in Ball Beam Dynamics

- Experimenting Delay Effects

Benjamin Gertner

Mike Wilson

Framingham High School

Beverly High school

Professor Rifat Sipahi Northeastern University

Department of Mechanical and Industrial Engineering

🏽 Northeastern

Background & Terminology

What is "feedback control" ?

Sensors

Stability / Instability

Cruise Control

Block Diagram Convention (Controlled)

Department of Mechanical and Industrial Engineering

Block Diagram Convention (Uncontrolled)

Department of Mechanical and Industrial Engineering

Block Diagram—Motor (PID Controller)

Department of Mechanical and Industrial Engineering

Speed Control of the Motor-Experiments

Department of Mechanical and Industrial Engineering

Position Control of the Motor-Experiments

College of engineering

Department of Mechanical and Industrial Engineering

No Delay – Ball At Start

Introduction to Ball Beam Dynamics

College of Engineering

Department of Mechanical and Industrial Engineering

What is Delay and Where is it?

Time that it takes to receive a signal

Where:

- Remote surgery
- Human reaction delays
- Chemical processes
- Robotics
- Tele-operation
- Missiles and targets
- Light delay (circuits, all electronics)

Delay Effects

- How would you implement delay?
- Why does delay lead to instability?
- Compensation of undesirable effects
 - Wait before you act (observe trends)
 - Be less aggressive when compensating
 - Advanced controller development (research)

0.2 Second Delay– Ball At Start

Department of Mechanical and Industrial Engineering

Northeastern

Delay—Graph

No Delay – Ball At Equilibrium

0.1 Second Delay– Ball At Equilibrium

0.2 Second Delay- Ball Equilibrium

Max Delay for Kv_bb

Getting Better

Optimization

- Energy efficient
- Quickest result
- Safest voltage
- Improving the Controller
 - New degrees of freedom—P, PI, PID controllers
 - Have the computer guess—Penalize the guess
- □ Gain, Too Much of a good thing?
 - Kp=1, Kp=1000

