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ABSTRACT
In practice, multi-asperity contact problems are often

solved as two dimensional (2D) plane problems rather than true
three dimensional (3D) problems. This is accomplished by
assuming that each peak on a 2D scanned profile is the pinnacle
of a half sphere. Hertz contact equations are then used to solve
for the radius of contact and pressure profile. In reality, the
local maximum in the plane may not be the maximum in the
unmeasured depth direction, creating inherent errors in the
contact model. This error is shown to be significant in contact
problems when estimating the area of contact and total contact
force over a single asperity. The pressure corrected Sternberg-
Turteltaub model is introduced, in which a cylinder is used to
model a sphere in a plane. This model is shown to improve the
contact area and total force estimates for a range contact
parameters.

INTRODUCTION
Typically, multi-asperity contact problems are solved by

assuming that each asperity is a perfect sphere. Hertz's
equations for contacting spheres gives good estimates of the
contact pressure profile, if the radius of the sphere is known [1].
However, the topography of the surface is often measured by
using a stylus type profiler, which scans a single plane. In
reality, the local maximum in the scanned plane may not be the
maximum in the unmeasured depth direction. Using this radius
in the spherical Hertz contact model creates inherent errors. In
this paper the significance and reasoning behind these errors are
introduced and corrections, including a modified form of the
cylindrical contact model, are proposed to reduce the error in
plane approximations.

Plane Approximations 
Multi-asperity contact problems can be solved in two or

three dimensions. A surface profiler can be used to determine
the surface height in both the x and y directions (Fig 1). Then,
the overall equilibrium of the two contacting surfaces could be
found by direct modeling of each asperity as Hertz contacts [1],
or by statistical techniques [2]. For these problems, each
asperity is treated as a sphere and Hertz contact equations are
applied. Typically, 3D solutions require significant

computational time. It is also difficult to analyze complex
problems involving sliding, composite layers, etc. in 3D [4].

Two dimensional (2D) “plane approximations” provide an
alternative, where a surface profiler could be used to obtain the
surface heights along the x direction, on a single x-z plane, as
shown in Fig 1. Similar profiles can be obtained for a general
surface using a random profile generator [3]. Typically each
peak on the profile is treated as the pinnacle of a sphere and
Hertz contact equations are applied. In this paper, we will
investigate the error from ignoring the y direction effects when
a 2D profile is analyzed, rather than a full 3D surface.

THEORY
Single Asperity Analysis

Here a single asperity rather than an entire surface or
profile is analyzed. The asperity is treated as a perfect half
sphere, whose center lies in a plane-1 as shown in Fig 2a. The
sphere is subjected to interference from a flat rigid punch. It
will be assumed that the surface profiler scanned the asperity
along plane-2, which is parallel to plane-1, but offset by a
distance y*.

Focusing on a front view of the asperity in Fig 2b, it is

Figure 1 3D plane profile, and the 2D profile in the x-z scan
plane
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noted that if the scan plane is identical to plane-1, the true
radius of the sphere (R) and the true maximum interference (δ )
will be found. If y* is not zero, a different value for the radius

( *R ) and maximum interference ( δ ) will be observed. Clearly
assuming that the observed half circle on the scanned profile is
the pinnacle of a sphere will lead to some amount of error
depending on the value of y*.

Focusing on Fig 2c, the relationships between the true and
observed radii and maximum interferences are found as
follows,

( )* *R Rδ = δ − −  (a),        
2* 2 *R R y= −   (b)         (1)

Analysis Over The Entire Asperity
In order to gain valuable information about the error

associated with using the parameters obtained from a line scan,
the entire asperity will be analyzed, rather than simply
analyzing a single y* value. In order to do this, n (=200) equally
spaced y* values are selected. These y* values cover the entire
range, where the punch interferes with the undeformed sphere.
For each y* value the contact problem is solved on plane-2
using three methods.

First, the full 3D model is solved using spherical Hertz
contact equations with the true radius and true maximum
interference from plane-1. The relevant information for plane-2
is then extracted from the 3D solution.  This approach is called
the Hertz (H) model.

The second method for solving the plane problem is to
simply apply the spherical Hertz contact equations to the

perceived radius *R and interference *δ  value, obtained from
the profile. This approach, which is based on incomplete
information on surface topography is called the incomplete
Hertz (Hi) model.

The third method involves using a modified form of the
cylindrical contact  model based on Sternberg and Turteltaub's
(ST) work [5]. This model provides a relation between the
punch penetration δ and the contact radius a, and cylinder
radius R. The modified ST model is introduced later in the

paper. The values of *R and *δ  obtained from the profile are

used in the ST equations.  This modified cylindrical contact
model is called the ST-model, here.

Equations for the Three Models
The focus of the analysis is to determine the cumulative

effect of randomly chosen plane-2 (y*) locations on the spanned
contact area (Aj) and total force (Fj), using the three methods. A
different subscript j used on the variables, to indicate the
method. The subscript H is added for the real 3D Hertz solution.
The subscripts Hi and ST are used for the incomplete Hertz
model and for the cylindrical contact with Sternberg-
Turtlebaum's modifications, respectively. The radius and punch
penetration values in the last two models are obtained in plane-
2.

Equations for the Real 3D Hertz Solution
The relation between the true contact radius ar and the

perceived contact radius *

Hia can be found from Fig. 2d as,
2* 2 *

Hi ra a y= − .                               (2)
Substituting the well-known Hertz [1] relationship between

contact radius and maximum interference ( 2

ra R= δ ), the real
contact radius on any plane can be found to be,

2* *
Hia R y= δ − .                            (3)

Using the pressure distribution from Hertz contact, the equation
for the pressure in the contact length (x) of the scan plane is,

( ) ( )
22 *

H 22
rr

2E x y
p x 1

a1 a
δ +

= −
π − ν

.                   (4)

The force per unit width on the scan plane ( )'
HF  is found as,

2*
'
Hr 2 2

r

E y
F 1

1 a

 δ
= −  − ν  

 ,                              (5)

by integrating Hp over the real contact length for the scan
plane-2.

The spanned contact area (AH) is found by numerically

integrating the contact length *

r2a  through the y direction with,

2
n

* *
H i

i 1

A 2 y R y
=

= ∆ δ −∑ .                     (6)

where n is the number of line scan locations.
Similarly, the total force applied to the asperity is found by

numerically integrating '
HF  through the y* direction with,

( )
2* *n

i
r 22

i 1 r

E y y
F 1

a1 =

 δ∆
= −  − ν  

∑ .                   (7)

In these summations, *y∆  is the spacing between scan
planes in the y direction. It should also be noted that the Hertz
equations can be applied directly to find the true contact area
and force supported by the asperity without numerical
integration. These equations can be used to verify that a small

enough *y∆  value has been selected.

Figure 2: a) Three dimensional model of an asperity; The
front b) and side c) views; and d) Details of the real contact

area.

a)

b)

c)

d)



3 Copyright © 2003 by ASME

Equations for the Incomplete Hertz Model
For the Hertz sphere solution, the radius of contact on any

scan plane is given as,
* * *
Hia R= δ .                                (8)

where R* and δ* are given in Eqns (1a) and (1b).
The contact area is found by integrating in the y* direction

in the same manner that was followed for the 3D solution,
giving,

( )
n 1 /2* * *

Hi
i 1

A 2 y R
=

= ∆ δ∑ .                    (9)

The pressure at a given x value in the contact length on a scan
plane is,

  ( ) ( )
2*

Hi *2 *
HiHi

2E x
p x 1

a1 a

 δ
= −  

π − ν  
.            (10)

The force per unit width on the scan plane can be found by
integrating Hip over the contact length for the scan plane.
Performing this integration leads the force per unit width, given
as,

*
'
Hi 2

E
F

1
δ

=
− ν

.                                    (11)

Numerical integration through the entire asperity in the y
direction leads to the total force on the asperity, given as,

* n
*

Hi i2
i 1

E y
F

1 =

∆
= δ

− ν ∑  .                             (12)

Equations for the Cylindrical Contact with Sternberg-
Turteltaub Modifications

Sternberg and Turteltaub analyzed an infinitely long
cylinder with a finite radius R compressed a distance
2δ between two flat rigid punches [5]. From this analysis the
following equations were obtained under the assumption that
radius of the cylinder R is much greater than the half-contact
length a,

2 4

2

3
s
o

4 1 9
ln   +

R 2 2 64

a
 

R 4
3

p
16

  δ γ γ
= −  γ  

ϕγ
= γ −

γ
υ = γ +

              (13a,b,c)

where s
op is the maximum contact pressure, ( )1 / 2

2 P Rγ υ π= ,

( )22 1 Eυ = − ν ,  and ( ) ( )1 2 2 1ϕ = − ν − ν .

Using symmetry about the mid-plane between the two
punches allows the problem to be treated as a half cylinder. In
this work Eqns (13a) and (13b) are solved numerically by using
ν = 0.3, and a curve fit relationship between a, R, and δ is
obtained,

1 m m
s

ˆa C R −= δ                               (14)

with Cs = 0.962 and m = 0.557. Note that this equation is valid
in the range 1.15×10-6 ≤ δ/R ≤ 2.25×10-3. Substituting eqns (1a)
and (1b) yield the half-contact length,

* *0.443 *0.557
STa 0.962R= δ .                   (15)

The contact area is obtained, by numerically integrating
through the y direction,

n
* *0.413 *0.557

ST
i 1

A 1.924 y R
=

= ∆ δ∑ .               (16)

The pressure at any point in the contact length on a scan
plane is represented by,

( )
1/22

3
ST 2 *

ST

E 3 x
p x 1

1 4 a

    = η + η −   − ν     
           (17)

where,
1/2*

ST
*

a1
1 1

R

  
η = − − ϕ  ϕ    

.                   (18)

The force per unit width on the scan plane for the ST cylinder is
found in the same manner as the Hertz analysis,

' *0.443 *0.557 3
ST 2

E 3
F 0.481 R

1 4
 = π δ η+ η − ν  

.        (19)

The total force on the asperity is found as,
* n

0.443 0.557* * 3
ST i i2

i 1

E y 3
F 0.481 R

1 4=

∆  = π δ η + η − ν  
∑ .       (20)

Non-dimensional Equations
All of the variables involving a length are scaled with ar ,

*
j*

j
r

a
a

a
= , 

*
*

r

R
R

a
= ,

r

R
R

a
= ,

*
*

ra
δ

δ = , 
ra

δ
δ = ,

*
*

r

y
y

a
= ,

'
j'

j
o r

F
F

p a
= ,

j
j 2

o r

F
F

p a
= , 

j
j

o

p
p

p
=            (21)

where the subscript j takes the values H, Hi and ST as appropriate,
and the maximum pressure is defined as,

( )o 2
r

2E
p

a 1
δ

π ν
=

−
.                         (22)

This non-dimensionalization results in only three independent

parameters that control the problem, ν, R  and *y .

RESULTS
Contact Pressure

The contact pressure distribution for the three models are

plotted for three different *y  values and R =110 in Fig 3. This
figure shows that the Hi- and the ST-models approach the Hertz

pressure distribution as *y → 0 and *y → 1, respectively.
This indicates that, as the line-scan moves further away from
the pinnacle of the asperity, the match between the ST and
Hertz models gradually improves.
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Contact Radius

Contact radius a  is plotted for different *y locations and

R values in Figure 4a. The contact radius Ha  for the Hertz
solution falls on a unit circle as expected. However, the contact

radius of the Hi-model ( Hia ) overestimates and the contact

radius of the ST model ( STa ) underestimates the Hertz
solution. It is interesting to note that the effect of asperity

radius R on the Hi-model is so small that it can not be detected
in Fig. 4a. On the other hand the ST-model further

underestimates the contact radius with increasing R .

Contact Area Span
The probability of scanning a given asperity at

a *y location is the same for all *y values. Therefore, if we

integrate the area under the a  curve, given in Fig 4a, we get an
estimate of the contact area span Aj that the three models are
capable of estimating.

Aj is obtained numerically from eqns (6), (9) and (16).
Figure 4b displays the Aj values for all three methods. Note that
the spanned area for the Hertz model is the constant π, and is
equal to the real contact area of the Hertz contact model with
the non-dimensional contact radius of 1. The spanned area for
the Hi-model is nearly constant with 4.53. This value is 44%
greater than π. Finally, the spanned area of the ST-model is
variable as shown in Fig 4b. The error between spanned area
estimates of the Hertz model (π) and the ST-model varies
between 3% and 30%, where the error becomes smaller at

smaller values of R .
When using plane approximations, the Hi- and ST-models

wrongly assume the sphere or the cylinder is centered on the
scan plane and thus the first point to touch the flat punch is the
peak as seen in the scan plane. This reasoning explains the
overshoot area for the Hi- and ST-models. The remaining error
in the ST-model is simply attributed to modeling a portion of a
sphere with a cylinder.

While it may not be apparent as to why the ST cylindrical
model is being considered for modeling spheres in a plane, it is
interesting to note that the this model provides a better
approximation to the true contact area in the range of asperity

radii (15 ≤ R ≤ 250) considered in Fig. 4b. This is a result of
the underestimation of the contact radius near the center of the
sphere, which to some extent corrects the overestimation in the
overshoot area. This correction is lacking in the Hi-model
where the contact radius is overestimated at all points except
the center where the solution is precise.
Force per Width

The force per width 
'
jF  expressions, for the three models,

are given in equations (5), (11) and (19). These expressions are

plotted in Fig 5a as a function of scan location *y , for three

different values of R . This figure shows that the force per
width is overestimated by the Hi-model as compared to the
Hertz model; and, it is underestimated by the ST-model for a

large section of the *y range. The Hi-model is insensitive to

changes in R , whereas the estimate of the ST-model becomes

worse as R increases.
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Figure 3 Contact pressure distribution for *y =0.5, 0.7, 0.9

and R =110.
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Total Force
As was the case for the spanned contact area, we can view

the effects of asperity radius R  on the total spanned force jF .

Eqns (6), (13) and (20), which give the jF expressions for the

three models, are plotted in Fig 5b. This figure shows that HF
= 1.05 for the Hertz model, and that it is independent of R .
The total force for the Hi-model is nearly constant with the

value HiF  = 1.49. However, the total force for the ST-model

varies with R  as shown in Fig 5b. The error between the ST-
model and the Hertz solution varies between 52 and 71%.

The error between the total force estimates can be reduced
by introducing  correction factors for the pressure estimates
given by eqns (10) and (17) for the Hi- and ST-models,
respectively. Fig 5b suggests that a constant correction factor of
CHi = 0.7 should be used for the Hi-model. On the other hand
the correction factor CST for the ST-model depends on the value

of R . For example, we found that for R =110 the correction

factor should be CST = 2.8. The value of R =110 represents, for

example, R = 121 µm and δ = 10 nm, which are parameters
typical of magnetic tape applications [4].

Fig 5c shows the effect of using the correction factors
indicated above on the estimates of force per width of the
asperity. Both the Hi- and ST-models follow very similar
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Figure 5 a) Dimensionless force per width as a function of

scan location *y . b) Total spanned asperity force as a
function of asperity radius. c) Estimates of the Hi and ST
models with correction factors CHi and CST.
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trends, and the areas under the two modified curves nearly
equals that under the H-model.

It is also important to note that the pressure correction
factors do not effect the contact area analysis stated above.
Therefore, the errors in contact area estimation remain as they
are given in Fig 4b. As the area estimate errors are smaller for
the ST-model, as compared to the Hi-model use of the ST-
model may be an attractive choice.

DISCUSSION
Qualitative Analysis of Multi-asperity Contact

In the previous sections contact over a single asperity was
analyzed. While this analysis provides insight into the
reasoning behind the use of the pressure corrected ST model,
the real purpose for using either model is to analyze a single
plane from a multi-asperity surface.

In the previous section a single asperity was broken into
200 thin strips. Each strip was analyzed and then combined to
find the resulting area of contact and total force
approximations. The behavior of a plane from a multi-asperity
contact problem closely parallels the single asperity analysis.

Let us consider a scan plane, which intersects n contacting
asperities, and assume the y coordinates for the centers of each
asperity are random and uncorrelated. If this is the case there is
an equal probability for any one of the 200 thin strips of a given
asperity falls within the scan plane. This means that if n is
large, we expect to see n/200 strip 1s, n/200 strip 2s, etc. This is
close to analyzing n/200 single asperities, with the only

difference being the variation of Rδ  from asperity to asperity
due to the random nature of the surface. Neglecting the effects

of the variation in Rδ , the conclusions reached for a single
asperity can be directly applied to the multi-asperity contact
case. While this qualitative analysis appears reasonable, a more

detailed quantitative analysis of multi-asperity plane
approximations will be the subject of a future paper.

SUMMARY AND CONCLUSION
While the accuracy of the Hertz contact equations are

uncontested in a 3D analysis, often the equations are used with
information based on 2D plane scans. In these analyses, the
local peaks are assumed to be the pinnacles of a sphere, when
in fact they may not be the pinnacle had the depth direction
been considered. The errors for this assumption have been
analyzed for a single asperity and shown to be substantial when
estimating the contact area and total force over the asperity.
Correction factors for the contact pressure are discussed. In
particular, a modified (ST) cylindrical contact model is
introduced. This model is shown to be better in predicting
contact area. A more robust model for determining the pressure
correction factor and a more vigorous multi-asperity contact
analysis will be the subject of future papers.
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