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Abstract 
Probabilistic models for estimating lateral flexural displacement capacity, shear 
strength capacity, and shear deformation of reinforced concrete structural walls are 
presented. In developing all the models, available experimental data are utilized and 
the Bayesian parameter estimating technique is used. The model for estimating the 
shear deformation of structural walls is constructed based on the coupling between 
the flexural and shear inelastic deformations. Comparisons with some current models 
in seismic codes are made and significant improvements are shown. 
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1 Introduction 
In probabilistic design and assessment of a structure, accounting for sources of 
uncertainties, the probability of demands being more than corresponding capacities 
(i.e. probability of failure) is estimated. In order to have meaningful estimation of the 
reliability of the structure under external actions (loads), one needs to not only 
account for uncertainties associated with the external actions and materials, but also 
consider other sources of uncertainties affecting estimations of demands and 
capacities. Furthermore, there is a need for the selection of proper measures of 
demands and capacities. In seismic engineering, these measures in addition to 
strength, could include displacement, energy, or more generally damage. In this 
paper strength and displacement capacities and demands are estimated and 
compared. To estimate structural capacities, different models at section, element, 
and structure levels are required whose uncertainties have to be accounted for. 
Furthermore, these models would estimate capacities more realistically, if they have 
been calibrated using available experimental data. To estimate structural demands 
proper models that incorporate both flexural and shear strengths and deformations 
are needed. In this paper different probabilistic models for estimations of seismic 
capacities of reinforced concrete (RC) structural walls are presented. 
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2 Flexural Displacement Capacity 
Flexural capacity of a structural wall is limited by its strength as well as its 
displacement capacities. Mechanical models for estimating the flexural strength 
capacity of the structural wall are well developed and they usually predict the 
strength within a small error. Some models for estimating the displacement capacity 
that are available and even implemented in codes (UBC, 1997), however, may not 
reasonably estimate the capacity of the wall 
(Sasani, 1998). The flexural displacement ca-
pacity of the wall is limited by the maximum 
acceptable concrete and steel strains. Dis-
placement capacity of structural walls has 
been studied by Sasani and Der Kiureghian 
(2001) and below a summary of the study is 
presented. Figure 1 shows the elastic and 
inelastic deformations of a structural wall. The 
maximum displacement capacity at the top of 
a structural wall that has developed a plastic 
hinge near its base is approximately given by 
the expression 

( ) ( )2/LHLHˆ
PPyu

2
yf −Φ−Φ+Φ=∆ a   (1)

where H  is the height of the wall, PL  is the length of the plastic hinge, yΦ  and uΦ  
respectively are the yield curvature (at the first yielding of the flexural reinforcement ) 
and the ultimate cyclic curvature of the section near the base of the wall, and a  is a 
coefficient that depends on the distribution of bending moments and the flexural 
stiffness along the height of the wall. The superposed hat on f∆̂  is used to signify the 
fact that the above model is not exact. The first term in (1) represents the contribution 
of the elastic deformation at the first yielding of the flexural reinforcement, whereas 
the second term represents the contribution from the localized plastic deformation 
near the base of the wall. The various terms in the model are further discussed or 
developed below. 

2.1 Coefficient a 
The coefficient a  depends on the distributions of the flexural stiffness and lateral load 
along the height of the wall. If one assumes a uniform flexural stiffness equal to that 
of the cracked section at the base of the wall, and a linear relation between the 
section curvature and bending moment, under an inverted triangularly distributed 
lateral load, Fig. 1, one obtains 40/11=a , whereas for a concentrated lateral load at 
the top one obtains 3/1=a . In reality, the top portion of the wall may not be cracked. 
While it is possible to use the uncracked section for the top portion, the effect on the 
coefficient a  and, hence, the estimated top displacement is usually insignificant unless 
the amount of the flexural reinforcement and the axial compressive load of the wall are 

Fig.1. Deformation of structural wall 
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small (Sasani 1998). Therefore, in the following analysis, cracked concrete sections are 
assumed and the inverted triangular load distribution is employed. Previous 
investigations have shown that this approach provides fairly accurate estimates of the 
elastic contribution to the top displacement  (Sasani and Anderson 1996).  

2.2 Yield Curvature 
For a given cross section of the wall and for known stress-strain relations of concrete 
and reinforcing steel, the yield curvature yΦ  is easily determined by employing a 
kinematic assumption for the deformation of the wall, such as the assumption that 
plane sections remain plane. Usually the cracked section of the concrete is used for 
this analysis. This type of analysis is routine and needs no further investigation here. 
Note, however, that the prediction of yΦ  is not free from error. The contribution of 
this error will be accounted for along with the errors in the other terms when the 
overall error in model (1) is assessed. 

2.3 Plastic Hinge Length 
A term in (1) that needs to be developed is the plastic hinge length, PL  (see Fig. 1). 
According to Corely (1966), PL  is a distance such that when multiplied by the 
average plastic curvature (over a distance equal half the section depth) at the base of 
a cantilever member gives the plastic rotation of the hinge. Based on experimental 
results, Corley (1966) suggested the empirical expression ,26.15.0 dHdLP +=  
where d  is the effective depth of the section and H  (the wall height) is the distance 
between the points of zero and maximum moment, in meters. In his discussion of 
Corley's paper, Mattock (1967) suggested the expression .05.05.0 HdLP +=  In order 
to develop a probabilistic model for PL  that is appropriate for RC walls, 29 of the test 
results reported by Corley (1966) and Mattock (1967) are selected that corresponded 
to beams with effective depths greater than 0.5m. This data was used in conjunction 
with the Bayesian method to estimate the parameters of the following: (a detailed 
description of the application of the method is presented later in this paper, where a 
shear strength capacity model is developed) 

L
sP

d
lH + =

d
L

ε+αα 2

2/3

21         (2)

which provides a good fit to the data. In (2), sl  is a standard length equal to 1 meter 
(=39.4 inches) that is inserted to make the model parameters dimensionless, and Lε  in 
each equation is a model error term that is assumed to have the normal distribution with 
zero mean (so that one obtains unbiased models) and unknown standard deviation Lσ . 
(Strictly speaking, PL  being non-negative, the normal distribution for Lε  is not 
appropriate. However, the variability in the model is small in relation to its mean and the 
probability of having negative PL  is virtually zero.) The above models are linear in terms 
of the unknown parameters 1α  and 2α . For such a case, with non-informative priors on 

1α , 2α  and Lσ , closed form solutions of the posterior statistics are available (Box and 
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Tiao, 1992). The posterior mean values of the parameters based on the 29 test data are 
=1α 0.427, =2α 0.077 and =Lσ 0.149. The standard deviations are 0.088, 0.019, and 

0.021, respectively. The only considerable correlation coefficient is between 1α  and 2α , 
which is equal to –0.3. 

2.4 Cyclic Curvature Capacity 
The cyclic curvature capacity, uΦ , of the cross-section of the RC wall is determined 
by modifying its monotonic curvature capacity, uΦ′ . The monotonic curvature capacity 
is determined by calculating the moment-curvature relationship for the cross section. 
The ultimate monotonic curvature of the section is assumed to have been reached 
when any one of the following three criteria is satisfied: (1) concrete reaches its 
maximum usable strain, (2) any steel reinforcing bar reaches its fracture strain, (3) 
the moment strength of the section drops to 80% of the moment capacity. In addition 
to the geometry of the cross section and the placement and area of reinforcing bars, 
the monotonic curvature capacity depends on the stress-strain relationships of 
concrete and steel and on the magnitude of the axial load. For the present study, the 
modified Kent and Park model (Park et al. 1982) is employed to describe the stress-
strain relations for unconfined and confined concrete. In the following section, a 
model for the maximum usable concrete strain is examined. 

2.4.1 Maximum Useable Concrete Strain 
The maximum curvature capacity of a RC wall section may be limited by the maximum 
usable concrete strain, max

cε , including the effect of confinement by the transverse 
reinforcement. A good measure for the confining action of the transverse reinforcement 
is shyhf ρ , where yhf  is the yield stress and shρ  is the volumetric ratio of the confining 
steel hoops. Most available measurements of max

cε  are for columns under axial loads 
with uniform strain distribution, which is not representative of the strain distribution in the 
compressive zone of structural walls. Kaar et al. (1976) have tested specimens that 
have been specifically designed to model the compression zones of structural walls. To 
develop a probabilistic model based on this data, the idealized model 



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
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is considered, where 1β  and 2β  are the model parameters and 413=ysf MPa (=60 
ksi) is the yield stress of grade 60 steel, which is used to make the model parameters 
dimensionless. Note that parameter 1β  is identical to the maximum usable strain of 
unconfined concrete. The error term, εε , is assumed to have a normal distribution 
with zero mean and an unknown standard deviation, εσ . The unknown parameters of 
the model are 1β , 2β  and εσ . 
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In the Bayesian approach, one can easily incorporate any prior information on the 
model parameters. In the present case, while there is no information available about 

2β  and εσ , prior information on 1β , i.e., the maximum useable strain of unconfined 
concrete is available. Most investigators would use a value of 0.003 to 0.004 for 1β . 
To incorporate such information, 1β  is assumed to have a lognormal prior distribution 
with mean 0.0035 and a standard deviation 0.0005. For 2β  and εσ , non-informative 
priors are used (Box and Tiao 1992), which essentially imply locally uniform 
distributions for 2β  and εσln . Using the experimental results of Kaar et al. (1976) and 
the computer program BUMP for Bayesian updating developed by Geyskens et al. 
(1993), the posterior statistics of the parameters are computed. The posterior mean 
values of the parameter are =1β 0.00355, =2β 0.822, and =εσ 0.198. The standard 
deviations are 0.00039, 0.080, and 0.057, respectively. The only considerable 
correlation coefficient is found to be equal to –0.3 between 1β  and 2β . 

Effect of Compressive Strain Concentration 
The traditional assumption that plane sections remain plane in flexure is not applicable 
to structural walls with deep sections, particularly within the hinging region. 
Unfortunately, sufficient data are not available to construct a probabilistic model for this 
mechanism. Instead, to account for the effect of strain concentration in the compression 
zone of concrete, the maximum useable concrete strain is modified to obtain   

( ) εθ=ε
max

mod
max

cc   (4)

where θ  is a correction parameter having a value less than unity. With this reduced 
concrete strain capacity, section analysis with a linear strain distribution is carried out 
to determine the moment-curvature relationship and, thereby, the yield curvature yΦ  
and the monotonic curvature capacity uΦ′ . Since no data is available to directly 
assess the model in (4), θ  will be estimated in the course of assessing the global 
model for the displacement capacity of the wall, as described below. 

Model for the Cyclic Curvature Capacity 
Using the Park and Ang (1985) damage model, it can be shown that the reduction in 
the curvature capacity of a RC section due to the cyclic nature of the load depends 
on the curvature ductility of the section, yu ΦΦ′=µΦ / . Using that model with 
parameter values suggested by Fajfar (1992), Sasani (1998) suggested an empirical 
model for the curvature capacity under cyclic displacement having the form  

( ) uu Φ′µγ−γ=Φ Φ21  (5)

where 1γ  and 2γ  are unknown parameters. Unfortunately, no reliable data is available 
to directly estimate the parameters of this model. Hence, they will be estimated along 
with parameter θ  of the model in (4) in the course of assessing the global model for 
the displacement capacity of the structural wall, as described below. The reader will 
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note that the error terms are not included in the above two sub-models. This is 
because the errors in these sub-models are incorporated in the overall error term of 
the global model.  

2.5 Probabilistic Model for Flexural Displacement Capacity 
Motivated by (1) and the sub-models described above, and noting that the 
displacement capacity must be non-negative, the following global probabilistic model 
is considered for the displacement capacity of RC structural walls: 

( ) f
P

Pyuy
f
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L

1LHln
H
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
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
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 ∆ εa   (6)

In this model a , yΦ  and H  are as described earlier and contain no model 
parameters; PL  is the mean estimate of the plastic hinge length obtained by using the 
mean values of 1α  and 2α  and setting 0=εL  in (2); uΦ  is computed from (5) and 
involves the unknown parameters 1γ  and 2γ  as well as the monotonic curvature 
capacity uΦ′ , which in turn involves the modified maximum useable concrete strain in 
(4) involving the unknown parameter θ . As usual, f∆ε  is the random correction factor 
of the model, which is assumed to have the normal distribution with zero mean and 
unknown standard deviation f∆σ . This correction term includes not only the error in 
the form of the global model (6), but also the errors inherent in the sub-models for 

PL , yΦ , uΦ , uΦ′  and ( )mod
max
cε .  

The model in (6) involves four unknown parameters: θ , 1γ , 2γ  and f∆σ . These 
parameters are estimated using data for 8 structural wall models, which were tested 
cyclically under displacement control and failed in flexure. At each displacement 
level, the walls were subjected to either 2 or 3 cycles. The relevant references and 
essential parameters of the tested wall models can be found in Sasani and Der 
Kiureghian (2001). Note that the volume fraction of the confining reinforcement varies 
from =shρ 0.22 to 2.08, the percentage of total longitudinal reinforcement in the 
section varies from =tρ 0.48 to 1.95, the aspect ratio, i.e., the height from the base 
to the point of zero bending moment divided by the length of the wall in the plan, 
varies from =WL/Z  1.8 to 3.1, and the axial compressive load divided by the gross 
section area times the compressive strength of concrete varies from 0.3 to 10.2. In 
other words, the data covers a wide range of these important variables.  

The measured flexural displacement capacity of each wall is found by linearly 
interpolating between the displacement experienced by the wall in the cycle where 
the force-displacement relationship shows a drop of more than 20% in the lateral 
load capacity, and the displacement experienced in the previous stable cycle. The 
interpolation is carried out based on the number of stable cycles before the 
mentioned drop in lateral load capacity. For example, if only 1 out of 3 cycles at 
displacement level 10.0=∆ m is stable and the previous cycle is at 07.0=∆ m, then 
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the displacement capacity of the wall is 08.0)3/1()07.010.0(07.0f =×−+=∆ m. For 
the analytical predictions, the stress-strain relation for the steel is obtained from 
tension results reported for each tested wall. As indicated earlier, the concrete stress-
strain relation was based on the modified Kent and Park model (Park et al. 1982) 
with the compressive strength of concrete as measured in each test.  

Bayesian analysis by use of the program BUMP revealed strong correlation between 
1γ  and 2γ , suggesting that these parameters are approximately linearly dependent. 

Using the posterior statistics, the linear estimate 014.0030.0 12 −γ=γ  was obtained. 
Substituting this relation in (5), one obtains the simplified model 

[ ] uu Φ′µ−γ−γ=Φ Φ)014.0030.0(  (7)

where 1γ  is replaced by γ . The number of unknown parameters inherent in the model 
in (6) is now reduced to 3, i.e., θ , γ  and cσ . Repeating the Bayesian analysis with 
the reduced model, the posterior mean values of the parameter are =θ 0.796, 
=γ 0.659 and =∆fσ 0.149. The standard deviations are 0.023, 0.106, and 0.052, 

respectively. All the correlation coefficients are negligible.  

Figure 2 shows a comparison of the 
measured versus predicted top dis-
placement capacities for the 8 walls 
tested. On the horizontal axis the 
measured displacement capacity is 
shown. The vertical axis shows the 
predicted displacement capacities. 
Solid circular dots indicate median 
(50% fractile) estimates, whereas the 
I-bars indicate the 15-85% fractile 
ranges. It is noted that almost all the I-
bars cover the 1/1 line. 

Also shown in Fig. 2, as solid square 
marks, are estimates of the displace-
ment capacity of the 8 tested walls 
obtained by using the current provi-
sions of the Uniform Building Code 
(1997). These estimates are found to 
be grossly on the unconservative side. 
The author believes the reason for this 
overestimation of the displacement 
capacity by the UBC code provisions 
is the fact that these provisions neglect the effect of compressive strain concentration 
in the compression zone of concrete and the effect of the cyclic load in reducing the 
curvature capacity of the wall section. 

Fig. 2. Measured versus predicted
displacement capacities 
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3 Shear Strength Capacity 
The shear failure of structural walls may arise from any combination of sliding shear, 
web crushing and shear-compression failure of the compression zone (Fig. 3). In 
order to develop a shear strength capacity model for structural walls, sixteen 
structural walls tested under cyclic loads are studied (see Sasani et. al., 2002). 
Among the sixteen walls, nine failed in shear and the remaining seven had flexural 
failures. 

(a)      (b)          (c) 
Fig. 3. Shear modes of failure: (a) sliding shear; (b) web crushing and  

  (c) shear-compression failure (Oesterle et. al., 1976) 

Preliminary studies with a shear strength model revealed weak correlation between 
the displacement ductility at the failure and the shear strength of the wall. Based on 
this observation, the following probabilistic model is considered for shear strength 
capacity, Vcap, of RC structural walls: 

( ) ( )[ ]sscccg2asp1cap VlbfffAPaeV Vc +′′+= ννε
   

( ) lbfflbfV scc3yhhs ′≤= νρ  
(8)

In the above, ν1, ν2 and ν3 are the model parameters and εVc is a normally distributed 
model error with zero mean and unknown standard deviation σVc. aasp accounts for 
the aspect ratio of the wall and linearly varies from 1.5 to 1.0 as the aspect ratio 
increases from 1.5 to 2.5. For aspect ratios larger than 2.5, aasp is set equal to 1.0. fsc 
is a scaling stress equal to 1 MPa (or its equivalent in other units), which is employed 
to make the parameters of the model dimensionless. P is the axial compression on 
the wall and Ag is the gross section area, b is the width of the web, l is the total length 
of the section, f′c is the compressive strength of concrete and fyh is the yield stress of 
the horizontal reinforcement in the web. Finally, Vs is the shear strength 
corresponding to the horizontal reinforcement and has an upper bound in order to 
inhibit web crushing of the wall due to large amount of shear reinforcement. 

The Bayesian parameter estimation technique provides an effective tool for the 
development of probabilistic models (Der Kiureghian 1999). In this paper, the 
Bayesian technique is employed to develop different probabilistic models required for 
seismic design and assessment of reinforced concrete (RC) structural walls at the life 
safety level. 
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3.1 Bayesian model assessment 
Details of the Bayesian technique can be found in the existing literature (Box and 
Tiao 1992, Der Kiureghian 1999). Here, only a brief outline is presented. Let 

ε+= ),(ˆ θxgy  (9)

be a mathematical model for predicting variable y  in terms of a set of observable 
variables ),,( 21 Kxx=x , in which ),(ˆ θxg  is an idealized model (signified by the 
superposed hat), ),,( 21 Kθθ=θ  is a set of unknown model parameters, and ε  is a 
random variable representing the unknown error in the model. We will assume that ε  
has a normal distribution (normality assumption) and that it has a constant standard 
deviation σ . (homoskedasticity assumption). If, for a given model ),(ˆ θxg , these 
assumptions are not satisfied, then it is possible to make a transformation of the 
model such that these assumptions are at least approximately satisfied. Box and Cox 
(1964) suggest a parametric family of transformations for this purpose. In the 
experimental results utilized in this paper, it is expected that the error in the capacity 
model will increase linearly with the capacity. Furthermore, the capacity being non-
negative is well represented by a lognormal distribution.  Therefore, a logarithmic 
transformation is selected to approximately satisfy the normality and 
homoskedasticity assumptions. Finally, with the aim of developing an unbiased 
model, we assign a zero value to the mean of ε . 

The set of unknown parameters of the model, thus, are Θ = (θ,σ). The model is 
“assessed” by estimating Θ based on the available information, which typically 
consists of a set of measured values of x and the corresponding y , and possibly 
subjective information on the likely values of the parameters. In the Bayesian 
approach, this is done by the use of the well-known updating rule  

( ) ( ) ( )ΘΘΘ pLcf =  (10)

where p(Θ) denotes the prior distribution on Θ reflecting the subjective information, 
L(Θ) is the likelihood function, which is a function proportional to the conditional 
probability of making the observations on x and y  for a given value of the 
parameters and reflects the objective information gained from the data, c  is a 
normalizing factor, and f(Θ) is the posterior distribution reflecting our updated 
information about Θ. This rule is used to construct capacity and demand models and 
estimates of the fragility for RC structural walls based on observed laboratory test 
data. Formulations of the prior distribution and the likelihood function for specific 
models are presented throughout the paper. 

3.2 Probabilistic Model for Shear Strength Capacity 
The experimental information available for predicting the shear strength capacity of 
the walls are of two kinds: Measured shear strength, when shear failure has been 
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observed, and measured lower bound to the shear strength when the wall has failed 
in flexure. These two types of information are reflected in the likelihood function. Let 

( ) ( )[ ]sscccg2asp1cap VlbfffAPaV̂ +′′+= νν  (11)

denote the predicted shear strength capacity excluding the error term. In the k-th 
experiment, given the set of observable variables (aasp,P, Ag,b,l, f′c, fyh,Vs)k, kcapV )ˆ(  is 
calculated from (11). Having the measured value of the maximum applied shear force 
on the section, the k-th realization of the error term is 

( ) ( ) ( )
kcapkcapkVc VV ˆlnln −=ε  (12)

Considering the normal distribution of the error term with a zero mean, and assuming 
statistical independence between the observations, the likelihood function takes the 
form 
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where the first product is for all the walls that failed in shear and the second product 
is for all the walls that failed in flexure. In the above expression ).(ϕ  is the standard 
normal probability density function and ).(Φ  is the standard normal cumulative 
distribution function. 

Not having prior information on the parameters of the model, a non-informative prior 
distribution is used (Box and Tiao, 1992). This essentially implies locally uniform 
distributions for ν1, ν2, ν3, and ln(σVc). This prior distribution together with the 
likelihood function in (13) is used in the Bayesian updating formula to estimate the 
posterior statistics of the parameters. The computer program BUMP (Geyskens et 
al., 1993) is used for this purpose. The posterior mean values of the parameters based 
are =1ν 0.067, =2ν 2.240, =3ν 0.500, and =Vcσ 0.051. The standard deviations are 
0.013, 0.244, 0.010 and 0.002, respectively. The only considerable correlation 
coefficient is between 1ν  and 2ν , which is equal to –0.64. The standard deviation of the 
model error is small (equivalent to a coefficient of variation of about 0.051 in the 
capacity), which is an indication of the accuracy of the model. Based on the 
comparison between the mean values of 1ν  and 2ν , for a P/(Agf′c) value of only 0.06, 
the effect of the axial load on the shear strength capacity of the wall is twice that of 
the first term on the right hand side of (11). The importance of the axial load on the 
shear strength of the wall is also reflected in the significant correlation between the 
shear deformation and the term P/(Agf′c). The large negative correlation between ν1 
and ν2 implies that the two terms can be combined with little loss of accuracy. This 
simplification is not used in this study. 
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Figure 4 compares the measured and 
predicted median shear strength capacities 
for the tested walls. As can be seen, the data 
points for walls that failed in shear are closely 
lined up along the 1:1 line that represents 
equal values for the measured and predicted 
shear strengths. The data points for walls that 
did not fail in shear fall below the diagonal 
line, indicating that the predicted median 
shear strength capacities are larger than the 
maximum applied shear force.  

 

 

4 Shear Displacement 
The form of the shear deformation of a RC structural 
wall is different from the form of the flexural deforma-
tion over its height. Fig. 5 shows an idealized shear 
distortion pattern of a structural wall. Experimental data 
shows that a significant part of the inelastic shear 
deformation takes place at the base of the wall over a 
height almost equal to the total depth of the section, 
length of the wall in the plan, WL , (Oesterle et. al., 1976 
and Vallenas et al., 1979). Therefore, in this section a 
model is proposed for estimating the shear distortion of 
the wall over this length, denoted as .W

L
S

L
S LDrift WW ∆=  

The test results show that the shear yielding (i.e. 
significant drop in shear stiffness) coincides with flexural yielding, which is not 
necessarily accompanied by yielding of horizontal reinforcement (Oesterle et. al., 
1976 and 1979). Therefore, inelastic flexural and shear deformations are coupled. In 
a truss analogy, under the lateral loads, the longitudinal reinforcement (mainly in the 
boundary element region) forms the tensile element of the assumed truss system. 
Therefore, the yielding of the flexural reinforcement implies the yielding of the tensile 
element of the assumed truss system. This is demonstrated in Fig. 6. Figure 6(a) 
shows the deformation of a truss model for a structural wall due only to the yielding of 
the bottom left vertical element. This deformation is decomposed to flexural (Fig. 
6(b)) and shear (Fig. 6(c)) deformations. 

 

Fig. 5. Shear deformation
of RC structural wall 

Fig. 4. Measured versus mean
predicted shear strength 
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Fig. 6. Effect of flexural yielding in shear deformation 

Furthermore, after yielding of the flexural reinforcement, the cracks (flexural and 
shear cracks) widen and the stiffness of the shear-transferred mechanism through 
aggregate interlock drops. As explained by Oesterle et. al. (1976), this is 
accompanied by a reduction in the dowel stiffness of the tensile boundary element. 

Test results show a significant correlation between the amount of axial load and the 
shear distortion. Oesterle et. al. (1984) suggest the following relationship between 
the shear drift, WL

SDrift  and total drift, WL
tDrift , over the height WL  

WWW L
t

L
t

cg

L
s DriftDrift

fA
PDrift 52.06.276.0 ≥











′
−=  

(14)

Another parameter that may affect the shear deformation of structural walls is the 
level of shear force demand, dV , on the wall. Therefore, the following model is used 
to estimate the shear distortion of structural walls in the regions close to the base of 
the walls: 
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where WL
fDrift  is the flexural drift over the height WL , CapV  is the shear strength 

capacity of the section as given in (8), excluding CapV . 1λ  to 5λ  are the parameters of 
the model and Dsε  is a random variable representing the unknown error in the model 
having the normal distribution with zero mean and unknown standard deviation .Dsσ  
Using the Bayesian parameter estimation technique, the posterior statistics of the 
model parameters are estimated and given in Table 1. 

Figure 7 compares the measured and pre-
dicted mean shear distortion values for the 
tested walls. The data for two walls are not 
included because of lack of information on 
the measured shear distortion. As can be 
seen, except for one wall (the only barbell-
section wall with low flexural and high con-
fining reinforcement boundary element and 
under low axial load that failed in flexure), in 
which the measured shear distortion is con-
siderably larger than the estimated value, 
the results of other walls fairly closely follow 
the 1:1 line.  

Correlation Coefficient
Parameter Mean

Standard
Deviation λ1 λ2 λ3 λ4 λ5 Dsσ

λ1 2.15 0.25 1

λ2 7.50 1.13 0.59 1

λ3 2.30 0.17 0.68 0.36 1

λ4 0.07 0.00 -0.03 0.03 0.06 1

λ5 0.50 0.02 0.02 0.05 0.01 0.08 1

Dsσ 0.15 0.02 0.01 0.04 -0.01 0.02 0.00 1

Table 1. Posterior statistics of shear distortion model parameters 

Fig. 7. Measured versus mean
predicted shear drift 
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5 Application 
The capacity models presented in this paper can be utilized in the probabilistic 
seismic design and assessment of RC structural walls. The models can also be used 
in the estimation of seismic fragility of RC structural wall. The seismic fragility of a 
structural system is defined as the conditional probability of failure of for a given 
intensity of the ground motion. Proper measures of the ground motion intensity need 
to be selected, in order to find better correlation between the seismic ground motion 
intensity and the response of structures. For long period RC structural walls it is 
found that the elastic response spectrum is a reliable measure of the ground motion 
intensity (Sasani and Der Kiureghian, 2001). For short period RC structural walls, a 
new measure of ground motion intensity, called significant peak ground acceleration, 
is found to be well correlated with the response of structures under severe pulse-type 
ground motions (Sasani et. al., 2002). Having the probabilistic models for demands 
and capacities and the proper measures of ground motion intensity, the fragility of 
RC structural walls can be estimated. 

6 Summary 
Incorporating mechanics of the shear and flexural behavior of RC walls, using the 
Bayesian parameter estimating technique, and utilizing available experimental data, 
capacity models for flexural deformation, shear strength, and shear deformation of 
RC structural walls are developed. Significant errors observed in some available 
models in current seismic codes suggest a need for accounting for the model errors 
in probabilistic design of structures. 
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